1
|
Vithanage M, Zhang X, Gunarathne V, Zhu Y, Herath L, Peiris K, Solaiman ZM, Bolan N, Siddique KHM. Plant nanobionics: Fortifying food security via engineered plant productivity. ENVIRONMENTAL RESEARCH 2023; 229:115934. [PMID: 37080274 DOI: 10.1016/j.envres.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The world's human population is increasing exponentially, increasing the demand for high-quality food sources. As a result, there is a major global concern over hunger and malnutrition in developing countries with limited food resources. To address this issue, researchers worldwide must focus on developing improved crop varieties with greater productivity to overcome hunger. However, conventional crop breeding methods require extensive periods to develop new varieties with desirable traits. To tackle this challenge, an innovative approach termed plant nanobionics introduces nanomaterials (NMs) into cell organelles to enhance or modify plant function and thus crop productivity and yield. A comprehensive review of nanomaterials affect crop yield is needed to guide nanotechnology research. This article critically reviews nanotechnology applications for engineering plant productivity, seed germination, crop growth, enhancing photosynthesis, and improving crop yield and quality, and discusses nanobionic approaches such as smart drug delivery systems and plant nanobiosensors. Moreover, the review describes NM classification and synthesis and human health-related and plant toxicity hazards. Our findings suggest that nanotechnology application in agricultural production could significantly increase crop yields to alleviate global hunger pressures. However, the environmental risks associated with NMs should be investigated thoroughly before their widespread adoption in agriculture.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India.
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lasantha Herath
- Sri Lanka Institute of Nano Technology, Pitipana, Homagama, Sri Lanka
| | - Kanchana Peiris
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Zakaria M Solaiman
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Costa ÁVL, Oliveira TFDC, Posso DA, Reissig GN, Parise AG, Barros WS, Souza GM. Systemic Signals Induced by Single and Combined Abiotic Stimuli in Common Bean Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:924. [PMID: 36840271 PMCID: PMC9964927 DOI: 10.3390/plants12040924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
To survive in a dynamic environment growing fixed to the ground, plants have developed mechanisms for monitoring and perceiving the environment. When a stimulus is perceived, a series of signals are induced and can propagate away from the stimulated site. Three distinct types of systemic signaling exist, i.e., (i) electrical, (ii) hydraulic, and (iii) chemical, which differ not only in their nature but also in their propagation speed. Naturally, plants suffer influences from two or more stimuli (biotic and/or abiotic). Stimuli combination can promote the activation of new signaling mechanisms that are explicitly activated, as well as the emergence of a new response. This study evaluated the behavior of electrical (electrome) and hydraulic signals after applying simple and combined stimuli in common bean plants. We used simple and mixed stimuli applications to identify biochemical responses and extract information from the electrical and hydraulic patterns. Time series analysis, comparing the conditions before and after the stimuli and the oxidative responses at local and systemic levels, detected changes in electrome and hydraulic signal profiles. Changes in electrome are different between types of stimulation, including their combination, and systemic changes in hydraulic and oxidative dynamics accompany these electrical signals.
Collapse
Affiliation(s)
- Ádrya Vanessa Lira Costa
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Douglas Antônio Posso
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Gabriela Niemeyer Reissig
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | | | - Willian Silva Barros
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Meng Y, Jing H, Huang J, Shen R, Zhu X. The Role of Nitric Oxide Signaling in Plant Responses to Cadmium Stress. Int J Mol Sci 2022; 23:ijms23136901. [PMID: 35805908 PMCID: PMC9266721 DOI: 10.3390/ijms23136901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Nitric oxide (NO) is a widely distributed gaseous signaling molecule in plants that can be synthesized through enzymatic and non-enzymatic pathways and plays an important role in plant growth and development, signal transduction, and response to biotic and abiotic stresses. Cadmium (Cd) is a heavy metal pollutant widely found in the environment, which not only inhibits plant growth but also enters humans through the food chain and endangers human health. To reduce or avoid the adverse effects of Cd stress, plants have evolved a range of coping mechanisms. Many studies have shown that NO is also involved in the plant response to Cd stress and plays an important role in regulating the resistance of plants to Cd stress. However, until now, the mechanisms by which Cd stress regulates the level of endogenous NO accumulation in plant cells remained unclear, and the role of exogenous NO in plant responses to Cd stress is controversial. This review describes the pathways of NO production in plants, the changes in endogenous NO levels in plants under Cd stress, and the effects of exogenous NO on regulating plant resistance to Cd stress.
Collapse
Affiliation(s)
- Yuting Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaikang Jing
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-25-8688-1008 or +86-25-8688-1000
| |
Collapse
|
4
|
Martínez-Lorente SE, Pardo-Hernández M, Martí-Guillén JM, López-Delacalle M, Rivero RM. Interaction between Melatonin and NO: Action Mechanisms, Main Targets, and Putative Roles of the Emerging Molecule NOmela. Int J Mol Sci 2022; 23:ijms23126646. [PMID: 35743084 PMCID: PMC9223470 DOI: 10.3390/ijms23126646] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Melatonin (MEL), a ubiquitous indolamine molecule, has gained interest in the last few decades due to its regulatory role in plant metabolism. Likewise, nitric oxide (NO), a gasotransmitter, can also affect plant molecular pathways due to its function as a signaling molecule. Both MEL and NO can interact at multiple levels under abiotic stress, starting with their own biosynthetic pathways and inducing a particular signaling response in plants. Moreover, their interaction can result in the formation of NOmela, a very recently discovered nitrosated form of MEL with promising roles in plant physiology. This review summarizes the role of NO and MEL molecules during plant development and fruit ripening, as well as their interactions. Due to the impact of climate-change-related abiotic stresses on agriculture, this review also focuses on the role of these molecules in mediating abiotic stress tolerance and the main mechanisms by which they operate, from the upregulation of the entire antioxidant defense system to the post-translational modifications (PTMs) of important molecules. Their individual interaction and crosstalk with phytohormones and H2S are also discussed. Finally, we introduce and summarize the little information available about NOmela, an emerging and still very unknown molecule, but that seems to have a stronger potential than MEL and NO separately in mediating plant stress response.
Collapse
Affiliation(s)
- Sara E. Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - José M. Martí-Guillén
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Faculty of Biology, Department of Plant Physiology, University of Murcia, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Rosa M. Rivero
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Correspondence: ; Tel.: +34-968396200 (ext. 445379)
| |
Collapse
|
5
|
Terrile MC, Tebez NM, Colman SL, Mateos JL, Morato-López E, Sánchez-López N, Izquierdo-Álvarez A, Marina A, Calderón Villalobos LIA, Estelle M, Martínez-Ruiz A, Fiol DF, Casalongué CA, Iglesias MJ. S-Nitrosation of E3 Ubiquitin Ligase Complex Components Regulates Hormonal Signalings in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 12:794582. [PMID: 35185952 PMCID: PMC8854210 DOI: 10.3389/fpls.2021.794582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 06/01/2023]
Abstract
E3 ubiquitin ligases mediate the last step of the ubiquitination pathway in the ubiquitin-proteasome system (UPS). By targeting transcriptional regulators for their turnover, E3s play a crucial role in every aspect of plant biology. In plants, SKP1/CULLIN1/F-BOX PROTEIN (SCF)-type E3 ubiquitin ligases are essential for the perception and signaling of several key hormones including auxins and jasmonates (JAs). F-box proteins, TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and CORONATINE INSENSITIVE 1 (COI1), bind directly transcriptional repressors AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) and JASMONATE ZIM-DOMAIN (JAZ) in auxin- and JAs-depending manner, respectively, which permits the perception of the hormones and transcriptional activation of signaling pathways. Redox modification of proteins mainly by S-nitrosation of cysteines (Cys) residues via nitric oxide (NO) has emerged as a valued regulatory mechanism in physiological processes requiring its rapid and versatile integration. Previously, we demonstrated that TIR1 and Arabidopsis thaliana SKP1 (ASK1) are targets of S-nitrosation, and these NO-dependent posttranslational modifications enhance protein-protein interactions and positively regulate SCFTIR1 complex assembly and expression of auxin response genes. In this work, we confirmed S-nitrosation of Cys140 in TIR1, which was associated in planta to auxin-dependent developmental and stress-associated responses. In addition, we provide evidence on the modulation of the SCFCOI1 complex by different S-nitrosation events. We demonstrated that S-nitrosation of ASK1 Cys118 enhanced ASK1-COI1 protein-protein interaction. Overexpression of non-nitrosable ask1 mutant protein impaired the activation of JA-responsive genes mediated by SCFCOI1 illustrating the functional relevance of this redox-mediated regulation in planta. In silico analysis positions COI1 as a promising S-nitrosation target, and demonstrated that plants treated with methyl JA (MeJA) or S-nitrosocysteine (NO-Cys, S-nitrosation agent) develop shared responses at a genome-wide level. The regulation of SCF components involved in hormonal perception by S-nitrosation may represent a key strategy to determine the precise time and site-dependent activation of each hormonal signaling pathway and highlights NO as a pivotal molecular player in these scenarios.
Collapse
Affiliation(s)
- Maria Cecilia Terrile
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Nuria Malena Tebez
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Silvana Lorena Colman
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Julieta Lisa Mateos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Esperanza Morato-López
- Servicio de Proteómica, Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Nuria Sánchez-López
- Servicio de Proteómica, Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Alicia Izquierdo-Álvarez
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Luz Irina A. Calderón Villalobos
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
- KWS Gateway Research Center, LLC., BRDG Park at The Danforth Plant Science Center, St. Louis, MO, United States
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María José Iglesias
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
6
|
Lu TY, Lu WF, Wang YH, Liao MY, Wei Y, Fan YJ, Chuang EY, Yu J. Keratin-Based Nanoparticles with Tumor-Targeting and Cascade Catalytic Capabilities for the Combinational Oxidation Phototherapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38074-38089. [PMID: 34351754 DOI: 10.1021/acsami.1c10160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) holds tantalizing prospects of a prominent cancer treatment strategy. However, its efficacy remains limited by virtue of the hypoxic tumor microenvironment and the inadequate tumor-targeted delivery of photosensitizers, and these can be further exacerbated by the lack of development of a well-controlled nitric oxide (NO) release system at the target site. Inspired by Chinese medicine, we propose a revealing new keratin application. Keratin has garnered attention as an NO generator; however, its oncological use has rarely been investigated. We hypothesized that the incorporation of a phenylboronic acid (PBA) targeting ligand/methylene blue (MB) photosensitizer with a keratin NO donor would facilitate precise tumor delivery, enhancing PDT. Herein, we demonstrated that MB@keratin/PBA/d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) nanoparticles (MB@KPTNPs) specifically targeted breast cancer cells and effectively suppressed their growth. Through MB-mediated biometabolism, the endocytic MB@KPTNPs produced a sufficient amount of intracellular NO that reduced the glutathione level while boosting the efficiency of PDT. A therapeutic combination of NO/PDT was therefore achieved, resulting in significant inhibition of both in vivo tumor growth and lung metastasis. These findings underscore the importance of utilizing keratin-based nanoparticles that simultaneously combine targeting of the tumor and self-generating NO with a cascading catalytic ability as a novel oxidation therapeutic strategy for enhancing PDT.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Wei-Fan Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yin-Hsu Wang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering; and International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering; and International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
7
|
Rasool G, Buchholz G, Yasmin T, Shabbir G, Abbasi NA, Malik SI. Overexpression of SlGSNOR impairs in vitro shoot proliferation and developmental architecture in tomato but confers enhanced disease resistance. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153433. [PMID: 33990008 DOI: 10.1016/j.jplph.2021.153433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The pervasive presence of nitric oxide (NO) in cells and its role in modifying cystein residues through protein S-nitrosylation is a remarkable redox based signalling mechanism regulating a variety of cellular processes. S-NITROSOGLUTATHIONE REDUCTASE (GSNOR) governs NO bioavailability by the breakdown of S-nitrosoglutathione (GSNO), fine-tunes NO signalling and controls total cellular S-nitrosylated proteins. Most of the published data on GSNOR functional analysis is based on the model plant Arabidopsis with no previous report for its effect on in vitro regeneration of tissue cultured plants. Moreover, the effect of GSNOR overexpression (O.E) on tomato growth, development and disease resistance remains enigmatic. Here we show that SlGSNOR O.E in tomato alters multiple developmental programs from in vitro culture establishment to plant growth and fruit set. Moreover, constitutive SlGSNOR O.E in tomato showed enhanced resistance against early blight (EB) disease caused by Alternaria solani and reduction in hypersensitive response (HR)-mediated cell death after Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) infiltrations. High GSNOR transcript levels led to the inhibition of in vitro shoot proliferation in transformed explants as revealed by the fluorescence microscopy after YFP labelling. Transgenic tomato lines overexpressing SlGSNOR showed defective phenotypes exhibiting stunted plant growth and bushy-type plants due to loss of apical dominance, along with reduced seed germination and delayed flowering. Furthermore, SlGSNOR O.E plants exhibited altered leaf arrangement, fruit shape and modified locules number in tomato fruit. These findings give a novel insight into a multifaceted regulatory role of SlGSNOR in tomato plant development, reproduction and response to pathogens.
Collapse
Affiliation(s)
- Ghulam Rasool
- Department of Plant Breeding and Genetics, Faculty of Crop and Food Sciences, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Guenther Buchholz
- RLP AgroScience GmbH, AlPlanta - Institute for Plant Research, Neustadt, Germany
| | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Ghulam Shabbir
- Department of Plant Breeding and Genetics, Faculty of Crop and Food Sciences, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Nadeem Akthar Abbasi
- Department of Horticulture, Faculty of Crop and Food Sciences, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Saad Imran Malik
- Department of Plant Breeding and Genetics, Faculty of Crop and Food Sciences, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan.
| |
Collapse
|
8
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10. [PMID: 34068211 DOI: 10.20944/preprints202104.0637.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/20/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - José Manuel Martí-Guillen
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Sara E Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Rosa M Rivero
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
9
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10:antiox10050775. [PMID: 34068211 PMCID: PMC8153167 DOI: 10.3390/antiox10050775] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
|
10
|
Pande A, Mun BG, Lee DS, Khan M, Lee GM, Hussain A, Yun BW. NO Network for Plant-Microbe Communication Underground: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:658679. [PMID: 33815456 PMCID: PMC8010196 DOI: 10.3389/fpls.2021.658679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 05/30/2023]
Abstract
Mechanisms governing plant-microbe interaction in the rhizosphere attracted a lot of investigative attention in the last decade. The rhizosphere is not simply a source of nutrients and support for the plants; it is rather an ecosystem teeming with diverse flora and fauna including different groups of microbes that are useful as well as harmful for the plants. Plant-microbe interaction occurs via a highly complex communication network that involves sophisticated machinery for the recognition of friend and foe at both sides. On the other hand, nitric oxide (NO) is a key, signaling molecule involved in plant development and defense. Studies on legume-rhizobia symbiosis suggest the involvement of NO during recognition, root hair curling, development of infection threads, nodule development, and nodule senescence. A similar role of NO is also suggested in the case of plant interaction with the mycorrhizal fungi. Another, insight into the plant-microbe interaction in the rhizosphere comes from the recognition of pathogen-associated molecular patterns (PAMPs)/microbe-associated molecular patterns (MAMPs) by the host plant and thereby NO-mediated activation of the defense signaling cascade. Thus, NO plays a major role in mediating the communication between plants and microbes in the rhizosphere. Interestingly, reports suggesting the role of silicon in increasing the number of nodules, enhancing nitrogen fixation, and also the combined effect of silicon and NO may indicate a possibility of their interaction in mediating microbial communication underground. However, the exact role of NO in mediating plant-microbe interaction remains elusive. Therefore, understanding the role of NO in underground plant physiology is very important, especially in relation to the plant's interaction with the rhizospheric microbiome. This will help devise new strategies for protection against phytopathogens and enhancing plant productivity by promoting symbiotic interaction. This review focuses on the role of NO in plant-microbe communication underground.
Collapse
Affiliation(s)
- Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Bong-Gyu Mun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Da-Sol Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Murtaza Khan
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Geun-Mo Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
11
|
ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants (Basel) 2020; 9:antiox9111078. [PMID: 33153156 PMCID: PMC7693017 DOI: 10.3390/antiox9111078] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/02/2023] Open
Abstract
Abiotic stress in plants is an increasingly common problem in agriculture, and thus, studies on plant treatments with specific compounds that may help to mitigate these effects have increased in recent years. Melatonin (MET) application and its role in mitigating the negative effects of abiotic stress in plants have become important in the last few years. MET, a derivative of tryptophan, is an important plant-related response molecule involved in the growth, development, and reproduction of plants, and the induction of different stress factors. In addition, MET plays a protective role against different abiotic stresses such as salinity, high/low temperature, high light, waterlogging, nutrient deficiency and stress combination by regulating both the enzymatic and non-enzymatic antioxidant defense systems. Moreover, MET interacts with many signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO), and participates in a wide variety of physiological reactions. It is well known that NO produces S-nitrosylation and NO2-Tyr of important antioxidant-related proteins, with this being an important mechanism for maintaining the antioxidant capacity of the AsA/GSH cycle under nitro-oxidative conditions, as extensively reviewed here under different abiotic stress conditions. Lastly, in this review, we show the coordinated actions between NO and MET as a long-range signaling molecule, regulating many responses in plants, including plant growth and abiotic stress tolerance. Despite all the knowledge acquired over the years, there is still more to know about how MET and NO act on the tolerance of plants to abiotic stresses.
Collapse
|
12
|
Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S, Prasad R, Singh J. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. PHYSIOLOGIA PLANTARUM 2020; 168:301-317. [PMID: 31264712 DOI: 10.1111/ppl.13002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 05/20/2023]
Abstract
In the recent times, plants are facing certain types of environmental stresses, which give rise to formation of reactive oxygen species (ROS) such as hydroxyl radicals, hydrogen peroxides, superoxide anions and so on. These are required by the plants at low concentrations for signal transduction and at high concentrations, they repress plant root growth. Apart from the ROS activities, hydrogen sulfide (H2 S) and nitric oxide (NO) have major contributions in regulating growth and developmental processes in plants, as they also play key roles as signaling molecules and act as chief plant immune defense mechanisms against various biotic as well as abiotic stresses. H2 S and NO are the two pivotal gaseous messengers involved in growth, germination and improved tolerance in plants under stressed and non-stress conditions. H2 S and NO mediate cell signaling in plants as a response to several abiotic stresses like temperature, heavy metal exposure, water and salinity. They alter gene expression levels to induce the synthesis of antioxidant enzymes, osmolytes and also trigger their interactions with each other. However, research has been limited to only cross adaptations and signal transductions. Understanding the change and mechanism of H2 S and NO mediated cell signaling will broaden our knowledge on the various biochemical changes that occur in plant cells related to different stresses. A clear understanding of these molecules in various environmental stresses would help to confer biotechnological applications to protect plants against abiotic stresses and to improve crop productivity.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, India
- Punjab Biotechnology Incubators, Mohali, 160059, India
- Regional Advanced Water Testing Laboratory, Mohali, 160059, India
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior, 474009, India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, 144411, India
| | - Sanjay Kumar
- Punjab Biotechnology Incubators, Mohali, 160059, India
- Regional Advanced Water Testing Laboratory, Mohali, 160059, India
| | - Satyender Singh
- Regional Advanced Water Testing Laboratory, Mohali, 160059, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, India
| | - Shivika Datta
- Department of Zoology, Doaba College, Jalandhar, 144005, India
| | - Jastin Samuel
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, India
- Waste Valorization Research Lab, Lovely Professional University, Phagwara, 144411, India
| | - Pinaki Dey
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Shanquan Wang
- School of Civil and Environmental Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ram Prasad
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
13
|
Andryka-Dudek P, Ciacka K, Wiśniewska A, Bogatek R, Gniazdowska A. Nitric Oxide-Induced Dormancy Removal of Apple Embryos Is Linked to Alterations in Expression of Genes Encoding ABA and JA Biosynthetic or Transduction Pathways and RNA Nitration. Int J Mol Sci 2019; 20:E1007. [PMID: 30813543 PMCID: PMC6429270 DOI: 10.3390/ijms20051007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Short-term (3 h) treatment of embryos isolated from dormant apple (Malus domestica Borkh.) seeds with NO donors stimulates their transition from dormancy to germination. Seed dormancy is maintained by ABA, while germination is controlled mainly by gibberellins (GAs) and jasmonic acid (JA). NO-induced dormancy removal correlates with low ABA concentration in embryonic axes and reduced embryo sensitivity to ABA. We analyzed the expression of genes encoding key enzymes of ABA degradation (CYP707A1, CYP707A2), biosynthesis (NCED3, NCED9), and elements of the ABA transduction pathway (PYL1, PYL2, RCAR1, RCAR3, PP2CA, ABI1, ABI2, SNRK2, ABI5, AREB3, ABF). A role for JA in the regulation of germination led us to investigate the expression of genes encoding enzymes of JA biosynthesis (AOS1, JMT, JAR1) and the transduction pathway (COI1, MYC2, JAZ3, JAZ12). The expression profiles of the genes were estimated in embryonic axes isolated from dormant or NO fumigated apple embryos. The analyzed genes were differentially regulated during dormancy alleviation, the main modifications in the transcription level were detected for NCED3, NCED9, CYP707A2, RCAR1, ABF, AOS1, JMT, JAR1 and JAZ3. A regulatory role of NO in the removal of seed dormancy is associated with the stimulation of expression of genes related to ABA degradation, down-regulation of genes responsible for ABA synthesis, an increase of expression level of genes engaged in JA synthesis and modification of the expression of genes engaged in signaling pathways of the hormones. To confirm a signaling role of NO during dormancy breakage, an increased RNA nitration level in embryonic axes was demonstrated.
Collapse
Affiliation(s)
- Paulina Andryka-Dudek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Katarzyna Ciacka
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Anita Wiśniewska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Renata Bogatek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
14
|
Singla P, Bhardwaj RD, Kaur S, Kaur J. Antioxidant potential of barley genotypes inoculated with five different pathotypes of Puccinia striiformis f. sp. hordei. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:145-157. [PMID: 30804637 PMCID: PMC6352528 DOI: 10.1007/s12298-018-0614-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 05/10/2023]
Abstract
The stripe rust caused by the fungal pathogen, Puccinia striiformis f. sp. hordei in barley (Hordeum vulgare L.) is a global problem that threatens the production of barley. The present study examined the disease reaction, free radical scavenging potential, non-enzymatic antioxidants like total phenols, o-dihydroxy phenols, flavonoids along with total chlorophyll, chlorophyll a, chlorophyll b and total carotenoids of the four barley genotypes viz. Jyoti (susceptible), RD2900, RD2901 and RD2552 (resistant) infected with five different pathotypes (M, G, 57, Q and 24) of P. striiformis f. sp. hordei. The disease reaction showing RD2901 in the category of immune to very resistant genotype followed by RD2552 in immune to resistant and RD2900 as moderately resistant and Jyoti as susceptible, which was well correlated with biochemical studies. RD2901 possessed higher antioxidant potential in terms of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) scavenging activity, ferric reducing antioxidant power, reducing power and nitric oxide scavenging activity under control conditions and were maintained sufficiently high on inoculation with different pathotypes (M, G, 57, Q and 24) of P. striiformis f. sp. hordei. Further, these free radical scavenging activities showed the positive correlation with total phenols, o-dihydroxy phenols, flavonoids which in turn might be contributing in tolerance behaviour of this genotype. However, Jyoti with sensitive behaviour towards M, G, and 24 pathotypes depicted minimum DPPH activity and reducing power under control conditions.
Collapse
Affiliation(s)
- Prabhjot Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 India
| | - Rachana D. Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 India
| | - Simarjit Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jaspal Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
15
|
Staszek P, Krasuska U, Otulak-Kozieł K, Fettke J, Gniazdowska A. Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots. FRONTIERS IN PLANT SCIENCE 2019; 10:1077. [PMID: 31616445 PMCID: PMC6763595 DOI: 10.3389/fpls.2019.01077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/07/2019] [Indexed: 05/09/2023]
Abstract
Canavanine (CAN) is a nonproteinogenic amino acid synthesized in legumes. In mammalians, as arginine analogue, it is an inhibitor of nitric oxide synthase (NOS) activity. The aim of this study was to investigate the impact of CAN-induced nitric oxide level limitation on the antioxidant system and S-nitrosoglutathione (GSNO) metabolism in roots of tomato seedlings. Treatment with CAN (10 or 50 µM) for 24-72 h led to restriction in root growth. Arginine-dependent NOS-like activity was almost completely inhibited, demonstrating direct effect of CAN action. CAN increased total antioxidant capacity and the level of sulphydryl groups. Catalase (CAT) and superoxide dismutase (SOD) activity decreased in CAN exposed roots. CAN supplementation resulted in the decrease of transcript levels of genes coding CAT (with the exception of CAT1). Genes coding SOD (except MnSOD and CuSOD) were upregulated by CAN short treatment; prolonged exposition to 50-µM CAN resulted in downregulation of FeSOD, CuSOD, and SODP-2. Activity of glutathione reductase dropped down after short-term (10-µM CAN) supplementation, while glutathione peroxidase activity was not affected. Transcript levels of glutathione reductase genes declined in response to CAN. Genes coding glutathione peroxidase were upregulated by 50-µM CAN, while 10-µM CAN downregulated GSHPx1. Inhibition of NOS-like activity by CAN resulted in lower GSNO accumulation in root tips. Activity of GSNO reductase was decreased by short-term supplementation with CAN. In contrast, GSNO reductase protein abundance was higher, while transcript levels were slightly altered in roots exposed to CAN. This is the first report on identification of differentially nitrated proteins in response to supplementation with nonproteinogenic amino acid. Among nitrated proteins differentially modified by CAN, seed storage proteins (after short-term CAN treatment) and components of the cellular redox system (after prolonged CAN supplementation) were identified. The findings demonstrate that due to inhibition of NOS-like activity, CAN leads to modification in antioxidant system. Limitation in GSNO level is due to lower nitric oxide formation, while GSNO catabolism is less affected. We demonstrated that monodehydroascorbate reductase, activity of which is inhibited in roots of CAN-treated plants, is the protein preferentially modified by tyrosine nitration.
Collapse
Affiliation(s)
- Pawel Staszek
- Department of Plant Physiology, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
- *Correspondence: Pawel Staszek, ;
| | - Urszula Krasuska
- Department of Plant Physiology, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | | | - Joerg Fettke
- Biopolymer Analytics, University of Potsdam, Potsdam-Golm, Germany
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| |
Collapse
|
16
|
Huo J, Huang D, Zhang J, Fang H, Wang B, Wang C, Ma Z, Liao W. Comparative Proteomic Analysis during the Involvement of Nitric Oxide in Hydrogen Gas-Improved Postharvest Freshness in Cut Lilies. Int J Mol Sci 2018; 19:E3955. [PMID: 30544843 PMCID: PMC6320913 DOI: 10.3390/ijms19123955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Our previous studies suggested that both hydrogen gas (H₂) and nitric oxide (NO) could enhance the postharvest freshness of cut flowers. However, the crosstalk of H₂ and NO during that process is unknown. Here, cut lilies (Lilium "Manissa") were used to investigate the relationship between H₂ and NO and to identify differentially accumulated proteins during postharvest freshness. The results revealed that 1% hydrogen-rich water (HRW) and 150 μM sodium nitroprusside (SNP) significantly extended the vase life and quality, while NO inhibitors suppressed the positive effects of HRW. Proteomics analysis found 50 differentially accumulated proteins in lilies leaves which were classified into seven functional categories. Among them, ATP synthase CF1 alpha subunit (chloroplast) (AtpA) was up-regulated by HRW and down-regulated by NO inhibitor. The expression level of LlatpA gene was consistent with the result of proteomics analysis. The positive effect of HRW and SNP on ATP synthase activity was inhibited by NO inhibitor. Meanwhile, the physiological-level analysis of chlorophyll fluorescence and photosynthetic parameters also agreed with the expression of AtpA regulated by HRW and SNP. Altogether, our results suggested that NO might be involved in H₂-improved freshness of cut lilies, and AtpA protein may play important roles during that process.
Collapse
Affiliation(s)
- Jianqiang Huo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Bo Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhanjun Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
17
|
Proteomics analysis reveals that nitric oxide regulates photosynthesis of maize seedlings under water deficiency. Nitric Oxide 2018; 81:46-56. [DOI: 10.1016/j.niox.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/05/2018] [Accepted: 09/23/2018] [Indexed: 11/20/2022]
|
18
|
Kanwar MK, Yu J, Zhou J. Phytomelatonin: Recent advances and future prospects. J Pineal Res 2018; 65:e12526. [PMID: 30256447 DOI: 10.1111/jpi.12526] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Melatonin (MEL) has been revealed as a phylogenetically conserved molecule with a ubiquitous distribution from primitive photosynthetic bacteria to higher plants, including algae and fungi. Since MEL is implicated in numerous plant developmental processes and stress responses, the exploration of its functions in plant has become a rapidly progressing field with the new paradigm of involvement in plants growth and development. The pleiotropic involvement of MEL in regulating the transcripts of numerous genes confirms its vital involvement as a multi-regulatory molecule that architects many aspects of plant development. However, the cumulative research in plants is still preliminary and fragmentary in terms of its established functions compared to what is known about MEL physiology in animals. This supports the need for a comprehensive review that summarizes the new aspects pertaining to its functional role in photosynthesis, phytohormonal interactions under stress, cellular redox signaling, along with other regulatory roles in plant immunity, phytoremediation, and plant microbial interactions. The present review covers the latest advances on the mechanistic roles of phytomelatonin. While phytomelatonin is a sovereign plant growth regulator that can interact with the functions of other plant growth regulators or hormones, its qualifications as a complete phytohormone are still to be established. This review also showcases the yet to be identified potentials of phytomelatonin that will surely encourage the plant scientists to uncover new functional aspects of phytomelatonin in plant growth and development, subsequently improving its status as a potential new phytohormone.
Collapse
Affiliation(s)
- Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
19
|
Phillips K, Majola A, Gokul A, Keyster M, Ludidi N, Egbichi I. Inhibition of NOS- like activity in maize alters the expression of genes involved in H 2O 2 scavenging and glycine betaine biosynthesis. Sci Rep 2018; 8:12628. [PMID: 30135488 PMCID: PMC6105647 DOI: 10.1038/s41598-018-31131-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023] Open
Abstract
Nitric oxide synthase-like activity contributes to the production of nitric oxide in plants, which controls plant responses to stress. This study investigates if changes in ascorbate peroxidase enzymatic activity and glycine betaine content in response to inhibition of nitric oxide synthase-like activity are associated with transcriptional regulation by analyzing transcript levels of genes (betaine aldehyde dehydrogenase) involved in glycine betaine biosynthesis and those encoding antioxidant enzymes (ascorbate peroxidase and catalase) in leaves of maize seedlings treated with an inhibitor of nitric oxide synthase-like activity. In seedlings treated with a nitric oxide synthase inhibitor, transcript levels of betaine aldehyde dehydrogenase were decreased. In plants treated with the nitric oxide synthase inhibitor, the transcript levels of ascorbate peroxidase-encoding genes were down-regulated. We thus conclude that inhibition of nitric oxide synthase-like activity suppresses the expression of ascorbate peroxidase and betaine aldehyde dehydrogenase genes in maize leaves. Furthermore, catalase activity was suppressed in leaves of plants treated with nitric oxide synthase inhibitor; and this corresponded with the suppression of the expression of catalase genes. We further conclude that inhibition of nitric oxide synthase-like activity, which suppresses ascorbate peroxidase and catalase enzymatic activities, results in increased H2O2 content.
Collapse
Affiliation(s)
- Kyle Phillips
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Anelisa Majola
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Arun Gokul
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
- Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Ndiko Ludidi
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa.
- Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa.
| | - Ifeanyi Egbichi
- Department of Biological and Environmental Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha, 5117, South Africa
| |
Collapse
|
20
|
Zhang ZW, Li MX, Huang B, Feng LY, Wu F, Fu YF, Zheng XJ, Peng HQ, Chen YE, Yang HN, Wu LT, Yuan M, Yuan S. Nitric oxide regulates chlorophyllide biosynthesis and singlet oxygen generation differently between Arabidopsis and barley. Nitric Oxide 2018; 76:6-15. [PMID: 29510200 DOI: 10.1016/j.niox.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 03/01/2018] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) has a general inhibitory effects on chlorophyll biosynthesis, especially to the step of 5-aminolevulinic acid (ALA) biosynthesis and protochlorophyllide (Pchlide) to chlorophyllide (Chlide) conversion (responsible by the NADPH:Pchlide oxidoreductase POR). Previous study suggested that barley large POR aggregates may be generated by dithiol oxidation of cysteines of two POR monomers, which can be disconnected by some reducing agents. POR aggregate assembly may be correlated with seedling greening in barley, but not in Arabidopsis. Thus, NO may affect POR activity and seedling greening differently between Arabidopsis and barley. We proved this assumption by non-denaturing gel-analysis and reactive oxygen species (ROS) monitoring during the greening. NO treatments cause S-nitrosylation to POR cysteine residues and disassembly of POR aggregates. This modification reduces POR activity and induces Pchlide accumulation and singlet oxygen generation upon dark-to-high-light shift (and therefore inducing photobleaching lesions) in barley leaf apex, but not in Arabidopsis seedlings. ROS staining and ROS-related-gene expression detection confirmed that superoxide anion and singlet oxygen accumulated in barley etiolated seedlings after the NO treatments, when exposed to a fluctuating light. The data suggest that POR aggregate assembly may be correlated with barley chlorophyll biosynthesis and redox homeostasis during greening. Cysteine S-nitrosylation may be one of the key reasons for the NO-induced inhibition to chlorophyll biosynthetic enzymes.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Xia Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ling-Yang Feng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Wu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Jian Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong-Qian Peng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Hai-Ning Yang
- Nanchong Academy of Agricultural Sciences, Nanchong 637000, China
| | - Lin-Tao Wu
- Rape Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
21
|
Gu L, Zheng Y, Lian D, Zhong X, Liu X. Production of triterpenoids from Ganoderma lucidum : Elicitation strategy and signal transduction. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Wong A, Tian X, Gehring C, Marondedze C. Discovery of Novel Functional Centers With Rationally Designed Amino Acid Motifs. Comput Struct Biotechnol J 2018; 16:70-76. [PMID: 29977479 PMCID: PMC6026216 DOI: 10.1016/j.csbj.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Plants are constantly exposed to environmental stresses and in part due to their sessile nature, they have evolved signal perception and adaptive strategies that are distinct from those of other eukaryotes. This is reflected at the cellular level where receptors and signalling molecules cannot be identified using standard homology-based searches querying with proteins from prokaryotes and other eukaryotes. One of the reasons for this is the complex domain architecture of receptor molecules. In order to discover hidden plant signalling molecules, we have developed a motif-based approach designed specifically for the identification of functional centers in plant molecules. This has made possible the discovery of novel components involved in signalling and stimulus-response pathways; the molecules include cyclic nucleotide cyclases, a nitric oxide sensor and a novel target for the hormone abscisic acid. Here, we describe the major steps of the method and illustrate it with recent and experimentally confirmed molecules as examples. We foresee that carefully curated search motifs supported by structural and bioinformatic assessments will uncover many more structural and functional aspects, particularly of signalling molecules.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Claudius Marondedze
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054 Grenoble Cedex 9, France
| |
Collapse
|
23
|
Storm AR, Kohler MR, Berndsen CE, Monroe JD. Glutathionylation Inhibits the Catalytic Activity of Arabidopsis β-Amylase3 but Not That of Paralog β-Amylase1. Biochemistry 2018; 57:711-721. [PMID: 29309132 DOI: 10.1021/acs.biochem.7b01274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
β-Amylase3 (BAM3) is an enzyme that is essential for starch degradation in plant leaves and is also transcriptionally induced under cold stress. However, we recently reported that BAM3's enzymatic activity decreased in cold-stressed Arabidopsis leaves, although the activity of BAM1, a homologous leaf β-amylase, was largely unaffected. This decrease in BAM3 activity may relate to the accumulation of starch reported in cold-stressed plants. The aim of this study was to explore the disparity between BAM3 transcript and activity levels under cold stress, and we present evidence suggesting BAM3 is being inhibited by post-translational modification. A mechanism of enzyme inhibition was suggested by observing that BAM3 protein levels remained unchanged under cold stress. Cold stress induces nitric oxide (NO) signaling, one result being alteration of protein activity by nitrosylation or glutathionylation through agents such as S-nitrosoglutathione (GSNO). To test whether NO induction correlates with inhibition of BAM3 in vivo, plants were treated with sodium nitroprusside, which releases NO, and a decline in BAM3 but not BAM1 activity was again observed. Treatment of recombinant BAM3 and BAM1 with GSNO caused significant, dose-dependent inhibition of BAM3 activity while BAM1 was largely unaffected. Site-directed mutagenesis, anti-glutathione Western blots, and mass spectrometry were then used to determine that in vitro BAM3 inhibition was caused by glutathionylation at cysteine 433. In addition, we generated a BAM1 mutant resembling BAM3 that was sensitive to GSNO inhibition. These findings demonstrate a differential response of two BAM paralogs to the Cys-modifying reagent GSNO and provide a possible molecular basis for reduced BAM3 activity in cold-stressed plants.
Collapse
Affiliation(s)
- Amanda R Storm
- Department of Biology, James Madison University , Harrisonburg, Virginia 22807, United States
| | - Matthew R Kohler
- Department of Biology, James Madison University , Harrisonburg, Virginia 22807, United States
| | - Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University , Harrisonburg, Virginia 22807, United States
| | - Jonathan D Monroe
- Department of Biology, James Madison University , Harrisonburg, Virginia 22807, United States
| |
Collapse
|
24
|
Hasanuzzaman M, Bhuyan MHMB, Mahmud JA, Nahar K, Mohsin SM, Parvin K, Fujita M. Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants. PLANT SIGNALING & BEHAVIOR 2018; 13:e1477905. [PMID: 29939817 PMCID: PMC6103289 DOI: 10.1080/15592324.2018.1477905] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/09/2018] [Indexed: 05/20/2023]
Abstract
Sulfur (S) is a macronutrient for the plant, which has an immense role in basic plant processes and regulation of several metabolic pathways. It has also a major role in providing protection against adverse conditions. Sulfur-containing amino acids and metabolites maintain plant cell mechanisms to improve stress tolerance. It interacts with several biomolecules such as phytohormones, polyamines, nitric oxide (NO), and even with other plant nutrients, which can produce some derivatives those are essential for abiotic stress tolerance. Different S derivatives stimulate signaling cascades, for the upregulation of different cellular messengers such as abscisic acid, Ca2+, and NO. Sulfur is also known to interact with some essential plant nutrients by influencing their uptake and transport, hence, confers nutrient homeostasis efficiencies. This review focuses on how S is interacted with several signaling molecules like NO, glutathiones, phytohormones, hydrogen sulfide, polyamines, etc. This is a concise summary aimed at guiding the researchers to study S-related plant processes in the light of abiotic stress tolerance.
Collapse
Affiliation(s)
- M. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
- CONTACT Mirza Hasanuzzaman
| | - M. H. M. B. Bhuyan
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - J. A. Mahmud
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - K. Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - S. M. Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - K. Parvin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - M. Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| |
Collapse
|
25
|
Fu YF, Zhang ZW, Yuan S. Putative Connections Between Nitrate Reductase S-Nitrosylation and NO Synthesis Under Pathogen Attacks and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:474. [PMID: 29696031 PMCID: PMC5905236 DOI: 10.3389/fpls.2018.00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 05/04/2023]
Abstract
Nitrate reductase (NR) is the key enzyme for nitrogen assimilation in plant cells and also works as an important enzymatic source of nitric oxide (NO), which then regulates plant growth and resistance to biotic and abiotic stresses. However, how NR activities are finely tuned to modulate these biological processes remain largely unknown. Here we present a SWISSPROT 3D analysis of different NR from plant sources indicating the possible sites of S-nitrosylation, and show some evidence of immunoblottings to S-nitrosated (SNO-) proteins. We also found that S-nitrosylation status of NR is negatively correlated with the enzyme activity. The production of NO via NR in vitro represents only 1% of its nitrate reduction activity, possibly due to NO generated through NR reaction may deactivate the enzyme by this S-nitrosylation-mediated negative-feedback regulation. NR-mediated NO generation also plays a key role in protecting plants from abiotic stresses through activating antioxidant enzymes and increasing antioxidants. Putative connections between NR S-nitrosylation and NO biosynthesis under pathogen attacks and abiotic stresses are discussed in this Perspective.
Collapse
|
26
|
Santana MM, Gonzalez JM, Cruz C. Nitric Oxide Accumulation: The Evolutionary Trigger for Phytopathogenesis. Front Microbiol 2017; 8:1947. [PMID: 29067010 PMCID: PMC5641340 DOI: 10.3389/fmicb.2017.01947] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023] Open
Abstract
Many publications highlight the importance of nitric oxide (NO) in plant–bacteria interactions, either in the promotion of health and plant growth or in pathogenesis. However, the role of NO in the signaling between bacteria and plants and in the fate of their interaction, as well as the reconstruction of their interactive evolution, remains largely unknown. Despite the complexity of the evolution of life on Earth, we explore the hypothesis that denitrification and aerobic respiration were responsible for local NO accumulation, which triggered primordial antagonistic biotic interactions, namely the first phytopathogenic interactions. N-oxides, including NO, could globally accumulate via lightning synthesis in the early anoxic ocean and constitute pools for the evolution of denitrification, considered an early step of the biological nitrogen cycle. Interestingly, a common evolution may be proposed for components of denitrification and aerobic respiration pathways, namely for NO and oxygen reductases, a theory compatible with the presence of low amounts of oxygen before the great oxygenation event (GOE), which was generated by Cyanobacteria. During GOE, the increase in oxygen caused the decrease of Earth’s temperature and the consequent increase of oxygen dissolution and availability, making aerobic respiration an increasingly dominant trait of the expanding mesophilic lifestyle. Horizontal gene transfer was certainly important in the joint expansion of mesophily and aerobic respiration. First denitrification steps lead to NO formation through nitrite reductase activity, and NO may further accumulate when oxygen binds NO reductase, resulting in denitrification blockage. The consequent transient NO surplus in an oxic niche could have been a key factor for a successful outcome of an early denitrifying prokaryote able to scavenge oxygen by NO/oxygen reductase or by an independent heterotrophic aerobic respiration pathway. In fact, NO surplus could result in toxicity causing “the first disease” in oxygen-producing Cyanobacteria. We inspected in bacteria the presence of sequences similar to the NO-producing nitrite reductase nirS gene of Thermus thermophilus, an extreme thermophilic aerobe of the Thermus/Deinococcus group, which constitutes an ancient lineage related to Cyanobacteria. In silico analysis revealed the relationship between the presence of nirS genes and phytopathogenicity in Gram-negative bacteria.
Collapse
Affiliation(s)
- Margarida M Santana
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Juan M Gonzalez
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Cristina Cruz
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
27
|
Gu L, Zhong X, Lian D, Zheng Y, Wang H, Liu X. Triterpenoid biosynthesis and the transcriptional response elicited by nitric oxide in submerged fermenting Ganoderma lucidum. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Amooaghaie R, Zangene-Madar F, Enteshari S. Role of two-sided crosstalk between NO and H 2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:210-218. [PMID: 28142110 DOI: 10.1016/j.ecoenv.2017.01.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/08/2017] [Accepted: 01/20/2017] [Indexed: 05/07/2023]
Abstract
H2S and NO are two important gasotransmitters that modulate stress responses in plants. There are the contradictory data on crosstalk between NO and H2S in the studies. Hence, in the present study, the role of interplay between NO and H2S was assessed on the Pb tolerance of Sesamum indicum using pharmacological and biochemical approaches. Results revealed that Pb stress reduced the plant growth and the content of photosynthetic pigments and Fv/Fm ratio, increased the lipid peroxidation and the H2O2 content, elevated the endogenous contents of nitric oxide (NO), H2S and enhanced the activities of antioxidant enzymes (except APX). Additionally, concentrations of most mineral ions (K, P, Mg, Fe, Mn and Zn) in both shoots and roots decreased. Pb accumulation in roots was more than it in shoots. Both sodium hydrosulfide (NaHS as a donor of H2S) and sodium nitroprusside (SNP as an NO donor) improved the plant growth, the chlorophyll and carotenoid contents and PSII efficiency, reduced oxidative damage, increased the activities of antioxidant enzymes and reduced the proline content in Pb-stressed plants. Furthermore, both NaHS and SNP significantly restricted the uptake and translocation of Pb, thereby minimizing antagonistic effects of Pb on essential mineral contents in sesame plants. NaHS increased the NO generation and many NaHS-induced responses were completely reversed by cPTIO, as the specific NO scavenger. Applying SNP also enhanced H2S release levels in roots of Pb-stressed plants and only some NO-driven effects were partially weakened by hypotuarine (HT), as the scavenger of H2S.These findings proposed for the first time that two-sided interplay between H2S and NO might confer an increased tolerance to Pb stress via activating the antioxidant systems, reducing the uptake and translocation of Pb, and harmonizing the balance of mineral nutrient.
Collapse
Affiliation(s)
- Rayhaneh Amooaghaie
- Biology Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
| | | | | |
Collapse
|
29
|
Arora D, Bhatla SC. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radic Biol Med 2017; 106:315-328. [PMID: 28254544 DOI: 10.1016/j.freeradbiomed.2017.02.042] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Abstract
Salinity results in significant reduction in sunflower (Helianthus annuus L.) seedling growth and excessive generation of reactive oxygen species (ROS). Present work highlights the possible role of melatonin as an antioxidant through its interaction with nitric oxide (NO), and as an early and long distance NaCl-stress sensing signaling molecule in seedling cotyledons. Exogenous melatonin (15µM)±NaCl (120mM) inhibit seedling growth, which is also correlated with NO availability, accumulation of potential superoxide anion (O2•-) and peroxynitrite anion (ONOO-), extent of tyrosine-nitration of proteins, spatial localization and activity of superoxide dismutase (SOD) isoforms. NO acts as a positive modulator of melatonin accumulation in seedling cotyledons as a long-distance signaling response. Modulation of superoxide anion and peroxynitrite anion content by melatonin highlights its crucial role in combating deleterious effects of ROS and reactive nitrogen species (RNS). Present findings provide evidence for an interaction between melatonin and NO in their effect on seedling growth under salt stress accompanying differential modulation of two SOD isoforms, i.e. Cu/Zn SOD and Mn SOD.
Collapse
Affiliation(s)
- Dhara Arora
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
30
|
Mira MM, El-Khateeb EA, SayedAhmed HI, Hill RD, Stasolla C. Are avoidance and acclimation responses during hypoxic stress modulated by distinct cell-specific mechanisms? PLANT SIGNALING & BEHAVIOR 2017; 12:e1273304. [PMID: 28010170 PMCID: PMC5289513 DOI: 10.1080/15592324.2016.1273304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 05/20/2023]
Abstract
Plants respond to hypoxic stress through either acclimation to the stress or avoidance of it, as they do to most environmental stresses. The hypothesis that has general consensus among the community is that ethylene response factors (ERFs) are central elements that control both types of responses to hypoxia. Recent studies suggest that this may not be the case for all cells experiencing hypoxic stress. Mature maize root cells undergoing hypoxic stress were found to undergo acclimation and avoidance mechanisms involving ERFs, whereas meristematic root cells and cells still undergoing differentiation acclimated to the response without the involvement of ethylene synthesis or ERFs. Phytoglobins (PGBs) and NO were demonstrated to be components critical to the acclimation response. These findings are discussed relative to the possibility that PGBs may be acting as molecular switches controlling cellular stress responses and hormonal changes and responses in cells.
Collapse
Affiliation(s)
- Mohamed M. Mira
- Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | - Eman A. El-Khateeb
- Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
Chen X, Tian D, Kong X, Chen Q, E F AA, Hu X, Jia A. The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. PLANTA 2016; 244:651-69. [PMID: 27116428 DOI: 10.1007/s00425-016-2528-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/11/2016] [Indexed: 05/23/2023]
Abstract
Nitric oxide signal and GSNOR activity play an essential role for Chlamydomonas reinhardtii response to salt stress. The unicellular alga Chlamydomonas reinhardtii is one of the most important model organisms phylogenetically situated between higher plants and animals. In the present study, we used comparative proteomics and physiological approaches to study the mechanisms underlying the response to salt stress in C. reinhardtii. We identified 74 proteins that accumulated differentially after salt stress, including oxidative enzymes and enzymes associated with nitric oxide (NO) metabolism, cell damage, and cell autophagy processes. A set of antioxidant enzymes, as well as S-nitrosoglutathione reductase (GSNOR) activity, were induced to balance the cellular redox status during short-term salt stress. Enzymes involved in DNA repair and cell autophagy also contribute to adaptation to short-term salt stress. However, under long-term salt stress, antioxidant enzymes and GSNOR were gradually inactivated through protein S-nitrosylation, leading to oxidative damage and a reduction in cell viability. Modulating the protein S-nitrosylation levels by suppressing GSNOR activity or adding thioredoxin affected the plant's adaptation to salt stress, through altering the redox status and DNA damage and autophagy levels. Based on these data, we propose that unicellular algae use multiple strategies to adapt to salt stress, and that, during this process, GSNOR activity and protein S-nitrosylation levels play important roles.
Collapse
Affiliation(s)
- Xiaodong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
| | - Xiangxiang Kong
- The Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
| | - Qian Chen
- The Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
| | - Abd Allah E F
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Aiqun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
32
|
Fatma M, Masood A, Per TS, Rasheed F, Khan NA. Interplay between nitric oxide and sulfur assimilation in salt tolerance in plants. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Molassiotis A, Job D, Ziogas V, Tanou G. Citrus Plants: A Model System for Unlocking the Secrets of NO and ROS-Inspired Priming Against Salinity and Drought. FRONTIERS IN PLANT SCIENCE 2016; 7:229. [PMID: 26955378 PMCID: PMC4767893 DOI: 10.3389/fpls.2016.00229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 05/04/2023]
Abstract
Plants treated with chemical compounds can develop an enhanced capacity to resist long after being subjected to (a)biotic stress, a phenomenon known as priming. Evidence suggests that reactive oxygen species (ROS) and reactive nitrogen species (RNS) coordinately regulate plant stress responses to adverse environmental conditions; however, the mechanisms underlying this function remain unknown. Based on the observation that pre-exposure of citrus (Citrus aurantium L.) roots to the NO donor sodium nitroprusside (SNP) or to H2O2 prior to NaCl application can induce acclimation against subsequent stress we characterized the changes occurring in primed citrus tissues using several approaches. Herein, using this experimental model system, we provide an overview of our current knowledge of the possible mechanisms associated with NO and H2O2 priming to abiotic stresses, particularly concerning salinity and drought. The data and ideas presented here introduce six aspects of priming behavior in citrus under abiotic stress that provide knowledge necessary to exploit priming syndrome in the context of sustainable agriculture.
Collapse
Affiliation(s)
| | - Dominique Job
- AgroParisTech, Chair of Plant PhysiologyParis, France
- CNRS/UCBL/INSA/Bayer CropScience Joint Laboratory-UMR5240Lyon, France
| | - Vasileios Ziogas
- Faculty of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Georgia Tanou
- Faculty of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
- *Correspondence: Georgia Tanou,
| |
Collapse
|
34
|
|
35
|
Vacheron J, Moënne-Loccoz Y, Dubost A, Gonçalves-Martins M, Muller D, Prigent-Combaret C. Fluorescent Pseudomonas Strains with only Few Plant-Beneficial Properties Are Favored in the Maize Rhizosphere. FRONTIERS IN PLANT SCIENCE 2016; 7:1212. [PMID: 27610110 PMCID: PMC4996994 DOI: 10.3389/fpls.2016.01212] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/29/2016] [Indexed: 05/10/2023]
Abstract
Plant Growth-Promoting Rhizobacteria (PGPR) enhance plant health and growth using a variety of traits. Effective PGPR strains typically exhibit multiple plant-beneficial properties, but whether they are better adapted to the rhizosphere than PGPR strains with fewer plant-beneficial properties is unknown. Here, we tested the hypothesis that strains with higher numbers of plant-beneficial properties would be preferentially selected by plant roots. To this end, the co-occurrence of 18 properties involved in enhanced plant nutrition, plant hormone modulation, or pathogen inhibition was analyzed by molecular and biochemical methods in a collection of maize rhizosphere and bulk soil isolates of fluorescent Pseudomonas. Twelve plant-beneficial properties were found among the 698 isolates. Contrarily to expectation, maize preferentially selected pseudomonads with low numbers of plant-beneficial properties (up to five). This selection was not due to the predominance of strains with specific assortments of these properties, or with specific taxonomic status. Therefore, the occurrence of only few plant-beneficial properties appeared favorable for root colonization by pseudomonads.
Collapse
Affiliation(s)
- Jordan Vacheron
- Université de LyonLyon, France
- Université Lyon 1Villeurbanne, France
- CNRS, UMR5557, Ecologie MicrobienneVilleurbanne, France
- INRA, UMR1418Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Université de LyonLyon, France
- Université Lyon 1Villeurbanne, France
- CNRS, UMR5557, Ecologie MicrobienneVilleurbanne, France
- INRA, UMR1418Villeurbanne, France
| | - Audrey Dubost
- Université de LyonLyon, France
- Université Lyon 1Villeurbanne, France
- CNRS, UMR5557, Ecologie MicrobienneVilleurbanne, France
- INRA, UMR1418Villeurbanne, France
| | - Maximilien Gonçalves-Martins
- Université de LyonLyon, France
- Université Lyon 1Villeurbanne, France
- CNRS, UMR5557, Ecologie MicrobienneVilleurbanne, France
- INRA, UMR1418Villeurbanne, France
| | - Daniel Muller
- Université de LyonLyon, France
- Université Lyon 1Villeurbanne, France
- CNRS, UMR5557, Ecologie MicrobienneVilleurbanne, France
- INRA, UMR1418Villeurbanne, France
| | - Claire Prigent-Combaret
- Université de LyonLyon, France
- Université Lyon 1Villeurbanne, France
- CNRS, UMR5557, Ecologie MicrobienneVilleurbanne, France
- INRA, UMR1418Villeurbanne, France
- *Correspondence: Claire Prigent-Combaret,
| |
Collapse
|
36
|
Ziogas V, Tanou G, Belghazi M, Filippou P, Fotopoulos V, Grigorios D, Molassiotis A. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants. PLANT MOLECULAR BIOLOGY 2015; 89:433-50. [PMID: 26404728 DOI: 10.1007/s11103-015-0379-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/31/2015] [Indexed: 05/04/2023]
Abstract
Emerging evidence suggests that the gaseous molecules hydrogen sulfide (H2S) and nitric oxide (NO) enhances plant acclimation to stress; however, the underlying mechanism remains unclear. In this work, we explored if pretreatment of citrus roots with NaHS (a H2S donor) or sodium nitroprusside (SNP, a NO donor) for 2 days (d) could elicit long-lasting priming effects to subsequent exposure to PEG-associated drought stress for 21 d following a 5 d acclimation period. Detailed physiological study documented that both pretreatments primed plants against drought stress. Analysis of the level of nitrite, NOx, S-nitrosoglutahione reductase, Tyr-nitration and S-nitrosylation along with the expression of genes involved in NO-generation suggested that the nitrosative status of leaves and roots was altered by NaHS and SNP. Using a proteomic approach we characterized S-nitrosylated proteins in citrus leaves exposed to chemical treatments, including well known and novel S-nitrosylated targets. Mass spectrometry analysis also enabled the identification of 42 differentially expressed proteins in PEG alone-treated plants. Several PEG-responsive proteins were down-regulated, especially photosynthetic proteins. Finally, the identification of specific proteins that were regulated by NaHS and SNP under PEG conditions provides novel insight into long-term drought priming in plants and in a fruit crop such as citrus in particular.
Collapse
Affiliation(s)
- Vasileios Ziogas
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Georgia Tanou
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Maya Belghazi
- Faculty of Medicine, Proteomics Analysis Center (CAPM), 13916, Marseilles, France
| | - Panagiota Filippou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus
| | - Vasileios Fotopoulos
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Diamantidis Grigorios
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Athanassios Molassiotis
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece.
| |
Collapse
|
37
|
Kaur G, Singh HP, Batish DR, Mahajan P, Kohli RK, Rishi V. Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots. PLoS One 2015; 10:e0138713. [PMID: 26402793 PMCID: PMC4581626 DOI: 10.1371/journal.pone.0138713] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022] Open
Abstract
Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0-8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Daizy R. Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Priyanka Mahajan
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | | | - Valbha Rishi
- Chandigarh College of Engineering and Technology, Chandigarh-160019, India
| |
Collapse
|
38
|
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. MOLECULAR PLANT 2015; 8:506-20. [PMID: 25680232 DOI: 10.1016/j.molp.2014.12.010] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.
Collapse
Affiliation(s)
| | | | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christoph Gehring
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose A Feijo
- Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA.
| |
Collapse
|