1
|
Song P, Li Y, Wang X, Wang X, Zhou F, Zhang A, Zhao W, Zhang H, Zhang Z, Li H, Zhao H, Song K, Xing Y, Sun D. Linkage and association analysis to identify wheat pre-harvest sprouting resistance genetic regions and develop KASP markers. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:11. [PMID: 39790292 PMCID: PMC11707105 DOI: 10.1007/s11032-024-01526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) is one of the complex traits that result in rainfall-dependent reductions in grain production and quality worldwide. Breeding new varieties and germplasm with PHS resistance is of great importance to reduce this problem. However, research on markers and genes related to PHS resistance is limited, especially in marker-assisted selection (MAS) wheat breeding. To this end, we studied PHS resistance in recombinant inbred line (RIL) population and in 171 wheat germplasm accessions in different environments and genotyped using the wheat Infinium 50 K/660 K SNP array. Quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) identified 59 loci controlling PHS. Upon comparison with previously reported QTL affecting PHS, 16 were found to be new QTL, and the remaining 43 loci were co-localized with QTL from previous studies. We also pinpointed 12 candidate genes within these QTL intervals that share functional similarities with genes previously known to influence PHS resistance. In addition, we developed and validated two kompetitive allele-specific PCR (KASP) markers within the chromosome 7B region identified by linkage analysis. These QTL, candidate genes, and the KASP marker identified in this study have the potential to improve PHS resistance of wheat, and they may enhance our understanding of the genetic basis of PHS resistance, thus being useful for MAS breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01526-0.
Collapse
Affiliation(s)
- Pengbo Song
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yueyue Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaoxiao Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xin Wang
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441000 Hubei China
| | - Feng Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Aoyan Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wensha Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Hailong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zeyuan Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haoyang Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Huiling Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kefeng Song
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuanhang Xing
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Daojie Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
2
|
Zhao L, Xie W, Huang L, Long S, Wang P. Characterization of the gibberellic oxidase gene SdGA20ox1 in Sophora davidii (Franch.) skeels and interaction protein screening. FRONTIERS IN PLANT SCIENCE 2024; 15:1478854. [PMID: 39479549 PMCID: PMC11521860 DOI: 10.3389/fpls.2024.1478854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Gibberellin 20-oxidases (GA20oxs) are multifunctional enzymes involved in regulating gibberellin (GA) biosynthesis and controlling plant growth. We identified and characterized the GA20ox1 gene in a plant height mutant of Sophora davidii, referred to as SdGA20ox1. This gene was expressed in root, stem, and leaf tissues of the adult S. davidii plant height mutant, with the highest expression observed in the stem. The expression of SdGA20ox1 was regulated by various exogenous hormones. Overexpression of SdGA20ox1 in Arabidopsis resulted in significant elongation of hypocotyl and root length in seedlings, earlier flowering, smaller leaves, reduced leaf chlorophyll content, lighter leaf color, a significant increase in adult plant height, and other phenotypes. Additionally, transgenic plants exhibited a substantial increase in biologically active endogenous GAs (GA1, GA3, and GA4) content, indicating that overexpression of SdGA20ox1 accelerates plant growth and development. Using a yeast two-hybrid (Y2H) screen, we identified two SdGA20ox1-interacting proteins: the ethylene receptor EIN4 (11430582) and the rbcS (11416005) protein. These interactions suggest a potential regulatory mechanism for S. davidii growth. Our findings provide new insights into the role of SdGA20ox1 and its interacting proteins in regulating the growth and development of S. davidii.
Collapse
Affiliation(s)
- Lili Zhao
- College of Animal Science, Guizhou University, Guiyang, China
| | - Wenhui Xie
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lei Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Sisi Long
- College of Animal Science, Guizhou University, Guiyang, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
3
|
Toora PK, Tuan PA, Nguyen TN, Badea A, Ayele BT. Modulation in the ratio of abscisic acid to gibberellin level determines genetic variation of seed dormancy in barley (Hordeum vulgare L.). JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154301. [PMID: 38968782 DOI: 10.1016/j.jplph.2024.154301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Abscisic acid (ABA) and gibberellin (GA) are major regulators of seed dormancy, an adaptive trait closely associated with preharvest sprouting. This study examined transcriptional regulation of ABA and GA metabolism genes and modulation of ABA and GA levels in seeds of barley genotypes exhibiting a range of dormancy phenotype. We observed a very strong negative correlation between genetic variation in seed germination and embryonic ABA level (r = 0.85), which is regulated by transcriptional modulation of HvNCED1 and/or HvCYP707A genes. A strong positive correlation was evident between variation in seed germination and GA level (r = 0.64), mediated via transcriptional regulation of GA biosynthesis genes, HvGA20ox2 and/or HvGA3oxs, and GA catabolism genes, HvGA2ox3 and/or HvGA3ox6. Modulation of the ABA and GA levels in the genotypes led to the prevalence of ABA to GA level ratio that exhibited a very strong negative correlation (r = 0.84) with seed germination, highlighting the importance of a shift in ABA/GA ratio in determining genetic variation of dormancy in barley seeds. Our results overall show that transcriptional regulation of specific ABA and GA metabolism genes underlies genetic variation in ABA/GA ratio and seed dormancy, reflecting the potential use of these genes as molecular tools for enhancing preharvest sprouting resistance in barley.
Collapse
Affiliation(s)
- Parneet K Toora
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Tran-Nguyen Nguyen
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Ana Badea
- Brandon Research and Development Center, Agriculture and Agri-Food Canada, Brandon, Manitoba, Canada, R7A 5Y3
| | - Belay T Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.
| |
Collapse
|
4
|
Gao Y, Qiao L, Mei C, Nong L, Li Q, Zhang X, Li R, Gao W, Chen F, Chang L, Zhang S, Guo H, Cheng T, Wen H, Chang Z, Li X. Mapping of a Major-Effect Quantitative Trait Locus for Seed Dormancy in Wheat. Int J Mol Sci 2024; 25:3681. [PMID: 38612492 PMCID: PMC11011268 DOI: 10.3390/ijms25073681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross of weak dormant SY95-71 and strong dormant CH1539 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2437 SNP markers was constructed. Then, the germination percentage (GP) and germination index (GI) of the seeds from each RIL were estimated. Two QTLs for GP on chromosomes 5A and 6B, and four QTLs for GI on chromosomes 5A, 6B, 6D and 7A were identified. Among them, the QTL on chromosomes 6B controlling both GP and GI, temporarily named QGp/Gi.sxau-6B, is a major QTL for seed dormancy with the maximum phenotypic variance explained of 17.66~34.11%. One PCR-based diagnostic marker Ger6B-3 for QGp/Gi.sxau-6B was developed, and the genetic effect of QGp/Gi.sxau-6B on the RIL population and a set of wheat germplasm comprising 97 accessions was successfully confirmed. QGp/Gi.sxau-6B located in the 28.7~30.9 Mbp physical position is different from all the known dormancy loci on chromosomes 6B, and within the interval, there are 30 high-confidence annotated genes. Our results revealed a novel QTL QGp/Gi.sxau-6B whose CH1539 allele had a strong and broad effect on seed dormancy, which will be useful in further PHS-resistant wheat breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xin Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (Y.G.)
| |
Collapse
|
5
|
Kim GM, Ko CH, Chung JM, Kwon HC, Rhie YH, Lee SY. Seed Dormancy Class and Germination Characteristics of Prunus spachiana (Lavallée ex Ed.Otto) Kitam. f. ascendens (Makino) Kitam Native to the Korean Peninsula. PLANTS (BASEL, SWITZERLAND) 2024; 13:502. [PMID: 38498410 PMCID: PMC10891651 DOI: 10.3390/plants13040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Prunus spachiana (Lavallée ex Ed.Otto) Kitam. f. ascendens (Makino) Kitam leaves exert natural anti-inflammatory effects by inhibiting nitric oxide formation. P. spachiana flowers bloom earlier than other Prunus spp. and thus could serve as a valuable resource for the horticulture and pharmaceutical industries. However, its seed dormancy class and germination traits remain uncharacterized. Thus, this study aimed to characterize the seed dormancy and germination of P. spachiana. Imbibition, phenological, and move-along experiments were performed, and the effects of H2SO4 treatment, hormone soaking, warm/cold stratification, and endocarp removal on germination were explored. Observation revealed that ripe seeds of P. spachiana contain developed embryos and are water permeable. Radicle and shoot emergence began in March and April, respectively, under natural conditions in the year following production. No seed germination was observed after 30 days of incubation at 4, 15/6, 20/10, or 25/15 °C under light/dark conditions, indicating the physiological dormancy of the seeds. Germination increased with prolonged stratification and was affected by incubation temperature. Seed scarification by H2SO4 and soaking with gibberellic acid (GA3) and fluridone were ineffective in breaking dormancy. However, GA3 soaking of the seeds after endocarp removal effectively induced germination (100%). These results indicate that P. spachiana seeds exhibit intermediate physiological dormancy.
Collapse
Affiliation(s)
- Gun Mo Kim
- Department of Horticulture and Breeding, Graduate of Andong National University, Andong 36792, Republic of Korea;
- Division of Wild Plant Seed Research, Baekdudaegan National Arboretum, Bonghwa 36209, Republic of Korea
| | - Chung Ho Ko
- Garden and Plant Resources Division, Korea National Arboretum, Yangpyeong 12519, Republic of Korea; (C.H.K.); (J.M.C.)
| | - Jae Min Chung
- Garden and Plant Resources Division, Korea National Arboretum, Yangpyeong 12519, Republic of Korea; (C.H.K.); (J.M.C.)
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
| | - Yong Ha Rhie
- Department of Horticulture and Forestry, Pai Chai University, Daejeon 35345, Republic of Korea;
| | - Seung Youn Lee
- Department of Horticulture and Breeding, Graduate of Andong National University, Andong 36792, Republic of Korea;
- Department of Smart Horticultural Science, Andong National University, Andong 36792, Republic of Korea
| |
Collapse
|
6
|
Ahmed MIY, Gorafi YSA, Kamal NM, Balla MY, Tahir ISA, Zheng L, Kawakami N, Tsujimoto H. Mining Aegilops tauschii genetic diversity in the background of bread wheat revealed a novel QTL for seed dormancy. FRONTIERS IN PLANT SCIENCE 2023; 14:1270925. [PMID: 38107013 PMCID: PMC10723804 DOI: 10.3389/fpls.2023.1270925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Due to the low genetic diversity in the current wheat germplasm, gene mining from wild relatives is essential to develop new wheat cultivars that are more resilient to the changing climate. Aegilops tauschii, the D-genome donor of bread wheat, is a great gene source for wheat breeding; however, identifying suitable genes from Ae. tauschii is challenging due to the different morphology and the wide intra-specific variation within the species. In this study, we developed a platform for the systematic evaluation of Ae. tauschii traits in the background of the hexaploid wheat cultivar 'Norin 61' and thus for the identification of QTLs and genes. To validate our platform, we analyzed the seed dormancy trait that confers resistance to preharvest sprouting. We used a multiple synthetic derivative (MSD) population containing a genetic diversity of 43 Ae. tauschii accessions representing the full range of the species. Our results showed that only nine accessions in the population provided seed dormancy, and KU-2039 from Afghanistan had the highest level of seed dormancy. Therefore, 166 backcross inbred lines (BILs) were developed by crossing the synthetic wheat derived from KU-2039 with 'Norin 61' as the recurrent parent. The QTL mapping revealed one novel QTL, Qsd.alrc.5D, associated with dormancy explaining 41.7% of the phenotypic variation and other five unstable QTLs, two of which have already been reported. The Qsd.alrc.5D, identified for the first time within the natural variation of wheat, would be a valuable contribution to breeding after appropriate validation. The proposed platform that used the MSD population derived from the diverse Ae. tauschii gene pool and recombinant inbred lines proved to be a valuable platform for mining new and important QTLs or alleles, such as the novel seed dormancy QTL identified here. Likewise, such a platform harboring genetic diversity from wheat wild relatives could be a useful source for mining agronomically important traits, especially in the era of climate change and the narrow genetic diversity within the current wheat germplasm.
Collapse
Affiliation(s)
| | - Yasir Serag Alnor Gorafi
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
| | - Nasrein Mohamed Kamal
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Mohammed Yousif Balla
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Izzat Sidahmed Ali Tahir
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | | |
Collapse
|
7
|
Kaur G, Toora PK, Tuan PA, McCartney CA, Izydorczyk MS, Badea A, Ayele BT. Genome-wide association and targeted transcriptomic analyses reveal loci and candidate genes regulating preharvest sprouting in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:202. [PMID: 37642745 DOI: 10.1007/s00122-023-04449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
KEY MESSAGE Genome-wide association study of diverse barley genotypes identified loci, single nucleotide polymorphisms and candidate genes that control seed dormancy and therefore enhance resistance to preharvest sprouting. Preharvest sprouting (PHS) causes significant yield and quality loss in barley and it is strongly associated with the level of seed dormancy. This study performed genome-wide association study using a collection of 255 diverse barley genotypes grown over four environments to identify loci controlling dormancy/PHS. Our phenotypic analysis revealed substantial variation in germination index/dormancy levels among the barley genotypes. Marker-trait association and linkage disequilibrium (LD) decay analyses identified 16 single nucleotide polymorphisms (SNPs) and two QTLs associated with dormancy/PHS, respectively, on chromosome 3H and 5H explaining 6.9% to 11.1% of the phenotypic variation. QTL.5H consist of 14 SNPs of which 12 SNPs satisfy the FDR threshold of α = 0.05, and it may represent the SD2 locus. The QTL on 3H consists of one SNP that doesn't satisfy FDR (α = 0.05). Genes harbouring the significant SNPs were analyzed for their expression pattern in the seeds of selected dormant and non-dormant genotypes. Of these genes, HvRCD1, HvPSRP1 and HvF3H exhibited differential expression between the dormant and non-dormant seed samples, suggesting their role in controlling seed dormancy/PHS. Three SNPs located within the differentially expressed genes residing in QTL.5H explained considerable phenotypic variation (≥ 8.6%), suggesting their importance in regulating PHS resistance. Analysis of the SNP marker data in QTL.5H identified a haplotype for PHS resistance. Overall, the study identified loci, SNPs and candidate genes that control dormancy and therefore play important roles in enhancing PHS resistance in barley through marker-assisted breeding.
Collapse
Affiliation(s)
- Gurkamal Kaur
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Parneet K Toora
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Curt A McCartney
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Marta S Izydorczyk
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, R3C 3G8, Canada
| | - Ana Badea
- Brandon Research and Development Center, Agriculture and Agri-Food Canada, Brandon, MB, R7A 5Y3, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Impact of climate perturbations on seeds and seed quality for global agriculture. Biochem J 2023; 480:177-196. [PMID: 36749123 DOI: 10.1042/bcj20220246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
In agriculture, seeds are the most basic and vital input on which croplands productivity depends. These implies a good starting material, good production lines and good storage options. High-quality seed lots must be free of pests and pathogens and contain a required degree of genetic purity. Seeds need also to be stored in good condition between harvest and later sowing, to insure later on the field a good plant density and higher crop yield. In general, these parameters are already widely accepted and considered in many countries where advanced technologies evaluate them. However, the more and more frequently devastating climate changes observed around the world has put seed quality under threat, and current seeds may not be adapted to hazardous and unpredictable conditions. Climate-related factors such as temperature and water availability directly affect seed development and later germination. For these reasons, investigating seed quality in response to climate changes is a step to propose new crop varieties and practices that will bring solutions for our future.
Collapse
|
9
|
Vincent D, Bui A, Ezernieks V, Shahinfar S, Luke T, Ram D, Rigas N, Panozzo J, Rochfort S, Daetwyler H, Hayden M. A community resource to mass explore the wheat grain proteome and its application to the late-maturity alpha-amylase (LMA) problem. Gigascience 2022; 12:giad084. [PMID: 37919977 PMCID: PMC10627334 DOI: 10.1093/gigascience/giad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Late-maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point alpha-amylase following a temperature shock during mid-grain development or prolonged cold throughout grain development, both leading to starch degradation. While the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have applied high-throughput proteomics to 4,061 wheat flours displaying a range of LMA activities. Using an array of statistical analyses to select LMA-responsive biomarkers, we have mined them using a suite of tools applicable to wheat proteins. RESULTS We observed that LMA-affected grains activated their primary metabolisms such as glycolysis and gluconeogenesis; TCA cycle, along with DNA- and RNA- binding mechanisms; and protein translation. This logically transitioned to protein folding activities driven by chaperones and protein disulfide isomerase, as well as protein assembly via dimerisation and complexing. The secondary metabolism was also mobilized with the upregulation of phytohormones and chemical and defence responses. LMA further invoked cellular structures, including ribosomes, microtubules, and chromatin. Finally, and unsurprisingly, LMA expression greatly impacted grain storage proteins, as well as starch and other carbohydrates, with the upregulation of alpha-gliadins and starch metabolism, whereas LMW glutenin, stachyose, sucrose, UDP-galactose, and UDP-glucose were downregulated. CONCLUSIONS To our knowledge, this is not only the first proteomics study tackling the wheat LMA issue but also the largest plant-based proteomics study published to date. Logistics, technicalities, requirements, and bottlenecks of such an ambitious large-scale high-throughput proteomics experiment along with the challenges associated with big data analyses are discussed.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - AnhDuyen Bui
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Vilnis Ezernieks
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Saleh Shahinfar
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Timothy Luke
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Doris Ram
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Nicholas Rigas
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
| | - Joe Panozzo
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
- Centre for Agricultural Innovation, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Hans Daetwyler
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
10
|
Fu X, Han B, Liu S, Zhou J, Zhang H, Wang H, Zhang H, Ouyang Z. WSVAS: A YOLOv4 -based phenotyping platform for automatically detecting the salt tolerance of wheat based on seed germination vigour. FRONTIERS IN PLANT SCIENCE 2022; 13:1074360. [PMID: 36605955 PMCID: PMC9807913 DOI: 10.3389/fpls.2022.1074360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major environmental stress factors that affect and limit wheat production worldwide. Therefore, properly evaluating wheat genotypes during the germination stage could be one of the effective ways to improve yield. Currently, phenotypic identification platforms are widely used in the seed breeding process, which can improve the speed of detection compared with traditional methods. We developed the Wheat Seed Vigour Assessment System (WSVAS), which enables rapid and accurate detection of wheat seed germination using the lightweight convolutional neural network YOLOv4. The WSVAS system can automatically acquire, process and analyse image data of wheat varieties to evaluate the response of wheat seeds to salt stress under controlled environments. The WSVAS image acquisition system was set up to continuously acquire images of seeds of four wheat varieties under three types of salt stress. In this paper, we verified the accuracy of WSVAS by comparing manual scoring. The cumulative germination curves of wheat seeds of four genotypes under three salt stresses were also investigated. In this study, we compared three models, VGG16 + Faster R-CNN, ResNet50 + Faster R-CNN and YOLOv4. We found that YOLOv4 was the best model for wheat seed germination target detection, and the results showed that the model achieved an average detection accuracy (mAP) of 97.59%, a recall rate (Recall) of 97.35% and the detection speed was up to 6.82 FPS. This proved that the model could effectively detect the number of germinating seeds in wheat. In addition, the germination rate and germination index of the two indicators were highly correlated with germination vigour, indicating significant differences in salt tolerance amongst wheat varieties. WSVAS can quantify plant stress caused by salt stress and provides a powerful tool for salt-tolerant wheat breeding.
Collapse
Affiliation(s)
- Xiuqing Fu
- College of Engineering, Nanjing Agricultural University, Nanjing, China
- Key laboratory of Intelligence Agricultural Equipment of Jiangsu Province, Education Department of Jiangsu Province and is managed by the College of Engineering of Nanjing Agricultural University, Nanjing, China
| | - Bing Han
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Shouyang Liu
- Academy For Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Jiayi Zhou
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Hongwen Zhang
- School of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Hongbiao Wang
- College of Mechanical and Electrical Engineering, Tarim University, Alar, China
| | - Hui Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Zhiqian Ouyang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Rehal PK, Tuan PA, Nguyen TN, Cattani DJ, Humphreys DG, Ayele BT. Genetic variation of seed dormancy in wheat (Triticum aestivum L.) is mediated by transcriptional regulation of abscisic acid metabolism and signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111432. [PMID: 36029895 DOI: 10.1016/j.plantsci.2022.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid (ABA) regulates seed dormancy and therefore preharvest sprouting (PHS) in wheat. This study investigated the contribution of transcriptional regulation of ABA metabolism and signaling genes to genetic variation in dormancy of wheat seeds. Our results showed that genetic variation in seed dormancy is highly correlated with ABA content (r > 0.86), which, in turn, was closely associated with the expression levels of ABA biosynthesis genes, TaNCED1 (r = 0.78) and TaNCED2 (r = 0.67). A relatively lower correlation was observed between ABA content and the expression levels of ABA catabolism genes, TaCYP707A1 (r = 0.51) and TaCYP707A2 (r = 0.57). The expression level of TaABI5 exhibited strong associations with the levels of ABA (r = 0.8) and seed dormancy (r > 0.9), indicating the importance of seed ABA sensitivity in mediating genetic variation in dormancy. Furthermore, high positive correlations were prevalent between the expression patterns of TaABI5 and TaNCED1 (r = 0.91) or TaNCED2 (r = 0.82). Overall, our results implicated the significance of TaNCEDs and TaABI5 in regulating genetic variation in ABA level and sensitivity and thereby seed dormancy, highlighting the potential use of these genes to develop molecular markers for incorporating PHS resistance in wheat.
Collapse
Affiliation(s)
- Pawanpuneet K Rehal
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Douglas J Cattani
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - D Gavin Humphreys
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, KW Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
12
|
Moullet O, Díaz Bermúdez G, Fossati D, Brabant C, Mascher F, Schori A. Pyramiding wheat pre-harvest sprouting resistance genes in triticale breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:60. [PMID: 37309488 PMCID: PMC10248708 DOI: 10.1007/s11032-022-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/07/2022] [Indexed: 06/14/2023]
Abstract
Pre -harvest sprouting (PHS) is an important problem in cereal production reducing yield and grain quality. After decades of improvement, triticale remains particularly susceptible to PHS but no resistance genes or QTLs were identified so far in this species. As wheat shares the A and B genomes with triticale, wheat PHS resistance genes can be introgressed into triticale genome by recombination after interspecific crosses. In this project, three PHS resistance genes have been transferred from wheat to triticale by marker-assisted interspecific crosses, followed by four backcrosses. The gene TaPHS1 from the 3AS chromosome of cultivar Zenkoujikomugi (Zen) and the TaMKK3 and TaQsd1, respectively located on the 4AL and 5BL chromosomes derived both from cultivar Aus1408, were pyramided in the triticale cultivar Cosinus. Only the TaPHS1 gene increases consistently the PHS resistance in triticale. The lack of efficacy of the other two genes, especially TaQsd1, could be the result of an imperfect linkage between the marker and the gene of interest. The introduction of PHS resistance genes did not alter agronomic nor disease resistance performances of triticale. This approach leads to two new, agronomically performant and PHS-resistant triticale cultivars. Today, two breeding triticale lines are ready to enter the official registration process.
Collapse
Affiliation(s)
- Odile Moullet
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Gemma Díaz Bermúdez
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Dario Fossati
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Cécile Brabant
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Fabio Mascher
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | | |
Collapse
|
13
|
Zheljazkov VD, Jeliazkova EA, Astatkie T. Allelopathic Effects of Essential Oils on Seed Germination of Barley and Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122728. [PMID: 34961198 PMCID: PMC8708003 DOI: 10.3390/plants10122728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In this study, we evaluated the allelopathic effects of essential oils (EOs) from six different plant species, namely, lavender (Lavandula angustifolia), hyssop (Hyssopus officinalis), English thyme (Thymus vulgaris), lovage (Levisticum officinale), costmary (Chrysanthemum balsamita), and cumin (Cuminum cyminum), on seed germination and seedling growth of barley (Hordeum vulgare) and wheat (Triticum aestivum). The main constituents of the EOs of L. angustifolia were 47.0% linalool acetate and 28.4% linalool; H. officinalis' main constituents were 39.8% cis-pinocamphone, 9.8% trans-pinocamphone, 11.4% β-pinene, and 7.5% β-phellandrene; T. vulgaris' were 38.2% para-cymene, 25.6% thymol, and 13.6% γ-terpinene; L. officinale's were 64.8% α-terpinyl acetate and 14.7% β-phellandrene; C. balsamita's were 43.7% camphor, 32.4% trans-thujone, and 11.6% camphene; C. cyminum's were 49.6% cumin aldehyde, 10.4% para-cymene, 11.6% α-terpinen-7-al, and 9.1% β-pinene. All six EOs exhibited an allelopathic effect and suppressed the seed germination and seedling development of wheat and barley; however, the concentrations that exhibited a suppressing effect were different among the plants. C. cyminum EO completely suppressed both barley and wheat germination at 10-, 30-, and 90-µL application rates, making it the most effective treatment among the tested EOs. C. balsamita's and H. officinalis' EOs at 30 and 90 µL application rates completely suppressed barley and wheat radicles per seed, radicle length (mm), seedling height (mm), and germination (%). L. angustifolia's EOs at 30- and 90-µL and T. vulgaris' EO at 90 µL application rates also completely suppressed barley and wheat radicles per seed, radicle length (mm), seedling height (mm), and germination (%). C. balsamita's, H. officinalis', L. angustifolia's, and T. vulgaris' EOs at a 10 µL application rate reduced barley radicle length, seedling height, and % germination relative to the control. Wheat seed germination % was completely suppressed by the application of L. angustifolia's and T. vulgaris' EOs at 30 and 90 µL, while T. vulgaris' EO at 10 µL rate reduced the germination relative to the control. Interestingly, C. balsamita and H. officinalis at 10 µL did not reduce wheat germination; however, they did reduce the number of radicles per seed, radicle length (mm), seedling height (mm), germination (%), and vigor index. Furthermore, L. officinale's EO reduced the measured indices (radicles per seed, radicle length, seedling height, and vigor index) at the 10, 30, and 90 µL application rates relative to the non-treated control; however, none of the application rates of L. officinale's EO had a suppression effect on wheat germination. This study demonstrated the allelopathic effects of the EOs of six different herbal plant species on seed germination of barley and winter wheat. The results can be utilized in the development of commercial products for controlling pre-harvest sprouting of wheat and barley. Further research is needed to verify the results under field conditions.
Collapse
Affiliation(s)
- Valtcho D. Zheljazkov
- Crop and Soil Science Department, Oregon State University, Corvallis, OR 97331, USA;
| | | | - Tess Astatkie
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| |
Collapse
|
14
|
Chen DJ, Luo XG, Yan LH, Si CL, Wang N, He HP, Zhang TC. Transcriptome analysis of unsaturated fatty acids biosynthesis shows essential genes in sprouting of Acer truncatum Bunge seeds. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Luján-Soto E, Dinkova TD. Time to Wake Up: Epigenetic and Small-RNA-Mediated Regulation during Seed Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020236. [PMID: 33530470 PMCID: PMC7911344 DOI: 10.3390/plants10020236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 05/03/2023]
Abstract
Plants make decisions throughout their lifetime based on complex networks. Phase transitions during seed growth are not an exception. From embryo development through seedling growth, several molecular pathways control genome stability, environmental signal transduction and the transcriptional landscape. Particularly, epigenetic modifications and small non-coding RNAs (sRNAs) have been extensively studied as significant handlers of these processes in plants. Here, we review key epigenetic (histone modifications and methylation patterns) and sRNA-mediated regulatory networks involved in the progression from seed maturation to germination, their relationship with seed traits and crosstalk with environmental inputs.
Collapse
|
16
|
Liton MMUA, McCartney CA, Hiebert CW, Kumar S, Jordan MC, Ayele BT. Identification of loci for pre-harvest sprouting resistance in the highly dormant spring wheat RL4137. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:113-124. [PMID: 33001261 DOI: 10.1007/s00122-020-03685-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/11/2020] [Indexed: 05/06/2023]
Abstract
Combination of RL4137 alleles at three QTLs on chromosomes 4A, 6B and 6D, and 'Roblin' allele at a novel QTL on chromosome 1D increases pre-harvest sprouting resistance in 'Roblin'/RL4137 doubled haploid population. Pre-harvest sprouting (PHS) significantly reduces wheat grain yield and quality. Therefore, identifying quantitative trait loci (QTL) for PHS resistance is key to facilitate marker-assisted breeding. To this end, we studied PHS in a population of 330 doubled haploid (DH) lines derived from 'Roblin'/RL4137. The parental and DH lines were examined for their PHS phenotype based on speed of germination index in five environments and genotyped using the wheat Infinium 90 K SNP array. A total of five QTLs were detected on linkage groups 1D, 4A.2, 6B.1, 6D and 7A over the five environments. The QTL QPhs.umb-4A on linkage group 4A.2 was the most consistent across all environments and explained 40-50% of phenotypic variation. The QTL on 1D is a novel QTL and explained 1.99-2.33% of phenotypic variation. The QTLs on 6B.1 and 6D each explained 3.09-4.33% and 1.62-2.45% of phenotypic variation, respectively. A combination of four stable QTLs on linkage groups 1D, 4A.2, 6B.1 and 6D greatly increased PHS resistance. Allelic effects for the QTLs QPhs.umb-4A, QPhs.umb-6B and QPhs.umb-6D were contributed by RL4137, whereas 'Roblin' contributed the resistant allele for QPhs.umb-1D. QPhs.umb-4A was required for strong dormancy in the 'Roblin'/RL4137 DH population, and the presence of QTLs QPhs.umb-1D, QPhs.umb-6B and QPhs.umb-6D incrementally increased dormancy; DH lines carrying all four QTLs are considerably more dormant than those carrying only QPhs.umb-4A or none of the four QTLs. Thus, the QTLs identified in this study have the potential to improve PHS resistance in spring wheat.
Collapse
Affiliation(s)
- M M Uzzal A Liton
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Curt A McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Colin W Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Santosh Kumar
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, R7A 5Y3, Canada
| | - Mark C Jordan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
17
|
Nguyen HN, Perry L, Kisiala A, Olechowski H, Emery RJN. Cytokinin activity during early kernel development corresponds positively with yield potential and later stage ABA accumulation in field-grown wheat (Triticum aestivum L.). PLANTA 2020; 252:76. [PMID: 33030628 DOI: 10.1007/s00425-020-03483-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/28/2020] [Indexed: 05/08/2023]
Abstract
Early cytokinin activity and late abscisic acid dynamics during wheat kernel development correspond to cultivars with higher yield potential. Cytokinins represent prime targets for marker development for wheat breeding programs. Two major phytohormone groups, abscisic acid (ABA) and cytokinins (CKs), are of crucial importance for seed development. Wheat (Triticum aestivum L.) yield is, to a high degree, determined during the milk and dough stages of kernel development. Therefore, understanding the hormonal regulation of these early growth stages is fundamental for crop-improvement programs of this important cereal. Here, we profiled ABA and 25 CK metabolites (including active forms, precursors and inactive conjugates) during kernel development in five field-grown wheat cultivars. The levels of ABA and profiles of CK forms varied greatly among the tested cultivars and kernel stages suggesting that several types of CK metabolites are involved in spatiotemporal regulation of kernel development. The seed yield potential was associated with the elevated levels of active CK levels (tZ, cZ). Interestingly, the increased kernel cZ levels were followed by higher ABA production, suggesting there is an interaction between these two phytohormones. Furthermore, we analyzed the expression patterns of representatives of the four main CK metabolic gene families. The unique transcriptional patterns of the IPT (biosynthesis) and ZOG (reversible inactivation) gene family members (GFMs) in the high and low yield cultivars additionally indicate that there is a significant association between CK metabolism and yield potential in wheat. Based on these results, we suggest that both CK metabolites and their associated genes, can serve as important, early markers of yield performance in modern wheat breeding programs.
Collapse
Affiliation(s)
- Hai Ngoc Nguyen
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| | - Laura Perry
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Anna Kisiala
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Henry Olechowski
- Dow Chemical Canada ULC, Suite 2400-215 2nd Street S.W., Calgary, AB, T2P 1M4, Canada
| | - R J Neil Emery
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
18
|
Abstract
Drought is a severe environmental constraint, which significantly affects plant growth, productivity, and quality. Plants have developed specific mechanisms that perceive the stress signals and respond to external environmental changes via different mitigation strategies. Abscisic acid (ABA), being one of the phytohormones, serves as an important signaling mediator for plants’ adaptive response to a variety of environmental stresses. ABA triggers many physiological processes, including bud dormancy, seed germination, stomatal closure, and transcriptional and post-transcriptional regulation of stress-responsive gene expression. The site of its biosynthesis and action must be clarified to understand the signaling network of ABA. Various studies have documented multiple sites for ABA biosynthesis, their transporter proteins in the plasma membrane, and several components of ABA-dependent signaling pathways, suggesting that the ABA response to external stresses is a complex networking mechanism. Knowing about stress signals and responses will increase our ability to enhance crop stress tolerance through the use of various advanced techniques. This review will elaborate on the ABA biosynthesis, transportation, and signaling pathways at the molecular level in response to drought stress, which will add a new insight for future studies.
Collapse
|
19
|
Wang H, Zhang Y, Xiao N, Zhang G, Wang F, Chen X, Fang R. Rice GERMIN-LIKE PROTEIN 2-1 Functions in Seed Dormancy under the Control of Abscisic Acid and Gibberellic Acid Signaling Pathways. PLANT PHYSIOLOGY 2020; 183:1157-1170. [PMID: 32321839 PMCID: PMC7333727 DOI: 10.1104/pp.20.00253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/26/2020] [Indexed: 05/05/2023]
Abstract
Seed dormancy is a natural phenomenon in plants. It ensures that seeds complete the grain-filling stage before germination and prevents germination in unsuitable ecological conditions. In this study, we determined the previously unknown function of the rice (Oryza sativa) gene GERMIN-LIKE PROTEIN 2-1 (OsGLP2-1) in seed dormancy. Using artificial microRNA and CRISPR/CAS9 approaches, suppression of OsGLP2-1 expression in rice resulted in the release of dormancy in immature seeds. Conversely, overexpression of OsGLP2-1 driven by the OsGLP2-1 native promoter led to greater seed dormancy. Seed scutellum-specific expression of OsGLP2-1 was increased by exogenous abscisic acid, but decreased with gibberellic acid treatment. We provide evidence that OsGLP2-1 is antagonistically controlled at the transcriptional level by ABA INSENSITIVE5 and GAMYB transcription factors. We conclude that OsGLP2-1 acts as a buffer, maintaining appropriate equilibrium for the regulation of primary dormancy during seed development in rice.
Collapse
Affiliation(s)
- Haiting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
| | - Na Xiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
| | - Ge Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Kumar R, Janila P, Vishwakarma MK, Khan AW, Manohar SS, Gangurde SS, Variath MT, Shasidhar Y, Pandey MK, Varshney RK. Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:992-1003. [PMID: 31553830 PMCID: PMC7061874 DOI: 10.1111/pbi.13266] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/28/2019] [Accepted: 09/22/2019] [Indexed: 05/11/2023]
Abstract
The subspecies fastigiata of cultivated groundnut lost fresh seed dormancy (FSD) during domestication and human-made selection. Groundnut varieties lacking FSD experience precocious seed germination during harvest imposing severe losses. Development of easy-to-use genetic markers enables early-generation selection in different molecular breeding approaches. In this context, one recombinant inbred lines (RIL) population (ICGV 00350 × ICGV 97045) segregating for FSD was used for deploying QTL-seq approach for identification of key genomic regions and candidate genes. Whole-genome sequencing (WGS) data (87.93 Gbp) were generated and analysed for the dormant parent (ICGV 97045) and two DNA pools (dormant and nondormant). After analysis of resequenced data from the pooled samples with dormant parent (reference genome), we calculated delta-SNP index and identified a total of 10,759 genomewide high-confidence SNPs. Two candidate genomic regions spanning 2.4 Mb and 0.74 Mb on the B05 and A09 pseudomolecules, respectively, were identified controlling FSD. Two candidate genes-RING-H2 finger protein and zeaxanthin epoxidase-were identified in these two regions, which significantly express during seed development and control abscisic acid (ABA) accumulation. QTL-seq study presented here laid out development of a marker, GMFSD1, which was validated on a diverse panel and could be used in molecular breeding to improve dormancy in groundnut.
Collapse
Affiliation(s)
- Rakesh Kumar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Aamir W. Khan
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Surendra S. Manohar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Murali T. Variath
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Yaduru Shasidhar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Manish K. Pandey
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| |
Collapse
|
21
|
A Correlative Study of Sunflower Seed Vigor Components as Related to Genetic Background. PLANTS 2020; 9:plants9030386. [PMID: 32245078 PMCID: PMC7154842 DOI: 10.3390/plants9030386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/23/2022]
Abstract
Seed vigor is an important trait that determines seed performance in the field, which corresponds to seed germination rate and seedling establishment. Previous works brought helpful equations to calculate several parameters allowing vigor characterization. In this work we used base water potential (Ψb), base temperature (Tb) and seed lot (Ki) constants to characterize the vigor of 44 sunflower seed lots. Contrasting responses to water or temperature stress and storage potential were recorded within this population, the most interesting being the opposite responses between Ψb and Ki. The genotypes that were resistant to water stress presented low ability for storage and vice versa. Furthermore, Ψb and Ki presented narrow ranges while Tb showed important variability within the 44 genotypes. The analysis of the whole dataset showed that these constants are not correlated to each other or to the seed size, suggesting that genetic background is the most important determining factor in seed performance. Consequently, vigor characterization of genotypes is needed in the crop selection process in order to optimize agricultural productivity.
Collapse
|
22
|
Abdullah M, Zulkiffal M, Din A, Shamim S, Javed A, Shair H, Ahmed J, Musa M, Ahsan A, Kanwal A. Discrepancy in germination behavior and physico‐chemical quality traits during wheat storage. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Ahmed Din
- Ayub Agricultural Research Institute Faisalabad Pakistan
| | - Sadaf Shamim
- Ayub Agricultural Research Institute Faisalabad Pakistan
| | - Anjum Javed
- Ayub Agricultural Research Institute Faisalabad Pakistan
| | - Hira Shair
- Ayub Agricultural Research Institute Faisalabad Pakistan
| | - Javed Ahmed
- Ayub Agricultural Research Institute Faisalabad Pakistan
| | - Muhammad Musa
- Ayub Agricultural Research Institute Faisalabad Pakistan
| | - Aneela Ahsan
- Ayub Agricultural Research Institute Faisalabad Pakistan
| | - Amna Kanwal
- Ayub Agricultural Research Institute Faisalabad Pakistan
| |
Collapse
|
23
|
Tuan PA, Yamasaki Y, Kanno Y, Seo M, Ayele BT. Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes. Sci Rep 2019; 9:3983. [PMID: 30850728 PMCID: PMC6408541 DOI: 10.1038/s41598-019-40657-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/19/2019] [Indexed: 11/30/2022] Open
Abstract
To gain insights into the roles of cytokinin (CK) and auxin in regulating dormancy during seed maturation in wheat, we examined changes in the levels of CK and indole-3-acetic acid (IAA) and expression patterns of their metabolism and signaling genes in embryonic and endospermic tissues of dormant and non-dormant genotypes. Seed maturation was associated with a decrease in the levels of isopentenyladenine in both tissues mainly via repression of the CK biosynthetic TaLOG genes. Differential embryonic trans-zeatin content and expression patterns of the CK related genes including TacZOG, TaGLU and TaARR12 between maturing seeds of the two genotypes implicate CK in the control of seed dormancy induction and maintenance. Seed maturation induced a decrease of IAA level in both tissues irrespective of genotype, and this appeared to be mediated by repression of specific IAA biosynthesis, transport and IAA-conjugate hydrolysis genes. The differential embryonic IAA content and expression pattern of the IAA biosynthetic gene TaAO during the early stage of seed maturation between the two genotypes imply the role of IAA in dormancy induction. It appears from our data that the expression of specific auxin signaling genes including TaRUB, TaAXR and TaARF mediate the role of auxin signaling in dormancy induction and maintenance during seed maturation in wheat.
Collapse
Affiliation(s)
- Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Yuji Yamasaki
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Belay T Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
24
|
Unraveling Molecular and Genetic Studies of Wheat (Triticum aestivum L.) Resistance against Factors Causing Pre-Harvest Sprouting. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the most important factors having adverse effects on yield and grain quality all over the world, particularly in wet harvest conditions. PHS is controlled by both genetic and environmental factors and the interaction of these factors. Breeding varieties with high PHS resistance have important implications for reducing yield loss and improving grain quality. The rapid advancements in the wheat genomic database along with transcriptomic and proteomic technologies have broadened our knowledge for understanding the regulatory mechanism of PHS resistance at transcriptomic and post-transcriptomic levels. In this review, we have described in detail the recent advancements on factors influencing PHS resistance, including grain color, seed dormancy, α-amylase activity, plant hormones (especially abscisic acid and gibberellin), and QTL/genes, which are useful for mining new PHS-resistant genes and developing new molecular markers for multi-gene pyramiding breeding of wheat PHS resistance, and understanding the complicated regulatory mechanism of PHS resistance.
Collapse
|
25
|
Vujanovic V, Kim SH, Lahlali R, Karunakaran C. Spectroscopy and SEM imaging reveal endosymbiont-dependent components changes in germinating kernel through direct and indirect coleorhiza-fungus interactions under stress. Sci Rep 2019; 9:1665. [PMID: 30733451 PMCID: PMC6367502 DOI: 10.1038/s41598-018-36621-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/26/2018] [Indexed: 11/09/2022] Open
Abstract
In the present study, FTIR spectroscopy and hyperspectral imaging was introduced as a non-destructive, sensitive-reliable tool for assessing the tripartite kernel-fungal endophyte environment interaction. Composition of coleorhizae of Triticum durum was studied under ambient and drought stress conditions. The OH-stretch IR absorption spectrum suggests that the water-deficit was possibly improved or moderated by kernel's endophytic partner. The OH-stretch frequency pattern coincides with other (growth and stress) related molecular changes. Analysis of lipid (3100-2800 cm-1) and protein (1700-1550 cm-1) regions seems to demonstrate that drought has a positive impact on lipids. The fungal endosymbiont direct contact with kernel during germination had highest effect on both lipid and protein (Amide I and II) groups, indicating an increased stress resistance in inoculated kernel. Compared to the indirect kernel-fungus interaction and to non-treated kernels (control), direct interaction produced highest effect on lipids. Among treatments, the fingerprint region (1800-800 cm-1) and SEM images indicated an important shift in glucose oligosaccharides, possibly linked to coleorhiza-polymer layer disappearance. Acquired differentiation in coleorhiza composition of T. durum, between ambient and drought conditions, suggests that FTIR spectroscopy could be a promising tool for studying endosymbiont-plant interactions within a changing environment.
Collapse
Affiliation(s)
- Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada.
| | - Seon Hwa Kim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Rachid Lahlali
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, SK, S7N 2V3, Canada
- Department of Crop Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, BP/S 40, Meknès, 50001, Morocco
| | | |
Collapse
|
26
|
Shao M, Bai G, Rife TW, Poland J, Lin M, Liu S, Chen H, Kumssa T, Fritz A, Trick H, Li Y, Zhang G. QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1683-1697. [PMID: 29860625 DOI: 10.1007/s00122-018-3107-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/02/2018] [Indexed: 05/06/2023]
Abstract
One major and three minor QTLs for resistance to pre-harvest sprouting (PHS) were identified from a white wheat variety "Danby." The major QTL on chromosome 3A is TaPHS1, and the sequence variation in its promoter region was responsible for the PHS resistance. Additive × additive effects were detected between two minor QTLs on chromosomes 3B and 5A, which can greatly enhance the PHS resistance. Pre-harvest sprouting (PHS) causes significant losses in yield and quality in wheat. White wheat is usually more susceptible to PHS than red wheat. Therefore, the use of none grain color-related PHS resistance quantitative trait loci (QTLs) is essential for the improvement in PHS resistance in white wheat. To identify PHS resistance QTLs in the white wheat cultivar "Danby" and determine their effects, a doubled haploid population derived from a cross of Danby × "Tiger" was genotyped using genotyping-by-sequencing markers and phenotyped for PHS resistance in two greenhouse and one field experiments. One major QTL corresponding to a previously cloned gene, TaPHS1, was consistently detected on the chromosome arm 3AS in all three experiments and explained 21.6-41.0% of the phenotypic variations. A SNP (SNP-222) in the promoter of TaPHS1 co-segregated with PHS in this mapping population and was also significantly associated with PHS in an association panel. Gene sequence comparison and gene expression analysis further confirmed that SNP-222 is most likely the causal mutation in TaPHS1 for PHS resistance in Danby in this study. In addition, two stable minor QTLs on chromosome arms 3BS and 5AL were detected in two experiments with allele effects consistently contributed by Danby, while one minor QTL on 2AS was detected in two environments with contradicted allelic effects. The two stable minor QTLs showed significant additive × additive effects. The results demonstrated that pyramiding those three QTLs using breeder-friendly KASP markers developed in this study could greatly improve PHS resistance in white wheat.
Collapse
Affiliation(s)
- Mingqin Shao
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA-ARS, Plant Science and Entomology Research Unit, Manhattan, KS, 66506, USA
| | - Trevor W Rife
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Shubing Liu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Hui Chen
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Tadele Kumssa
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Harold Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yan Li
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guorong Zhang
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA.
| |
Collapse
|
27
|
Izydorczyk C, Nguyen TN, Jo S, Son S, Tuan PA, Ayele BT. Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signalling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.). PLANT, CELL & ENVIRONMENT 2018; 41:1022-1037. [PMID: 28349595 DOI: 10.1111/pce.12949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/27/2017] [Indexed: 05/02/2023]
Abstract
Seed germination is a complex process regulated by intrinsic hormonal cues such as abscisic acid (ABA) and gibberellin (GA), and environmental signals including temperature. Using pharmacological, molecular and metabolomics approaches, we show that supraoptimal temperature delays wheat seed germination through maintaining elevated embryonic ABA level via increased expression of ABA biosynthetic genes (TaNCED1 and TaNCED2), increasing embryo ABA sensitivity through upregulation of genes regulating ABA signalling positively (TaPYL5, TaSnRK2, ABI3 and ABI5) and decreasing embryo GA sensitivity via induction of TaRHT1 that regulates GA signalling negatively. Endospermic ABA and GA appeared to have minimal roles in regulating germination at supraoptimal temperature. Germination inhibition by suboptimal temperature is associated with elevated ABA level in the embryo and endosperm tissues, mediated by induction of TaNCEDs and decreased expression of endospermic ABA catabolic genes (TaCYP707As), and increased ABA sensitivity in both tissues via upregulation of TaPYL5, TaSnRK2, ABI3 and ABI5 in the embryo and TaSnRK2 and ABI5 in the endosperm. Furthermore, suboptimal temperature suppresses GA synthesis in both tissues and GA sensitivity in the embryo via repressing GA biosynthetic genes (TaGA20ox and TaGA3ox2) and inducing TaRHT1, respectively. These results highlight that spatiotemporal modulation of ABA and GA metabolism and signalling in wheat seeds underlies germination response to temperature.
Collapse
Affiliation(s)
- Conrad Izydorczyk
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| | - SeoHyun Jo
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| | - SeungHyun Son
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
28
|
Sun M, Yamasaki Y, Ayele BT. Comparative expression analysis of starch degrading genes between dormant and non-dormant wheat seeds. PLANT SIGNALING & BEHAVIOR 2018; 13:e1411449. [PMID: 29211628 PMCID: PMC5790408 DOI: 10.1080/15592324.2017.1411449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 05/18/2023]
Abstract
To gain insights into the molecular basis of starch degradation in wheat seeds with respect to dormancy maintenance and release, this study compared the expression of starch degrading genes between dormant and after-ripened seeds in both dry and imbibed states. Furthermore, the study examined the effect of ABA on the expression of starch degrading genes during imbibition of non-dormant seeds. Release of dormancy due to after-ripening led to the upregulation of specific genes encoding α-amylase and α-glucosidase during imbibition while dormancy maintenance is associated with repression of these genes. It appears from our result that ABA delays the germination of wheat seeds at least partly through repression of the starch degrading genes.
Collapse
Affiliation(s)
- Menghan Sun
- Department of Plant Science, 222 Agriculture Building University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2
| | - Yuji Yamasaki
- Department of Plant Science, 222 Agriculture Building University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2
| | - Belay T. Ayele
- Department of Plant Science, 222 Agriculture Building University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2
- CONTACT Belay T. Ayele Department of Plant Science, 222 Agriculture Building University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
29
|
Tuan PA, Kumar R, Rehal PK, Toora PK, Ayele BT. Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals. FRONTIERS IN PLANT SCIENCE 2018; 9:668. [PMID: 29875780 PMCID: PMC5974119 DOI: 10.3389/fpls.2018.00668] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/30/2018] [Indexed: 05/18/2023]
Abstract
Seed dormancy is an adaptive trait that does not allow the germination of an intact viable seed under favorable environmental conditions. Non-dormant seeds or seeds with low level of dormancy can germinate readily under optimal environmental conditions, and such a trait leads to preharvest sprouting, germination of seeds on the mother plant prior to harvest, which significantly reduces the yield and quality of cereal crops. High level of dormancy, on the other hand, may lead to non-uniform germination and seedling establishment. Therefore, intermediate dormancy is considered to be a desirable trait as it prevents the problems of sprouting and allows uniformity of postharvest germination of seeds. Induction, maintenance, and release of seed dormancy are complex physiological processes that are influenced by a wide range of endogenous and environmental factors. Plant hormones, mainly abscisic acid (ABA) and gibberellin (GA), are the major endogenous factors that act antagonistically in the control of seed dormancy and germination; ABA positively regulates the induction and maintenance of dormancy, while GA enhances germination. Significant progress has been made in recent years in the elucidation of molecular mechanisms regulating ABA/GA balance and thereby dormancy and germination in cereal seeds, and this review summarizes the current state of knowledge on the topic.
Collapse
|
30
|
Balao F, Paun O, Alonso C. Uncovering the contribution of epigenetics to plant phenotypic variation in Mediterranean ecosystems. PLANT BIOLOGY (STUTTGART, GERMANY) 2018. [PMID: 28637098 DOI: 10.1111/plb.12594] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Epigenetic signals can affect plant phenotype and fitness and be stably inherited across multiple generations. Epigenetic regulation plays a key role in the mechanisms of plant response to the environment, without altering DNA sequence. As plants cannot adapt behaviourally or migrate instantly, such dynamic epigenetic responses may be particularly crucial for survival of plants within changing and challenging environments, such as the Mediterranean-Type Ecosystems (MTEs). These ecosystems suffer recurrent stressful events (warm and dry summers with associated fire regimes) that have selected for plants with similar phenotypic complex traits, resulting in similar vegetation growth forms. However, the potential role of epigenetics in plant adaptation to recurrent stressful environments such as the MTEs has generally been ignored. To understand the full spectrum of adaptive processes in such contexts, it is imperative to prompt study of the causes and consequences of epigenetic variation in natural populations. With this purpose, we review here current knowledge on epigenetic variation in natural populations and the genetic and epigenetic basis of some key traits for plants in the MTEs, namely those traits involved in adaptation to drought, fire and oligotrophic soils. We conclude there is still much to be learned about 'plant epigenetics in the wild' and, thus, we propose future research steps in the study of natural epigenetic variation of key traits in the MTEs at different scales.
Collapse
Affiliation(s)
- F Balao
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - O Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - C Alonso
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| |
Collapse
|
31
|
Yamasaki Y, Gao F, Jordan MC, Ayele BT. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:154. [PMID: 28915785 PMCID: PMC5603048 DOI: 10.1186/s12870-017-1104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Maturation forms one of the critical seed developmental phases and it is characterized mainly by programmed cell death, dormancy and desiccation, however, the transcriptional programs and regulatory networks underlying acquisition of dormancy and deposition of storage reserves during the maturation phase of seed development are poorly understood in wheat. The present study performed comparative spatiotemporal transcriptomic analysis of seed maturation in two wheat genotypes with contrasting seed weight/size and dormancy phenotype. RESULTS The embryo and endosperm tissues of maturing seeds appeared to exhibit genotype-specific temporal shifts in gene expression profile that might contribute to the seed phenotypic variations. Functional annotations of gene clusters suggest that the two tissues exhibit distinct but genotypically overlapping molecular functions. Motif enrichment predicts genotypically distinct abscisic acid (ABA) and gibberellin (GA) regulated transcriptional networks contribute to the contrasting seed weight/size and dormancy phenotypes between the two genotypes. While other ABA responsive element (ABRE) motifs are enriched in both genotypes, the prevalence of G-box-like motif specifically in tissues of the dormant genotype suggests distinct ABA mediated transcriptional mechanisms control the establishment of dormancy during seed maturation. In agreement with this, the bZIP transcription factors that co-express with ABRE enriched embryonic genes differ with genotype. The enrichment of SITEIIATCYTC motif specifically in embryo clusters of maturing seeds irrespective of genotype predicts a tissue specific role for the respective TCP transcription factors with no or minimal contribution to the variations in seed dormancy. CONCLUSION The results of this study advance our understanding of the seed maturation associated molecular mechanisms underlying variation in dormancy and weight/size in wheat seeds, which is a critical step towards the designing of molecular strategies for enhancing seed yield and quality.
Collapse
Affiliation(s)
- Yuji Yamasaki
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| | - Feng Gao
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| | - Mark C. Jordan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5 Canada
| | - Belay T. Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
32
|
Das A, Kim DW, Khadka P, Rakwal R, Rohila JS. Unraveling Key Metabolomic Alterations in Wheat Embryos Derived from Freshly Harvested and Water-Imbibed Seeds of Two Wheat Cultivars with Contrasting Dormancy Status. FRONTIERS IN PLANT SCIENCE 2017; 8:1203. [PMID: 28747920 PMCID: PMC5506182 DOI: 10.3389/fpls.2017.01203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/26/2017] [Indexed: 05/20/2023]
Abstract
Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS), which deteriorates the yield and quality of wheat crop. Metabolic homeostasis of the embryo plays a role in seed dormancy, determining the status of the maturing grains either as dormant (PHS-tolerant) or non-dormant (PHS-susceptible). Very little is known for direct measurements of global metabolites in embryonic tissues of dormant and non-dormant wheat seeds. In this study, physiologically matured and freshly harvested wheat seeds of PHS-tolerant (cv. Sukang, dormant) and PHS-susceptible (cv. Baegjoong, non-dormant) cultivars were water-imbibed, and the isolated embryos were subjected to high-throughput, global non-targeted metabolomic profiling. A careful comparison of identified metabolites between Sukang and Baegjoong embryos at 0 and 48 h after imbibition revealed that several key metabolic pathways [such as: lipids, fatty acids, oxalate, hormones, the raffinose family of oligosaccharides (RFOs), and amino acids] and phytochemicals were differentially regulated between dormant and non-dormant varieties. Most of the membrane lipids were highly reduced in Baegjoong compared to Sukang, which indicates that the cell membrane instability in response to imbibition could also be a key factor in non-dormant wheat varieties for their untimely germination. This study revealed that several key marker metabolites (e.g., RFOs: glucose, fructose, maltose, and verbascose), were highly expressed in Baegjoong after imbibition. Furthermore, the data showed that the key secondary metabolites and phytochemicals (vitexin, chrysoeriol, ferulate, salidroside and gentisic acid), with known antioxidant properties, were comparatively low at basal levels in PHS-susceptible, non-dormant cultivar, Baegjoong. In conclusion, the results of this investigation revealed that after imbibition the metabolic homeostasis of dormant wheat is significantly less affected compared to non-dormant wheat. The inferences from this study combined with proteomic and transcriptomic studies will advance the molecular understanding of the pathways and enzyme regulations during PHS.
Collapse
Affiliation(s)
- Aayudh Das
- Department of Plant Biology, University of Vermont, BurlingtonVT, United States
- Department of Biology and Microbiology, South Dakota State University, BrookingsSD, United States
| | - Dea-Wook Kim
- National Institute of Crop Science, Rural Development AdministrationWanju-gun, South Korea
| | - Pramod Khadka
- Department of Biology and Microbiology, South Dakota State University, BrookingsSD, United States
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of TsukubaTsukuba, Japan
| | - Jai S. Rohila
- Department of Biology and Microbiology, South Dakota State University, BrookingsSD, United States
| |
Collapse
|
33
|
Nonogaki M, Nonogaki H. Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology. FRONTIERS IN PLANT SCIENCE 2017; 8:90. [PMID: 28197165 PMCID: PMC5281562 DOI: 10.3389/fpls.2017.00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/16/2017] [Indexed: 05/08/2023]
Abstract
Vivipary, germination of seeds on the maternal plant, is observed in nature and provides ecological advantages in certain wild species, such as mangroves. However, precocious seed germination in agricultural species, such as preharvest sprouting (PHS) in cereals, is a serious issue for food security. PHS reduces grain quality and causes economical losses to farmers. PHS can be prevented by translating the basic knowledge of hormone biology in seeds into technologies. Biosynthesis of abscisic acid (ABA), which is an essential hormone for seed dormancy, can be engineered to enhance dormancy and prevent PHS. Enhancing nine-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting enzyme of ABA biosynthesis, through a chemically induced gene expression system, has successfully been used to suppress germination of Arabidopsis seeds. The more advanced system NCED positive-feedback system, which amplifies ABA biosynthesis in a seed-specific manner without chemical induction, has also been developed. The proofs of concept established in the model species are now ready to be applied to crops. A potential problem is recovery of germination from hyperdormant crop grains. Hyperdormancy induced by the NCED systems can be reversed by inducing counteracting genes, such as NCED RNA interference or gibberellin (GA) biosynthesis genes. Alternatively, seed sensitivity to ABA can be modified to rescue germination using the knowledge of chemical biology. ABA antagonists, which were developed recently, have great potential to recover germination from the hyperdormant seeds. Combination of the dormancy-imposing and -releasing approaches will establish a comprehensive technology for PHS prevention and germination recovery.
Collapse
|
34
|
Szewińska J, Simińska J, Bielawski W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:10-21. [PMID: 27771502 DOI: 10.1016/j.jplph.2016.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteolysis is an important process for development and germination of cereal seeds. Among the many types of proteases identified in plants are the cysteine proteases (CPs) of the papain and legumain families, which play a crucial role in hydrolysing storage proteins during seed germination as well as in processing the precursors of these proteins and the inactive forms of other proteases. Moreover, all of the tissues of cereal seeds undergo progressive degradation via programed cell death, which is integral to their growth. In view of the important roles played by proteases, their uncontrolled activity could be harmful to the development of seeds and young seedlings. Thus, the activities of these enzymes are regulated by intracellular inhibitors called phytocystatins (PhyCys). The phytocystatins inhibit the activity of proteases of the papain family, and the presence of an additional motif in their C-termini allows them to also regulate the activity of members of the legumain family. A balance between the levels of cysteine proteases and phytocystatins is necessary for proper cereal seed development, and this is maintained through the antagonistic activities of gibberellins (GAs) and abscisic acid (ABA), which regulate the expression of the corresponding genes. Transcriptional regulation of cysteine proteases and phytocystatins is determined by cis-acting elements located in the promoters of these genes and by the expression of their corresponding transcription factors (TFs) and the interactions between different TFs.
Collapse
Affiliation(s)
- Joanna Szewińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland.
| | - Joanna Simińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| | - Wiesław Bielawski
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| |
Collapse
|
35
|
Xu HH, Liu SJ, Song SH, Wang WQ, Møller IM, Song SQ. Proteome changes associated with dormancy release of Dongxiang wild rice seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:68-86. [PMID: 27697673 DOI: 10.1016/j.jplph.2016.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/20/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Seed dormancy provides optimum timing for seed germination and subsequent seedling growth, but the mechanism of seed dormancy is still poorly understood. Here, we used Dongxiang wild rice (DXWR) seeds to investigate the dormancy behavior and the differentially changed proteome in embryo and endosperm during dormancy release. DXWR seed dormancy was caused by interaction of embryo and its surrounding structure, and was an intermediate physiological dormancy. During seed dormancy release, a total of 109 and 97 protein spots showed significant change in abundance and were successfully identified in embryo and endosperm, respectively. As a result of dormancy release, the abundance of nine proteins involved in storage protein, cell defense and rescue and energy changed in the same way in both embryo and endosperm, while 67 and 49 protein spots changed differentially in embryo and endosperm, respectively. Dormancy release of DXWR seeds was closely associated with degradation of storage proteins in both embryo and endosperm. At the same time, the abundance of proteins involved in metabolism, glycolysis and TCA cycle, cell growth and division, protein synthesis and destination and signal transduction increased in embryos while staying constant or decreasing in endosperms.
Collapse
Affiliation(s)
- Heng-Heng Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shun-Hua Song
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
36
|
Chitnis VR, Nguyen TN, Ayele BT. A Simple and Efficient Approach to Elucidate Genomic Contribution of Transcripts to a Target Gene in Polyploids: The Case of Hexaploid Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1597. [PMID: 27833623 PMCID: PMC5081356 DOI: 10.3389/fpls.2016.01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Common wheat (Triticum aestivum L.) is one of the most economically important crops in the world, however, gene functional studies in this crop have been lagging mainly due to the complexity of its polyploid genome, which is derived through two rounds of intergeneric hybridization events that led to the presence of six copies for each gene. Elucidating the transcript contribution of each genome to the total expression of a target gene in polyploids such as hexaploid wheat has a paramount significance for direct discovery of genes and the associated molecular mechanisms controlling traits of agronomic importance. A polymerase chain reaction approach that involved primers amplifying DNA fragments unique to each homeolog of a target gene and quantitation of the intensity of the resulting fragment bands were able to successfully determine the genomic transcript contributions as a percentage of target gene's total expression in hexaploid wheat. Our results showed that the genomic contributions of transcripts to a target gene vary with genotype and tissue type, suggesting the distinct role of each homeolog in regulating the trait associated with the target gene. The approach described in this study is an effective and economical method to elucidate the genomic transcript contribution to the total expression of individual target genes in hexaploid wheat. It can also be applied to determine the transcript contribution of each genome towards the collective expression of a target gene in other economically important polypoid crop species.
Collapse
|
37
|
Nave M, Avni R, Ben-Zvi B, Hale I, Distelfeld A. QTLs for uniform grain dimensions and germination selected during wheat domestication are co-located on chromosome 4B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1303-1315. [PMID: 26993485 DOI: 10.1007/s00122-016-2704-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/05/2016] [Indexed: 05/19/2023]
Abstract
A major locus on the long arm of wheat chromosome 4B controls within-spikelet variation in both grain size and seed dormancy, the latter an important survival mechanism likely eliminated from wild wheat during domestication. Seed dormancy can increase the probability of survival of at least some progeny under unstable environmental conditions. In wild emmer wheat, only one of the two grains in a spikelet germinates during the first rainy season following maturation; and this within-plant variation in seed dormancy is associated with both grain dimension differences and position within the spikelet. Here, in addition to characterizing these associations, we elucidate the genetic mechanism controlling differential grain dimensions and dormancy within wild tetraploid wheat spikelets using phenotypic data from a wild emmer × durum wheat population and a high-density genetic map. We show that in wild emmer, the lower grain within the spikelet is about 30 % smaller and more dormant than the larger, upper grain that germinates usually within 3 days. We identify a major locus on the long arm of chromosome 4B that explains >40 % of the observed variation in grain dimensions and seed dormancy within spikelets. This locus, designated QGD-4BL, is validated using an independent set of wild emmer × durum wheat genetic stocks. The domesticated variant of this novel locus on chromosome 4B, likely fixed during the process of wheat domestication, favors spikelets with seeds of uniform size and synchronous germination. The identification of locus QGD-4BL enhances our knowledge of the genetic basis of the domestication syndrome of one of our most important crops.
Collapse
Affiliation(s)
- Moran Nave
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, The Institute for Cereal Crop Improvement, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Raz Avni
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, The Institute for Cereal Crop Improvement, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Batsheva Ben-Zvi
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, The Institute for Cereal Crop Improvement, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Iago Hale
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, 03824, USA
| | - Assaf Distelfeld
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, The Institute for Cereal Crop Improvement, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
38
|
Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcárková B, Valárik M, Holdsworth MJ, Flintham J, Uauy C. The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4169-78. [PMID: 27217549 PMCID: PMC5301926 DOI: 10.1093/jxb/erw194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The precocious germination of cereal grains before harvest, also known as pre-harvest sprouting, is an important source of yield and quality loss in cereal production. Pre-harvest sprouting is a complex grain defect and is becoming an increasing challenge due to changing climate patterns. Resistance to sprouting is multi-genic, although a significant proportion of the sprouting variation in modern wheat cultivars is controlled by a few major quantitative trait loci, including Phs-A1 in chromosome arm 4AL. Despite its importance, little is known about the physiological basis and the gene(s) underlying this important locus. In this study, we characterized Phs-A1 and show that it confers resistance to sprouting damage by affecting the rate of dormancy loss during dry seed after-ripening. We show Phs-A1 to be effective even when seeds develop at low temperature (13 °C). Comparative analysis of syntenic Phs-A1 intervals in wheat and Brachypodium uncovered ten orthologous genes, including the Plasma Membrane 19 genes (PM19-A1 and PM19-A2) previously proposed as the main candidates for this locus. However, high-resolution fine-mapping in two bi-parental UK mapping populations delimited Phs-A1 to an interval 0.3 cM distal to the PM19 genes. This study suggests the possibility that more than one causal gene underlies this major pre-harvest sprouting locus. The information and resources reported in this study will help test this hypothesis across a wider set of germplasm and will be of importance for breeding more sprouting resilient wheat varieties.
Collapse
Affiliation(s)
| | - Nicholas Bird
- John Innes Centre, Norwich Research Park, NR4 7UH, UK KWS UK Ltd, Hertfordshire, SG8 7RE, UK
| | | | - Simon Berry
- Limagrain UK Ltd, Woolpit Business Park, IP30 9UP, UK
| | | | | | | | - Tanja Gerjets
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - Duncan Scholefield
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - Barbara Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - M J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - John Flintham
- John Innes Centre, Norwich Research Park, NR4 7UH, UK
| | | |
Collapse
|
39
|
Cao L, Hayashi K, Tokui M, Mori M, Miura H, Onishi K. Detection of QTLs for traits associated with pre-harvest sprouting resistance in bread wheat (Triticum aestivum L.). BREEDING SCIENCE 2016; 66:260-70. [PMID: 27162497 PMCID: PMC4785003 DOI: 10.1270/jsbbs.66.260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/26/2015] [Indexed: 05/20/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, especially in rainy regions. Although seed dormancy is the most critical trait for PHS resistance, the control of heading time should also be considered to prevent seed maturation during unfavorable conditions. In addition, awning is known to enhance water absorption by the spike, causing PHS. In this study, we conducted QTL analysis for three PHS resistant related traits, seed dormancy, heading time and awn length, by using recombinant inbred lines from 'Zenkouji-komugi' (high PHS resistance) × 'Chinese Spring' (weak PHS resistance). QTLs for seed dormancy were detected on chromosomes 1B (QDor-1B) and 4A (QDor-4A), in addition to a QTL on chromosome 3A, which was recently cloned as TaMFT-3A. In addition, the accumulation of the QTLs and their epistatic interactions contributed significantly to a higher level of dormancy. QDor-4A is co-located with the Hooded locus for awn development. Furthermore, an effective QTL, which confers early heading by the Zenkouji-komugi allele, was detected on the short arm of chromosome 7B, where the Vrn-B3 locus is located. Understanding the genetic architecture of traits associated with PHS resistance will facilitate the marker assisted selection to breed new varieties with higher PHS resistance.
Collapse
|
40
|
Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, Yang WY. Dormancy and germination: How does the crop seed decide? PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1104-12. [PMID: 26095078 DOI: 10.1111/plb.12356] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/07/2015] [Indexed: 05/18/2023]
Abstract
Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed.
Collapse
Affiliation(s)
- K Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - Y J Meng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - H W Shuai
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - W G Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - J B Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - J Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - W Y Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
41
|
González-Calle V, Barrero-Sicilia C, Carbonero P, Iglesias-Fernández R. Mannans and endo-β-mannanases (MAN) in Brachypodium distachyon: expression profiling and possible role of the BdMAN genes during coleorhiza-limited seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3753-64. [PMID: 25922488 PMCID: PMC4473977 DOI: 10.1093/jxb/erv168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Immunolocalization of mannans in the seeds of Brachypodium distachyon reveals the presence of these polysaccharides in the root embryo and in the coleorhiza in the early stages of germination (12h), decreasing thereafter to the point of being hardly detected at 27h. Concurrently, the activity of endo-β-mannanases (MANs; EC 3.2.1.78) that catalyse the hydrolysis of β-1,4 bonds in mannan polymers, increases as germination progresses. The MAN gene family is represented by six members in the Brachypodium genome, and their expression has been explored in different organs and especially in germinating seeds. Transcripts of BdMAN2, BdMAN4 and BdMAN6 accumulate in embryos, with a maximum at 24-30h, and are detected in the coleorhiza and in the root by in situ hybridization analyses, before root protrusion (germination sensu stricto). BdMAN4 is not only present in the embryo root and coleorhiza, but is abundant in the de-embryonated (endosperm) imbibed seeds, while BdMAN2 and BdMAN6 are faintly expressed in endosperm during post-germination (36-42h). BdMAN4 and BdMAN6 transcripts are detected in the aleurone layer. These data indicate that BdMAN2, BdMAN4 and BdMAN6 are important for germination sensu stricto and that BdMAN4 and BdMAN6 may also influence reserve mobilization. Whether the coleorhiza in monocots and the micropylar endosperm in eudicots have similar functions, is discussed.
Collapse
Affiliation(s)
- Virginia González-Calle
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Cristina Barrero-Sicilia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| |
Collapse
|