1
|
Zhou C, Xu L, Zuo R, Bai Z, Fu T, Zeng L, Qin L, Zhang X, Shen C, Liu F, Gao F, Xie M, Tong C, Ren L, Huang J, Liu L, Liu S. Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Brassica napus Against Xanthomonas campestris. Int J Mol Sci 2025; 26:367. [PMID: 39796224 PMCID: PMC11721368 DOI: 10.3390/ijms26010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Rapeseed (Brassica napus L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by Xanthomonas campestris pv. campestris (Xcc). Despite the identification of several quantitative trait loci (QTLs) associated with resistance to black rot in Brassica crops, the underlying molecular mechanisms remain largely unexplored. In this study, we investigated Xcc-induced transcriptomic and metabolic changes in the leaves of two rapeseed varieties: Westar (susceptible) and ZS5 (resistant). Our findings indicated that Xcc infection elicited more pronounced overall transcriptomic and metabolic changes in Westar compared to ZS5. Transcriptomic analyses revealed that the phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis, tryptophan metabolism, and phenylalanine metabolism were enriched in both varieties. Notably, photosynthesis was down-regulated in Westar after infection, whereas this down-regulation occurred at a later stage in ZS5. Integrated analyses of transcriptome and metabolome revealed that the tryptophan metabolism pathway was enriched in both varieties. Indolic glucosinolates and indole-3-acetic acid (IAA) are two metabolites derived from tryptophan. The expression of genes involved in the indolic glucosinolate pathway and the levels of indolic glucosinolates were significantly elevated in both varieties post-infection. Additionally, exogenous application of IAA promoted the development of black rot, whereas the use of an IAA synthesis inhibitor attenuated black rot development in both resistant and susceptible rapeseed varieties. These findings provide valuable molecular insights into the interactions between rapeseed and Xcc, facilitating the advancement of black rot resistance breeding in Brassica crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lijiang Liu
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (C.Z.)
| | | |
Collapse
|
2
|
Liu W, Zhang Z, Geng X, Tan R, Xu S, Sun L. Electrochemical sensors for plant signaling molecules. Biosens Bioelectron 2025; 267:116757. [PMID: 39250871 DOI: 10.1016/j.bios.2024.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Plant signaling molecules can be divided into plant messenger signaling molecules (such as calcium ions, hydrogen peroxide, Nitric oxide) and plant hormone signaling molecules (such as auxin (mainly indole-3-acetic acid or IAA), salicylic acid, abscisic acid, cytokinin, jasmonic acid or methyl jasmonate, gibberellins, brassinosteroids, strigolactone, and ethylene), which play crucial roles in regulating plant growth and development, and response to the environment. Due to the important roles of the plant signaling molecules in the plants, many methods were developed to detect them. The development of in-situ and real-time detection of plant signaling molecules and field-deployable sensors will be a key breakthrough for botanical research and agricultural technology. Electrochemical methods provide convenient methods for in-situ and real-time detection of plant signaling molecules in plants because of their easy operation, high sensitivity, and high selectivity. This article comprehensively reviews the research on electrochemical detection of plant signaling molecules reported in the past decade, which summarizes the various types electrodes of electrochemical sensors and the applications of multiple nanomaterials to enhance electrode detection selectivity and sensitivity. This review also provides examples to introduce the current research trends in electrochemical detection, and highlights the applicability and innovation of electrochemical sensors such as miniaturization, non-invasive, long-term stability, integration, automation, and intelligence in the future. In all, the electrochemical sensors can realize in-situ, real-time and intelligent acquisition of dynamic changes in plant signaling molecules in plants, which is of great significance for promoting basic research in botany and the development of intelligent agriculture.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Zhiyao Zhang
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Xinliu Geng
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Rong Tan
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Songzhi Xu
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
3
|
Nguyen LTT, Park AR, Van Le V, Hwang I, Kim JC. Exploration of a multifunctional biocontrol agent Streptomyces sp. JCK-8055 for the management of apple fire blight. Appl Microbiol Biotechnol 2024; 108:49. [PMID: 38183485 DOI: 10.1007/s00253-023-12874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 01/08/2024]
Abstract
Apple fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple and pear trees. Biological control methods have attracted much attention from researchers to manage plant diseases as they are eco-friendly and viable alternatives to synthetic pesticides. Herein, we isolated Streptomyces sp. JCK-8055 from the root of pepper and investigated its mechanisms of action against E. amylovora. Streptomyces sp. JCK-8055 produced aureothricin and thiolutin, which antagonistically affect E. amylovora. JCK-8055 and its two active metabolites have a broad-spectrum in vitro activity against various phytopathogenic bacteria and fungi. They also effectively suppressed tomato bacterial wilt and apple fire blight in in vivo experiments. Interestingly, JCK-8055 colonizes roots as a tomato seed coating and induces apple leaf shedding at the abscission zone, ultimately halting the growth of pathogenic bacteria. Additionally, JCK-8055 can produce the plant growth regulation hormone indole-3-acetic acid (IAA) and hydrolytic enzymes, including protease, gelatinase, and cellulase. JCK-8055 treatment also triggered the expression of salicylate (SA) and jasmonate (JA) signaling pathway marker genes, such as PR1, PR2, and PR3. Overall, our findings demonstrate that Streptomyces sp. JCK-8055 can control a wide range of plant diseases, particularly apple fire blight, through a combination of mechanisms such as antibiosis and induced resistance, highlighting its excellent potential as a biocontrol agent. KEY POINTS: • JCK-8055 produces the systemic antimicrobial metabolites, aureothricin, and thiolutin. • JCK-8055 treatment upregulates PR gene expression in apple plants against E. amylovora. • JCK-8055 controls plant diseases with antibiotics and induced resistance.
Collapse
Affiliation(s)
- Loan Thi Thanh Nguyen
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Inmin Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea.
- JAN153 Biotech Incorporated, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Xu X, Yu TF, Wei JT, Ma XF, Liu YW, Zhang JP, Zheng L, Hou ZH, Chen J, Zhou YB, Chen M, Ma J, Jiang YF, Ji HT, Li LH, Ma YZ, Zhang ZA, Xu ZS. TaWRKY24 integrates the tryptophan metabolism pathways to participate in defense against Fusarium crown rot in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1764-1785. [PMID: 39499237 DOI: 10.1111/tpj.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024]
Abstract
Wheat growth process has been experiencing severe challenges arising from the adverse environment. Notably, the incidence of Fusarium crown rot (FCR), a severe soil-borne disease caused by Fusarium pseudograminearum (Fp), has significantly intensified in various wheat-growing regions, resulting in a decline in grain yield. However, the identification of wheat varieties and the exploration of effective gene resources resistant to FCR have not yet been accomplished. Here, we screened and identified the tryptophan metabolism pathway to participate in wheat resistance to FCR by correlation analysis between transcriptome and metabolome, and found that indole-3-acetaldehyde (IAAld) and melatonin, two key metabolites in the tryptophan metabolic pathway, were significantly accumulated in Fp-induced wheat stem bases. Interestingly, exogenous application of these two metabolites could significantly enhance wheat resistance against Fp. Additionally, we observed that the activity of TaALDHase, a crucial enzyme responsible for catalyzing IAAld to produce indole-3-acetic acid (IAA), was inhibited. Conversely, the activity of TaMTase, a rate-limiting involved in melatonin biosynthesis, was enhanced in the Fp-induced wheat transcriptome. Further analysis showed that TaWRKY24 could regulate IAA and melatonin biosynthesis by inhibiting the expression of TaALDHase and enhancing the transcription of TaMTase, respectively. Silencing of TaALDHase could significantly increase wheat resistance to FCR. However, interference with TaWRKY24 or TaMTase could decrease wheat resistance to FCR. Collectively, our findings demonstrate the crucial role of the tryptophan metabolism pathway in conferring resistance against FCR in wheat, thereby expanding its repertoire of biological functions within the plant system.
Collapse
Affiliation(s)
- Xing Xu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tai-Fei Yu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ji-Tong Wei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao-Fei Ma
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Yong-Wei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, Cangzhou, Shijiazhuang, 050051, China
| | - Jin-Peng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lei Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ze-Hao Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yong-Bin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ming Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yun-Feng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hu-Tai Ji
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Li-Hui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, China
| | - You-Zhi Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, China
| | - Zhi-An Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhao-Shi Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, China
| |
Collapse
|
5
|
Li J, Ren J, Zhang Q, Lei X, Feng Z, Tang L, Bai J, Gong C. Strigolactone enhances tea plant adaptation to drought and Phyllosticta theicola petch by regulating caffeine content via CsbHLH80. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109161. [PMID: 39378645 DOI: 10.1016/j.plaphy.2024.109161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Strigolactones (SLs) play crucial roles in both plant growth and stress responses. However, their impact on the secondary metabolites of woody plants remains elusive. Here, we found that exogenous strigolactone analogue GR24 positively regulates tea plant flavor secondary metabolites, concurrently inhibiting caffeine biosynthesis and promoting the accumulation of caffeine catabolic pathway products. In this process, SL directly or indirectly inhibits the expression of CsSAMSs by inducing CsbHLH80, thereby reducing caffeine biosynthesis. Furthermore, CsbHLH80 enhances caffeine degradation, leading to increased allantoin. Under normal conditions, heightened allantoin reduces abscisic acid (ABA) accumulation. This inhibition reverses under drought stress. Increased ABA significantly enhances tea plant tolerance to both drought and Phyllosticta theicola Petch. In summary, this study offers novel insights for improving tea plant adaptation and quality in arid regions, particularly emphasizing the selection of stress-tolerant varieties and the refinement of production measures with a focus on high-quality production and environmentally friendly biological control methods.
Collapse
Affiliation(s)
- Jiayang Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Jiejie Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Qiqi Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Xingyu Lei
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Zongqi Feng
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Lei Tang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Williams K, Subramani M, Lofton LW, Penney M, Todd A, Ozbay G. Tools and Techniques to Accelerate Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:1520. [PMID: 38891328 PMCID: PMC11174677 DOI: 10.3390/plants13111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
As climate changes and a growing global population continue to escalate the need for greater production capabilities of food crops, technological advances in agricultural and crop research will remain a necessity. While great advances in crop improvement over the past century have contributed to massive increases in yield, classic breeding schemes lack the rate of genetic gain needed to meet future demands. In the past decade, new breeding techniques and tools have been developed to aid in crop improvement. One such advancement is the use of speed breeding. Speed breeding is known as the application of methods that significantly reduce the time between crop generations, thereby streamlining breeding and research efforts. These rapid-generation advancement tactics help to accelerate the pace of crop improvement efforts to sustain food security and meet the food, feed, and fiber demands of the world's growing population. Speed breeding may be achieved through a variety of techniques, including environmental optimization, genomic selection, CRISPR-Cas9 technology, and epigenomic tools. This review aims to discuss these prominent advances in crop breeding technologies and techniques that have the potential to greatly improve plant breeders' ability to rapidly produce vital cultivars.
Collapse
Affiliation(s)
- Krystal Williams
- Molecular Genetics and Epigenomics Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Lily W. Lofton
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA;
- Toxicology & Mycotoxin Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA 30602, USA
| | - Miranda Penney
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Gulnihal Ozbay
- One Health Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
7
|
Zeng H, He K, He Q, Xu L, Zhang W, Lu X, Tang Y, Zhu X, Yin J, He M, Chen X, Li W. Exogenous Indole-3-Acetic Acid Suppresses Rice Infection of Magnaporthe oryzae by Affecting Plant Resistance and Fungal Growth. PHYTOPATHOLOGY 2024; 114:1050-1056. [PMID: 38709298 DOI: 10.1094/phyto-10-23-0365-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Auxin is an important phytohormone that regulates diverse biologic processes, including plant growth and immunity. Indole-3-acetic acid (IAA), known as one of the main forms of auxin, is able to activate plant immunity. However, it is unknown whether IAA enhances plant resistance and/or suppresses the growth of the fungal pathogen Magnaporthe oryzae. Here, we found that IAA could induce expression levels of pathogenesis-related genes to enhance disease resistance and could control the development of blast disease through inhibiting M. oryzae infection. Exogenous IAA suppressed mycelial growth and delayed spore germination by inhibiting fungal endogenous IAA biosynthesis and impairing redox homeostasis, respectively. When applied to a field test, two IAA analogues, 1-naphthaleneacetic acid and 2,4-dichlorophenoxy acetic acid, can effectively control rice blast disease. Our study advances the understanding of IAA in controlling rice blast disease through suppressing pathogen growth and enhancing plant resistance.
Collapse
Affiliation(s)
- Hongling Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qin He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
8
|
Yu X, Hu K, Geng X, Cao L, Zhou T, Lin X, Liu H, Chen J, Luo C, Qu S. The Mh-miR393a-TIR1 module regulates Alternaria alternata resistance of Malus hupehensis mainly by modulating the auxin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112008. [PMID: 38307352 DOI: 10.1016/j.plantsci.2024.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
miRNAs govern gene expression and regulate plant defense. Alternaria alternata is a destructive fungal pathogen that damages apple. The wild apple germplasm Malus hupehensis is highly resistant to leaf spot disease caused by this fungus. Herein, we elucidated the regulatory and functional role of miR393a in apple resistance against A. alternata by targeting Transport Inhibitor Response 1. Mature miR393 accumulation in infected M. hupehensis increased owing to the transcriptional activation of MIR393a, determined to be a positive regulator of A. alternata resistance to either 'Orin' calli or 'Gala' leaves. 5' RLM-RACE and co-transformation assays showed that the target of miR393a was MhTIR1, a gene encoding a putative F-box auxin receptor that compromised apple immunity. RNA-seq analysis of transgenic calli revealed that MhTIR1 upregulated auxin signaling gene transcript levels and influenced phytohormone pathways and plant-pathogen interactions. miR393a compromised the sensitivity of several auxin-signaling genes to A. alternata infection, whereas MhTIR1 had the opposite effect. Using exogenous indole-3-acetic acid or the auxin synthesis inhibitor L-AOPP, we clarified that auxin enhances apple susceptibility to this pathogen. miR393a promotes SA biosynthesis and impedes pathogen-triggered ROS bursts by repressing TIR1-mediated auxin signaling. We uncovered the mechanism underlying the miR393a-TIR1 module, which interferes with apple defense against A. alternata by modulating the auxin signaling pathway.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaoyue Geng
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, PR China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xinxin Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hongcheng Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jingrui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changguo Luo
- Institute of Fruit Science, Guizhou Academy of Agricultural Science, Guiyang, Guizhou 550006, PR China.
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
9
|
Zhang H, Liu X, Zhou J, Strelkov SE, Fredua-Agyeman R, Zhang S, Li F, Li G, Wu J, Sun R, Hwang SF, Zhang S. Identification of Clubroot ( Plasmodiophora brassicae) Resistance Loci in Chinese Cabbage ( Brassica rapa ssp. pekinensis) with Recessive Character. Genes (Basel) 2024; 15:274. [PMID: 38540333 PMCID: PMC10970103 DOI: 10.3390/genes15030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
The soil-borne pathogen Plasmodiophora brassicae is the causal agent of clubroot, a major disease in Chinese cabbage (Brassica rapa ssp. pekinensis). The host's resistance genes often confer immunity to only specific pathotypes and may be rapidly overcome. Identification of novel clubroot resistance (CR) from germplasm sources is necessary. In this study, Bap246 was tested by being crossed with different highly susceptible B. rapa materials and showed recessive resistance to clubroot. An F2 population derived from Bap246 × Bac1344 was used to locate the resistance Quantitative Trait Loci (QTL) by Bulk Segregant Analysis Sequencing (BSA-Seq) and QTL mapping methods. Two QTL on chromosomes A01 (4.67-6.06 Mb) and A08 (10.42-11.43 Mb) were found and named Cr4Ba1.1 and Cr4Ba8.1, respectively. Fifteen and eleven SNP/InDel markers were used to narrow the target regions in the larger F2 population to 4.67-5.17 Mb (A01) and 10.70-10.84 Mb (A08), with 85 and 19 candidate genes, respectively. The phenotypic variation explained (PVE) of the two QTL were 30.97% and 8.65%, respectively. Combined with gene annotation, mutation site analysis, and real-time quantitative polymerase chain reaction (qRT-PCR) analysis, one candidate gene in A08 was identified, namely Bra020861. And an insertion and deletion (InDel) marker (co-segregated) named Crr1-196 was developed based on the gene sequence. Bra013275, Bra013299, Bra013336, Bra013339, Bra013341, and Bra013357 in A01 were the candidate genes that may confer clubroot resistance in Chinese cabbage. The resistance resource and the developed marker will be helpful in Brassica breeding programs.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Xitong Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jinyan Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| |
Collapse
|
10
|
Nagarajan N, Khan M, Djamei A. Manipulation of Auxin Signaling by Smut Fungi during Plant Colonization. J Fungi (Basel) 2023; 9:1184. [PMID: 38132785 PMCID: PMC10744876 DOI: 10.3390/jof9121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
A common feature of many plant-colonizing organisms is the exploitation of plant signaling and developmental pathways to successfully establish and proliferate in their hosts. Auxins are central plant growth hormones, and their signaling is heavily interlinked with plant development and immunity responses. Smuts, as one of the largest groups in basidiomycetes, are biotrophic specialists that successfully manipulate their host plants and cause fascinating phenotypes in so far largely enigmatic ways. This review gives an overview of the growing understanding of how and why smut fungi target the central and conserved auxin growth signaling pathways in plants.
Collapse
Affiliation(s)
| | | | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany; (N.N.); (M.K.)
| |
Collapse
|
11
|
Tang L, Li D, Liu W, Sun Y, Dai Y, Cui W, Geng X, Li D, Song F, Sun L. Continuous In Vivo Monitoring of Indole-3-Acetic Acid and Salicylic Acid in Tomato Leaf Veins Based on an Electrochemical Microsensor. BIOSENSORS 2023; 13:1002. [PMID: 38131762 PMCID: PMC10742318 DOI: 10.3390/bios13121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Indole-3-acetic acid (IAA) and salicylic acid (SA), as critical plant hormones, are involved in multiple physiological regulatory processes of plants. Simultaneous and continuous in vivo detection of IAA and SA will help clarify the mechanisms of their regulation and crosstalk. First, this study reports the development and application of an electrochemical microsensor for simultaneous and continuous in vivo detection of IAA and SA. This electrochemical microsensor system consisted of a tip (length, 2 mm) of platinum wire (diameter, 0.1 mm) modified with carbon cement and multi-walled carbon nanotubes, an untreated tip (length, 2 mm) of platinum wire (diameter, 0.1 mm), as well as a tip (length, 2 mm) of Ag/AgCl wire (diameter, 0.1 mm). It was capable of detecting IAA in the level ranging from 0.1 to 30 µM and SA ranging from 0.1 to 50 µM based on the differential pulse voltammetry or amperometric i-t., respectively. The dynamics of IAA and SA levels in tomato leaf veins under high salinity stress were continuously detected in vivo, and very little damage occurred. Compared to conventional detection methods, the constructed microsensor is not only suitable for continuously detecting IAA and SA in microscopic plant tissue in vivo, it also reduces the damage done to plants during the detection. More importantly, the continuous and dynamic changes in IAA and SA data obtained in stiu through this system not only can help clarify the interaction mechanisms of IAA and SA in plants, it also helps to evaluate the health status of plants, which will promote the development of basic research in botany and precision agriculture.
Collapse
Affiliation(s)
- Lingjuan Tang
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
- Analysis and Testing Center, Nantong University, Nantong 226019, China
| | - Daodong Li
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Wei Liu
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Yafang Sun
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Ying Dai
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Wenjing Cui
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Xinliu Geng
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China; (D.L.); (F.S.)
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China; (D.L.); (F.S.)
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| |
Collapse
|
12
|
Shinde R, Ayyanath MM, Shukla M, El Kayal W, Saxena P, Subramanian J. Hormonal Interplay Leading to Black Knot Disease Establishment and Progression in Plums. PLANTS (BASEL, SWITZERLAND) 2023; 12:3638. [PMID: 37896101 PMCID: PMC10609688 DOI: 10.3390/plants12203638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Black Knot (BK) is a deadly disease of European (Prunus domestics) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. After infection, the appearance of warty black knots indicates a phytohormonal imbalance in infected tissues. Based on this hypothesis, we quantified phytohormones such as indole-3-acetic acid, tryptophan, indoleamines (N-acetylserotonin, serotonin, and melatonin), and cytokinins (zeatin, 6-benzyladenine, and 2-isopentenyladenine) in temporally collected tissues of susceptible and resistant genotypes belonging to European and Japanese plums during of BK progression. The results suggested auxin-cytokinins interplay driven by A. morbosa appears to be vital in disease progression by hampering the plant defense system. Taken together, our results indicate the possibility of using the phytohormone profile as a biomarker for BK resistance in plums.
Collapse
Affiliation(s)
- Ranjeet Shinde
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada (M.-M.A.); (M.S.); (P.S.)
| | - Murali-Mohan Ayyanath
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada (M.-M.A.); (M.S.); (P.S.)
| | - Mukund Shukla
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada (M.-M.A.); (M.S.); (P.S.)
| | - Walid El Kayal
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON L0R 2E0, Canada;
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Praveen Saxena
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada (M.-M.A.); (M.S.); (P.S.)
| | - Jayasankar Subramanian
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON L0R 2E0, Canada;
| |
Collapse
|
13
|
Khuna S, Kumla J, Srinuanpan S, Lumyong S, Suwannarach N. Multifarious Characterization and Efficacy of Three Phosphate-Solubilizing Aspergillus Species as Biostimulants in Improving Root Induction of Cassava and Sugarcane Stem Cuttings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3630. [PMID: 37896093 PMCID: PMC10610185 DOI: 10.3390/plants12203630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Several soil fungi significantly contribute to the enhancement of plant development by improving nutrient uptake and producing growth-promoting metabolites. In the present study, three strains of phosphate-solubilizing fungi, namely, Aspergillus chiangmaiensis SDBR-CMUI4, A. pseudopiperis SDBR-CMUI1, and A. pseudotubingensis SDBR-CMUO2, were examined for their plant-growth-promoting capabilities. The findings demonstrated that all fungi showed positive siderophore production, but only A. pseudopiperis can produce indole-3-acetic acid. All fungi were able to solubilize insoluble phosphate minerals [Ca3(PO4)2 and FePO4] by producing phosphatase enzymes and organic acids (oxalic, tartaric, and succinic acids). These three fungal species were grown at a water activity ranging from 0.837 to 0.998, pH values ranging from 4 to 9, temperatures between 4 and 40 °C, and 16-17% NaCl in order to evaluate their drought, pH, temperature, and salt tolerances, respectively. Moreover, the results indicated that A. pseudopiperis and A. pseudotubingensis were able to tolerate commercial insecticides (methomyl and propargite) at the recommended dosages for field application. The viability of each fungal strain in the inoculum was higher than 50% at 4 and 20 °C after 3 months of storage. Subsequently, all fungi were characterized as plant-growth-promoting strains by improving the root inductions of cassava (Manihot esculenta Crantz) and sugarcane (Saccharum officinarum L.) stem cuttings in greenhouse experiments. No symptoms of plant disease were observed with any of the treatments involving fungal inoculation and control. The cassava and sugarcane stem cuttings inoculated with fungal strains and supplemented with Ca3(PO4)2 exhibited significantly increased root lengths, shoot and root dry biomasses, chlorophyll concentrations, and cellular inorganic phosphate contents. Therefore, the application of these phosphate-solubilizing fungi is regarded as a new frontier in the induction of roots and the promotion of growth in plants.
Collapse
Affiliation(s)
- Surapong Khuna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Yuan WJ, He ZY, Zhang SP, Zheng YP, Zhang XQ, He SQ, He YX, Li Y. Comparative transcriptomics provides insights into the pathogenic immune response of brown leaf spots in weeping forsythia. TREE PHYSIOLOGY 2023; 43:1641-1652. [PMID: 37171622 DOI: 10.1093/treephys/tpad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
Weeping forsythia is an important ornamental, ecological and medicinal plant. Brown leaf spots limit the large-scale production of weeping forsythia as a medicinal crop. Alternaria alternata is a pathogen causing brown leaf spots in weeping forsythia; however, its pathogenesis and the immune response mechanisms of weeping forsythia remain unclear. In this study, we identified two mechanisms based on morphological anatomy, physiological indexes and gene expression analyses. Our results showed that A. alternata induced leaf stomata to open, invaded the mesophyll, dissolved the cell wall, destroyed the cell membrane and decreased the number of chloroplasts by up-regulating the expression of auxin-activated signaling pathway genes. Alternaria alternata also down-regulated iron-ion homeostasis and binding-related genes, which caused an increase in the levels of iron ions and reactive oxygen species in leaves. These processes eventually led to programmed cell death, destroying palisade and spongy tissues and causing the formation of iron rust spots. Alternaria alternata also caused defense and hypersensitive responses in weeping forsythia through signaling pathways mediated by flg22-like and elf18-like polypeptides, ethylene, H2O2 and bacterial secretion systems. Our study provides a theoretical basis for the control of brown leaf spots in weeping forsythia.
Collapse
Affiliation(s)
- Wang-Jun Yuan
- School of Pharmacy, Henan University, Kaifeng, North street of Jinming Road, Henan 475004, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, North street of Jinming Road, Henan 475004, China
| | - Zhi-Yin He
- School of Pharmacy, Henan University, Kaifeng, North street of Jinming Road, Henan 475004, China
| | - Su-Ping Zhang
- School of Pharmacy, Henan University, Kaifeng, North street of Jinming Road, Henan 475004, China
| | - Yan-Ping Zheng
- School of Pharmacy, Henan University, Kaifeng, North street of Jinming Road, Henan 475004, China
| | - Xiao-Qian Zhang
- School of Pharmacy, Henan University, Kaifeng, North street of Jinming Road, Henan 475004, China
| | - She-Qi He
- School of Pharmacy, Henan University, Kaifeng, North street of Jinming Road, Henan 475004, China
| | - Yan-Xia He
- School of Life Sciences, Henan University, Kaifeng, North street of Jinming Road, Henan 475004, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, Zhaowuda Road No. 81, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, Dongxiaofu Road No. 1, China
| |
Collapse
|
15
|
Yan X, Xu S, Guo J, Hu J, He D, Jia L, Shang H, Li G, Luo K. Multifunctionality of Jasmonic Acid Accumulation during Aphid Infestation in Altering the Plant Physiological Traits That Suppress the Plant Defenses in Wheat Cultivar XN979. INSECTS 2023; 14:622. [PMID: 37504628 PMCID: PMC10380978 DOI: 10.3390/insects14070622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Crop plants have coevolved phytohormone-mediated defenses to combat and/or repel their colonizers. The present study determined the effects of jasmonic acid (JA) accumulation during aphid infestation on the preference and performance of Sitobion miscanthi Takahashi (Hemiptera: Aphididae), and its potential role in fine-tuning hormone-dependent responses in XN979 wheat cultivar seedlings was evaluated via the transcriptional profiles of marker genes related to JA- and salicylic acid (SA)-dependent responses. The preference experiment and the life table data reveal that direct foliage spraying of 2.5 mM methyl jasmonate (MeJA) exhibited weak negative or positive effects on the preferential selection and the population dynamics and oviposition parameters of S. miscanthi. The transcription level of phytohormone biosynthesis genes shows that foliage spraying of MeJA significantly upregulated the marker genes in the JA biosynthesis pathway while downregulating the SA pathway. In addition, either MeJA treatment or previous aphid infestation significantly induced upregulated transcription of the genes involved in the JA- and SA-dependent defense responses, and the transcription level of the tryptophan decarboxylase (TaTDC) gene, which facilitates the conversion of L-tryptophan to tryptamine, was rapidly upregulated after the treatments as well. The main products of tryptamine conversion could play a crucial role in suppressing SA-dependent defense responses. These results will provide more experimental evidence to enable understanding of the antagonistic interaction between hormone signaling processes in cereals under aphid infestation.
Collapse
Affiliation(s)
- Xia Yan
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Shicai Xu
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Jiao Guo
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Jiazhen Hu
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Dejia He
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Li Jia
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Huanzhang Shang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Guangwei Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Kun Luo
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| |
Collapse
|
16
|
Castro C, Massonnet M, Her N, DiSalvo B, Jablonska B, Jeske DR, Cantu D, Roper MC. Priming grapevine with lipopolysaccharide confers systemic resistance to Pierce's disease and identifies a peroxidase linked to defense priming. THE NEW PHYTOLOGIST 2023; 239:687-704. [PMID: 37149885 DOI: 10.1111/nph.18945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Priming is an adaptive mechanism that fortifies plant defense by enhancing activation of induced defense responses following pathogen challenge. Microorganisms have signature microbe-associated molecular patterns (MAMPs) that induce the primed state. The lipopolysaccharide (LPS) MAMP isolated from the xylem-limited pathogenic bacterium, Xylella fastidiosa, acts as a priming stimulus in Vitis vinifera grapevines. Grapevines primed with LPS developed significantly less internal tyloses and external disease symptoms than naive vines. Differential gene expression analysis indicated major transcriptomic reprogramming during the priming and postpathogen challenge phases. Furthermore, the number of differentially expressed genes increased temporally and spatially in primed vines, but not in naive vines during the postpathogen challenge phase. Using a weighted gene co-expression analysis, we determined that primed vines have more genes that are co-expressed in both local and systemic petioles than naive vines indicating an inherent synchronicity that underlies the systemic response to this vascular pathogen specific to primed plants. We identified a cationic peroxidase, VviCP1, that was upregulated during the priming and postpathogen challenge phases in an LPS-dependent manner. Transgenic expression of VviCP1 conferred significant disease resistance, thus, demonstrating that grapevine is a robust model for mining and expressing genes linked to defense priming and disease resistance.
Collapse
Affiliation(s)
- Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Nancy Her
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Biagio DiSalvo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Barbara Jablonska
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Daniel R Jeske
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
17
|
Ait Bessai S, Cruz J, Carril P, Melo J, Santana MM, Mouazen AM, Cruz C, Yadav AN, Dias T, Nabti EH. The Plant Growth-Promoting Potential of Halotolerant Bacteria Is Not Phylogenetically Determined: Evidence from Two Bacillus megaterium Strains Isolated from Saline Soils Used to Grow Wheat. Microorganisms 2023; 11:1687. [PMID: 37512860 PMCID: PMC10384442 DOI: 10.3390/microorganisms11071687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Increasing salinity, further potentiated by climate change and soil degradation, will jeopardize food security even more. Therefore, there is an urgent need for sustainable agricultural practices capable of maintaining high crop yields despite adverse conditions. Here, we tested if wheat, a salt-sensitive crop, could be a good reservoir for halotolerant bacteria with plant growth-promoting (PGP) capabilities. (2) Methods: We used two agricultural soils from Algeria, which differ in salinity but are both used to grow wheat. Soil halotolerant bacterial strains were isolated and screened for 12 PGP traits related to phytohormone production, improved nitrogen and phosphorus availability, nutrient cycling, and plant defence. The four 'most promising' halotolerant PGPB strains were tested hydroponically on wheat by measuring their effect on germination, survival, and biomass along a salinity gradient. (3) Results: Two halotolerant bacterial strains with PGP traits were isolated from the non-saline soil and were identified as Bacillus subtilis and Pseudomonas fluorescens, and another two halotolerant bacterial strains with PGP traits were isolated from the saline soil and identified as B. megaterium. When grown under 250 mM of NaCl, only the inoculated wheat seedlings survived. The halotolerant bacterial strain that displayed all 12 PGP traits and promoted seed germination and plant growth the most was one of the B. megaterium strains isolated from the saline soil. Although they both belonged to the B. megaterium clade and displayed a remarkable halotolerance, the two bacterial strains isolated from the saline soil differed in two PGP traits and had different effects on plant performance, which clearly shows that PGP potential is not phylogenetically determined. (4) Conclusions: Our data highlight that salt-sensitive plants and non-saline soils can be reservoirs for halotolerant microbes with the potential to become effective and sustainable strategies to improve plant tolerance to salinity. However, these strains need to be tested under field conditions and with more crops before being considered biofertilizer candidates.
Collapse
Affiliation(s)
- Sylia Ait Bessai
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Joana Cruz
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Competence Centre for Molecular Biology, SGS Molecular, Polo Tecnológico de Lisboa, Rua Cesina Adães Bermudes, Lt 11, 1600-604 Lisboa, Portugal
| | - Pablo Carril
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Juliana Melo
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Margarida M Santana
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Abdul M Mouazen
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - Cristina Cruz
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Teresa Dias
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - El-Hafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| |
Collapse
|
18
|
Shi S, Zha W, Yu X, Wu Y, Li S, Xu H, Li P, Li C, Liu K, Chen J, Yang G, Chen Z, Wu B, Wan B, Liu K, Zhou L, You A. Integrated transcriptomics and metabolomics analysis provide insight into the resistance response of rice against brown planthopper. FRONTIERS IN PLANT SCIENCE 2023; 14:1213257. [PMID: 37426975 PMCID: PMC10327896 DOI: 10.3389/fpls.2023.1213257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023]
Abstract
Introduction The brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most economically significant pests of rice. The Bph30 gene has been successfully cloned and conferred rice with broad-spectrum resistance to BPH. However, the molecular mechanisms by which Bph30 enhances resistance to BPH remain poorly understood. Methods Here, we conducted a transcriptomic and metabolomic analysis of Bph30-transgenic (BPH30T) and BPH-susceptible Nipponbare plants to elucidate the response of Bph30 to BPH infestation. Results Transcriptomic analyses revealed that the pathway of plant hormone signal transduction enriched exclusively in Nipponbare, and the greatest number of differentially expressed genes (DEGs) were involved in indole 3-acetic acid (IAA) signal transduction. Analysis of differentially accumulated metabolites (DAMs) revealed that DAMs involved in the amino acids and derivatives category were down-regulated in BPH30T plants following BPH feeding, and the great majority of DAMs in flavonoids category displayed the trend of increasing in BPH30T plants; the opposite pattern was observed in Nipponbare plants. Combined transcriptomics and metabolomics analysis revealed that the pathways of amino acids biosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis and flavonoid biosynthesis were enriched. The content of IAA significantly decreased in BPH30T plants following BPH feeding, and the content of IAA remained unchanged in Nipponbare. The exogenous application of IAA weakened the BPH resistance conferred by Bph30. Discussion Our results indicated that Bph30 might coordinate the movement of primary and secondary metabolites and hormones in plants via the shikimate pathway to enhance the resistance of rice to BPH. Our results have important reference significance for the resistance mechanisms analysis and the efficient utilization of major BPH-resistance genes.
Collapse
Affiliation(s)
- Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xinying Yu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sanhe Li
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huashan Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Peide Li
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Changyan Li
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junxiao Chen
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guocai Yang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhijun Chen
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bian Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bingliang Wan
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
19
|
Chen L, Ma Y, He T, Chen T, Pan Y, Zhou D, Li X, Lu Y, Wu Q, Wang L. Integrated transcriptome and metabolome analysis unveil the response mechanism in wild rice ( Zizania latifolia griseb.) against sheath rot infection. Front Genet 2023; 14:1163464. [PMID: 37359383 PMCID: PMC10289006 DOI: 10.3389/fgene.2023.1163464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Sheath rot disease (SRD) is one of the most devastating diseases of Manchurian wild rice (MWR) (Zizania latifolia Griseb). Pilot experiments in our laboratory have shown that an MWR cultivar "Zhejiao NO.7"exhibits signs of SRD tolerance. To explore the responses of Zhejiao No. 7 to SRD infection, we used a combined transcriptome and metabolome analysis approach. A total of 136 differentially accumulated metabolites (DAMs, 114 up- and 22 down-accumulated in FA compared to CK) were detected. These up-accumulated metabolites were enriched in tryptophan metabolism, amino acid biosynthesis, flavonoids, and phytohormone signaling. Transcriptome sequencing results showed the differential expression of 11,280 genes (DEGs, 5,933 up-, and 5,347 downregulated in FA compared to CK). The genes expressed in tryptophan metabolism, amino acid biosynthesis, phytohormone biosynthesis and signaling, and reactive oxygen species homeostasis confirmed the metabolite results. In addition, genes related to the cell wall, carbohydrate metabolism, and plant-pathogen interaction (especially hypersensitive response) showed changes in expression in response to SRD infection. These results provide a basis for understanding the response mechanisms in MWR to FA attack that can be used for breeding SRD-tolerant MWR.
Collapse
Affiliation(s)
- Limin Chen
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yamin Ma
- Agricultural and Rural Bureau of Jinyun County, Jinyun, Zhejiang, China
| | - Tianjun He
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - TingTing Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yiming Pan
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Dayun Zhou
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Quancong Wu
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Lailiang Wang
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| |
Collapse
|
20
|
Gidhi A, Mohapatra A, Fatima M, Jha SK, Kumar M, Mukhopadhyay K. Insights of auxin signaling F-box genes in wheat (Triticum aestivum L.) and their dynamic expression during the leaf rust infection. PROTOPLASMA 2023; 260:723-739. [PMID: 36100728 DOI: 10.1007/s00709-022-01808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) protein serves as auxin receptor and links with Aux/IAA repressor protein leading to its degradation via SKP-Cullin-F box (SCFTIR1/AFB) complex in the auxin signaling pathway. Present study revealed 11 TIR1/AFB genes in wheat by genome-wide search using AFB HMM profile. Phylogenetic analysis clustered these genes in two classes. Several phytohormone, abiotic, and biotic stress responsive cis-elements were detected in promoter regions of TIR1/AFB genes. These genes were localized on homoeologous chromosome groups 2, 3, and 5 showing orthologous relation with other monocot plants. Most genes were interrupted by introns and the gene products were localized in cytoplasm, nucleus, and cell organelles. TaAFB3, TaAFB5, and TaAFB8 had nuclear localization signals. The evolutionary constraint suggested paralogous sister pairs and orthologous genes went through strong purifying selection process and are slowly evolving at protein level. Functional annotation revealed all TaAFB genes participated in auxin activated signaling pathway and SCF-mediated ubiquitination process. Furthermore, in silico expression study revealed their diverse expression profiles during various developmental stages in different tissues and organs as well as during biotic and abiotic stress. QRT-PCR based studies suggested distinct expression pattern of TIR1-1, TIR1-3, TaAFB1, TaAFB2, TaAFB3, TaAFB4, TaAFB5, TaAFB7, and TaAFB8 displaying maximum expression at 24 and 48 h post inoculation in both susceptible and resistant near isogenic wheat lines infected with leaf rust pathogen. Importantly, this also reflects coordinated responses in expression patterns of wheat TIR1/AFB genes during progression stages of leaf rust infection.
Collapse
Affiliation(s)
- Anupama Gidhi
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Archit Mohapatra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Mehar Fatima
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
21
|
Hernández-Ruiz J, Giraldo-Acosta M, El Mihyaoui A, Cano A, Arnao MB. Melatonin as a Possible Natural Anti-Viral Compound in Plant Biocontrol. PLANTS (BASEL, SWITZERLAND) 2023; 12:781. [PMID: 36840129 PMCID: PMC9961163 DOI: 10.3390/plants12040781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Melatonin is a multifunctional and ubiquitous molecule. In animals, melatonin is a hormone that is involved in a wide range of physiological activities and is also an excellent antioxidant. In plants, it has been considered a master regulator of multiple physiological processes as well as of hormonal homeostasis. Likewise, it is known for its role as a protective biomolecule and activator of tolerance and resistance against biotic and abiotic stress in plants. Since infections by pathogens such as bacteria, fungi and viruses in crops result in large economic losses, interest has been aroused in determining whether melatonin plays a relevant role in plant defense systems against pathogens in general, and against viruses in particular. Currently, several strategies have been applied to combat infection by pathogens, one of them is the use of eco-friendly chemical compounds that induce systemic resistance. Few studies have addressed the use of melatonin as a biocontrol agent for plant diseases caused by viruses. Exogenous melatonin treatments have been used to reduce the incidence of several virus diseases, reducing symptoms, virus titer, and even eradicating the proliferation of viruses such as Tobacco Mosaic Virus, Apple Stem Grooving Virus, Rice Stripe Virus and Alfalfa Mosaic Virus in tomato, apple, rice and eggplant, respectively. The possibilities of using melatonin as a possible natural virus biocontrol agent are discussed.
Collapse
|
22
|
Li X, Liao M, Huang J, Chen L, Huang H, Wu K, Pan Q, Zhang Z, Peng X. Dynamic and fluctuating generation of hydrogen peroxide via photorespiratory metabolic channeling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1429-1446. [PMID: 36382906 DOI: 10.1111/tpj.16022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The homeostasis of hydrogen peroxide (H2 O2 ), a key regulator of basic biological processes, is a result of the cooperation between its generation and scavenging. However, the mechanistic basis of this balance is not fully understood. We previously proposed that the interaction between glycolate oxidase (GLO) and catalase (CAT) may serve as a molecular switch that modulates H2 O2 levels in plants. In this study, we demonstrate that the GLO-CAT complex in plants exists in different states, which are dynamically interchangeable in response to various stimuli, typically salicylic acid (SA), at the whole-plant level. More crucially, changes in the state of the complex were found to be closely linked to peroxisomal H2 O2 fluctuations, which were independent of the membrane-associated NADPH oxidase. Furthermore, evidence suggested that H2 O2 channeling occurred even in vitro when GLO and CAT worked cooperatively. These results demonstrate that dynamic changes in H2 O2 levels are physically created via photorespiratory metabolic channeling in plants, and that such H2 O2 fluctuations may serve as signals that are mechanistically involved in the known functions of photorespiratory H2 O2 . In addition, our study also revealed a new way for SA to communicate with H2 O2 in plants.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Mengmeng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Jiayu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Linru Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Haiyin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Kaixin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Qing Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Kim CY, Song H, Lee YH. Ambivalent response in pathogen defense: A double-edged sword? PLANT COMMUNICATIONS 2022; 3:100415. [PMID: 35918895 PMCID: PMC9700132 DOI: 10.1016/j.xplc.2022.100415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 05/16/2023]
Abstract
Plants possess effective immune systems that defend against most microbial attackers. Recent plant immunity research has focused on the classic binary defense model involving the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our current understanding comes from studies that relied on information derived from a limited number of pathosystems, newer studies concerning the incredibly diverse interactions between plants and microbes are providing additional insights into other novel mechanisms. Here, we review the roles of both classical and more recently identified components of defense signaling pathways and stress hormones in regulating the ambivalence effect during responses to diverse pathogens. Because of their different lifestyles, effective defense against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Given these opposing forces, the plant potentially faces a trade-off when it mounts resistance to a specific pathogen, a phenomenon referred to here as the ambivalence effect. We also highlight a novel mechanism by which translational control of the proteins involved in the ambivalence effect can be used to engineer durable and broad-spectrum disease resistance, regardless of the lifestyle of the invading pathogen.
Collapse
Affiliation(s)
- Chi-Yeol Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea; Center for Fungal Genetic Resources, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
24
|
Ali O, Ramsubhag A, Jayaraman J. Transcriptome-wide modulation by Sargassum vulgare and Acanthophora spicifera extracts results in a prime-triggered plant signalling cascade in tomato and sweet pepper. AOB PLANTS 2022; 14:plac046. [PMID: 36483312 PMCID: PMC9724562 DOI: 10.1093/aobpla/plac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Seaweed extracts (SWEs) are becoming integrated into crop production systems due to their multiple beneficial effects including growth promotion and induction of defence mechanisms. However, the comprehensive molecular mechanisms of these effects are yet to be elucidated. The current study investigated the transcriptomic changes induced by SWEs derived from Sargassum vulgare and Acanthophora spicifera on tomato and sweet pepper plants. Tomato and sweet pepper plants were subjected to foliar treatment with alkaline extracts prepared from the above seaweeds. Transcriptome changes in the plants were assessed 72 h after treatments using RNA sequencing. The treated plants were also analysed for defence enzyme activities, nutrient composition and phytohormonal profiles. The results showed the significant enrichment of genes associated with several growth and defence processes including photosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, plant-pathogen interaction, secondary metabolite metabolism, MAPK signalling and amino acid biosynthesis. Activities of defence enzymes were also significantly increased in SWE-treated plants. Plant nutrient profiling showed significant increases in calcium, potassium, nitrogen, sulphur, boron, copper, iron, manganese, zinc and phosphorous levels in SWE-treated plants. Furthermore, the levels of auxins, cytokinins and gibberellins were also significantly increased in the treated plants. The severity of bacterial leaf spot and early blight incidence in plants treated with SWE was significantly reduced, in addition to other effects like an increase in chlorophyll content, plant growth, and fruit yield. The results demonstrated the complex effect of S. vulgare and A. spicifera extracts on the plants' transcriptome and provided evidence of a strong role of these extracts in increasing plant growth responses while priming the plants against pathogenic attack simultaneously. The current study contributes to the understanding of the molecular mechanisms of SWEs in plants and helps their usage as a viable organic input for sustainable crop production.
Collapse
Affiliation(s)
- Omar Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | | |
Collapse
|
25
|
Shah G, Fiaz S, Attia KA, Khan N, Jamil M, Abbas A, Yang SH, Jumin T. Indole pyruvate decarboxylase gene regulates the auxin synthesis pathway in rice by interacting with the indole-3-acetic acid-amido synthetase gene, promoting root hair development under cadmium stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1023723. [PMID: 36340357 PMCID: PMC9635337 DOI: 10.3389/fpls.2022.1023723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
This research focused on cadmium (Cd), which negatively affects plant growth and auxin hemostasis. In plants, many processes are indirectly controlled through the expression of certain genes due to the secretion of bacterial auxin, as indole-3-acetic acid (IAA) acts as a reciprocal signaling molecule in plant-microbe interaction. The aim of current studies was to investigate responsible genes in rice for plant-microbe interaction and lateral root development due to the involvement of several metabolic pathways. Studies revealed that GH3-2 interacts with endogenous IAA in a homeostasis manner without directly providing IAA. In rice, indole-3-pyruvate decarboxylase (IPDC) transgenic lines showed a 40% increase in lateral roots. Auxin levels and YUCCA (auxin biosynthesis gene) expression were monitored in osaux1 mutant lines inoculated with Bacillus cereus exposed to Cd. The results showed an increase in root hairs (RHs) and lateral root density, changes in auxin levels, and expression of the YUCCA gene. B. cereus normalizes the oxidative stress caused by Cd due to the accumulation of O 2 - and H2O2 in osaux1 mutant lines. Furthermore, the inoculation of B. cereus increases DR5:GUS expression, indicating that bacterial species have a positive role in auxin regulation. Thus, the current study suggests that B. cereus and IPDC transgenic lines increase the RH development in rice by interacting with IAA synthetase genes in the host plant, alleviating Cd toxicity and enhancing plant defense mechanisms.
Collapse
Affiliation(s)
- Gulmeena Shah
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, Florida University, Gainesville, FL, United States
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Tu Jumin
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Unveiling the Secretome of the Fungal Plant Pathogen Neofusicoccum parvum Induced by In Vitro Host Mimicry. J Fungi (Basel) 2022; 8:jof8090971. [PMID: 36135697 PMCID: PMC9505667 DOI: 10.3390/jof8090971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Neofusicoccum parvum is a fungal plant pathogen of a wide range of hosts but knowledge about the virulence factors of N. parvum and host-pathogen interactions is rather limited. The molecules involved in the interaction between N. parvum and Eucalyptus are mostly unknown, so we used a multi-omics approach to understand pathogen-host interactions. We present the first comprehensive characterization of the in vitro secretome of N. parvum and a prediction of protein-protein interactions using a dry-lab non-targeted interactomics strategy. We used LC-MS to identify N. parvum protein profiles, resulting in the identification of over 400 proteins, from which 117 had a different abundance in the presence of the Eucalyptus stem. Most of the more abundant proteins under host mimicry are involved in plant cell wall degradation (targeting pectin and hemicellulose) consistent with pathogen growth on a plant host. Other proteins identified are involved in adhesion to host tissues, penetration, pathogenesis, or reactive oxygen species generation, involving ribonuclease/ribotoxin domains, putative ricin B lectins, and necrosis elicitors. The overexpression of chitosan synthesis proteins during interaction with the Eucalyptus stem reinforces the hypothesis of an infection strategy involving pathogen masking to avoid host defenses. Neofusicoccum parvum has the molecular apparatus to colonize the host but also actively feed on its living cells and induce necrosis suggesting that this species has a hemibiotrophic lifestyle.
Collapse
|
27
|
García-Cárdenas E, Ortiz-Castro R, Ruiz-Herrera LF, Valencia-Cantero E, López-Bucio J. Micrococcus luteus LS570 promotes root branching in Arabidopsis via decreasing apical dominance of the primary root and an enhanced auxin response. PROTOPLASMA 2022; 259:1139-1155. [PMID: 34792622 DOI: 10.1007/s00709-021-01724-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/11/2021] [Indexed: 05/25/2023]
Abstract
The interaction of plant roots with bacteria is influenced by chemical signaling, where auxins play a critical role. Auxins exert positive or negative influences on the plant traits responsible of root architecture configuration such as root elongation and branching and root hair formation, but how bacteria that modify the plant auxin response promote or repress growth, as well as root structure, remains unknown. Here, we isolated and identified via molecular and electronic microscopy analysis a Micrococcus luteus LS570 strain as a plant growth promoter that halts primary root elongation in Arabidopsis seedlings and strongly triggers root branching and absorptive potential. The root biomass was exacerbated following root contact with bacterial streaks, and this correlated with inducible expression of auxin-related gene markers DR5:GUS and DR5:GFP. Cellular and structural analyses of root growth zones indicated that the bacterium inhibits both cell division and elongation within primary root tips, disrupting apical dominance, and as a consequence differentiation programs at the pericycle and epidermis, respectively, triggers the formation of longer and denser lateral roots and root hairs. Using Arabidopsis mutants defective on auxin signaling elements, our study uncovers a critical role of the auxin response factors ARF7 and ARF19, and canonical auxin receptors in mediating both the primary root and lateral root response to M. luteus LS570. Our report provides very basic information into how actinobacteria interact with plants and direct evidence that the bacterial genus Micrococcus influences the cellular and physiological plant programs ultimately responsible of biomass partitioning.
Collapse
Affiliation(s)
- Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Randy Ortiz-Castro
- Catedrático CONACYT-Instituto de Ecología A.C. Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología A.C. Carretera Antigua a Coatepec, 351, El Haya, Xalapa, Veracruz, 91073, México
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México.
| |
Collapse
|
28
|
Yang Y, Chen T, Dai X, Yang D, Wu Y, Chen H, Zheng Y, Zhi Q, Wan X, Tan X. Comparative transcriptome analysis revealed molecular mechanisms of peanut leaves responding to Ralstonia solanacearum and its type III secretion system mutant. Front Microbiol 2022; 13:998817. [PMID: 36090119 PMCID: PMC9453164 DOI: 10.3389/fmicb.2022.998817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease that limits peanut production and quality, but the molecular mechanisms of the peanut response to R. solanacearum remain unclear. In this study, we reported the first work analyzing the transcriptomic changes of the resistant and susceptible peanut leaves infected with R. solanacearum HA4-1 and its type III secretion system mutant strains by the cutting leaf method at different timepoints (0, 24, 36, and 72 h post inoculation). A total of 125,978 differentially expressed genes (DEGs) were identified and subsequently classified into six groups to analyze, including resistance-response genes, susceptibility-response genes, PAMPs induced resistance-response genes, PAMPs induced susceptibility-response genes, T3Es induced resistance-response genes, and T3Es induced susceptibility-response genes. KEGG enrichment analyses of these DEGs showed that plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathway were the outstanding pathways. Further analysis revealed that CMLs/CDPKs-WRKY module, MEKK1-MKK2-MPK3 cascade, and auxin signaling played important roles in the peanut response to R. solanacearum. Upon R. solanacearum infection (RSI), three early molecular events were possibly induced in peanuts, including Ca2+ activating CMLs/CDPKs-WRKY module to regulate the expression of resistance/susceptibility-related genes, auxin signaling was induced by AUX/IAA-ARF module to activate auxin-responsive genes that contribute to susceptibility, and MEKK1-MKK2-MPK3-WRKYs was activated by phosphorylation to induce the expression of resistance/susceptibility-related genes. Our research provides new ideas and abundant data resources to elucidate the molecular mechanism of the peanut response to R. solanacearum and to further improve the bacterial wilt resistance of peanuts.
Collapse
Affiliation(s)
- Yong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ting Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaoqiu Dai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yushuang Wu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huilan Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qingqing Zhi
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Xiaorong Wan,
| | - Xiaodan Tan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Xiaodan Tan,
| |
Collapse
|
29
|
Cook J, Hui JPM, Zhang J, Kember M, Berrué F, Zhang J, Cheng Z. Production of quorum sensing-related metabolites and phytoalexins during Pseudomonas aeruginosa-Brassica napus interaction. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001212. [PMID: 35980361 PMCID: PMC11449044 DOI: 10.1099/mic.0.001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that has been shown to interact with many organisms throughout the domains of life, including plants. How this broad-host-range bacterium interacts with each of its diverse hosts, especially the metabolites that mediate these interactions, is not completely known. In this work, we used a liquid culture root infection system to collect plant and bacterial metabolites on days 1, 3 and 5 post-P. aeruginosa (strain PA14) infection of the oilseed plant, canola (Brassica napus). Using MS-based metabolomics approaches, we identified the overproduction of quorum sensing (QS)-related (both signalling molecules and regulated products) metabolites by P. aeruginosa while interacting with canola plants. However, the P. aeruginosa infection induced the production of several phytoalexins, which is a part of the hallmark plant defence response to microbes. The QS system of PA14 appears to only mediate part of the canola-P. aeruginosa metabolomic interactions, as the use of isogenic mutant strains of each of the three QS signalling branches did not significantly affect the induction of the phytoalexin brassilexin, while induction of spirobrassinin was significantly decreased. Interestingly, a treatment of purified QS molecules in the absence of bacteria was not able to induce any phytoalexin production, suggesting that active bacterial colonization is required for eliciting phytoalexin production. Furthermore, we identified that brassilexin, the only commercially available phytoalexin that was detected in this study, demonstrated a MIC of 400 µg ml-1 against P. aeruginosa PA14. The production of phytoalexins can be an effective component of canola innate immunity to keep potential infections by the opportunistic pathogen P. aeruginosa at bay.
Collapse
Affiliation(s)
- Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph P. M. Hui
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Janie Zhang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michaela Kember
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fabrice Berrué
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
30
|
Christita M, Sipilä TP, Auzane A, Overmyer K. Distinct Taphrina strains from the phyllosphere of birch exhibiting a range of witches' broom disease symptoms. Environ Microbiol 2022; 24:3549-3564. [PMID: 35579036 PMCID: PMC9545635 DOI: 10.1111/1462-2920.16037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/26/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The phyllosphere is an important microbial habitat and reservoir of organisms that modify plant health. Taphrina betulina is the causal agent of birch witches' broom disease. Taphrina species are dimorphic, infecting hosts in the filamentous form and residing in the host phyllosphere as non-infectious yeast. As such, they are expected to be found as resident yeasts on their hosts, even on healthy tissues; however, there is little experimental data supporting this supposition. With the aim of exploring the local infection ecology of T. betulina, we isolated yeasts from the phyllosphere of birch leaves, using three sample classes; infected leaves inside symptom-bearing branches, healthy leaves from symptom-free branches on symptom-bearing trees and leaves from symptom-free branches on symptom-free trees. Isolations yielded 224 yeast strains, representing 11 taxa, including T. betulina, which was the most common isolate and was found in all sample classes, including symptom-free samples. Genotyping revealed genetic diversity among these T. betulina isolates, with seven distinct genotypes differentiated by the markers used. Twenty-two representative T. betulina strains were selected for further study, revealing further phenotypic differences. These findings support that T. betulina is ubiquitous on birch and that individual trees host a diversity of T. betulina strains.
Collapse
Affiliation(s)
- Margaretta Christita
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
- Environment and Forestry Research and Development Institute of Manado, Jalan Adipura, MapangetManadoNorth SulawesiIndonesia
| | - Timo P. Sipilä
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Agate Auzane
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
31
|
Min CW, Jang JW, Lee GH, Gupta R, Yoon J, Park HJ, Cho HS, Park SR, Kwon SW, Cho LH, Jung KH, Kim YJ, Wang Y, Kim ST. TMT-based quantitative membrane proteomics identified PRRs potentially involved in the perception of MSP1 in rice leaves. J Proteomics 2022; 267:104687. [PMID: 35914717 DOI: 10.1016/j.jprot.2022.104687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022]
Abstract
Pathogen-associated molecular patterns (PAMPs) play a key role in triggering PAMPs triggered immunity (PTI) in plants. In the case of the rice-Magnaporthe oryzae pathosystem, fewer PAMPs and their pattern recognition receptors (PRRs) have been characterized. Recently, a M. oryzae snodprot1 homolog protein (MSP1) has been identified that functions as PAMP and triggering the PTI responses in rice. However, the molecular mechanism underlying MSP1-induced PTI is currently elusive. Therefore, we generated MSP1 overexpressed transgenic lines of rice, and a tandem mass tag (TMT)-based quantitative membrane proteomic analysis was employed to decipher the potential MSP1-induced signaling in rice using total cytosolic as well as membrane protein fractions. This approach led to the identification of 8033 proteins of which 1826 were differentially modulated in response to overexpression of MSP1 and/or exogenous jasmonic acid treatment. Of these, 20 plasma membrane-localized receptor-like kinases (RLKs) showed increased abundance in MSP1 overexpression lines. Moreover, activation of proteins related to the protein degradation and modification, calcium signaling, redox, and MAPK signaling was observed in transgenic lines expressing MSP1 in the apoplast. Taken together, our results identified potential PRR candidates involved in MSP1 recognition and suggested the overview mechanism of the MSP1-induced PTI signaling in rice leaves. SIGNIFICANCE: In plants, recognition of pathogen pathogen-derived molecules, such as PAMPs, by plant plant-derived PRRs has an essential role for in the activation of PTI against pathogen invasion. Typically, PAMPs are recognized by plasma membrane (PM) localized PRRs, however, identifying the PM-localized PRR proteins is challenging due to their low abundance. In this study, we performed an integrated membrane protein enrichment by microsomal membrane extraction (MME) method and subsequent TMT-labeling-based quantitative proteomic analysis using MSP1 overexpressed rice. Based on these results, we successfully identified various intracellular and membrane membrane-localized proteins that participated in the MSP1-induced immune response and characterized the potential PM-localized PRR candidates in rice.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Gi Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Hyun Ji Park
- Plant System Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye Sun Cho
- Plant System Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Yiming Wang
- Key Laboratory of Biological Interactions and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
32
|
Zhang Y, Xu Q, Wang G, Shi K. Indole-Acetic Acid Promotes Ammonia Removal Through Heterotrophic Nitrification, Aerobic Denitrification With Mixed Enterobacter sp. Z1 and Klebsiella sp. Z2. Front Microbiol 2022; 13:929036. [PMID: 35875564 PMCID: PMC9304994 DOI: 10.3389/fmicb.2022.929036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Mixed Enterobacter sp. Z1 and Klebsiella sp. Z2 displayed an outstanding ammonia removal capacity than using a single strain. Metabolomics, proteomics, and RNA interference analysis demonstrated that the HNAD process was closely related to indole-acetic acid (IAA). Under the cocultured conditions, the excess IAA produced by Z2 could be absorbed by Z1 to compensate for the deficiency of IAA in the cells. IAA directly induced the expression of denitrifying enzymes and further activated the IAA metabolism level, thus greatly improving the nitrogen removal ability of Z1. In turn, nitrate and nitrite induced the expression of key enzymes in the IAA pathways. Moreover, Z1 and Z2 enhanced two IAA metabolic pathways in the process of mixed removal process. The activated hydrolysis-redox pathway in Z1 reduced the oxidative stress level, and the activated decarboxylation pathway in Z2 promoted intracellular energy metabolism, which indirectly promoted the process of HNAD in the system.
Collapse
|
33
|
Metcalfe CJ, Li J, Zheng B, Stiller J, Healey A, Piperidis N, Aitken KS. Isolation and sequencing of a single copy of an introgressed chromosome from a complex genome for gene and SNP identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1279-1292. [PMID: 35275251 DOI: 10.1007/s00122-022-04030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
This manuscript describes the identification, isolation and sequencing of a single chromosome containing high value resistance genes from a complex polyploid where sequencing the whole genome is too costly. The large complex genomes of many crops constrain the use of new technologies for genome-assisted selection and genetic improvement. One method to simplify a genome is to break it into individual chromosomes by flow cytometry; however, in many crop species most chromosomes cannot be isolated individually. Flow sorting of a single copy of a chromosome has been developed in wheat, and here we demonstrate its use to identify markers of interest in an Erianthus/Sacchurum hybrid. Erianthus/Saccharum hybrids are of interest because Erianthus is known to be highly resistant to soil borne diseases which cause extensive sugarcane yield losses in Australia. Sugarcane (Saccharum) cultivars are autopolyploids with a highly complex genome and over 100 chromosomes. Flow cytometry for sugarcane, as in most crops, does not resolve individual chromosomes to a karyotype peak for sorting. To isolate a single chromosome, we used genomic in situ hybridization (GISH) to identify the flow karyotype region containing the Erianthus chromosomes, flow sorted single chromosomes from this region, PCR screened for the Erianthus chromosomes and sequenced them. One Erianthus chromosome amplified and sequenced well, and from this data we could identify 57 resistant type genes and SNPs in nearly half of these genes. We developed KASP SNP assays and demonstrated that the identified SNP markers segregated as expected in a small introgression population. The pipeline we developed here to flow sort and sequence single chromosomes could be used in any crop with a large complex genome to rapidly discover and develop markers to important loci.
Collapse
Affiliation(s)
- Cushla J Metcalfe
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Jingchuan Li
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Bangyou Zheng
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Adam Healey
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | | | - Karen S Aitken
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia.
| |
Collapse
|
34
|
Insights into the beneficial roles of dark septate endophytes in plants under challenging environment: resilience to biotic and abiotic stresses. World J Microbiol Biotechnol 2022; 38:79. [PMID: 35332399 DOI: 10.1007/s11274-022-03264-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
Dark septate endophytes (DSE) exert a plethora of effects in regulating plant growth, signalling and stress tolerance. The advent of metagenomics has led to the identification of various species of DSE to be associated with plant organs. They are known to modulate growth, nutrient uptake, phytohormone biosynthesis and production of active bioconstituents in several plants. The interactions between the DSE and host plants are mostly mutualistic but they can also be neutral or exhibit negative interactions. The DSE has beneficial role in removal/sequestration of toxic heavy metals from various environmental sites. Here, we discuss the beneficial role of DSE in enhancing plant tolerance to heavy metal stress, drought conditions, high salinity and protection from various plant pathogens. Furthermore, the underlying mechanism of stress resilience facilitated by DSE-plant interaction has also been discussed. The article also provides insights to some important future perspectives associated with DSE-mediated phytoremediation and reclamation of polluted land worldwide thus facilitating sustainable agriculture.
Collapse
|
35
|
Zhang ZP, Song SX, Liu YC, Zhu XR, Jiang YF, Shi LT, Jiang JZ, Miao MM. Mixed Transcriptome Analysis Revealed the Possible Interaction Mechanisms between Zizania latifolia and Ustilago esculenta Inducing Jiaobai Stem-Gall Formation. Int J Mol Sci 2021; 22:ijms222212258. [PMID: 34830140 PMCID: PMC8618054 DOI: 10.3390/ijms222212258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
The smut fungus Ustilago esculenta infects Zizania latifolia and induces stem expansion to form a unique vegetable named Jiaobai. Although previous studies have demonstrated that hormonal control is essential for triggering stem swelling, the role of hormones synthesized by Z. latifolia and U. esculenta and the underlying molecular mechanism are not yet clear. To study the mechanism that triggers swollen stem formation, we analyzed the gene expression pattern of both interacting organisms during the initial trigger of culm gall formation, at which time the infective hyphae also propagated extensively and penetrated host stem cells. Transcriptional analysis indicated that abundant genes involving fungal pathogenicity and plant resistance were reprogrammed to maintain the subtle balance between the parasite and host. In addition, the expression of genes involved in auxin biosynthesis of U. esculenta obviously decreased during stem swelling, while a large number of genes related to the synthesis, metabolism and signal transduction of hormones of the host plant were stimulated and showed specific expression patterns, particularly, the expression of ZlYUCCA9 (a flavin monooxygenase, the key enzyme in indole-3-acetic acid (IAA) biosynthesis pathway) increased significantly. Simultaneously, the content of IAA increased significantly, while the contents of cytokinin and gibberellin showed the opposite trend. We speculated that auxin produced by the host plant, rather than the fungus, triggers stem swelling. Furthermore, from the differently expressed genes, two candidate Cys2-His2 (C2H2) zinc finger proteins, GME3058_g and GME5963_g, were identified from U. esculenta, which may conduct fungus growth and infection at the initial stage of stem-gall formation.
Collapse
Affiliation(s)
- Zhi-Ping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Si-Xiao Song
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yan-Cheng Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Xin-Rui Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yi-Feng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Ling-Tong Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Jie-Zeng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Min-Min Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
36
|
Lenz RR, Louie KB, Søndreli KL, Galanie SS, Chen JG, Muchero W, Bowen BP, Northen TR, LeBoldus JM. Metabolomic Patterns of Septoria Canker Resistant and Susceptible Populus trichocarpa Genotypes 24 Hours Postinoculation. PHYTOPATHOLOGY 2021; 111:2052-2066. [PMID: 33881913 DOI: 10.1094/phyto-02-21-0053-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sphaerulina musiva is an economically and ecologically important fungal pathogen that causes Septoria stem canker and leaf spot disease of Populus species. To bridge the gap between genetic markers and structural barriers previously found to be linked to Septoria canker disease resistance in poplar, we used hydrophilic interaction liquid chromatography and tandem mass spectrometry to identify and quantify metabolites involved with signaling and cell wall remodeling. Fluctuations in signaling molecules, organic acids, amino acids, sterols, phenolics, and saccharides in resistant and susceptible P. trichocarpa inoculated with S. musiva were observed. The patterns of 222 metabolites in the resistant host implicate systemic acquired resistance (SAR), cell wall apposition, and lignin deposition as modes of resistance to this hemibiotrophic pathogen. This pattern is consistent with the expected response to the biotrophic phase of S. musiva colonization during the first 24 h postinoculation. The fungal pathogen metabolized key regulatory signals of SAR, other phenolics, and precursors of lignin biosynthesis that were depleted in the susceptible host. This is the first study to characterize metabolites associated with the response to initial colonization by S. musiva between resistant and susceptible hosts.
Collapse
Affiliation(s)
- Ryan R Lenz
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Katherine B Louie
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kelsey L Søndreli
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | | | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Benjamin P Bowen
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Trent R Northen
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jared M LeBoldus
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
- Forest Resources, Engineering, and Management Department, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
37
|
Müllender M, Varrelmann M, Savenkov EI, Liebe S. Manipulation of auxin signalling by plant viruses. MOLECULAR PLANT PATHOLOGY 2021; 22:1449-1458. [PMID: 34420252 PMCID: PMC8518663 DOI: 10.1111/mpp.13122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 05/03/2023]
Abstract
Compatible plant-virus interactions result in dramatic changes of the plant transcriptome and morphogenesis, and are often associated with rapid alterations in plant hormone homeostasis and signalling. Auxin controls many aspects of plant organogenesis, development, and growth; therefore, plants can rapidly perceive and respond to changes in the cellular auxin levels. Auxin signalling is a tightly controlled process and, hence, is highly vulnerable to changes in the mRNA and protein levels of its components. There are several core nuclear components of auxin signalling. In the nucleus, the interaction of auxin response factors (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins is essential for the control of auxin-regulated pathways. Aux/IAA proteins are negative regulators, whereas ARFs are positive regulators of the auxin response. The interplay between both is essential for the transcriptional regulation of auxin-responsive genes, which primarily regulate developmental processes but also modulate the plant immune system. Recent studies suggest that plant viruses belonging to different families have developed various strategies to disrupt auxin signalling, namely by (a) changing the subcellular localization of Aux/IAAs, (b) preventing degradation of Aux/IAAs by stabilization, or (c) inhibiting the transcriptional activity of ARFs. These interactions perturb auxin signalling and experimental evidence from various studies highlights their importance for virus replication, systemic movement, interaction with vectors for efficient transmission, and symptom development. In this microreview, we summarize and discuss the current knowledge on the interaction of plant viruses with auxin signalling components of their hosts.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| | - Eugene I. Savenkov
- Department of Plant BiologyUppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsalaSweden
| | - Sebastian Liebe
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| |
Collapse
|
38
|
Zhu W, Liu X, Chen M, Tao N, Tendu A, Yang Q. A New MiRNA MiRm0002 in Eggplant Participates in the Regulation of Defense Responses to Verticillium Wilt. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112274. [PMID: 34834637 PMCID: PMC8622893 DOI: 10.3390/plants10112274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Verticillium wilt is a major disease that severely affects eggplant production, and a new eggplant miRNA named miRm0002 identified through high-throughput sequencing was highly induced by Verticillium wilt infection. However, the miRm0002 function was still elusive. In this study, the sequence of the miRm0002 precursor was cloned and transgenic eggplants were constructed. In vivo inoculation test and in vitro fungistatic test showed that overexpressing miRm0002 lines were more resistant to Verticillium dahliae and inhibiting miRm0002 lines were more sensitive, compared to the wild-type (WT) control. Some physiological indicators were selected and the results showed that SOD, POD, and CAT activities were significantly increased in Verticillium wilt-infected overexpressing miRm0002 lines, indicating that the expression of miRm0002 activates the antioxidant system. QRT-PCR assay showed that the transcript expression of miRm0002 candidate target ARF8, a gene encoding auxin response factor was negatively related to miRm0002 in WT as well as transgenic eggplants. However, RLM-RACE mapping and degradome sequencing showed miRm0002 could not cleave the sequence of ARF8. Taken together, these data suggest that miRm0002 plays a positive role in the defense response of eggplant against Verticillium wilt.
Collapse
|
39
|
Luo K, Ouellet T, Zhao H, Wang X, Kang Z. Wheat- Fusarium graminearum Interactions Under Sitobion avenae Influence: From Nutrients and Hormone Signals. Front Nutr 2021; 8:703293. [PMID: 34568403 PMCID: PMC8455932 DOI: 10.3389/fnut.2021.703293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The English grain aphid Sitobion avenae and phytopathogen Fusarium graminearum are wheat spike colonizers. "Synergistic" effects of the coexistence of S. avenae and F. graminearum on the wheat spikes have been shown in agroecosystems. To develop genetic resistance in diverse wheat cultivars, an important question is how to discover wheat-F. graminearum interactions under S. avenae influence. In recent decades, extensive studies have typically focused on the unraveling of more details on the relationship between wheat-aphids and wheat-pathogens that has greatly contributed to the understanding of these tripartite interactions at the ecological level. Based on the scientific production available, the working hypotheses were synthesized from the aspects of environmental nutrients, auxin production, hormone signals, and their potential roles related to the tripartite interaction S. avenae-wheat-F. graminearum. In addition, this review highlights the relevance of preexposure to the herbivore S. avenae to trigger the accumulation of mycotoxins, which stimulates the infection process of F. graminearum and epidemic of Fusarium head blight (FHB) in the agroecosystems.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Huiyan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiukang Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
40
|
Kunkel BN, Johnson JMB. Auxin Plays Multiple Roles during Plant-Pathogen Interactions. Cold Spring Harb Perspect Biol 2021; 13:a040022. [PMID: 33782029 PMCID: PMC8411954 DOI: 10.1101/cshperspect.a040022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant hormone auxin governs many aspects of normal plant growth and development. Auxin also plays an important role in plant-microbe interactions, including interactions between plant hosts and pathogenic microorganisms that cause disease. It is now well established that indole-3-acetic acid (IAA), the most well-studied form of auxin, promotes disease in many plant-pathogen interactions. Recent studies have shown that IAA can act both as a plant hormone that modulates host signaling and physiology to increase host susceptibility and as a microbial signal that directly impacts the pathogen to promote virulence, but large gaps in our understanding remain. In this article, we review recent studies on the roles that auxin plays during plant-pathogen interactions and discuss the virulence mechanisms that many plant pathogens have evolved to manipulate host auxin signaling and promote pathogenesis.
Collapse
Affiliation(s)
- Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Joshua M B Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
41
|
The Application of Phytohormones as Biostimulants in Corn Smut Infected Hungarian Sweet and Fodder Corn Hybrids. PLANTS 2021; 10:plants10091822. [PMID: 34579355 PMCID: PMC8472417 DOI: 10.3390/plants10091822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
The main goal of this research was to investigate the effects of corn smut (Ustilago maydis DC. Corda) infection on the morphological (plant height, and stem diameter), and biochemical parameters of Zea mays L. plants. The biochemical parameters included changes in the relative chlorophyll, malondialdehyde (MDA), and photosynthesis pigments' contents, as well as the activities of antioxidant enzymes-ascorbate peroxidase (APX), guaiacol peroxidase (POD), and superoxide dismutase (SOD). The second aim of this study was to evaluate the impact of phytohormones (auxin, cytokinin, gibberellin, and ethylene) on corn smut-infected plants. The parameters were measured 7 and 11 days after corn smut infection (DACSI). Two hybrids were grown in a greenhouse, one fodder (Armagnac) and one a sweet corn (Desszert 73). The relative and the absolute amount of photosynthetic pigments were significantly lower in the infected plants in both hybrids 11 DACSI. Activities of the antioxidant enzymes and MDA content were higher in both infected hybrids. Auxin, cytokinin, and gibberellin application diminished the negative effects of the corn smut infection (CSI) in the sweet corn hybrid. Phytohormones i.e., auxin, gibberellin, and cytokinin can be a new method in protection against corn smut.
Collapse
|
42
|
Basso MF, Costa JA, Ribeiro TP, Arraes FBM, Lourenço-Tessutti IT, Macedo AF, Neves MRD, Nardeli SM, Arge LW, Perez CEA, Silva PLR, de Macedo LLP, Lisei-de-Sa ME, Santos Amorim RM, Pinto ERDC, Silva MCM, Morgante CV, Floh EIS, Alves-Ferreira M, Grossi-de-Sa MF. Overexpression of the CaHB12 transcription factor in cotton (Gossypium hirsutum) improves drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:80-93. [PMID: 34034163 DOI: 10.1016/j.plaphy.2021.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The Coffea arabica HB12 gene (CaHB12), which encodes a transcription factor belonging to the HD-Zip I subfamily, is upregulated under drought, and its constitutive overexpression (35S:CaHB12OX) improves the Arabidopsis thaliana tolerance to drought and salinity stresses. Herein, we generated transgenic cotton events constitutively overexpressing the CaHB12 gene, characterized these events based on their increased tolerance to water deficit, and exploited the gene expression level from the CaHB12 network. The segregating events Ev8.29.1, Ev8.90.1, and Ev23.36.1 showed higher photosynthetic yield and higher water use efficiency under severe water deficit and permanent wilting point conditions compared to wild-type plants. Under well-irrigated conditions, these three promising transformed events showed an equivalent level of Abscisic acid (ABA) and decreased Indole-3-acetic acid (IAA) accumulation, and a higher putrescine/(spermidine + spermine) ratio in leaf tissues was found in the progenies of at least two transgenic cotton events compared to non-transgenic plants. In addition, genes that are considered as modulated in the A. thaliana 35S:CaHB12OX line were also shown to be modulated in several transgenic cotton events maintained under field capacity conditions. The upregulation of GhPP2C and GhSnRK2 in transgenic cotton events maintained under permanent wilting point conditions suggested that CaHB12 might act enhancing the ABA-dependent pathway. All these data confirmed that CaHB12 overexpression improved the tolerance to water deficit, and the transcriptional modulation of genes related to the ABA signaling pathway or downstream genes might enhance the defense responses to drought. The observed decrease in IAA levels indicates that CaHB12 overexpression can prevent leaf abscission in plants under or after stress. Thus, our findings provide new insights on CaHB12 gene and identify several promising cotton events for conducting field trials on water deficit tolerance and agronomic performance.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Julia Almeida Costa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; Catholic University of Brasília, Brasília, DF, 71966-700, Brazil
| | - Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Fabricio Barbosa Monteiro Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; Federal University of Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | | | | | | | | | - Luis Willian Arge
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-901, Brazil
| | | | - Paolo Lucas Rodrigues Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; Catholic University of Brasília, Brasília, DF, 71966-700, Brazil
| | | | - Maria Eugênia Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil; EPAMIG, Uberaba, MG, 31170-495, Brazil
| | | | | | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil; Embrapa Semi-Arid, Petrolina, PE, 56302-970, Brazil
| | | | - Marcio Alves-Ferreira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil; Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-901, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil; Catholic University of Brasília, Brasília, DF, 71966-700, Brazil.
| |
Collapse
|
43
|
Yousaf MJ, Hussain A, Hamayun M, Iqbal A, Irshad M, Kim HY, Lee IJ. Transformation of Endophytic Bipolaris spp. Into Biotrophic Pathogen Under Auxin Cross-Talk With Brassinosteroids and Abscisic Acid. Front Bioeng Biotechnol 2021; 9:657635. [PMID: 34395395 PMCID: PMC8355742 DOI: 10.3389/fbioe.2021.657635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Auxin is the reciprocal signaling molecule, which interferes with other phyto-hormonal and physiological processes during plant–microbes interaction. In this regard, Bipolaris spp., a growth-promoting endophytic fungus was used to inoculate pre-stressed Zea mays seedlings with yucasin (IAA inhibitor). The IAA-deficient host was heavily colonized by the endophyte that subsequently promoted the host growth and elevated the IAA levels with a peak value at 72 h. However, the seedling growth was inhibited later (i.e., at 120 h) due to the high levels of IAA that interfered with the activity of phytoalexins and brassinosteroids. Such interference also modulated the endophytic fungus from symbiotic to biotrophic pathogen that left the host plants defenseless.
Collapse
Affiliation(s)
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Irshad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
44
|
Li X, Liao M, Huang J, Xu Z, Lin Z, Ye N, Zhang Z, Peng X. Glycolate oxidase-dependent H 2O 2 production regulates IAA biosynthesis in rice. BMC PLANT BIOLOGY 2021; 21:326. [PMID: 34229625 PMCID: PMC8261990 DOI: 10.1186/s12870-021-03112-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for H2O2 production in plants. Catalase (CAT)-dependent H2O2 decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the H2O2 production in IAA regulation. RESULTS In this study, we found that in glo mutants of rice, as H2O2 levels decreased IAA contents significantly increased, whereas high CO2 abolished the difference in H2O2 and IAA contents between glo mutants and WT. Further analyses showed that tryptophan (Trp, the precursor for IAA biosynthesis in the Trp-dependent biosynthetic pathway) also accumulated due to increased tryptophan synthetase β (TSB) activity. Moreover, expression of the genes involved in Trp-dependent IAA biosynthesis and IBA to IAA conversion were correspondingly up-regulated, further implicating that both pathways contribute to IAA biosynthesis as mediated by the GLO-dependent production of H2O2. CONCLUSION We investigated the function of GLO in IAA signaling in different levels from transcription, enzyme activities to metabolic levels. The results suggest that GLO-dependent H2O2 signaling, essentially via photorespiration, confers regulation over IAA biosynthesis in rice plants.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Mengmeng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Jiayu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Zheng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Zhanqiao Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Nenghui Ye
- College of Agronomy, Hunan Agricultural University, No.1, Nongda Road, Changsha, 410128, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China.
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| |
Collapse
|
45
|
Orozco-Navarrete B, Song J, Casañal A, Sozzani R, Flors V, Sánchez-Sevilla JF, Trinkl J, Hoffmann T, Merchante C, Schwab W, Valpuesta V. Down-regulation of Fra a 1.02 in strawberry fruits causes transcriptomic and metabolic changes compatible with an altered defense response. HORTICULTURE RESEARCH 2021; 8:58. [PMID: 33750764 PMCID: PMC7943815 DOI: 10.1038/s41438-021-00492-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 05/04/2023]
Abstract
The strawberry Fra a 1 proteins belong to the class 10 Pathogenesis-Related (PR-10) superfamily. In strawberry, a large number of members have been identified, but only a limited number is expressed in the fruits. In this organ, Fra a 1.01 and Fra a 1.02 are the most abundant Fra proteins in the green and red fruits, respectively, however, their function remains unknown. To know the function of Fra a 1.02 we have generated transgenic lines that silence this gene, and performed metabolomics, RNA-Seq, and hormonal assays. Previous studies associated Fra a 1.02 to strawberry fruit color, but the analysis of anthocyanins in the ripe fruits showed no diminution in their content in the silenced lines. Gene ontology (GO) analysis of the genes differentially expressed indicated that oxidation/reduction was the most represented biological process. Redox state was not apparently altered since no changes were found in ascorbic acid and glutathione (GSH) reduced/oxidized ratio, but GSH content was reduced in the silenced fruits. In addition, a number of glutathione-S-transferases (GST) were down-regulated as result of Fra a 1.02-silencing. Another highly represented GO category was transport which included a number of ABC and MATE transporters. Among the regulatory genes differentially expressed WRKY33.1 and WRKY33.2 were down-regulated, which had previously been assigned a role in strawberry plant defense. A reduced expression of the VQ23 gene and a diminished content of the hormones JA, SA, and IAA were also found. These data might indicate that Fra a 1.02 participates in the defense against pathogens in the ripe strawberry fruits.
Collapse
Affiliation(s)
- Begoña Orozco-Navarrete
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Jina Song
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Ana Casañal
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Victor Flors
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
| | | | - Johanna Trinkl
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Catharina Merchante
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Victoriano Valpuesta
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain.
| |
Collapse
|
46
|
Stevens V, Thijs S, Vangronsveld J. Diversity and plant growth-promoting potential of (un)culturable bacteria in the Hedera helix phylloplane. BMC Microbiol 2021; 21:66. [PMID: 33639859 PMCID: PMC7912551 DOI: 10.1186/s12866-021-02119-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background A diverse community of microbes naturally exists on the phylloplane, the surface of leaves. It is one of the most prevalent microbial habitats on earth and bacteria are the most abundant members, living in communities that are highly dynamic. Today, one of the key challenges for microbiologists is to develop strategies to culture the vast diversity of microorganisms that have been detected in metagenomic surveys. Results We isolated bacteria from the phylloplane of Hedera helix (common ivy), a widespread evergreen, using five growth media: Luria–Bertani (LB), LB01, yeast extract–mannitol (YMA), yeast extract–flour (YFlour), and YEx. We also included a comparison with the uncultured phylloplane, which we showed to be dominated by Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Inter-sample (beta) diversity shifted from LB and LB01 containing the highest amount of resources to YEx, YMA, and YFlour which are more selective. All growth media equally favoured Actinobacteria and Gammaproteobacteria, whereas Bacteroidetes could only be found on LB01, YEx, and YMA. LB and LB01 favoured Firmicutes and YFlour was most selective for Betaproteobacteria. At the genus level, LB favoured the growth of Bacillus and Stenotrophomonas, while YFlour was most selective for Burkholderia and Curtobacterium. The in vitro plant growth promotion (PGP) profile of 200 isolates obtained in this study indicates that previously uncultured bacteria from the phylloplane may have potential applications in phytoremediation and other plant-based biotechnologies. Conclusions This study gives first insights into the total bacterial community of the H. helix phylloplane, including an evaluation of its culturability using five different growth media. We further provide a collection of 200 bacterial isolates underrepresented in current databases, including the characterization of PGP profiles. Here we highlight the potential of simple strategies to obtain higher microbial diversity from environmental samples and the use of high-throughput sequencing to guide isolate selection from a variety of growth media. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02119-z.
Collapse
Affiliation(s)
- Vincent Stevens
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium.
| | - Sofie Thijs
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium. .,Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
47
|
Genome-wide transcriptome reveals mechanisms underlying Rlm1-mediated blackleg resistance on canola. Sci Rep 2021; 11:4407. [PMID: 33623070 PMCID: PMC7902848 DOI: 10.1038/s41598-021-83267-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/01/2021] [Indexed: 11/08/2022] Open
Abstract
Genetic resistance to blackleg (Leptosphaeria maculans, Lm) of canola (Brassica napus, Bn) has been extensively studied, but the mechanisms underlying the host-pathogen interaction are still not well understood. Here, a comparative transcriptome analysis was performed on a resistant doubled haploid Bn line carrying the resistance gene Rlm1 following inoculation with a virulent (avrLm1) or avirulent (AvrLm1) Lm isolate on cotyledons. A total of 6999 and 3015 differentially expressed genes (DEGs) were identified, respectively, in inoculated local tissues with compatible (susceptible) and incompatible (resistant) interactions. Functional enrichment analysis found several biological processes, including protein targeting to membrane, ribosome and negative regulation of programmed cell death, were over-represented exclusively among up-regulated DEGs in the resistant reaction, whereas significant enrichment of salicylic acid (SA) and jasmonic acid (JA) pathways observed for down-regulated DEGs occurred only in the susceptible reaction. A heat-map analysis showed that both biosynthesis and signaling of SA and JA were induced more significantly in the resistant reaction, implying that a threshold level of SA and JA signaling is required for the activation of Rlm1-mediated resistance. Co-expression network analysis revealed close correlation of a gene module with the resistance, involving DEGs regulating pathogen-associated molecular pattern recognition, JA signaling and transcriptional reprogramming. Substantially fewer DEGs were identified in mock-inoculated (control) cotyledons, relative to those in inoculated local tissues, including those involved in SA pathways potentially contributing to systemic acquired resistance (SAR). Pre-inoculation of cotyledon with either an avirulent or virulent Lm isolate, however, failed to induce SAR on remote tissues of same plant despite elevated SA and PR1 protein. This study provides insights into the molecular mechanism of Rlm1-mediated resistance to blackleg.
Collapse
|
48
|
Li J, Lu Z, Yang Y, Hou J, Yuan L, Chen G, Wang C, Jia S, Feng X, Zhu S. Transcriptome Analysis Reveals the Symbiotic Mechanism of Ustilago esculenta-Induced Gall Formation of Zizania latifolia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:168-185. [PMID: 33400553 DOI: 10.1094/mpmi-05-20-0126-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zizania latifolia is a perennial aquatic vegetable, whose symbiosis with the fungus Ustilago esculenta (member of Basidiomycota, class Ustilaginaceae) results in the establishment of swollen gall formations. Here, we analyzed symbiotic relations of Z. latifolia and U. esculenta, using a triadimefon (TDF) treatment and transcriptome sequencing (RNA-seq). Specifically, accurately identify the whole growth cycle of Z. latifolia. Microstructure observations showed that the presence of U. esculenta could be clearly observed after gall formation but was absent after the TDF treatment. A total of 17,541 differentially expressed genes (DEGs) were identified, based on the transcriptome. According to gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway results, plant hormone signal transduction, and cell wall-loosening factors were all significantly enriched due to U. esculenta infecting Z. latifolia; relative expression levels of hormone-related genes were identified, of which downregulation of indole 3-acetic acid (IAA)-related DEGs was most pronounced in JB_D versus JB_B. The ultra-high performance liquid chromatography analysis revealed that IAA, zeatin+trans zeatin riboside, and gibberellin 3 were increased under U. esculenta infection. Based on our results, we proposed a hormone-cell wall loosening model to study the symbiotic mechanism of gall formation after U. esculenta infects Z. latifolia. Our study thus provides a new perspective for studying the physiological and molecular mechanisms of U. esculenta infection of Z. latifolia causing swollen gall formations as well as a theoretical basis for enhancing future yields of cultivated Z. latifolia.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Jie Li
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Zhiyuan Lu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Yang Yang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Shaoke Jia
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Xuming Feng
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| |
Collapse
|
49
|
Kaur J, Kaur J, Dhillon GS, Kaur H, Singh J, Bala R, Srivastava P, Kaur S, Sharma A, Chhuneja P. Characterization and Mapping of Spot Blotch in Triticum durum-Aegilops speltoides Introgression Lines Using SNP Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:650400. [PMID: 34122476 PMCID: PMC8193842 DOI: 10.3389/fpls.2021.650400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 05/17/2023]
Abstract
Spot blotch (SB) of wheat is emerging as a major threat to successful wheat production in warm and humid areas of the world. SB, also called leaf blight, is caused by Bipolaris sorokiniana, and is responsible for high yield losses in Eastern Gangetic Plains Zone in India. More recently, SB is extending gradually toward cooler, traditional wheat-growing North-Western part of the country which is a major contributor to the national cereal basket. Deployment of resistant cultivars is considered as the most economical and ecologically sound measure to avoid losses due to this disease. In the present study, 89 backcross introgression lines (DSBILs) derived from Triticum durum (cv. PDW274-susceptible) × Aegilops speltoides (resistant) were evaluated against SB for four consecutive years, 2016-2020. Phenotypic evaluation of these lines showed a continuous variation in disease severity indicating that the resistance to SB is certainly quantitative in nature. Phenotypic data of DSBILs were further used for mapping QTLs using SNPs obtained by genotyping by sequencing. To identify QTLs stable across the environments, Best Linear Unbiased Estimates (BLUEs) and Predictions (BLUPs) were used for mapping QTLs based on stepwise regression-based Likelihood Ratio Test (RSTEP-LRT) for additive effect of markers and single marker analysis (SMA). Five QTLs, Q.Sb.pau-2A, Q.Sb.pau-2B, Q.Sb.pau-3B, Q.Sb.pau-5B, and Q.Sb.pau-6A, linked to SB resistance were mapped across chromosomes 2A, 2B, 3B, 5B, and 6A. Genes found adjacent to the SNP markers linked to these QTLs were literature mined to identify possible candidate genes by studying their role in plant pathogenesis. Further, highly resistant DSBIL (DSBIL-13) was selected to cross with a susceptible hexaploidy cultivar (HD3086) generating BC2F1 population. The QTL Q.Sb.pau-5B, linked to SNP S5B_703858864, was validated on this BC2F1 population and thus, may prove to be a potential diagnostic marker for SB resistance.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | - Jaspal Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Harmandeep Kaur
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | - Jasvir Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ritu Bala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Parveen Chhuneja,
| |
Collapse
|
50
|
Yu J, Gonzalez JM, Dong Z, Shan Q, Tan B, Koh J, Zhang T, Zhu N, Dufresne C, Martin GB, Chen S. Integrative Proteomic and Phosphoproteomic Analyses of Pattern- and Effector-Triggered Immunity in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:768693. [PMID: 34925416 PMCID: PMC8677958 DOI: 10.3389/fpls.2021.768693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
Plants have evolved a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI and ETI are functionally linked, but also have distinct characteristics. Unraveling how these immune systems coordinate plant responses against pathogens is crucial for understanding the regulatory mechanisms underlying plant defense. Here we report integrative proteomic and phosphoproteomic analyses of the tomato-Pseudomonas syringae (Pst) pathosystem with different Pst mutants that allow the dissection of PTI and ETI. A total of 225 proteins and 79 phosphopeptides differentially accumulated in tomato leaves during Pst infection. The abundances of many proteins and phosphoproteins changed during PTI or ETI, and some responses were triggered by both PTI and ETI. For most proteins, the ETI response was more robust than the PTI response. The patterns of protein abundance and phosphorylation changes revealed key regulators involved in Ca2+ signaling, mitogen-activated protein kinase cascades, reversible protein phosphorylation, reactive oxygen species (ROS) and redox homeostasis, transcription and protein turnover, transport and trafficking, cell wall remodeling, hormone biosynthesis and signaling, suggesting their common or specific roles in PTI and/or ETI. A NAC (NAM, ATAF, and CUC family) domain protein and lipid particle serine esterase, two PTI-specific genes identified from previous transcriptomic work, were not detected as differentially regulated at the protein level and were not induced by PTI. Based on integrative transcriptomics and proteomics data, as well as qRT-PCR analysis, several potential PTI and ETI-specific markers are proposed. These results provide insights into the regulatory mechanisms underlying PTI and ETI in the tomato-Pst pathosystem, and will promote future validation and application of the disease biomarkers in plant defense.
Collapse
Affiliation(s)
- Juanjuan Yu
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
- *Correspondence: Juanjuan Yu,
| | - Juan M. Gonzalez
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
| | - Zhiping Dong
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qianru Shan
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Bowen Tan
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Jin Koh
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Tong Zhang
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Ning Zhu
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Craig Dufresne
- Thermo Fisher Scientific Inc., West Palm Beach, FL, United States
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Sixue Chen,
| |
Collapse
|