1
|
Fukushi Y, Yokochi Y, Hisabori T, Yoshida K. Overexpression of thioredoxin-like protein ACHT2 leads to negative feedback control of photosynthesis in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:445-453. [PMID: 38367196 PMCID: PMC11082001 DOI: 10.1007/s10265-024-01519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
Thioredoxin (Trx) is a small redox mediator protein involved in the regulation of various chloroplast functions by modulating the redox state of Trx target proteins in ever-changing light environments. Using reducing equivalents produced by the photosynthetic electron transport chain, Trx reduces the disulfide bonds on target proteins and generally turns on their activities. While the details of the protein-reduction mechanism by Trx have been well investigated, the oxidation mechanism that counteracts it has long been unclear. We have recently demonstrated that Trx-like proteins such as Trx-like2 and atypical Cys His-rich Trx (ACHT) can function as protein oxidation factors in chloroplasts. Our latest study on transgenic Arabidopsis plants indicated that the ACHT isoform ACHT2 is involved in regulating the thermal dissipation of light energy. To understand the role of ACHT2 in vivo, we characterized phenotypic changes specifically caused by ACHT2 overexpression in Arabidopsis. ACHT2-overexpressing plants showed growth defects, especially under high light conditions. This growth phenotype was accompanied with the impaired reductive activation of Calvin-Benson cycle enzymes, enhanced thermal dissipation of light energy, and decreased photosystem II activity. Overall, ACHT2 overexpression promoted protein oxidation that led to the inadequate activation of Calvin-Benson cycle enzymes in light and consequently induced negative feedback control of the photosynthetic electron transport chain. This study highlights the importance of the balance between protein reduction and oxidation in chloroplasts for optimal photosynthetic performance and plant growth.
Collapse
Affiliation(s)
- Yuka Fukushi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yuichi Yokochi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- International Research Frontier Initiative, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
2
|
Wittmann D, Wang C, Grimm B. More indications for redox-sensitive cysteine residues of the Arabidopsis 5-aminolevulinate dehydratase. FRONTIERS IN PLANT SCIENCE 2024; 14:1294802. [PMID: 38317833 PMCID: PMC10839789 DOI: 10.3389/fpls.2023.1294802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Redox-dependent thiol-disulfide switches of cysteine residues are one of the significant posttranslational modifications of proteins to control rapidly their stability, activity, and protein interaction. Redox control also modulates the tetrapyrrole biosynthesis (TBS). Among the redox-dependent TBS enzymes, 5-aminolevulinic acid dehydratase (ALAD) was previously recognized to interact with reductants, such a thioredoxins or NADPH-dependent thioredoxin reductase C. In this report, we aim to verify the redox sensitivity of ALAD and identify the redox-reactive cysteine residues among the six cysteines of the mature protein form Arabidopsis. Based on structural modelling and comparative studies of wild-type ALAD and ALAD mutants with single and double Cys➔Ser substitutions under oxidizing and reducing conditions, we aim to predict the dimerization and oligomerisation of ALAD as well as the crucial Cys residues for disulfide bridge formation and enzyme activity. The Cys404Ser mutation led to a drastic inactivation of ALAD and redox-dependent properties of ALAD were severely impaired, when Cys71 was simultaneously mutated with Cys152 or Cys251. Cys71 is located in a flexible N-terminal arm of ALAD, which could allow intramolecular disulfide bridges with Cys residues at the surface of the remaining globule ALAD structure. As a result, we propose different roles of Cys residues for redox control, catalytic activity and Mg2+-dependent assembly.
Collapse
Affiliation(s)
- Daniel Wittmann
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Wittmann D, Geigenberger P, Grimm B. NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner. Cells 2023; 12:1670. [PMID: 37371140 DOI: 10.3390/cells12121670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Redox regulation of plastid gene expression and different metabolic pathways promotes many activities of redox-sensitive proteins. We address the question of how the plastid redox state and the contributing reducing enzymes control the enzymes of tetrapyrrole biosynthesis (TBS). In higher plants, this metabolic pathway serves to produce chlorophyll and heme, among other essential end products. Because of the strictly light-dependent synthesis of chlorophyll, tight control of TBS requires a diurnal balanced supply of the precursor 5-aminolevulinic acid (ALA) to prevent the accumulation of photoreactive metabolic intermediates in darkness. We report on some TBS enzymes that accumulate in a light intensity-dependent manner, and their contents decrease under oxidizing conditions of darkness, low light conditions, or in the absence of NADPH-dependent thioredoxin reductase (NTRC) and thioredoxin f1 (TRX-f1). Analysis of single and double trxf1 and ntrc mutants revealed a decreased content of the early TBS enzymes glutamyl-tRNA reductase (GluTR) and 5-aminolevulinic acid dehydratase (ALAD) instead of an exclusive decrease in enzyme activity. This effect was dependent on light conditions and strongly attenuated after transfer to high light intensities. Thus, it is suggested that a deficiency of plastid-localized thiol-redox transmitters leads to enhanced degradation of TBS enzymes rather than being directly caused by lower catalytic activity. The effects of the proteolytic activity of the Clp protease on TBS enzymes were studied by using Clp subunit-deficient mutants. The simultaneous lack of TRX and Clp activities in double mutants confirms the Clp-induced degradation of some TBS proteins in the absence of reductive activity of TRXs. In addition, we verified previous observations that decreased chlorophyll and heme levels in ntrc could be reverted to WT levels in the ntrc/Δ2cp triple mutant. The decreased synthesis of 5-aminolevulinic acid and porphobilinogen in ntrc was completely restored in ntrc/Δ2cp and correlated with WT-like levels of GluTR, ALAD, and other TBS proteins.
Collapse
Affiliation(s)
- Daniel Wittmann
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
4
|
The ferredoxin/thioredoxin pathway constitutes an indispensable redox-signaling cascade for light-dependent reduction of chloroplast stromal proteins. J Biol Chem 2022; 298:102650. [PMID: 36448836 PMCID: PMC9712825 DOI: 10.1016/j.jbc.2022.102650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
To ensure efficient photosynthesis, chloroplast proteins need to be flexibly regulated under fluctuating light conditions. Thiol-based redox regulation plays a key role in reductively activating several chloroplast proteins in a light-dependent manner. The ferredoxin (Fd)/thioredoxin (Trx) pathway has long been recognized as the machinery that transfers reducing power generated by photosynthetic electron transport reactions to redox-sensitive target proteins; however, its biological importance remains unclear, because the complete disruption of the Fd/Trx pathway in plants has been unsuccessful to date. Especially, recent identifications of multiple redox-related factors in chloroplasts, as represented by the NADPH-Trx reductase C, have raised a controversial proposal that other redox pathways work redundantly with the Fd/Trx pathway. To address these issues directly, we used CRISPR/Cas9 gene editing to create Arabidopsis mutant plants in which the activity of the Fd/Trx pathway was completely defective. The mutants generated showed severe growth inhibition. Importantly, these mutants almost entirely lost the ability to reduce several redox-sensitive proteins in chloroplast stroma, including four Calvin-Benson cycle enzymes, NADP-malate dehydrogenase, and Rubisco activase, under light conditions. These striking phenotypes were further accompanied by abnormally developed chloroplasts and a drastic decline in photosynthetic efficiency. These results indicate that the Fd/Trx pathway is indispensable for the light-responsive activation of diverse stromal proteins and photoautotrophic growth of plants. Our data also suggest that the ATP synthase is exceptionally reduced by other pathways in a redundant manner. This study provides an important insight into how the chloroplast redox-regulatory system operates in vivo.
Collapse
|
5
|
Walter J, Kromdijk J. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:564-591. [PMID: 34962073 PMCID: PMC9302994 DOI: 10.1111/jipb.13206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis started to evolve some 3.5 billion years ago CO2 is the substrate for photosynthesis and in the past 200-250 years, atmospheric levels have approximately doubled due to human industrial activities. However, this time span is not sufficient for adaptation mechanisms of photosynthesis to be evolutionarily manifested. Steep increases in human population, shortage of arable land and food, and climate change call for actions, now. Thanks to substantial research efforts and advances in the last century, basic knowledge of photosynthetic and primary metabolic processes can now be translated into strategies to optimize photosynthesis to its full potential in order to improve crop yields and food supply for the future. Many different approaches have been proposed in recent years, some of which have already proven successful in different crop species. Here, we summarize recent advances on modifications of the complex network of photosynthetic light reactions. These are the starting point of all biomass production and supply the energy equivalents necessary for downstream processes as well as the oxygen we breathe.
Collapse
Affiliation(s)
- Julia Walter
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Johannes Kromdijk
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinois61801USA
| |
Collapse
|
6
|
Osorio Zambrano MA, Castillo DA, Rodríguez Pérez L, Terán W. Cacao ( Theobroma cacao L.) Response to Water Stress: Physiological Characterization and Antioxidant Gene Expression Profiling in Commercial Clones. FRONTIERS IN PLANT SCIENCE 2021; 12:700855. [PMID: 34552605 PMCID: PMC8450537 DOI: 10.3389/fpls.2021.700855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The increase in events associated with drought constraints plant growth and crop performance. Cacao (Theobroma cacao L.) is sensitive to water deficit stress (DS), which limits productivity. The aim of this research was to characterise the response of seven (CCN51, FEAR5, ICS1, ICS60, ICS95, EET8, and TSH565) commercially important cacao clones to severe and temporal water deficit stress. Ten-month-old cacao trees were submitted to two treatments: well-watered and water-stressed until the leaf water potential (Ψ leaf) reached values between -3.0 and -3.5 MPa. The effects of hydric stress on water relations, gas exchange, photochemical activity, membrane integrity and oxidative stress-related gene expression were evaluated. All clones showed decreases in Ψ leaf, but TSH565 had a higher capacity to maintain water homeostasis in leaves. An initial response phase consisted of stomatal closure, a general mechanism to limit water loss: as a consequence, the photosynthetic rate dropped by approximately 98% on average. In some clones, the photosynthetic rate reached negative values at the maximum stress level, evidencing photorespiration and was confirmed by increased intracellular CO2. A second and photosynthetically limited phase was characterized by a drop in PSII quantum efficiency, which affected all clones. On average, all clones were able to recover after 4 days of rewatering. Water deficit triggered oxidative stress at the early phase, as evidenced by the upregulation of oxidative stress markers and genes encoding ROS scavenging enzymes. The effects of water deficit stress on energy metabolism were deduced given the upregulation of fermentative enzyme-coding genes. Altogether, our results suggest that the EET8 clone was the highest performing under water deficit while the ICS-60 clone was more susceptible to water stress. Importantly, the activation of the antioxidant system and PSII repair mechanism seem to play key roles in the observed differences in tolerance to water deficit stress among clones.
Collapse
Affiliation(s)
| | | | | | - Wilson Terán
- Plant and Crop Biology, Department of Biology, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
7
|
Ojeda V, Jiménez-López J, Romero-Campero FJ, Cejudo FJ, Pérez-Ruiz JM. A chloroplast redox relay adapts plastid metabolism to light and affects cytosolic protein quality control. PLANT PHYSIOLOGY 2021; 187:88-102. [PMID: 34618130 PMCID: PMC8418392 DOI: 10.1093/plphys/kiab246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/04/2021] [Indexed: 06/01/2023]
Abstract
In chloroplasts, thiol-dependent redox regulation is linked to light since the disulfide reductase activity of thioredoxins (Trxs) relies on photo-reduced ferredoxin (Fdx). Furthermore, chloroplasts harbor an NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC. The activity of these two redox systems is integrated by the redox balance of 2-Cys peroxiredoxin (Prx), which is controlled by NTRC. However, NTRC was proposed to participate in redox regulation of additional targets, prompting inquiry into whether the function of NTRC depends on its capacity to maintain the redox balance of 2-Cys Prxs or by direct redox interaction with chloroplast enzymes. To answer this, we studied the functional relationship of NTRC and 2-Cys Prxs by a comparative analysis of the triple Arabidopsis (Arabidopsis thaliana) mutant, ntrc-2cpab, which lacks NTRC and 2-Cys Prxs, and the double mutant 2cpab, which lacks 2-Cys Prxs. These mutants exhibit almost indistinguishable phenotypes: in growth rate, photosynthesis performance, and redox regulation of chloroplast enzymes in response to light and darkness. These results suggest that the most relevant function of NTRC is in controlling the redox balance of 2-Cys Prxs. A comparative transcriptomics analysis confirmed the phenotypic similarity of the two mutants and suggested that the NTRC-2-Cys Prxs system participates in cytosolic protein quality control. We propose that NTRC and 2-Cys Prxs constitute a redox relay, exclusive to photosynthetic organisms that fine-tunes the redox state of chloroplast enzymes in response to light and affects transduction pathways towards the cytosol.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Julia Jiménez-López
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco José Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| |
Collapse
|
8
|
Zhao W, Zhou Y, Zhou X, Wang X, Ji Y. Host GRXC6 restricts Tomato yellow leaf curl virus infection by inhibiting the nuclear export of the V2 protein. PLoS Pathog 2021; 17:e1009844. [PMID: 34398921 PMCID: PMC8389846 DOI: 10.1371/journal.ppat.1009844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
Geminiviruses cause serious symptoms and devastating losses in crop plants. With a circular, single-stranded DNA genome, geminiviruses multiply their genomic DNA in the nucleus, requiring the nuclear shuttling of viral proteins and viral genomic DNAs. Many host factors, acting as proviral or antiviral factors, play key roles in geminivirus infections. Here, we report the roles of a tomato glutaredoxin (GRX), SlGRXC6, in the infection of Tomato yellow leaf curl virus (TYLCV), a single-component geminivirus. The V2 protein of TYLCV specifically and preferentially interacts with SlGRXC6 among the 55-member tomato GRX family that are broadly involved in oxidative stress responses, plant development, and pathogen responses. We show that overexpressed SlGRXC6 increases the nuclear accumulation of V2 by inhibiting its nuclear export and, in turn, inhibits trafficking of the V1 protein and viral genomic DNA. Conversely, the silenced expression of SlGRXC6 leads to an enhanced susceptibility to TYLCV. SlGRXC6 is also involved in symptom development as we observed a positive correlation where overexpression of SlGRXC6 promotes while knockdown of SlGRXC6 expression inhibits plant growth. We further showed that SlGRXC6 works with SlNTRC80, a tomato NADPH-dependent thioredoxin reductase, to regulate plant growth. V2 didn’t interact with SlNTRC80 but competed with SlNTR80 for binding to SlGRXC6, suggesting that the V2-disrupted SlGRXC6-SlNTRC80 interaction is partially responsible for the virus-caused symptoms. These results suggest that SlGRXC6 functions as a host restriction factor that inhibits the nuclear trafficking of viral components and point out a new way to control TYLCV infection by targeting the V2-SlGRXC6 interaction. Geminiviruses infect numerous crops, induce a wide range of symptoms, and cause tremendous crop losses annually. Tomato yellow leaf curl virus (TYLCV), a single-component geminivirus, is a causative agent leading to one of the most devastating tomato diseases in the world. As a single-stranded DNA virus, genomic replication occurs in the nucleus and therefore, the nuclear shuttling is a critical step of viral infection. The V2 protein of TYLCV is involved in symptom development and viral trafficking, among other steps, and hijacks host proteins for executing its functions. Nevertheless, host factors involved in the V2-mediated functions are not well addressed. We show that tomato GRXC6 (SlGRXC6) functions as a restriction factor of TYLCV infection by interacting with and preventing V2 from moving out of the nucleus, leading to the inhibited V2-mediated nuclear export of V1 and the V1-viral DNA complex. SlGRXC6 also contributes to symptom development via its interaction with SINTRC80. V2 sequesters SlGRXC6 from forming the SlGRXC6-SlNTRC80 complex and regulates plant growth. Our work, therefore, identified a new host partner of V2 and revealed the mechanisms whereby V2 functions as a pathogenicity determinant and can be targeted for virus control.
Collapse
Affiliation(s)
- Wenhao Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yijun Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail: (XZ); (XW); (YJ)
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (XZ); (XW); (YJ)
| | - Yinghua Ji
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (XZ); (XW); (YJ)
| |
Collapse
|
9
|
Cejudo FJ, González MC, Pérez-Ruiz JM. Redox regulation of chloroplast metabolism. PLANT PHYSIOLOGY 2021; 186:9-21. [PMID: 33793865 PMCID: PMC8154093 DOI: 10.1093/plphys/kiaa062] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX-FTR-TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX-FTR-TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.
Collapse
Affiliation(s)
- Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
- Author for communication:
| | - María-Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
10
|
van Hoogdalem M, Shapulatov U, Sergeeva L, Busscher-Lange J, Schreuder M, Jamar D, van der Krol AR. A temperature regime that disrupts clock-controlled starch mobilization induces transient carbohydrate starvation, resulting in compact growth. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab075. [PMID: 33617638 DOI: 10.1093/jxb/erab075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/12/2023]
Abstract
In nature plants are usually subjected to a light/temperature regime of warm day and cold night (referred to as +DIF). Compared to growth under +DIF, Arabidopsis plants show compact growth under the same photoperiod, but with an inverse temperature regime (cold day and warm night: -DIF). Here we show that -DIF differentially affects the phase and amplitude of core clock gene expression. Under -DIF the phase of the morning clock gene CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is delayed, similar to that of plants grown on low sucrose. Indeed, under -DIF carbohydrate (CHO) starvation marker genes are specifically upregulated at the End of the Night (EN) in Arabidopsis rosettes. However, only in inner-rosette tissue (small sink leaves and petioles of older leaves) sucrose levels are lower under -DIF compared to under +DIF, suggesting that sucrose in source leaf blades is not sensed for CHO status and that sucrose transport from source to sink may be impaired at EN. CHO-starvation under -DIF correlated with increased starch breakdown during the night and decreased starch accumulation during the day. Moreover, we demonstrate that different ways of inducing CHO-starvation all link to reduced growth of sink leaves. Practical implications for control of plant growth in horticulture are discussed.
Collapse
Affiliation(s)
- Mark van Hoogdalem
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Current Business Unit Greenhouse Horticulture, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Umidjon Shapulatov
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Current Department of Botany and Plant Physiology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Mariëlle Schreuder
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Diaan Jamar
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Alexander R van der Krol
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| |
Collapse
|
11
|
Yokochi Y, Yoshida K, Hahn F, Miyagi A, Wakabayashi KI, Kawai-Yamada M, Weber APM, Hisabori T. Redox regulation of NADP-malate dehydrogenase is vital for land plants under fluctuating light environment. Proc Natl Acad Sci U S A 2021; 118:e2016903118. [PMID: 33531363 PMCID: PMC8017969 DOI: 10.1073/pnas.2016903118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many enzymes involved in photosynthesis possess highly conserved cysteine residues that serve as redox switches in chloroplasts. These redox switches function to activate or deactivate enzymes during light-dark transitions and have the function of fine-tuning their activities according to the intensity of light. Accordingly, many studies on chloroplast redox regulation have been conducted under the hypothesis that "fine regulation of the activities of these enzymes is crucial for efficient photosynthesis." However, the impact of the regulatory system on plant metabolism is still unclear. To test this hypothesis, we here studied the impact of the ablation of a redox switch in chloroplast NADP-malate dehydrogenase (MDH). By genome editing, we generated a mutant plant whose MDH lacks one of its redox switches and is active even in dark conditions. Although NADPH consumption by MDH in the dark is expected to be harmful to plant growth, the mutant line did not show any phenotypic differences under standard long-day conditions. In contrast, the mutant line showed severe growth retardation under short-day or fluctuating light conditions. These results indicate that thiol-switch redox regulation of MDH activity is crucial for maintaining NADPH homeostasis in chloroplasts under these conditions.
Collapse
Affiliation(s)
- Yuichi Yokochi
- Laboratory of Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
| | - Keisuke Yoshida
- Laboratory of Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
| | - Florian Hahn
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Center for Synthetic Life Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Atsuko Miyagi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 338-8570 Saitama, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory of Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
| | - Maki Kawai-Yamada
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 338-8570 Saitama, Japan
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Center for Synthetic Life Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Toru Hisabori
- Laboratory of Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 226-8503 Yokohama, Japan;
- School of Life Science and Technology, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
| |
Collapse
|
12
|
Al-Mohanna T, Nejat N, Iannetta AA, Hicks LM, Popescu GV, Popescu SC. Arabidopsis thimet oligopeptidases are redox-sensitive enzymes active in the local and systemic plant immune response. J Biol Chem 2021; 296:100695. [PMID: 33894200 PMCID: PMC8215294 DOI: 10.1016/j.jbc.2021.100695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Upon pathogen infection, receptors in plants will activate a localized immune response, the effector-triggered immunity (ETI), and a systemic immune response, the systemic acquired response (SAR). Infection also induces oscillations in the redox environment of plant cells, triggering response mechanisms involving sensitive cysteine residues that subsequently alter protein function. Arabidopsis thaliana thimet oligopeptidases TOP1 and TOP2 are required for plant defense against pathogens and the oxidative stress response. Herein, we evaluated the biochemical attributes of TOP isoforms to determine their redox sensitivity using ex vivo Escherichia coli cultures and recombinant proteins. Moreover, we explored the link between their redox regulation and plant immunity in wild-type and mutant Arabidopsis lines. These analyses revealed that redox regulation of TOPs occurs through two mechanisms: (1) oxidative dimerization of full-length TOP1 via intermolecular disulfides engaging cysteines in the N-terminal signal peptide, and (2) oxidative activation of all TOPs via cysteines that are unique and conserved. Further, we detected increased TOP activity in wild-type plants undergoing ETI or SAR following inoculation with Pseudomonas syringae strains. Mutants unable to express the chloroplast NADPH-dependent thioredoxin reductase C (NTRC) showed elevated TOP activity under unstressed conditions and were SAR-incompetent. A top1top2 knockout mutant challenged with P. syringae exhibited misregulation of ROS-induced gene expression in pathogen-inoculated and distal tissues. Furthermore, TOP1 and TOP2 could cleave a peptide derived from the immune component ROC1 with distinct efficiencies at common and specific sites. We propose that Arabidopsis TOPs are thiol-regulated peptidases active in redox-mediated signaling of local and systemic immunity.
Collapse
Affiliation(s)
- Thualfeqar Al-Mohanna
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Najmeh Nejat
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Anthony A Iannetta
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - George V Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Sorina C Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA.
| |
Collapse
|
13
|
Guinea Diaz M, Nikkanen L, Himanen K, Toivola J, Rintamäki E. Two chloroplast thioredoxin systems differentially modulate photosynthesis in Arabidopsis depending on light intensity and leaf age. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:718-734. [PMID: 32772439 PMCID: PMC7693050 DOI: 10.1111/tpj.14959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Various regulatory mechanisms have evolved in plants to optimize photosynthetic activity under fluctuating light. Thioredoxins (TRX) are members of the regulatory network balancing activities of light and carbon fixation reactions in chloroplasts. We have studied the impact of two chloroplast TRX systems, the ferredoxin-dependent TRX reductase (FTR) and the NADPH-dependent TRX reductase C (NTRC) on regulation of photosynthesis by mutants lacking or overexpressing a component of either system. Plants were subjected to image-based phenotyping and chlorophyll fluorescence measurements that allow long-term monitoring of the development and photosynthetic activity of the rosettes, respectively. Our experiments demonstrate that NTRC and FTR systems respond differently to variation of light intensity. NTRC was an indispensable regulator of photosynthesis in young leaves, at light-intensity transitions and under low light intensities limiting photosynthesis, whereas steady-state exposure of plants to growth or higher light intensities diminished the need of NTRC in regulation of photosynthesis. In fluctuating light, overexpression of NTRC increased the quantum yield of Photosystem II (YII) at low light and stimulated the relaxation of non-photochemical quenching (NPQ) after high light exposure, indicating that overexpression of NTRC improves leaf capacity to convert light energy to chemical energy under these conditions. Overexpression of chimeric protein (NTR-TRXf) containing both the thioredoxin reductase and TRXf activity on an ntrc mutant background, did not completely recover either growth or steady-state photosynthetic activity, whereas OE-NTR-TRXf plants exposed to fluctuating light regained the wild-type level of Y(II) and NPQ.
Collapse
Affiliation(s)
- Manuel Guinea Diaz
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurku20520Finland
| | - Lauri Nikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurku20520Finland
| | - Kristiina Himanen
- National Plant Phenotyping InfrastructureUniversity of HelsinkiHelsinki00790Finland
| | - Jouni Toivola
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurku20520Finland
| | - Eevi Rintamäki
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurku20520Finland
| |
Collapse
|
14
|
Yoshida K, Ohtaka K, Hirai MY, Hisabori T. Biochemical insight into redox regulation of plastidial 3-phosphoglycerate dehydrogenase from Arabidopsis thaliana. J Biol Chem 2020; 295:14906-14915. [PMID: 32848019 PMCID: PMC7606689 DOI: 10.1074/jbc.ra120.014263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Indexed: 12/22/2022] Open
Abstract
Thiol-based redox regulation is a post-translational protein modification for controlling enzyme activity by switching oxidation/reduction states of Cys residues. In plant cells, numerous proteins involved in a wide range of biological systems have been suggested as the target of redox regulation; however, our knowledge on this issue is still incomplete. Here we report that 3-phosphoglycerate dehydrogenase (PGDH) is a novel redox-regulated protein. PGDH catalyzes the first committed step of Ser biosynthetic pathway in plastids. Using an affinity chromatography-based method, we found that PGDH physically interacts with thioredoxin (Trx), a key factor of redox regulation. The in vitro studies using recombinant proteins from Arabidopsis thaliana showed that a specific PGDH isoform, PGDH1, forms the intramolecular disulfide bond under nonreducing conditions, which lowers PGDH enzyme activity. MS and site-directed mutagenesis analyses allowed us to identify the redox-active Cys pair that is mainly involved in disulfide bond formation in PGDH1; this Cys pair is uniquely found in land plant PGDH. Furthermore, we revealed that some plastidial Trx subtypes support the reductive activation of PGDH1. The present data show previously uncharacterized regulatory mechanisms of PGDH and expand our understanding of the Trx-mediated redox-regulatory network in plants.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Kinuka Ohtaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan; Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | | | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
15
|
Nawaz G, Usman B, Peng H, Zhao N, Yuan R, Liu Y, Li R. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-Based Proteomic Analysis of Mutants Revealed New Insights into M. oryzae Resistance in Elite Rice Line. Genes (Basel) 2020; 11:E735. [PMID: 32630695 PMCID: PMC7396999 DOI: 10.3390/genes11070735] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/27/2023] Open
Abstract
Rice blast (Magnaporthe oryzae) is a devastating disease affecting rice production globally. The development of cultivars with host resistance has been proved to be the best strategy for disease management. Several rice-resistance genes (R) have been recognized which induce resistance to blast in rice but R gene-mediated mechanisms resulting in defense response still need to be elucidated. Here, mutant lines generated through CRISPR/Cas9 based targeted mutagenesis to investigate the role of Pi21 against blast resistance and 17 mutant plants were obtained in T0 generation with the mutation rate of 66% including 26% bi-allelic, 22% homozygous, 12% heterozygous, and 3% chimeric and 17 T-DNA-free lines in T1 generation. The homozygous mutant lines revealed enhanced resistance to blast without affecting the major agronomic traits. Furthermore, comparative proteome profiling was adopted to study the succeeding proteomic regulations, using iTRAQ-based proteomic analysis. We identified 372 DEPs, among them 149 up and 223 were down-regulated, respectively. GO analysis revealed that the proteins related to response to stimulus, photosynthesis, carbohydrate metabolic process, and small molecule metabolic process were up-regulated. The most of DEPs were involved in metabolic, ribosomal, secondary metabolites biosynthesis, and carbon metabolism pathways. 40S ribosomal protein S15 (P31674), 50S ribosomal protein L4, L5, L6 (Q10NM5, Q9ZST0, Q10L93), 30S ribosomal protein S5, S9 (Q6YU81, Q850W6, Q9XJ28), and succinate dehydrogenase (Q9S827) were hub-proteins. The expression level of genes related to defense mechanism, involved in signaling pathways of jasmonic acid (JA), salicylic acid (SA), and ethylene metabolisms were up-regulated in mutant line after the inoculation of the physiological races of M. oryzae as compared to WT. Our results revealed the fundamental value of genome editing and expand knowledge about fungal infection avoidance in rice.
Collapse
Affiliation(s)
- Gul Nawaz
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Babar Usman
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Haowen Peng
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Neng Zhao
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Ruizhi Yuan
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Rongbai Li
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| |
Collapse
|
16
|
Rotasperti L, Sansoni F, Mizzotti C, Tadini L, Pesaresi P. Barley's Second Spring as A Model Organism for Chloroplast Research. PLANTS 2020; 9:plants9070803. [PMID: 32604986 PMCID: PMC7411767 DOI: 10.3390/plants9070803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-nucleus) signalling communication pathway, while chlorina-f2 and xantha mutants helped to shed light on the chlorophyll biosynthetic pathway, on the light-harvesting proteins and on the organization of the photosynthetic apparatus. However, during the last 30 years, a large fraction of chloroplast research has switched to the more “user-friendly” model species Arabidopsis thaliana, the first plant species whose genome was sequenced and published at the end of 2000. Despite its many advantages, Arabidopsis has some important limitations compared to barley, including the lack of a real canopy and the absence of the proplastid-to-chloroplast developmental gradient across the leaf blade. These features, together with the availability of large collections of natural genetic diversity and mutant populations for barley, a complete genome assembly and protocols for genetic transformation and gene editing, have relaunched barley as an ideal model species for chloroplast research. In this review, we provide an update on the genomics tools now available for barley, and review the biotechnological strategies reported to increase photosynthesis efficiency in model species, which deserve to be validated in barley.
Collapse
|
17
|
Shapiguzov A, Nikkanen L, Fitzpatrick D, Vainonen JP, Gossens R, Alseekh S, Aarabi F, Tiwari A, Blokhina O, Panzarová K, Benedikty Z, Tyystjärvi E, Fernie AR, Trtílek M, Aro EM, Rintamäki E, Kangasjärvi J. Dissecting the interaction of photosynthetic electron transfer with mitochondrial signalling and hypoxic response in the Arabidopsis rcd1 mutant. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190413. [PMID: 32362253 PMCID: PMC7209945 DOI: 10.1098/rstb.2019.0413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Arabidopsis mutant rcd1 is tolerant to methyl viologen (MV). MV enhances the Mehler reaction, i.e. electron transfer from Photosystem I (PSI) to O2, generating reactive oxygen species (ROS) in the chloroplast. To study the MV tolerance of rcd1, we first addressed chloroplast thiol redox enzymes potentially implicated in ROS scavenging. NADPH-thioredoxin oxidoreductase type C (NTRC) was more reduced in rcd1. NTRC contributed to the photosynthetic and metabolic phenotypes of rcd1, but did not determine its MV tolerance. We next tested rcd1 for alterations in the Mehler reaction. In rcd1, but not in the wild type, the PSI-to-MV electron transfer was abolished by hypoxic atmosphere. A characteristic feature of rcd1 is constitutive expression of mitochondrial dysfunction stimulon (MDS) genes that affect mitochondrial respiration. Similarly to rcd1, in other MDS-overexpressing plants hypoxia also inhibited the PSI-to-MV electron transfer. One possible explanation is that the MDS gene products may affect the Mehler reaction by altering the availability of O2. In green tissues, this putative effect is masked by photosynthetic O2 evolution. However, O2 evolution was rapidly suppressed in MV-treated plants. Transcriptomic meta-analysis indicated that MDS gene expression is linked to hypoxic response not only under MV, but also in standard growth conditions. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Lauri Nikkanen
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Duncan Fitzpatrick
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Richard Gossens
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Saleh Alseekh
- Max-Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany.,Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Fayezeh Aarabi
- Max-Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Arjun Tiwari
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Olga Blokhina
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany.,Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Martin Trtílek
- Photon Systems Instruments, 664 24 Drásov, Czech Republic
| | - Eva-Mari Aro
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eevi Rintamäki
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
18
|
Ancín M, Larraya L, Fernández-San Millán A, Veramendi J, Burch-Smith T, Farran I. NTRC and Thioredoxin f Overexpression Differentially Induces Starch Accumulation in Tobacco Leaves. PLANTS 2019; 8:plants8120543. [PMID: 31779140 PMCID: PMC6963466 DOI: 10.3390/plants8120543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
Thioredoxin (Trx) f and NADPH-dependent Trx reductase C (NTRC) have both been proposed as major redox regulators of starch metabolism in chloroplasts. However, little is known regarding the specific role of each protein in this complex mechanism. To shed light on this point, tobacco plants that were genetically engineered to overexpress the NTRC protein from the chloroplast genome were obtained and compared to previously generated Trx f-overexpressing transplastomic plants. Likewise, we investigated the impact of NTRC and Trx f deficiency on starch metabolism by generating Nicotiana benthamiana plants that were silenced for each gene. Our results demonstrated that NTRC overexpression induced enhanced starch accumulation in tobacco leaves, as occurred with Trx f. However, only Trx f silencing leads to a significant decrease in the leaf starch content. Quantitative analysis of enzyme activities related to starch synthesis and degradation were determined in all of the genotypes. Zymographic analyses were additionally performed to compare the amylolytic enzyme profiles of both transplastomic tobacco plants. Our findings indicated that NTRC overexpression promotes the accumulation of transitory leaf starch as a consequence of a diminished starch turnover during the dark period, which seems to be related to a significant reductive activation of ADP-glucose pyrophosphorylase and/or a deactivation of a putative debranching enzyme. On the other hand, increased starch content in Trx f-overexpressing plants was connected to an increase in the capacity of soluble starch synthases during the light period. Taken together, these results suggest that NTRC and the ferredoxin/Trx system play distinct roles in starch turnover.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Luis Larraya
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Jon Veramendi
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Tessa Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Inmaculada Farran
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
- Correspondence: ; Tel.: +34-948-168-034
| |
Collapse
|
19
|
Hou LY, Ehrlich M, Thormählen I, Lehmann M, Krahnert I, Obata T, Cejudo FJ, Fernie AR, Geigenberger P. NTRC Plays a Crucial Role in Starch Metabolism, Redox Balance, and Tomato Fruit Growth. PLANT PHYSIOLOGY 2019; 181:976-992. [PMID: 31527089 PMCID: PMC6836810 DOI: 10.1104/pp.19.00911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 05/21/2023]
Abstract
NADPH-thioredoxin reductase C (NTRC) forms a separate thiol-reduction cascade in plastids, combining both NADPH-thioredoxin reductase and thioredoxin activities on a single polypeptide. While NTRC is an important regulator of photosynthetic processes in leaves, its function in heterotrophic tissues remains unclear. Here, we focus on the role of NTRC in developing tomato (Solanum lycopersicum) fruits representing heterotrophic storage organs important for agriculture and human diet. We used a fruit-specific promoter to decrease NTRC expression by RNA interference in developing tomato fruits by 60% to 80% compared to the wild type. This led to a decrease in fruit growth, resulting in smaller and lighter fully ripe fruits containing less dry matter and more water. In immature fruits, NTRC downregulation decreased transient starch accumulation, which led to a subsequent decrease in soluble sugars in ripe fruits. The inhibition of starch synthesis was associated with a decrease in the redox-activation state of ADP-Glc pyrophosphorylase and soluble starch synthase, which catalyze the first committed and final polymerizing steps, respectively, of starch biosynthesis. This was accompanied by a decrease in the level of ADP-Glc. NTRC downregulation also led to a strong increase in the reductive states of NAD(H) and NADP(H) redox systems. Metabolite profiling of NTRC-RNA interference lines revealed increased organic and amino acid levels, but reduced sugar levels, implying that NTRC regulates the osmotic balance of developing fruits. These results indicate that NTRC acts as a central hub in regulating carbon metabolism and redox balance in heterotrophic tomato fruits, affecting fruit development as well as final fruit size and quality.
Collapse
Affiliation(s)
- Liang-Yu Hou
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Matthias Ehrlich
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Ina Thormählen
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Martin Lehmann
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Ina Krahnert
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Francisco J Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Peter Geigenberger
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Kang Z, Qin T, Zhao Z. Thioredoxins and thioredoxin reductase in chloroplasts: A review. Gene 2019; 706:32-42. [DOI: 10.1016/j.gene.2019.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
|
21
|
Nikkanen L, Guinea Diaz M, Toivola J, Tiwari A, Rintamäki E. Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase. PHYSIOLOGIA PLANTARUM 2019; 166:211-225. [PMID: 30578537 PMCID: PMC6850073 DOI: 10.1111/ppl.12914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 05/07/2023]
Abstract
In natural growth habitats, plants face constant, unpredictable changes in light conditions. To avoid damage to the photosynthetic apparatus on thylakoid membranes in chloroplasts, and to avoid wasteful reactions, it is crucial to maintain a redox balance both within the components of photosynthetic electron transfer chain and between the light reactions and stromal carbon metabolism under fluctuating light conditions. This requires coordinated function of the photoprotective and regulatory mechanisms, such as non-photochemical quenching (NPQ) and reversible redistribution of excitation energy between photosystem II (PSII) and photosystem I (PSI). In this paper, we show that the NADPH-dependent chloroplast thioredoxin system (NTRC) is involved in the control of the activation of these mechanisms. In plants with altered NTRC content, the strict correlation between lumenal pH and NPQ is partially lost. We propose that NTRC contributes to downregulation of a slow-relaxing constituent of NPQ, whose induction is independent of lumenal acidification. Additionally, overexpression of NTRC enhances the ability to adjust the excitation balance between PSII and PSI, and improves the ability to oxidize the electron transfer chain during changes in light conditions. Thiol regulation allows coupling of the electron transfer chain to the stromal redox state during these changes.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Manuel Guinea Diaz
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Jouni Toivola
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Arjun Tiwari
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
22
|
Nikkanen L, Rintamäki E. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochem J 2019; 476:1159-1172. [PMID: 30988137 PMCID: PMC6463390 DOI: 10.1042/bcj20180707] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of strong regulation mechanisms is to keep photosynthesis functional under all conditions encountered by sessile plants during their lifetimes. The regulatory mechanisms may, however, also impair photosynthetic efficiency by overriding the photosynthetic reactions in controlled environments like crop fields or bioreactors, where light energy could be used for production of sugars instead of dissipation as heat and down-regulation of carbon fixation. The plant chloroplast has a high number of regulatory proteins called thioredoxins (TRX), which control the function of chloroplasts from biogenesis and assembly of chloroplast machinery to light and carbon fixation reactions as well as photoprotective mechanisms. Here, we review the current knowledge of regulation of photosynthesis by chloroplast TRXs and assess the prospect of improving plant photosynthetic efficiency by modification of chloroplast thioredoxin systems.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
23
|
Simkin AJ, López-Calcagno PE, Raines CA. Feeding the world: improving photosynthetic efficiency for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1119-1140. [PMID: 30772919 PMCID: PMC6395887 DOI: 10.1093/jxb/ery445] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin-Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe.
Collapse
Affiliation(s)
- Andrew J Simkin
- NIAB EMR, New Road, East Malling, Kent, UK
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | | | - Christine A Raines
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| |
Collapse
|
24
|
Cejudo FJ, Ojeda V, Delgado-Requerey V, González M, Pérez-Ruiz JM. Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness. FRONTIERS IN PLANT SCIENCE 2019; 10:380. [PMID: 31019520 PMCID: PMC6458286 DOI: 10.3389/fpls.2019.00380] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 05/18/2023]
Abstract
Light is probably the most important environmental stimulus for plant development. As sessile organisms, plants have developed regulatory mechanisms that allow the rapid adaptation of their metabolism to changes in light availability. Redox regulation based on disulfide-dithiol exchange constitutes a rapid and reversible post-translational modification, which affects protein conformation and activity. This regulatory mechanism was initially discovered in chloroplasts when it was identified that enzymes of the Calvin-Benson cycle (CBC) are reduced and active during the day and become rapidly inactivated by oxidation in the dark. At present, the large number of redox-sensitive proteins identified in chloroplasts extend redox regulation far beyond the CBC. The classic pathway of redox regulation in chloroplasts establishes that ferredoxin (Fdx) reduced by the photosynthetic electron transport chain fuels reducing equivalents to the large set of thioredoxins (Trxs) of this organelle via the activity of a Fdx-dependent Trx reductase (FTR), hence linking redox regulation to light. In addition, chloroplasts harbor an NADPH-dependent Trx reductase with a joint Trx domain, termed NTRC. The presence in chloroplasts of this NADPH-dependent redox system raises the question of the functional relationship between NTRC and the Fdx-FTR-Trx pathways. Here, we update the current knowledge of these two redox systems focusing on recent evidence showing their functional interrelationship through the action of the thiol-dependent peroxidase, 2-Cys peroxiredoxin (2-Cys Prx). The relevant role of 2-Cys Prxs in chloroplast redox homeostasis suggests that hydrogen peroxide may exert a key function to control the redox state of stromal enzymes. Indeed, recent reports have shown the participation of 2-Cys Prxs in enzyme oxidation in the dark, thus providing an explanation for the long-lasting question of photosynthesis deactivation during the light-dark transition.
Collapse
|
25
|
Ojeda V, Pérez-Ruiz JM, Cejudo FJ. 2-Cys Peroxiredoxins Participate in the Oxidation of Chloroplast Enzymes in the Dark. MOLECULAR PLANT 2018; 11:1377-1388. [PMID: 30292682 DOI: 10.1016/j.molp.2018.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 05/29/2023]
Abstract
Most redox-regulated chloroplast enzymes are reduced during the day and oxidized during the night. While the reduction mechanism of light-dependent enzymes is well known, the mechanism mediating their oxidation in the dark remains unknown. The thiol-dependent peroxidases, 2-Cys peroxiredoxins (Prxs), play a key role in light-dependent reduction of chloroplast enzymes. Prxs transfer reducing equivalents of thiols to hydrogen peroxide, suggesting the participation of these peroxidases in enzyme oxidation in the dark. Here, we have addressed this issue by analyzing the redox state of well-known redox-regulated chloroplast enzymes in response to darkness in Arabidopsis thaliana mutants deficient in chloroplast-localized Prxs (2-Cys Prxs A and B, Prx IIE, and Prx Q). Mutant plants lacking 2-Cys Prxs A and B, and plants overexpressing NADPH-dependent thioredoxin (Trx) reductase C showed delayed oxidation of chloroplast enzymes in the dark. In contrast, the deficiencies of Prx IIE or Prx Q exerted no effect. In vitro assays allowed the reconstitution of the pathway of reducing equivalents from reduced fructose 1,6-bisphosphatase to hydrogen peroxide mediated by Trxs and 2-Cys Prxs. Taken together, these results suggest that 2-Cys Prxs participate in the short-term oxidation of chloroplast enzymes in the dark.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
26
|
Nikkanen L, Toivola J, Trotta A, Diaz MG, Tikkanen M, Aro E, Rintamäki E. Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. PLANT DIRECT 2018; 2:e00093. [PMID: 31245694 PMCID: PMC6508795 DOI: 10.1002/pld3.93] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Linear electron transport in the thylakoid membrane drives photosynthetic NADPH and ATP production, while cyclic electron flow (CEF) around photosystem I only promotes the translocation of protons from stroma to thylakoid lumen. The chloroplast NADH dehydrogenase-like complex (NDH) participates in one CEF route transferring electrons from ferredoxin back to the plastoquinone pool with concomitant proton pumping to the lumen. CEF has been proposed to balance the ratio of ATP/NADPH production and to control the redox poise particularly in fluctuating light conditions, but the mechanisms regulating the NDH complex remain unknown. We have investigated potential regulation of the CEF pathways by the chloroplast NADPH-thioredoxin reductase (NTRC) in vivo by using an Arabidopsis knockout line of NTRC as well as lines overexpressing NTRC. Here, we present biochemical and biophysical evidence showing that NTRC stimulates the activity of NDH-dependent CEF and is involved in the regulation of generation of proton motive force, thylakoid conductivity to protons, and redox balance between the thylakoid electron transfer chain and the stroma during changes in light conditions. Furthermore, protein-protein interaction assays suggest a putative thioredoxin-target site in close proximity to the ferredoxin-binding domain of NDH, thus providing a plausible mechanism for redox regulation of the NDH ferredoxin:plastoquinone oxidoreductase activity.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Jouni Toivola
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Andrea Trotta
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Manuel Guinea Diaz
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Mikko Tikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Eva‐Mari Aro
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Eevi Rintamäki
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
27
|
Determining the Rate-Limiting Step for Light-Responsive Redox Regulation in Chloroplasts. Antioxidants (Basel) 2018; 7:antiox7110153. [PMID: 30384474 PMCID: PMC6262275 DOI: 10.3390/antiox7110153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Thiol-based redox regulation ensures light-responsive control of chloroplast functions. Light-derived signal is transferred in the form of reducing power from the photosynthetic electron transport chain to several redox-sensitive target proteins. Two types of protein, ferredoxin-thioredoxin reductase (FTR) and thioredoxin (Trx), are well recognized as the mediators of reducing power. However, it remains unclear which step in a series of redox-relay reactions is the critical bottleneck for determining the rate of target protein reduction. To address this, the redox behaviors of FTR, Trx, and target proteins were extensively characterized in vitro and in vivo. The FTR/Trx redox cascade was reconstituted in vitro using recombinant proteins from Arabidopsis. On the basis of this assay, we found that the FTR catalytic subunit and f-type Trx are rapidly reduced after the drive of reducing power transfer, irrespective of the presence or absence of their downstream target proteins. By contrast, three target proteins, fructose 1,6-bisphosphatase (FBPase), sedoheptulose 1,7-bisphosphatase (SBPase), and Rubisco activase (RCA) showed different reduction patterns; in particular, SBPase was reduced at a low rate. The in vivo study using Arabidopsis plants showed that the Trx family is commonly and rapidly reduced upon high light irradiation, whereas FBPase, SBPase, and RCA are differentially and slowly reduced. Both of these biochemical and physiological findings suggest that reducing power transfer from Trx to its target proteins is a rate-limiting step for chloroplast redox regulation, conferring distinct light-responsive redox behaviors on each of the targets.
Collapse
|
28
|
Nikkanen L, Toivola J, Diaz MG, Rintamäki E. Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0474. [PMID: 28808108 PMCID: PMC5566889 DOI: 10.1098/rstb.2016.0474] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 01/07/2023] Open
Abstract
Thioredoxins (TRXs) are protein oxidoreductases that control the structure and function of cellular proteins by cleavage of a disulphide bond between the side chains of two cysteine residues. Oxidized thioredoxins are reactivated by thioredoxin reductases (TR) and a TR-dependent reduction of TRXs is called a thioredoxin system. Thiol-based redox regulation is an especially important mechanism to control chloroplast proteins involved in biogenesis, in regulation of light harvesting and distribution of light energy between photosystems, in photosynthetic carbon fixation and other biosynthetic pathways, and in stress responses of plants. Of the two plant plastid thioredoxin systems, the ferredoxin-dependent system relays reducing equivalents from photosystem I via ferredoxin and ferredoxin-thioredoxin reductase (FTR) to chloroplast proteins, while NADPH-dependent thioredoxin reductase (NTRC) forms a complete thioredoxin system including both reductase and thioredoxin domains in a single polypeptide. Chloroplast thioredoxins transmit environmental light signals to biochemical reactions, which allows fine tuning of photosynthetic processes in response to changing environmental conditions. In this paper we focus on the recent reports on specificity and networking of chloroplast thioredoxin systems and evaluate the prospect of improving photosynthetic performance by modifying the activity of thiol regulators in plants. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Jouni Toivola
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Manuel Guinea Diaz
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
29
|
Skryhan K, Gurrieri L, Sparla F, Trost P, Blennow A. Redox Regulation of Starch Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:1344. [PMID: 30298078 PMCID: PMC6160744 DOI: 10.3389/fpls.2018.01344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/24/2018] [Indexed: 05/04/2023]
Abstract
Metabolism of starch is a major biological integrator of plant growth supporting nocturnal energy dynamics by transitory starch degradation as well as periods of dormancy, re-growth, and reproduction by utilization of storage starch. Especially, the extraordinarily well-tuned and coordinated rate of transient starch biosynthesis and degradation suggests the presence of very sophisticated regulatory mechanisms. Together with the circadian clock, land plants (being autotrophic and sessile organisms) need to monitor, sense, and recognize the photosynthetic rate, soil mineral availability as well as various abiotic and biotic stress factors. Currently it is widely accepted that post-translational modifications are the main way by which the diel periodic activity of enzymes of transient starch metabolism are regulated. Among these mechanisms, thiol-based redox regulation is suggested to be of fundamental importance and in chloroplasts, thioredoxins (Trx) are tightly linked up to photosynthesis and mediate light/dark regulation of metabolism. Also, light independent NADP-thioredoxin reductase C (NTRC) plays a major role in reactive oxygen species scavenging. Moreover, Trx and NTRC systems are interconnected at several levels and strongly influence each other. Most enzymes involved in starch metabolism are demonstrated to be redox-sensitive in vitro. However, to what extent their redox sensitivity is physiologically relevant in synchronizing starch metabolism with photosynthesis, heterotrophic energy demands, and oxidative protection is still unclear. For example, many hydrolases are activated under reducing (light) conditions and the strict separation between light and dark metabolic pathways is now challenged by data suggesting degradation of starch during the light period.
Collapse
Affiliation(s)
- Katsiaryna Skryhan
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Libero Gurrieri
- Department of Pharmacy and Biotechnology – FaBiT, University of Bologna, Bologna, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology – FaBiT, University of Bologna, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology – FaBiT, University of Bologna, Bologna, Italy
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Andreas Blennow,
| |
Collapse
|
30
|
Leal-Alvarado DA, Martínez-Hernández A, Calderón-Vázquez CL, Uh-Ramos D, Fuentes G, Ramírez-Prado JH, Sáenz-Carbonell L, Santamaría JM. Identification of up-regulated genes from the metal-hyperaccumulator aquatic fern Salvinia minima Baker, in response to lead exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:86-96. [PMID: 29053962 DOI: 10.1016/j.aquatox.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Lead (Pb) is one of the most serious environmental pollutants. The aquatic fern Salvinia minima Baker is capable to hyper-accumulate Pb in their tissues. However, the molecular mechanisms involved in its Pb accumulation and tolerance capacity are not fully understood. In order to investigate the molecular mechanisms that are activated by S. minima in response to Pb, we constructed a suppression subtractive hybridization library (SSH) in response to an exposure to 40μM of Pb(NO3)2 for 12h. 365 lead-related differentially expressed sequences tags (ESTs) were isolated and sequenced. Among these ESTs, 143 unique cDNA (97 were registered at the GenBank and 46 ESTs were not registered, because they did not meet the GenBank conditions). Those ESTs were identified and classified into 3 groups according to Blast2GO. In terms of metabolic pathways, they were grouped into 29 KEGG pathways. Among the ESTs, we identified some that might be part of the mechanism that this fern may have to deal with this metal, including abiotic-stress-related transcription factors, some that might be involved in tolerance mechanisms such as ROS scavenging, membrane protection, and those of cell homeostasis recovery. To validate the SSH library, 4 genes were randomly selected from the library and analyzed by qRT-PCR. These 4 genes were transcriptionally up-regulated in response to lead in at least one of the two tested tissues (roots and leaves). The present library is one of the few genomics approaches to study the response to metal stress in an aquatic fern, representing novel molecular information and tools to understand the molecular physiology of its Pb tolerance and hyperaccumulation capacity. Further research is required to elucidate the functions of the lead-induced genes that remain classified as unknown, to perhaps reveal novel molecular mechanisms of Pb tolerance and accumulation capacity in aquatic plants.
Collapse
Affiliation(s)
- Daniel A Leal-Alvarado
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - A Martínez-Hernández
- Colegio de Posgraduados, Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Champotón, Campeche, C. P. 24450, Mexico
| | - C L Calderón-Vázquez
- Instituto Politécnico Nacional-CIIDIR, SINALOA, Boulevard Juan de Dios Bátiz Paredes #250, Colonia San Joachin, Guasave, Sinaloa, Mexico
| | - D Uh-Ramos
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - G Fuentes
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - J H Ramírez-Prado
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - L Sáenz-Carbonell
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - J M Santamaría
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico.
| |
Collapse
|
31
|
Tognetti VB, Bielach A, Hrtyan M. Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. PLANT, CELL & ENVIRONMENT 2017; 40:2586-2605. [PMID: 28708264 DOI: 10.1111/pce.13021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/17/2017] [Accepted: 06/24/2017] [Indexed: 05/18/2023]
Abstract
To maintain the activity of meristems is an absolute requirement for plant growth and development, and the role of the plant hormones auxin and cytokinin in apical meristem function is well established. Only little attention has been given, however, to the function of the reactive oxygen species (ROS) gradient along meristematic tissues and its interplay with hormonal regulatory networks. The interdependency between auxin-related, cytokinin-related and ROS-related circuits controls primary growth and development while modulating plant morphology in response to detrimental environmental factors. Because ROS interaction with redox-active compounds significantly affects the cellular redox gradient, the latter constitutes an interface for crosstalk between hormone and ROS signalling pathways. This review focuses on the mechanisms underlying ROS-dependent interactions with redox and hormonal components in shoot and root apical meristems which are crucial for meristems maintenance when plants are exposed to environmental hardships. We also emphasize the importance of cell type and the subcellular compartmentalization of ROS and redox networks to obtain a holistic understanding of how apical meristems adapt to stress.
Collapse
Affiliation(s)
- Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
32
|
Rey P, Becuwe N, Tourrette S, Rouhier N. Involvement of Arabidopsis glutaredoxin S14 in the maintenance of chlorophyll content. PLANT, CELL & ENVIRONMENT 2017; 40:2319-2332. [PMID: 28741719 DOI: 10.1111/pce.13036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/12/2017] [Indexed: 05/15/2023]
Abstract
Plant class-II glutaredoxins (GRXs) are oxidoreductases carrying a CGFS active site signature and are able to bind iron-sulfur clusters in vitro. In order to explore the physiological functions of the 2 plastidial class-II isoforms, GRXS14 and GRXS16, we generated knockdown and overexpression Arabidopsis thaliana lines and characterized their phenotypes using physiological and biochemical approaches. Plants deficient in one GRX did not display any growth defect, whereas the growth of plants lacking both was slowed. Plants overexpressing GRXS14 exhibited reduced chlorophyll content in control, high-light, and high-salt conditions. However, when exposed to prolonged darkness, plants lacking GRXS14 showed accelerated chlorophyll loss compared to wild-type and overexpression lines. We observed that the GRXS14 abundance and the proportion of reduced form were modified in wild type upon darkness and high salt. The dark treatment also resulted in decreased abundance of proteins involved in the maturation of iron-sulfur proteins. We propose that the phenotype of GRXS14-modified lines results from its participation in the control of chlorophyll content in relation with light and osmotic conditions, possibly through a dual action in regulating the redox status of biosynthetic enzymes and contributing to the biogenesis of iron-sulfur clusters, which are essential cofactors in chlorophyll metabolism.
Collapse
Affiliation(s)
- Pascal Rey
- CEA, DRF, BIAM, Lab Ecophysiol Molecul Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Noëlle Becuwe
- CEA, DRF, BIAM, Lab Ecophysiol Molecul Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Sébastien Tourrette
- CEA, DRF, BIAM, Lab Ecophysiol Molecul Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Nicolas Rouhier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, F-54500, Vandoeuvre-lès-Nancy, France
- INRA, Interactions Arbres-Microorganismes, UMR1136, F-54280, Champenoux, France
| |
Collapse
|
33
|
Nájera VA, González MC, Pérez-Ruiz JM, Cejudo FJ. An event of alternative splicing affects the expression of the NTRC gene, encoding NADPH-thioredoxin reductase C, in seed plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:21-28. [PMID: 28330560 DOI: 10.1016/j.plantsci.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
The NTRC gene encodes a NADPH-dependent thioredoxin reductase with a joint thioredoxin domain, exclusive of photosynthetic organisms. An updated search shows that although most species harbor a single copy of the NTRC gene, two copies were identified in different species of the genus Solanum, Glycine max and the moss Physcomitrella patens. The phylogenetic analysis of NTRCs from different sources produced a tree with the major groups of photosynthetic organisms: cyanobacteria, algae and land plants, indicating the evolutionary success of the NTRC gene among photosynthetic eukaryotes. An event of alternative splicing affecting the expression of the NTRC gene was identified, which is conserved in seed plants but not in algae, bryophytes and lycophytes. The alternative splicing event results in a transcript with premature stop codon, which would produce a truncated form of the enzyme. The standard splicing/alternative splicing (SS/AS) transcripts ratio was higher in photosynthetic tissues from Arabidopsis, Brachypodium and tomato, in line with the higher content of the NTRC polypeptide in these tissues. Moreover, environmental stresses such as cold or high salt affected the SS/AS ratio of the NTRC gene transcripts in Brachypodium seedlings. These results suggest that the alternative splicing of the NTRC gene might be an additional mechanism for modulating the content of NTRC in photosynthetic and non-photosynthetic tissues of seed plants.
Collapse
Affiliation(s)
- Victoria A Nájera
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092, Sevilla, Spain.
| | - María Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
34
|
Distinct electron transfer from ferredoxin–thioredoxin reductase to multiple thioredoxin isoforms in chloroplasts. Biochem J 2017; 474:1347-1360. [DOI: 10.1042/bcj20161089] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/17/2022]
Abstract
Thiol-based redox regulation is considered to support light-responsive control of various chloroplast functions. The redox cascade via ferredoxin–thioredoxin reductase (FTR)/thioredoxin (Trx) has been recognized as a key to transmitting reducing power; however, Arabidopsis thaliana genome sequencing has revealed that as many as five Trx subtypes encoded by a total of 10 nuclear genes are targeted to chloroplasts. Because each Trx isoform seems to have a distinct target selectivity, the electron distribution from FTR to multiple Trxs is thought to be the critical branch point for determining the consequence of chloroplast redox regulation. In the present study, we aimed to comprehensively characterize the kinetics of electron transfer from FTR to 10 Trx isoforms. We prepared the recombinant FTR protein from Arabidopsis in the heterodimeric form containing the Fe–S cluster. By reconstituting the FTR/Trx system in vitro, we showed that FTR prepared here was enzymatically active and suitable for uncovering biochemical features of chloroplast redox regulation. A series of redox state determinations using the thiol-modifying reagent, 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonate, indicated that all chloroplast Trx isoforms are commonly reduced by FTR; however, significantly different efficiencies were evident. These differences were apparently correlated with the distinct midpoint redox potentials among Trxs. Even when the experiments were performed under conditions of hypothetical in vivo stoichiometry of FTR and Trxs, a similar trend in distinguishable electron transfers was observed. These data highlight an aspect of highly organized circuits in the chloroplast redox regulation network.
Collapse
|
35
|
Geigenberger P, Thormählen I, Daloso DM, Fernie AR. The Unprecedented Versatility of the Plant Thioredoxin System. TRENDS IN PLANT SCIENCE 2017; 22:249-262. [PMID: 28139457 DOI: 10.1016/j.tplants.2016.12.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 05/18/2023]
Abstract
Thioredoxins are ubiquitous enzymes catalyzing reversible disulfide-bond formation to regulate structure and function of many proteins in diverse organisms. In recent years, reverse genetics and biochemical approaches were used to resolve the functions, specificities, and interactions of the different thioredoxin isoforms and reduction systems in planta and revealed the most versatile thioredoxin system of all organisms. Here we review the emerging roles of the thioredoxin system, namely the integration of thylakoid energy transduction, metabolism, gene expression, growth, and development under fluctuating environmental conditions. We argue that these new developments help us to understand why plants organize such a divergent composition of thiol redox networks and provide insights into the regulatory hierarchy that operates between them.
Collapse
Affiliation(s)
- Peter Geigenberger
- Ludwig-Maximilians-Universität (LMU) München, Department Biology I, 82152 Planegg-Martinsried, Germany.
| | - Ina Thormählen
- Ludwig-Maximilians-Universität (LMU) München, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
36
|
Carrillo LR, Froehlich JE, Cruz JA, Savage LJ, Kramer DM. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:654-63. [PMID: 27233821 DOI: 10.1111/tpj.13226] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 05/26/2023]
Abstract
The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the γ-subunit through the ferredoxin-thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc) displayed a striking photosynthetic phenotype in which feedback regulation of the light reactions was strongly activated at low light, but returned to wild-type levels as irradiance was increased. This effect was caused by an altered redox state of the γ-subunit under low, but not high, light. The low light-specific decrease in ATP synthase activity in ntrc resulted in a buildup of the thylakoid proton motive force with subsequent activation of non-photochemical quenching and downregulation of linear electron flow. We conclude that NTRC provides redox modulation at low light using the relatively oxidizing substrate NADPH, whereas the canonical ferredoxin-thioredoxin system can take over at higher light, when reduced ferredoxin can accumulate. Based on these results, we reassess previous models for ATP synthase regulation and propose that NTRC is most likely regulated by light. We also find that ntrc is highly sensitive to rapidly changing light intensities that probably do not involve the chloroplast ATP synthase, implicating this system in multiple photosynthetic processes, particularly under fluctuating environmental conditions.
Collapse
Affiliation(s)
- L Ruby Carrillo
- Biochemistry & Molecular Biology, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
| | - John E Froehlich
- Biochemistry & Molecular Biology, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
| | - Jeffrey A Cruz
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
| | - Linda J Savage
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA
| | - David M Kramer
- Biochemistry & Molecular Biology, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA.
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, Rm 106, East Lansing, MI, 48824, USA.
| |
Collapse
|
37
|
Lindquist E, Solymosi K, Aronsson H. Vesicles Are Persistent Features of Different Plastids. Traffic 2016; 17:1125-38. [PMID: 27405297 DOI: 10.1111/tra.12427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023]
Abstract
Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Gothenburg, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
38
|
Nikkanen L, Toivola J, Rintamäki E. Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. PLANT, CELL & ENVIRONMENT 2016; 39:1691-705. [PMID: 26831830 DOI: 10.1111/pce.12718] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 05/20/2023]
Abstract
Thioredoxins (TRXs) mediate light-dependent activation of primary photosynthetic reactions in plant chloroplasts by reducing disulphide bridges in redox-regulated enzymes. Of the two plastid TRX systems, the ferredoxin-TRX system consists of ferredoxin-thioredoxin reductase (FTR) and multiple TRXs, while the NADPH-dependent thioredoxin reductase (NTRC) contains a complete TRX system in a single polypeptide. Using Arabidopsis plants overexpressing or lacking a functional NTRC, we have investigated the redundancy and interaction between the NTRC and Fd-TRX systems in regulation of photosynthesis in vivo. Overexpression of NTRC raised the CO2 fixation rate and lowered non-photochemical quenching and acceptor side limitation of PSI in low light conditions by enhancing the activation of chloroplast ATP synthase and TRX-regulated enzymes in Calvin-Benson cycle (CBC). Overexpression of NTRC with an inactivated NTR or TRX domain partly recovered the phenotype of knockout plants, suggesting crosstalk between the plastid TRX systems. NTRC interacted in planta with fructose-1,6-bisphosphatase, phosphoribulokinase and CF1 γ subunit of the ATP synthase and with several chloroplast TRXs. These findings indicate that NTRC-mediated regulation of the CBC and ATP synthesis occurs both directly and through interaction with the ferredoxin-TRX system and is crucial when availability of light is limiting photosynthesis.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Jouni Toivola
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| |
Collapse
|
39
|
Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc Natl Acad Sci U S A 2016; 113:E3967-76. [PMID: 27335455 DOI: 10.1073/pnas.1604101113] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions.
Collapse
|
40
|
Naranjo B, Mignée C, Krieger-Liszkay A, Hornero-Méndez D, Gallardo-Guerrero L, Cejudo FJ, Lindahl M. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:804-22. [PMID: 26476233 DOI: 10.1111/pce.12652] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 05/19/2023]
Abstract
High irradiances may lead to photooxidative stress in plants, and non-photochemical quenching (NPQ) contributes to protection against excess excitation. One of the NPQ mechanisms, qE, involves thermal dissipation of the light energy captured. Importantly, plants need to tune down qE under light-limiting conditions for efficient utilization of the available quanta. Considering the possible redox control of responses to excess light implying enzymes, such as thioredoxins, we have studied the role of the NADPH thioredoxin reductase C (NTRC). Whereas Arabidopsis thaliana plants lacking NTRC tolerate high light intensities, these plants display drastically elevated qE, have larger trans-thylakoid ΔpH and have 10-fold higher zeaxanthin levels under low and medium light intensities, leading to extremely low linear electron transport rates. To test the impact of the high qE on plant growth, we generated an ntrc-psbs double-knockout mutant, which is devoid of qE. This double mutant grows faster than the ntrc mutant and has a higher chlorophyll content. The photosystem II activity is partially restored in the ntrc-psbs mutant, and linear electron transport rates under low and medium light intensities are twice as high as compared with plants lacking ntrc alone. These data uncover a new role for NTRC in the control of photosynthetic yield.
Collapse
Affiliation(s)
- Belén Naranjo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, 410 92, Seville, Spain
| | - Clara Mignée
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Institut de Biologie et de Technologie de Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, 91191, Gif-sur-Yvette Cedex, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Institut de Biologie et de Technologie de Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, 91191, Gif-sur-Yvette Cedex, France
| | - Dámaso Hornero-Méndez
- Departamento de Fitoquímica de los Alimentos, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | | | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, 410 92, Seville, Spain
| | - Marika Lindahl
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, 410 92, Seville, Spain
| |
Collapse
|
41
|
Skryhan K, Cuesta-Seijo JA, Nielsen MM, Marri L, Mellor SB, Glaring MA, Jensen PE, Palcic MM, Blennow A. The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1. PLoS One 2015; 10:e0136997. [PMID: 26367870 PMCID: PMC4569185 DOI: 10.1371/journal.pone.0136997] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/11/2015] [Indexed: 11/23/2022] Open
Abstract
Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98–99%). In addition of being part of a redox directed activity “light switch”, reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings is discussed.
Collapse
Affiliation(s)
- Katsiaryna Skryhan
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - Morten M. Nielsen
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Lucia Marri
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Silas B. Mellor
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mikkel A. Glaring
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Poul E. Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Monica M. Palcic
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Andreas Blennow
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
42
|
Involvement of thiol-based mechanisms in plant development. Biochim Biophys Acta Gen Subj 2015; 1850:1479-96. [PMID: 25676896 DOI: 10.1016/j.bbagen.2015.01.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. SCOPE OF VIEW The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. MAJOR CONCLUSIONS The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GENERAL SIGNIFICANCE GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
|
43
|
Uzilday B, Ozgur R, Sekmen AH, Yildiztugay E, Turkan I. Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity. ANNALS OF BOTANY 2015; 115:449-63. [PMID: 25231894 PMCID: PMC4332603 DOI: 10.1093/aob/mcu184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/28/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Eutrema parvulum (synonym, Thellungiella parvula) is an extreme halophyte that thrives in high salt concentrations (100-150 mm) and is closely related to Arabidopsis thaliana. The main aim of this study was to determine how E. parvulum uses reactive oxygen species (ROS) production, antioxidant systems and redox regulation of the electron transport system in chloroplasts to tolerate salinity. METHODS Plants of E. parvulum were grown for 30 d and then treated with either 50, 200 or 300 mm NaCl. Physiological parameters including growth and water relationships were measured. Activities of antioxidant enzymes were determined in whole leaves and chloroplasts. In addition, expressions of chloroplastic redox components such as ferrodoxin thioredoxin reductases (FTR), NADPH thioredoxin reductases (NTRC), thioredoxins (TRXs) and peroxiredoxins (PRXs), as well as genes encoding enzymes of the water-water cycle and proline biosynthesis were measured. KEY RESULTS Salt treatment affected water relationships negatively and the accumulation of proline was increased by salinity. E. parvulum was able to tolerate 300 mm NaCl over long periods, as evidenced by H2O2 content and lipid peroxidation. While Ca(2+) and K(+) concentrations were decreased by salinity, Na(+) and Cl(-) concentrations increased. Efficient induction of activities and expressions of water-water cycle enzymes might prevent accumulation of excess ROS in chloroplasts and therefore protect the photosynthetic machinery in E. parvulum. The redox homeostasis in chloroplasts might be achieved by efficient induction of expressions of redox regulatory enzymes such as FTR, NTRC, TRXs and PRXs under salinity. CONCLUSIONS E. parvulum was able to adapt to osmotic stress by an efficient osmotic adjustment mechanism involving proline and was able to regulate its ion homeostasis. In addition, efficient induction of water-water cycle enzymes and other redox regulatory components such as TRXs and PRXs in chloroplasts were able to protect the chloroplasts from salinity-induced oxidative stress.
Collapse
Affiliation(s)
- Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - A Hediye Sekmen
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - Evren Yildiztugay
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| |
Collapse
|
44
|
Nikkanen L, Rintamäki E. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130224. [PMID: 24591711 PMCID: PMC3949389 DOI: 10.1098/rstb.2013.0224] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plants have adopted a number of mechanisms to restore redox homeostasis in the chloroplast under fluctuating light conditions in nature. Chloroplast thioredoxin systems are crucial components of this redox network, mediating environmental signals to chloroplast proteins. In the reduced state, thioredoxins control the structure and function of proteins by reducing disulfide bridges in the redox active site of a protein. Subsequently, an oxidized thioredoxin is reduced by a thioredoxin reductase, the two enzymes together forming a thioredoxin system. Plant chloroplasts have versatile thioredoxin systems, including two reductases dependent on ferredoxin and NADPH as reducing power, respectively, several types of thioredoxins, and the system to deliver thiol redox signals to the thylakoid membrane and lumen. Light controls the activity of chloroplast thioredoxin systems in two ways. First, light reactions activate the thioredoxin systems via donation of electrons to oxidized ferredoxin and NADP+, and second, light induces production of reactive oxygen species in chloroplasts which deactivate the components of the thiol redox network. The diversity and partial redundancy of chloroplast thioredoxin systems enable chloroplast metabolism to rapidly respond to ever-changing environmental conditions and to raise plant fitness in natural growth conditions.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, , Turku 20014, Finland
| | | |
Collapse
|
45
|
Cejudo FJ, Meyer AJ, Reichheld JP, Rouhier N, Traverso JA. Thiol-based redox homeostasis and signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:266. [PMID: 24959171 PMCID: PMC4050284 DOI: 10.3389/fpls.2014.00266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/22/2014] [Indexed: 05/08/2023]
Affiliation(s)
- Francisco J. Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones CientíficasSevilla, Spain
- *Correspondence: ; ; ; ;
| | - Andreas J. Meyer
- INRES - Chemical Signalling, University of BonnBonn, Germany
- *Correspondence: ; ; ; ;
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via DomitiaPerpignan, France
- Laboratoire Génome et Développement des Plantes, CNRSPerpignan, France
- *Correspondence: ; ; ; ;
| | - Nicolas Rouhier
- Faculté des Sciences, UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismesVandoeuvre, France
- *Correspondence: ; ; ; ;
| | - Jose A. Traverso
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de GranadaGranada, Spain
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: ; ; ; ;
| |
Collapse
|