1
|
Graziano N, Arce-López B, Barbeyron T, Delage L, Gerometta E, Roullier C, Burgaud G, Poirier E, Martinelli L, Jany JL, Hymery N, Meslet-Cladiere L. Identification and Characterization of Two Aryl Sulfotransferases from Deep-Sea Marine Fungi and Their Implications in the Sulfation of Secondary Metabolites. Mar Drugs 2024; 22:572. [PMID: 39728146 DOI: 10.3390/md22120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown. To address this knowledge gap, we conducted a comprehensive search of available genomes, resulting in the identification of 174 putative SULT genes in the Ascomycota phylum. Phylogenetic analysis and structural modeling revealed that these SULTs belong to the aryl sulfotransferase family, and they are divided into two potential distinct clusters of PAPS-dependent SULTs within the fungal kingdom. SULT genes from two marine fungi isolated from deep-sea hydrothermal vents, Hortaea werneckii UBOCC-A-208029 (HwSULT) and Aspergillus sydowii UBOCC-A-108050 SULT (AsSULT), were selected as representatives of each cluster. Recombinant proteins were expressed in Escherichia coli and biochemically characterized. HwSULT demonstrated high and versatile activity, while AsSULT appeared more substrate-specific. Here, HwSULT was used to sulfate the mycotoxin zearalenone, enhancing its cytotoxicity toward healthy feline intestinal cells.
Collapse
Affiliation(s)
- Nicolas Graziano
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Beatriz Arce-López
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Tristan Barbeyron
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, F-29688 Roscoff, France
| | - Ludovic Delage
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, F-29688 Roscoff, France
| | - Elise Gerometta
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMER, UR 2160, F-44000 Nantes, France
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMER, UR 2160, F-44000 Nantes, France
| | - Gaëtan Burgaud
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Elisabeth Poirier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Laure Martinelli
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07455 Jena, Germany
| | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Nolwenn Hymery
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Laurence Meslet-Cladiere
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
2
|
Supikova K, Žukauskaitė A, Kosinova A, Pěnčík A, De Diego N, Spíchal L, Fellner M, Skorepova K, Gruz J. Sulfonation of IAA in Urtica eliminates its DR5 auxin activity. PLANT CELL REPORTS 2024; 44:8. [PMID: 39704813 DOI: 10.1007/s00299-024-03399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
KEY MESSAGE N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SO3H, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species. These sulfometabolites were detected based on the presence of a neutral loss of sulfur trioxide, as indicated by the m/z difference of 79.9568 Da in the MS2 spectra. The structure of newly discovered SIAA was confirmed by synthesizing its standard and comparing retention time, m/z and MS2 spectrum with those of SIAA found in Urtica. To study its natural occurrence, 73 species in total were further analyzed by UHPLC-QqTOF-MS or targeted UHPLC-MS/MS method with a limit of detection of 244 fmol/g dry weight. However, SIAA was only detected in Urtica at a concentration of 13.906 ± 9.603 nmol/g dry weight. Its concentration was > 30 times higher than that of indole-3-acetic acid (IAA), and the SIAA/IAA ratio was further increased under different light conditions, especially in continuous blue light. In addition to SIAA, structurally similar metabolites, N-sulfoindole-3-lactic acid, 4-(sulfooxy)phenyllactic acid and 4-(sulfooxy)phenylacetic acid, were detected in Urtica for the first time. SIAA was biosynthesized from inorganic sulfate in seedlings, as confirmed by the incorporation of exogenous 34S-ammonium sulfate (1 mM and 10 mM). SIAA exhibited no auxin activity, as demonstrated by both the Arabidopsis DR5::GUS assay and the Arabidopsis phenotype analysis. Sulfonation of IAA may therefore be a mechanism for IAA deactivation and/or storage in Urtica, similar to sulfonation of the jasmonates in Arabidopsis.
Collapse
Affiliation(s)
- Klara Supikova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Andrea Kosinova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Martin Fellner
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Katerina Skorepova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Jiri Gruz
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Xu Z, Liu D, Zhu J, Zhao J, Shen S, Wang Y, Yu P. Catalysts for sulfur: understanding the intricacies of enzymes orchestrating plant sulfur anabolism. PLANTA 2024; 261:16. [PMID: 39690279 DOI: 10.1007/s00425-024-04594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
MAIN CONCLUSION This review highlights the sulfur transporters, key enzymes and their encoding genes involved in plant sulfur anabolism, focusing on their occurrence, chemistry, location, function, and regulation within sulfur assimilation pathways. Sulfur, a vital element for plant life, plays diverse roles in metabolism and stress response. This review provides a comprehensive overview of the sulfur assimilation pathway in plants, highlighting the intricate network of enzymes and their regulatory mechanisms. The primary focus is on the key enzymes involved: ATP sulfurylase (ATPS), APS reductase (APR), sulfite reductase (SiR), serine acetyltransferase (SAT), and O-acetylserine(thiol)lyase (OAS-TL). ATPS initiates the process by activating sulfate to form APS, which is then reduced to sulfite by APR. SiR further reduces sulfite to sulfide, a crucial step that requires significant energy. The cysteine synthase complex (CSC), formed by SAT and OAS-TL, facilitates the synthesis of cysteine, thereby integrating serine metabolism with sulfur assimilation. The alternative sulfation pathway, catalyzed by APS kinase and sulfotransferases, is explored for its role in synthesizing essential secondary metabolites. This review also delves into the regulatory mechanism of these enzymes such as environmental stresses, sulfate availability, phytohormones, as well as translational and post-translational regulations. Understanding the key transporters and enzymes in sulfur assimilation pathways and their corresponding regulation mechanisms can help researchers grasp the importance of sulfur anabolism for the life cycle of plants, clarify how these enzymes and their regulatory processes are integrated to balance plant life systems in response to changes in both external conditions and intrinsic signals.
Collapse
Affiliation(s)
- Ziyue Xu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Dun Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiadong Zhu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Jiayi Zhao
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yueduo Wang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China.
- Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
4
|
Mistry R, Byrne DP, Starns D, Barsukov IL, Yates EA, Fernig DG. Polysaccharide sulfotransferases: the identification of putative sequences and respective functional characterisation. Essays Biochem 2024; 68:431-447. [PMID: 38712401 PMCID: PMC11625862 DOI: 10.1042/ebc20230094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
The vast structural diversity of sulfated polysaccharides demands an equally diverse array of enzymes known as polysaccharide sulfotransferases (PSTs). PSTs are present across all kingdoms of life, including algae, fungi and archaea, and their sulfation pathways are relatively unexplored. Sulfated polysaccharides possess anti-inflammatory, anticoagulant and anti-cancer properties and have great therapeutic potential. Current identification of PSTs using Pfam has been predominantly focused on the identification of glycosaminoglycan (GAG) sulfotransferases because of their pivotal roles in cell communication, extracellular matrix formation and coagulation. As a result, our knowledge of non-GAG PSTs structure and function remains limited. The major sulfotransferase families, Sulfotransfer_1 and Sulfotransfer_2, display broad homology and should enable the capture of a wide assortment of sulfotransferases but are limited in non-GAG PST sequence annotation. In addition, sequence annotation is further restricted by the paucity of biochemical analyses of PSTs. There are now high-throughput and robust assays for sulfotransferases such as colorimetric PAPS (3'-phosphoadenosine 5'-phosphosulfate) coupled assays, Europium-based fluorescent probes for ratiometric PAP (3'-phosphoadenosine-5'-phosphate) detection, and NMR methods for activity and product analysis. These techniques provide real-time and direct measurements to enhance the functional annotation and subsequent analysis of sulfated polysaccharides across the tree of life to improve putative PST identification and characterisation of function. Improved annotation and biochemical analysis of PST sequences will enhance the utility of PSTs across biomedical and biotechnological sectors.
Collapse
Affiliation(s)
- Ravina Mistry
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - David Starns
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Igor L Barsukov
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Edwin A Yates
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - David G Fernig
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
5
|
Hastwell AH, Chu X, Liu Y, Ferguson BJ. The parallel narrative of RGF/GLV/CLEL peptide signalling. TRENDS IN PLANT SCIENCE 2024; 29:1342-1355. [PMID: 39322488 DOI: 10.1016/j.tplants.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Plant peptide families share distinct characteristics, and many members are in homologous signalling pathways controlling development and responses to external signals. The root meristem growth factor (RGF) peptides/GOLVEN (GLV)/CLAVATA3-ESR-related like (CLEL) are a family of short signalling peptides that are derived from a precursor protein and undergo post-translational modifications. Their role in root meristem development is well established and recent efforts have identified subtilase processing pathways and several downstream signalling components. This discovery has enabled the convergence of previously distinct pathways and enhanced our understanding of plant developmental processes. Here, we review the structure-function relationship of RGF peptides, the post-translational modification pathways, and the downstream signalling mechanisms and highlight components of these pathways that are known in non-RGF-mediated pathways.
Collapse
Affiliation(s)
- April H Hastwell
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Xitong Chu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhan Liu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
6
|
Sato R, Nishidono Y, Tanaka K. Comprehensive Analysis of Sulfated Flavonoids in Eclipta prostrata for Quality Evaluation. Molecules 2024; 29:4888. [PMID: 39459257 PMCID: PMC11509997 DOI: 10.3390/molecules29204888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Eclipta prostrata (Asteraceae) is employed as a hemostatic agent in many traditional medicines, owing to its sulfated flavonoid content. In this study, we obtained crude drug samples from three provinces collected in different years and analyzed their sulfated flavonoid contents using liquid chromatography-mass spectrometry (LC-MS) for quality evaluation. Because sulfated flavonoids are unstable and difficult to isolate from extracts, this study first synthesized a variety of sulfated flavonoids and accumulated spectral data in order to identify the compounds in E. prostrata. The LC-MS analysis of six crude drug samples revealed the presence of luteolin 7-sulfate, apigenin 7-sulfate, diosmetin 7-sulfate, and diosmetin 3'-sulfate. The samples without luteolin 3'-sulfate featured high apigenin 7-sulfate content. Although the samples were collected from the same locality, their compositions differed depending on the year of collection. Further, they were classified according to three patterns: (1) samples with luteolin 7-sulfate as the main component, (2) samples with apigenin 7-sulfate as the main component, and (3) samples with relatively high diosmetin sulfate content. Luteolin 7-sulfate typically exhibits relatively high erythrocyte aggregation efficiency and fibrinogen aggregation rate. These results demonstrate that the analysis of sulfated flavonoids is beneficial for the quality evaluation of E. prostrata for hemostatic applications.
Collapse
Affiliation(s)
- Ryunosuke Sato
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (R.S.); (Y.N.)
| | - Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (R.S.); (Y.N.)
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (R.S.); (Y.N.)
| |
Collapse
|
7
|
Chaudhary J, Gangwar H, Jaiswal V, Gupta PK. Identification and characterization of sulphotransferase (SOT) genes for tolerance against drought and heat in wheat and six related species. Mol Biol Rep 2024; 51:956. [PMID: 39230759 DOI: 10.1007/s11033-024-09899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Sulphotransferase (SOT) enzyme (encoded by a conserved family of SOT genes) is involved in sulphonation of a variety of compounds, through transfer of a sulphuryl moiety from 3'phosphoadenosine- 5'phosphosulphate (PAPS) to a variety of secondary metabolites. The PAPS itself is derived from 3'adenosine-5'phosphosulphate (APS) that is formed after uptake of sulphate ions from the soil. The process provides tolerance against abiotic stresses like drought and heat in plants. Therefore, a knowledge of SOT genes in any crop may help in designing molecular breeding methods for improvement of tolerance for drought and heat. METHODS Sequences of rice SOT genes and SOT domain (PF00685) of corresponding proteins were both used for identification of SOT genes in wheat and six related species (T. urartu, Ae. tauschii, T. turgidum, Z. mays, B. distachyon and Hordeum vulgare), although detailed analysis was conducted only in wheat. The wheat genes were mapped on individual chromosomes and also subjected to synteny and collinearity analysis. The proteins encoded by these genes were examined for the presence of a complete SOT domain using 'Conserved Domain Database' (CDD) search tool at NCBI. RESULTS In wheat, 107 TaSOT genes, ranging in length from 969 bp to 7636 bp, were identified and mapped onto individual chromosomes. SSRs (simple sequence repeats), microRNAs, long non-coding RNAs (lncRNAs) and their target sites were also identified in wheat SOT genes. SOT proteins were also studied in detail. An expression assay of TaSOT genes via wheat RNA-seq data suggested engagement of these genes in growth, development and responses to various hormones and biotic/abiotic stresses. CONCLUSIONS The results of the present study should help in further functional characterization of SOT genes in wheat and other related crops.
Collapse
Affiliation(s)
- Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Himanshi Gangwar
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vandana Jaiswal
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
8
|
Kopriva S, Rahimzadeh Karvansara P, Takahashi H. Adaptive modifications in plant sulfur metabolism over evolutionary time. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4697-4711. [PMID: 38841807 PMCID: PMC11350084 DOI: 10.1093/jxb/erae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sulfur (S) is an essential element for life on Earth. Plants are able to take up and utilize sulfate (SO42-), the most oxidized inorganic form of S compounds on Earth, through the reductive S assimilatory pathway that couples with photosynthetic energy conversion. Organic S compounds are subsequently synthesized in plants and made accessible to animals, primarily as the amino acid methionine. Thus, plant S metabolism clearly has nutritional importance in the global food chain. S metabolites may be part of redox regulation and drivers of essential metabolic pathways as cofactors and prosthetic groups, such as Fe-S centers, CoA, thiamine, and lipoic acid. The evolution of the S metabolic pathways and enzymes reflects the critical importance of functional innovation and diversifications. Here we review the major evolutionary alterations that took place in S metabolism across different scales and outline research directions that may take advantage of understanding the evolutionary adaptations.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Institute of Molecular Photosynthesis, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Berardi N, Amirsadeghi S, Swanton CJ. Plant competition cues activate a singlet oxygen signaling pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:964476. [PMID: 39228834 PMCID: PMC11368760 DOI: 10.3389/fpls.2024.964476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Oxidative stress responses of Arabidopsis to reflected low red to far-red signals (R:FR ≈ 0.3) generated by neighboring weeds or an artificial source of FR light were compared with a weed-free control (R:FR ≈1.6). In the low R:FR treatments, induction of the shade avoidance responses (SAR) coincided with increased leaf production of singlet oxygen (1O2). This 1O2 increase was not due to protochlorophyllide accumulation and did not cause cell death. Chemical treatments, however, with 5-aminolevulinic acid (the precursor of tetrapyrrole biosynthesis) and glutathione (a quinone A reductant) enhanced cell death and growth inhibition. RNA sequencing revealed that transcriptome responses to the reflected low R:FR light treatments minimally resembled previously known Arabidopsis 1O2 generating systems that rapidly generate 1O2 following a dark to light transfer. The upregulation of only a few early 1O2 responsive genes (6 out of 1931) in the reflected low R:FR treatments suggested specificity of the 1O2 signaling. Moreover, increased expression of two enzyme genes, the SULFOTRANSFERASE ST2A (ST2a) and the early 1O2-responsive IAA-LEUCINE RESISTANCE (ILR)-LIKE6 (ILL6), which negatively regulate jasmonate level, suggested that repression of bioactive JAs may promote the shade avoidance (versus defense) and 1O2 acclimation (versus cell death) responses to neighboring weeds.
Collapse
Affiliation(s)
- Nicole Berardi
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada
| | - Sasan Amirsadeghi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
10
|
Kurogi K, Suiko M, Sakakibara Y. Evolution and multiple functions of sulfonation and cytosolic sulfotransferases across species. Biosci Biotechnol Biochem 2024; 88:368-380. [PMID: 38271594 DOI: 10.1093/bbb/zbae008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Organisms have conversion systems for sulfate ion to take advantage of the chemical features. The use of biologically converted sulfonucleotides varies in an evolutionary manner, with the universal use being that of sulfonate donors. Sulfotransferases have the ability to transfer the sulfonate group of 3'-phosphoadenosine 5'-phosphosulfate to a variety of molecules. Cytosolic sulfotransferases (SULTs) play a role in the metabolism of low-molecular-weight compounds in response to the host organism's living environment. This review will address the diverse functions of the SULT in evolution, including recent findings. In addition to the diversity of vertebrate sulfotransferases, the molecular aspects and recent studies on bacterial and plant sulfotransferases are also addressed.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
11
|
Singh N, Singh AK. In Silico Structural Modeling and Binding Site Analysis of Cerebroside Sulfotransferase (CST): A Therapeutic Target for Developing Substrate Reduction Therapy for Metachromatic Leukodystrophy. ACS OMEGA 2024; 9:10748-10768. [PMID: 38463293 PMCID: PMC10918841 DOI: 10.1021/acsomega.3c09462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Cerebroside sulfotransferase (CST) is emerging as an important therapeutic target to develop substrate reduction therapy (SRT) for metachromatic leukodystrophy (MLD), a rare neurodegenerative lysosomal storage disorder. MLD develops with progressive impairment and destruction of the myelin sheath as a result of accumulation of sulfatide around the nerve cells in the absence of its recycling mechanism with deficiency of arylsulfatase A (ARSA). Sulfatide is the product of the catalytic action of cerebroside sulfotransferase (CST), which needs to be regulated under pathophysiological conditions by inhibitor development. To carry out in silico-based preliminary drug screening or for designing new drug candidates, a high-quality three-dimensional (3D) structure is needed in the absence of an experimentally derived three-dimensional crystal structure. In this study, a 3D model of the protein was developed using a primary sequence with the SWISS-MODEL server by applying the top four GMEQ score-based templates belonging to the sulfotransferase family as a reference. The 3D model of CST highlights the features of the protein responsible for its catalytic action. The CST model comprises five β-strands, which are flanked by ten α-helices from both sides as well as form the upside cover of the catalytic pocket of CST. CST has two catalytic regions: PAPS (-sulfo donor) binding and galactosylceramide (-sulfo acceptor) binding. The catalytic action of CST was proposed via molecular docking and molecular dynamic (MD) simulation with PAPS, galactosylceramide (GC), PAPS-galactosylceramide, and PAP. The stability of the model and its catalytic action were confirmed using molecular dynamic simulation-based trajectory analysis. CST response against the inhibition potential of the experimentally reported competitive inhibitor of CST was confirmed via molecular docking and molecular dynamics simulation, which suggested the suitability of the CST model for future drug discovery to strengthen substrate reduction therapy for MLD.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna,
Faculty of Ayurveda, Institute of Medical
Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anil Kumar Singh
- Department of Dravyaguna,
Faculty of Ayurveda, Institute of Medical
Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
12
|
Yu RM, Zhang N, Zhang BW, Liang Y, Pang XX, Cao L, Chen YD, Zhang WP, Yang Y, Zhang DY, Pang EL, Bai WN. Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus. BMC Biol 2023; 21:168. [PMID: 37553642 PMCID: PMC10408227 DOI: 10.1186/s12915-023-01668-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Autopolyploidy is a valuable model for studying whole-genome duplication (WGD) without hybridization, yet little is known about the genomic structural and functional changes that occur in autopolyploids after WGD. Cyclocarya paliurus (Juglandaceae) is a natural diploid-autotetraploid species. We generated an allele-aware autotetraploid genome, a chimeric chromosome-level diploid genome, and whole-genome resequencing data for 106 autotetraploid individuals at an average depth of 60 × per individual, along with 12 diploid individuals at an average depth of 90 × per individual. RESULTS Autotetraploid C. paliurus had 64 chromosomes clustered into 16 homologous groups, and the majority of homologous chromosomes demonstrated similar chromosome length, gene numbers, and expression. The regions of synteny, structural variation and nonalignment to the diploid genome accounted for 81.3%, 8.8% and 9.9% of the autotetraploid genome, respectively. Our analyses identified 20,626 genes (69.18%) with four alleles and 9191 genes (30.82%) with one, two, or three alleles, suggesting post-polyploid allelic loss. Genes with allelic loss were found to occur more often in proximity to or within structural variations and exhibited a marked overlap with transposable elements. Additionally, such genes showed a reduced tendency to interact with other genes. We also found 102 genes with more than four copies in the autotetraploid genome, and their expression levels were significantly higher than their diploid counterparts. These genes were enriched in enzymes involved in stress response and plant defense, potentially contributing to the evolutionary success of autotetraploids. Our population genomic analyses suggested a single origin of autotetraploids and recent divergence (~ 0.57 Mya) from diploids, with minimal interploidy admixture. CONCLUSIONS Our results indicate the potential for genomic and functional reorganization, which may contribute to evolutionary success in autotetraploid C. paliurus.
Collapse
Affiliation(s)
- Rui-Min Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ning Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Liang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao-Xu Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lei Cao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi-Dan Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wei-Ping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Er-Li Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
13
|
Pakzad R, Fatehi F, Kalantar M, Maleki M. Proteomics approach to investigating osmotic stress effects on pistachio. FRONTIERS IN PLANT SCIENCE 2023; 13:1041649. [PMID: 36762186 PMCID: PMC9907329 DOI: 10.3389/fpls.2022.1041649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Osmotic stress can occur due to some stresses such as salinity and drought, threatening plant survival. To investigate the mechanism governing the pistachio response to this stress, the biochemical alterations and protein profile of PEG-treated plants was monitored. Also, we selected two differentially abundant proteins to validate via Real-Time PCR. Biochemical results displayed that in treated plants, proline and phenolic content was elevated, photosynthetic pigments except carotenoid decreased and MDA concentration were not altered. Our findings identified a number of proteins using 2DE-MS, involved in mitigating osmotic stress in pistachio. A total of 180 protein spots were identified, of which 25 spots were altered in response to osmotic stress. Four spots that had photosynthetic activities were down-regulated, and the remaining spots were up-regulated. The biological functional analysis of protein spots exhibited that most of them are associated with the photosynthesis and metabolism (36%) followed by stress response (24%). Results of Real-Time PCR indicated that two of the representative genes illustrated a positive correlation among transcript level and protein expression and had a similar trend in regulation of gene and protein. Osmotic stress set changes in the proteins associated with photosynthesis and stress tolerance, proteins associated with the cell wall, changes in the expression of proteins involved in DNA and RNA processing occur. Findings of this research will introduce possible proteins and pathways that contribute to osmotic stress and can be considered for improving osmotic tolerance in pistachio.
Collapse
Affiliation(s)
- Rambod Pakzad
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | - Mansour Kalantar
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
14
|
Ma D, Cai J, Ma Q, Wang W, Zhao L, Li J, Su L. Comparative time-course transcriptome analysis of two contrasting alfalfa ( Medicago sativa L.) genotypes reveals tolerance mechanisms to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1070846. [PMID: 36570949 PMCID: PMC9773191 DOI: 10.3389/fpls.2022.1070846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is a major abiotic stress affecting plant growth and crop yield. For the successful cultivation of alfalfa (Medicago sativa L.), a key legume forage, in saline-affected areas, it's essential to explore genetic modifications to improve salt-tolerance.Transcriptome assay of two comparative alfalfa genotypes, Adina and Zhaodong, following a 4 h and 8 h's 300 mM NaCl treatment was conducted in this study in order to investigate the molecular mechanism in alfalfa under salt stress conditions. Results showed that we obtained 875,023,571 transcripts and 662,765,594 unigenes were abtained from the sequenced libraries, and 520,091 assembled unigenes were annotated in at least one database. Among them, we identified 1,636 differentially expression genes (DEGs) in Adina, of which 1,426 were up-regulated and 210 down-regulated, and 1,295 DEGs in Zhaodong, of which 565 were up-regulated and 730 down-regulated. GO annotations and KEGG pathway enrichments of the DEGs based on RNA-seq data indicated that DEGs were involved in (1) ion and membrane homeostasis, including ABC transporter, CLC, NCX, and NHX; (2) Ca2+ sensing and transduction, including BK channel, EF-hand domain, and calmodulin binding protein; (3) phytohormone signaling and regulation, including TPR, FBP, LRR, and PP2C; (4) transcription factors, including zinc finger proteins, YABBY, and SBP-box; (5) antioxidation process, including GST, PYROX, and ALDH; (6) post-translational modification, including UCH, ubiquitin family, GT, MT and SOT. The functional roles of DEGs could explain the variations in salt tolerance performance observed between the two alfalfa genotypes Adina and Zhaodong. Our study widens the understanding of the sophisticated molecular response and tolerance mechanism to salt stress, providing novel insights on candidate genes and pathways for genetic modification involved in salt stress adaptation in alfalfa.
Collapse
Affiliation(s)
- Dongmei Ma
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jinjun Cai
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Qiaoli Ma
- Agricultural College, Ningxia University, Yinchuan, China
| | - Wenjing Wang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lijuan Zhao
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jiawen Li
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lina Su
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| |
Collapse
|
15
|
Phytochemistry Meets Geochemistry—Blumenol C Sulfate: A New Megastigmane Sulfate from Palicourea luxurians (Rubiaceae: Palicoureeae). Molecules 2022; 27:molecules27217284. [PMID: 36364108 PMCID: PMC9658315 DOI: 10.3390/molecules27217284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
There is a previously neglected influence of geochemical conditions on plant phytochemistry. In particular, high concentrations of dissolved salts can affect their biosynthesis of natural products. Detoxification is most likely an important aspect for the plant, but additional natural products can also give it an expanded range of bioactivities. During the phytochemical analysis a Palicourea luxurians plant collected in a sulfate-rich environment (near the Río Sucio, Costa Rica) showed an interesting natural product in this regard. The structure of this compound was determined using spectroscopic and computational methods (NMR, MS, UV, IR, CD, optical rotation, quantum chemical calculations) and resulted in a megastigmane sulfate ester possessing a β-ionone core structure, namely blumenol C sulfate (1, C13H22O5S). The levels of sulfur and sulfate ions in the leaves of the plant were determined using elemental analysis and compared to the corresponding levels in comparable plant leaves from a less sulfate-rich environments. The analyses show the leaves from which we isolated blumenol C sulfate (1) to contain 35% more sulfur and 80% more sulfate than the other samples. Antimicrobial and antioxidant activities of compound 1 were tested against Escherichia coli, E. coli ampR and Bacillus subtilis as well as measured using complementary in vitro FRAP and ATBS assays, respectively. These bioactivities are comparable to those determined for structurally related megastigmanes. The sulfur and sulfate content of the plant leaves from the sulfate-rich environment was significantly higher than that of the other plants. Against this background of salt stress, we discuss a possible biosynthesis of blumenol C sulfate (1). Furthermore, there appears to be no benefit for the plant in terms of extended bioactivities. Hence, the formation of blumenol C sulfate (1) probably primarily serves the plant detoxification process.
Collapse
|
16
|
Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022; 13:5434. [PMID: 36114189 PMCID: PMC9481576 DOI: 10.1038/s41467-022-33111-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023] Open
Abstract
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
Collapse
Affiliation(s)
- Yuda Chen
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shikai Jin
- grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Mengxi Zhang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yu Hu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Kuan-Lin Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Anna Chung
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shichao Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Zeru Tian
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yixian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Peter G. Wolynes
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Han Xiao
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005 USA
| |
Collapse
|
17
|
Law STS, Nong W, So WL, Baril T, Swale T, Chan CB, Tobe SS, Kai ZP, Bendena WG, Hayward A, Hui JHL. Chromosomal-level reference genome of the moth Heortia vitessoides (Lepidoptera: Crambidae), a major pest of agarwood-producing trees. Genomics 2022; 114:110440. [PMID: 35905835 DOI: 10.1016/j.ygeno.2022.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
The moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a major pest of ecologically, commercially and culturally important agarwood-producing trees in the genus Aquilaria. In particular, H. vitessoides is one of the most destructive defoliating pests of the incense tree Aquilaria sinesis, which produces a valuable fragrant wood used as incense and in traditional Chinese medicine [33]. Nevertheless, a genomic resource for H. vitessoides is lacking. Here, we present a chromosomal-level assembly for H. vitessoides, consisting of a 517 megabase (Mb) genome assembly with high physical contiguity (scaffold N50 of 18.2 Mb) and high completeness (97.9% complete BUSCO score). To aid gene annotation, 8 messenger RNA transcriptomes from different developmental stages were generated, and a total of 16,421 gene models were predicted. Expansion of gene families involved in xenobiotic metabolism and development were detected, including duplications of cytosolic sulfotransferase (SULT) genes shared among lepidopterans. In addition, small RNA sequencing of 5 developmental stages of H. vitessoides facilitated the identification of 85 lepidopteran conserved microRNAs, 94 lineage-specific microRNAs, as well as several microRNA clusters. A large proportion of the H. vitessoides genome consists of repeats, with a 29.12% total genomic contribution from transposable elements, of which long interspersed nuclear elements (LINEs) are the dominant component (17.41%). A sharp decrease in the genome-wide percentage of LINEs with lower levels of genetic distance to family consensus sequences suggests that LINE activity has peaked in H. vitessoides. In contrast, opposing patterns suggest a substantial recent increase in DNA and LTR element activity. Together with annotations of essential sesquiterpenoid hormonal pathways, neuropeptides, microRNAs and transposable elements, the high-quality genomic and transcriptomic resources we provide for the economically important moth H. vitessoides provide a platform for the development of genomic approaches to pest management, and contribute to addressing fundamental research questions in Lepidoptera.
Collapse
Affiliation(s)
- Sean T S Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | - Chi Bun Chan
- School of Biological Science, The University of Hong Kong, Hong Kong, China
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | | | | | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Supikova K, Kosinova A, Vavrusa M, Koplikova L, François A, Pospisil J, Zatloukal M, Wever R, Hartog A, Gruz J. Sulfated phenolic acids in plants. PLANTA 2022; 255:124. [PMID: 35562552 DOI: 10.1007/s00425-022-03902-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Sulfated phenolic acids are widely occurring metabolites in plants, including fruits, vegetables and crops. The untargeted UHPLC-QTOF-MS metabolomics of more than 50 samples from plant, fungi and algae lead to the discovery of a small group of sulfated metabolites derived from phenolic acids. These compounds were detected in land plants for the first time. In this study, zosteric acid, 4-(sulfooxy)benzoic acid, 4-(sulfoooxy)phenylacetic acid, ferulic acid 4-sulfate and/or vanillic acid 4-sulfate were detected in a number of edible species/products, including oat (Avena sativa L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), tomato (Solanum lycopersicum L.), carrot (Daucus carota subsp. Sativus Hoffm.), broccoli (Brassica oleracea var. Italica Plenck), celery (Apium graveolens L.), cabbage (Brassica oleracea convar. sabauda L.), banana tree (Musa tropicana L.), pineapple fruit (Ananas comosus L.), radish bulb (Raphanus sativus L.) and olive oil (Olea europaea L.). The structural identification of sulfated compounds was performed by comparing retention times and mass spectral data to those of synthesized standards. In addition to above-mentioned compounds, isoferulic acid 3-sulfate and caffeic acid 4-sulfate were putatively identified in celery bulb (Apium graveolens L.) and broccoli floret (Brassica oleracea var. Italica Plenck), respectively. While sulfated phenolic acids were quantified in concentrations ranging from 0.34 to 22.18 µg·g-1 DW, the corresponding non-sulfated acids were mostly undetected or present at lower concentrations. The subsequent analysis of oat symplast and apoplast showed that they are predominantly accumulated in the symplast (> 70%) where they are supposed to be biosynthesized by sulfotransferases.
Collapse
Affiliation(s)
- Klara Supikova
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Andrea Kosinova
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Martin Vavrusa
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Lucie Koplikova
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Anja François
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Jiri Pospisil
- Department of Chemical Biology, Palacky University, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Palacky University, Olomouc, Czech Republic
| | - Ron Wever
- Van 't Hoff Institute for Molecular Sciences, Universiteit Van Amsterdam, Amsterdam, Netherlands
| | - Aloysius Hartog
- Van 't Hoff Institute for Molecular Sciences, Universiteit Van Amsterdam, Amsterdam, Netherlands
| | - Jiri Gruz
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic.
| |
Collapse
|
19
|
El-Badri AM, Hashem AM, Batool M, Sherif A, Nishawy E, Ayaad M, Hassan HM, Elrewainy IM, Wang J, Kuai J, Wang B, Zheng S, Zhou G. Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. J Nanobiotechnology 2022; 20:163. [PMID: 35351148 PMCID: PMC8962572 DOI: 10.1186/s12951-022-01370-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 01/13/2023] Open
Abstract
Selenium nanoparticles (SeNPs) have attracted considerable attention globally due to their significant potential for alleviating abiotic stresses in plants. Accordingly, further research has been conducted to develop nanoparticles using chemical ways. However, our knowledge about the potential benefit or phytotoxicity of bioSeNPs in rapeseed is still unclear. Herein, we investigated the effect of bioSeNPs on growth and physiochemical attributes, and selenium detoxification pathways compared to sodium selenite (Se (IV)) during the early seedling stage under normal and salt stress conditions. Our findings showed that the range between optimal and toxic levels of bioSeNPs was wider than Se (IV), which increased the plant’s ability to reduce salinity-induced oxidative stress. BioSeNPs improved the phenotypic characteristics of rapeseed seedlings without the sign of toxicity, markedly elevated germination, growth, photosynthetic efficiency and osmolyte accumulation versus Se (IV) under normal and salt stress conditions. In addition to modulation of Na+ and K+ uptake, bioSeNPs minimized the ROS level and MDA content by activating the antioxidant enzymes engaged in ROS detoxification by regulating these enzyme-related genes expression patterns. Importantly, the main effect of bioSeNPs and Se (IV) on plant growth appeared to be correlated with the change in the expression levels of Se-related genes. Our qRT-PCR results revealed that the genes involved in Se detoxification in root tissue were upregulated upon Se (IV) treated seedlings compared to NPs, indicating that bioSeNPs have a slightly toxic effect under higher concentrations. Furthermore, bioSeNPs might improve lateral root production by increasing the expression level of LBD16. Taken together, transamination and selenation were more functional methods of Se detoxification and proposed different degradation pathways that synthesized malformed or deformed selenoproteins, which provided essential mechanisms to increase Se tolerance at higher concentrations in rapeseed seedlings. Current findings could add more knowledge regarding the mechanisms underlying bioSeNPs induced plant growth.
Collapse
Affiliation(s)
- Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ahmed M Hashem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ahmed Sherif
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Elsayed Nishawy
- Desert Research Center, Genetics Resource Department, Egyptian Deserts Gene Bank, Cairo, 11735, Egypt
| | - Mohammed Ayaad
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority, Abo Zaabal, Cairo, 13795, Egypt
| | - Hamada M Hassan
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ibrahim M Elrewainy
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Jing Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
20
|
Wang X, Jin S, Chang X, Li G, Zhang L, Jin S. Two interaction proteins between AtPHB6 and AtSOT12 regulate plant salt resistance through ROS signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:70-80. [PMID: 34773804 DOI: 10.1016/j.plaphy.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
In the past, the PHB gene function was mainly focused on anti-cell proliferation and antitumor effects. But the molecular mechanism of the PHB gene regarding saline and oxidative stresses is unclear. To study the role of AtPHB6 in salt and oxidative stress, AtPHB6 was cloned from A. thaliana. Bioinformatics analysis showed that AtPHB6 was closely related to AtPHB1 and AtPHB2, which are both type II PHB. RT-qPCR results indicated that the AtPHB6 in the leaves and roots of A. thaliana was obviously induced under different stress treatments. AtPHB6-overexpressing plants were larger and more lush than wild-type and mutant plants when placed under stress treatments during seed germination. The root length and fresh weight of AtPHB6 transgenic plants showed the best resistance compared to wild-type plants under different treatments, in contrast, the AtPHB6 mutants had the worst resistance during the seedling stage. AtSOT12 was an interacting protein of AtPHB6, which screened by yeast two-hybrid system. The interaction between the two proteins were further confirmed using in vitro pull-down experiments and in vivo BiFC experiments. Subcellular localization showed both AtPHB6 and AtSOT12 protein expressed in the nucleus and cytoplasm. The H2O2 content in both the transgenic AtPHB6 and AtSOT12 plants were lower than that in the wild type under stresses. Thus, AtPHB6 increased plant resistance to salt stress and interacted with the AtSOT12 protein.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shengxuan Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xu Chang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guanrong Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ling Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shumei Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
21
|
Yoda A, Mori N, Akiyama K, Kikuchi M, Xie X, Miura K, Yoneyama K, Sato‐Izawa K, Yamaguchi S, Yoneyama K, Nelson DC, Nomura T. Strigolactone biosynthesis catalyzed by cytochrome P450 and sulfotransferase in sorghum. THE NEW PHYTOLOGIST 2021; 232:1999-2010. [PMID: 34525227 PMCID: PMC9292024 DOI: 10.1111/nph.17737] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/05/2021] [Indexed: 05/19/2023]
Abstract
Root parasitic plants such as Striga, Orobanche, and Phelipanche spp. cause serious damage to crop production world-wide. Deletion of the Low Germination Stimulant 1 (LGS1) gene gives a Striga-resistance trait in sorghum (Sorghum bicolor). The LGS1 gene encodes a sulfotransferase-like protein, but its function has not been elucidated. Since the profile of strigolactones (SLs) that induce seed germination in root parasitic plants is altered in the lgs1 mutant, LGS1 is thought to be an SL biosynthetic enzyme. In order to clarify the enzymatic function of LGS1, we looked for candidate SL substrates that accumulate in the lgs1 mutants and performed in vivo and in vitro metabolism experiments. We found the SL precursor 18-hydroxycarlactonoic acid (18-OH-CLA) is a substrate for LGS1. CYP711A cytochrome P450 enzymes (SbMAX1 proteins) in sorghum produce 18-OH-CLA. When LGS1 and SbMAX1 coding sequences were co-expressed in Nicotiana benthamiana with the upstream SL biosynthesis genes from sorghum, the canonical SLs 5-deoxystrigol and 4-deoxyorobanchol were produced. This finding showed that LGS1 in sorghum uses a sulfo group to catalyze leaving of a hydroxyl group and cyclization of 18-OH-CLA. A similar SL biosynthetic pathway has not been found in other plant species.
Collapse
Affiliation(s)
- Akiyoshi Yoda
- Department of Biological Production ScienceUnited Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyo183‐8509Japan
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
| | - Narumi Mori
- Department of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversityOsaka599‐8531Japan
| | - Kohki Akiyama
- Department of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversityOsaka599‐8531Japan
| | - Mayu Kikuchi
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
| | - Xiaonan Xie
- Department of Biological Production ScienceUnited Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyo183‐8509Japan
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
| | - Kenji Miura
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukuba305‐8572Japan
| | - Kaori Yoneyama
- Graduate School of AgricultureEhime UniversityEhime790‐8566Japan
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
| | - Kanna Sato‐Izawa
- Department of BioscienceFaculty of Life SciencesTokyo University of AgricultureTokyo156‐8502Japan
| | | | - Koichi Yoneyama
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
- Women’s Future Development CenterEhime UniversityEhime790‐8566Japan
| | - David C. Nelson
- Department of Botany & Plant SciencesUniversity of CaliforniaRiversideCA92521USA
| | - Takahito Nomura
- Department of Biological Production ScienceUnited Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyo183‐8509Japan
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
| |
Collapse
|
22
|
Xu X, Meng X, Zhang N, Jiang H, Ge H, Qian K, Wang J. The cytosolic sulfotransferase gene TcSULT1 is involved in deltamethrin tolerance and regulated by CncC in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104905. [PMID: 34301366 DOI: 10.1016/j.pestbp.2021.104905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The sulfuryl transfer reaction catalyzed by cytosolic sulfotransferase (SULT) is one of the major conjugating pathways responsible for the detoxification and subsequent elimination of xenobiotics, however, functional characterization of insect SULTs is still limited. In this study, cDNA encoding a cytosolic sulfotransferase, named TcSULT1, was cloned from the red flour beetle, Tribolium castaneum. Sequence analysis revealed that TcSULT1 had the conserved signature sequences of SULTs, and shared moderate amino acid identities with Bombyx mori and Drosophila SULTs. Analysis of the transcription level showed that TcSULT1 was highly expressed in head, epidermis and malpighian tube, and upregulated at 4 h after exposure to deltamethrin. Knockdown of TcSULT1 significantly increased the susceptibility of beetles to deltamethrin. Both RNAi and dual-luciferase assay revealed that the transcription factor TcCncC regulates the expression of TcSULT1. These data provides insights into the function and regulatory mechanism of insect SULTs.
Collapse
Affiliation(s)
- Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Huichen Ge
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Ahn E, Prom LK, Hu Z, Odvody G, Magill C. Genome-wide association analysis for response of Senegalese sorghum accessions to Texas isolates of anthracnose. THE PLANT GENOME 2021; 14:e20097. [PMID: 33900689 DOI: 10.1002/tpg2.20097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Anthracnose disease of sorghum is caused by Colletotrichum sublineola, a filamentous fungus. The genetic basis of resistance to anthracnose in sorghum is largely unclear, especially in Senegalese sorghum germplasm. In this study, 163 Senegalese sorghum accessions were evaluated for response to C. sublineola, and a genome-wide association study (GWAS) was performed to identify genetic variation associated with response to C. sublineola using 193,727 single nucleotide polymorphisms (SNPs) throughout the genome. Germplasm diversity analysis showed low genetic diversity and slow linkage disequilibrium (LD) decay among the Senegalese accessions. Phenotypic analysis resulted in relatively low differences to C. sublineola among the tested population. Genome-wide association study did not identify any significant association based on a strict threshold for the number of SNPs available. However, individual analysis of the top eight SNPs associated with relative susceptibility and resistance identified candidate genes that have been shown to play important roles in plant stress tolerance in previous studies. This study identifies sorghum genes whose annotated properties have known roles in host defense and thus identify them as candidates for use in breeding for resistance to anthracnose.
Collapse
Affiliation(s)
- Ezekiel Ahn
- Dep. of Plant Pathology & Microbiology, Texas A&M Univ., College Station, TX, 77843, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX, 77845, USA
| | - Zhenbin Hu
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Gary Odvody
- Texas A&M AgriLife Research, Corpus Christi, TX, 78406, USA
| | - Clint Magill
- Dep. of Plant Pathology & Microbiology, Texas A&M Univ., College Station, TX, 77843, USA
| |
Collapse
|
24
|
González A, Vidal C, Espinoza D, Moenne A. Anthracene induces oxidative stress and activation of antioxidant and detoxification enzymes in Ulva lactuca (Chlorophyta). Sci Rep 2021; 11:7748. [PMID: 33833321 PMCID: PMC8032757 DOI: 10.1038/s41598-021-87147-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
In order to analyze whether the marine macroalga Ulva lactuca can absorb and metabolize anthracene (ANT), the alga was cultivated with 5 µM ANT for 0-72 h, and the level of ANT was detected in the culture medium, and in the alga. The level of ANT rapidly decreased in the culture medium reaching a minimal level at 6 h, and rapidly increased in the alga reaching a maximal level at 12 h and then decreased to reach a minimal level at 48 h of culture. In addition, ANT induced an increase in hydrogen peroxide that remained until 72 h and a higher increase in superoxide anions that reach a maximal level at 24 h and remained unchanged until 72 h, indicating that ANT induced an oxidative stress condition. ANT induced an increase in lipoperoxides that reached a maximal level at 24 h and decreased at 48 h indicating that oxidative stress caused membrane damage. The activity of antioxidant enzymes SOD, CAT, AP, GR and GP increased in the alga treated with ANT whereas DHAR remained unchanged. The level of transcripts encoding these antioxidant enzymes increased and those encoding DHAR did not change. Inhibitors of monooxygenases, dioxygenases, polyphenol oxidases, glutathione-S-transferases and sulfotransferases induced an increase in the level of ANT in the alga cultivated for 24 h. These results strongly suggest that ANT is rapidly absorbed and metabolized in U. lactuca and the latter involves Phase I and II metabolizing enzymes.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Constanza Vidal
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Daniela Espinoza
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
25
|
A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO 2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora. Int J Mol Sci 2021; 22:ijms22063125. [PMID: 33803866 PMCID: PMC8003141 DOI: 10.3390/ijms22063125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 °C and at two supra-optimal temperatures (37 °C, 42 °C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 °C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 °C. Although eCO2 helped to release stress, 42 °C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42°C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 °C) than previously assumed.
Collapse
|
26
|
Plant Allelochemicals as Sources of Insecticides. INSECTS 2021; 12:insects12030189. [PMID: 33668349 PMCID: PMC7996276 DOI: 10.3390/insects12030189] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
In this review, we describe the role of plant-derived biochemicals that are toxic to insect pests. Biotic stress in plants caused by insect pests is one of the most significant problems, leading to yield losses. Synthetic pesticides still play a significant role in crop protection. However, the environmental side effects and health issues caused by the overuse or inappropriate application of synthetic pesticides forced authorities to ban some problematic ones. Consequently, there is a strong necessity for novel and alternative insect pest control methods. An interesting source of ecological pesticides are biocidal compounds, naturally occurring in plants as allelochemicals (secondary metabolites), helping plants to resist, tolerate or compensate the stress caused by insect pests. The abovementioned bioactive natural products are the first line of defense in plants against insect herbivores. The large group of secondary plant metabolites, including alkaloids, saponins, phenols and terpenes, are the most promising compounds in the management of insect pests. Secondary metabolites offer sustainable pest control, therefore we can conclude that certain plant species provide numerous promising possibilities for discovering novel and ecologically friendly methods for the control of numerous insect pests.
Collapse
|
27
|
Global transcriptome changes of elongating internode of sugarcane in response to mepiquat chloride. BMC Genomics 2021; 22:79. [PMID: 33494722 PMCID: PMC7831198 DOI: 10.1186/s12864-020-07352-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background Mepiquat chloride (DPC) is a chemical that is extensively used to control internode growth and create compact canopies in cultured plants. Previous studies have suggested that DPC could also inhibit gibberellin biosynthesis in sugarcane. Unfortunately, the molecular mechanism underlying the suppressive effects of DPC on plant growth is still largely unknown. Results In the present study, we first obtained high-quality long transcripts from the internodes of sugarcane using the PacBio Sequel System. A total of 72,671 isoforms, with N50 at 3073, were generated. These long isoforms were used as a reference for the subsequent RNA-seq. Afterwards, short reads generated from the Illumina HiSeq 4000 platform were used to compare the differentially expressed genes in both the DPC and the control groups. Transcriptome profiling showed that most significant gene changes occurred after six days post DPC treatment. These genes were related to plant hormone signal transduction and biosynthesis of several metabolites, indicating that DPC affected multiple pathways, in addition to suppressing gibberellin biosynthesis. The network of DPC on the key stage was illustrated by weighted gene co-expression network analysis (WGCNA). Among the 36 constructed modules, the top positive correlated module, at the stage of six days post spraying DPC, was sienna3. Notably, Stf0 sulfotransferase, cyclin-like F-box, and HOX12 were the hub genes in sienna3 that had high correlation with other genes in this module. Furthermore, the qPCR validated the high accuracy of the RNA-seq results. Conclusion Taken together, we have demonstrated the key role of these genes in DPC-induced growth inhibition in sugarcane. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07352-w.
Collapse
|
28
|
Wu S, Li Y. A Unique Sulfotransferase-Involving Strigolactone Biosynthetic Route in Sorghum. FRONTIERS IN PLANT SCIENCE 2021; 12:793459. [PMID: 34970291 PMCID: PMC8713700 DOI: 10.3389/fpls.2021.793459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
LOW GERMINATION STIMULANT 1 (LGS1) plays an important role in strigolactones (SLs) biosynthesis and Striga resistance in sorghum, but the catalytic function remains unclear. Using the recently developed SL-producing microbial consortia, we examined the activities of sorghum MORE AXILLARY GROWTH1 (MAX1) analogs and LGS1. Surprisingly, SbMAX1a (cytochrome P450 711A enzyme in sorghum) synthesized 18-hydroxy-carlactonoic acid (18-hydroxy-CLA) directly from carlactone (CL) through four-step oxidations. The further oxidated product orobanchol (OB) was also detected in the microbial consortium. Further addition of LGS1 led to the synthesis of both 5-deoxystrigol (5DS) and 4-deoxyorobanchol (4DO). Further biochemical characterization found that LGS1 functions after SbMAX1a by converting 18-hydroxy-CLA to 5DS and 4DO possibly through a sulfonation-mediated pathway. The unique functions of SbMAX1 and LGS1 imply a previously unknown synthetic route toward SLs.
Collapse
|
29
|
Xie L, Xiao D, Wang X, Wang C, Bai J, Yue Q, Yue H, Li Y, Molnár I, Xu Y, Zhang L. Combinatorial Biosynthesis of Sulfated Benzenediol Lactones with a Phenolic Sulfotransferase from Fusarium graminearum PH-1. mSphere 2020; 5:e00949-20. [PMID: 33239367 PMCID: PMC7690957 DOI: 10.1128/msphere.00949-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Total biosynthesis or whole-cell biocatalytic production of sulfated small molecules relies on the discovery and implementation of appropriate sulfotransferase enzymes. Although fungi are prominent biocatalysts and have been used to sulfate drug-like phenolics, no gene encoding a sulfotransferase enzyme has been functionally characterized from these organisms. Here, we identify a phenolic sulfotransferase, FgSULT1, by genome mining from the plant-pathogenic fungus Fusarium graminearum PH-1. We expressed FgSULT1 in a Saccharomyces cerevisiae chassis to modify a broad range of benzenediol lactones and their nonmacrocyclic congeners, together with an anthraquinone, with the resulting unnatural natural product (uNP) sulfates displaying increased solubility. FgSULT1 shares low similarity with known animal and plant sulfotransferases. Instead, it forms a sulfotransferase family with putative bacterial and fungal enzymes for phase II detoxification of xenobiotics and allelochemicals. Among fungi, putative FgSULT1 homologues are encoded in the genomes of Fusarium spp. and a few other genera in nonsyntenic regions, some of which may be related to catabolic sulfur recycling. Computational structure modeling combined with site-directed mutagenesis revealed that FgSULT1 retains the key catalytic residues and the typical fold of characterized animal and plant sulfotransferases. Our work opens the way for the discovery of hitherto unknown fungal sulfotransferases and provides a synthetic biological and enzymatic platform that can be adapted to produce bioactive sulfates, together with sulfate ester standards and probes for masked mycotoxins, precarcinogenic toxins, and xenobiotics.IMPORTANCE Sulfation is an expedient strategy to increase the solubility, bioavailability, and bioactivity of nutraceuticals and clinically important drugs. However, chemical or biological synthesis of sulfoconjugates is challenging. Genome mining, heterologous expression, homology structural modeling, and site-directed mutagenesis identified FgSULT1 of Fusarium graminearum PH-1 as a cytosolic sulfotransferase with the typical fold and active site architecture of characterized animal and plant sulfotransferases, despite low sequence similarity. FgSULT1 homologues are sparse in fungi but form a distinct clade with bacterial sulfotransferases. This study extends the functionally characterized sulfotransferase superfamily to the kingdom Fungi and demonstrates total biosynthetic and biocatalytic synthetic biological platforms to produce unnatural natural product (uNP) sulfoconjugates. Such uNP sulfates may be utilized for drug discovery in human and veterinary medicine and crop protection. Our synthetic biological methods may also be adapted to generate masked mycotoxin standards for food safety and environmental monitoring applications and to expose precarcinogenic xenobiotics.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Dongliang Xiao
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaojing Wang
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jing Bai
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Haitao Yue
- Department of Biology and Biotechnology, Xinjiang University, Urumqi, People's Republic of China
| | - Ye Li
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- National Engineering Lab for Cereal Fermentation Technology, Jiangnan University, Wuxi, People's Republic of China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
30
|
Landi S, Esposito S. Bioinformatic Characterization of Sulfotransferase Provides New Insights for the Exploitation of Sulfated Polysaccharides in Caulerpa. Int J Mol Sci 2020; 21:ijms21186681. [PMID: 32932673 PMCID: PMC7554865 DOI: 10.3390/ijms21186681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Caulerpa is an unusual algal genus from Caulerpaceae (Chlorophyta, Bryopsidales). Species from this family produce a wide range of metabolites suitable for biotechnology applications. Among these, sulfated polysaccharides (SPs) are often highly desirable for pharmaceutical and nutraceutical applications. Here, we provide a classification of sulfotransferases from Caulerpa; these important enzymes catalyze the nodal step for the biosynthesis of SPs. For this, we performed phylogenetic, genomic, expression analyses and prediction of the protein structure on sulfotransferases from Caulerpa. Sequences, domains and structures of sulfotransferases generally shared common characteristics with other plants and algae. However, we found an extensive duplication of sulfotransferase gene family, which is unique among the green algae. Expression analysis revealed specific transcript abundance in the pinnae and rachis of the alga. The unique genomic features could be utilized for the production of complex SPs, which require multiple and specific sulfation reactions. The expansion of this gene family in Caulerpaceae would have resulted in a number of proteins characterizing the unique SPs found in these algae. We provide a putative biosynthetic pathway of SPs, indicating the unique characteristics of this pathway in Caulerpa species. These data may help in the future selection of Caulerpa species for both commercial applications and genetic studies to improve the synthesis of valuable products from Caulerpa.
Collapse
|
31
|
Lu C, Shao Z, Zhang P, Duan D. Genome-wide analysis of the Saccharina japonica sulfotransferase genes and their transcriptional profiles during whole developmental periods and under abiotic stresses. BMC PLANT BIOLOGY 2020; 20:271. [PMID: 32527219 PMCID: PMC7291590 DOI: 10.1186/s12870-020-02422-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/29/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND As a unique sulfated polysaccharide, fucoidan is an important component of cell wall in brown seaweeds. Its biochemical properties are determined by the positions and quantity of sulfate groups. Sulfotransferases (STs) catalyze the sulfation process, which transfer the sulfuryl groups to carbohydrate backbones and are crucial for fucoidan biosynthesis. Nevertheless, the structures and functions of STs in brown seaweeds are rarely investigated. RESULTS There are a total of 44 ST genes identified from our genome and transcriptome analysis of Saccharina japonica, which were located in the 17 scaffolds and 11 contigs. The S. japonica ST genes have abundant introns and alternative splicing sites, and five tandem duplicated gene clusters were identified. Generally, the ST genes could be classified into five groups (Group I ~ V) based on phylogenetic analysis. Accordingly, the ST proteins, which were encoded by genes within the same group, contained similar conserved motifs. Members of the S. japonica ST gene family show various expression patterns in different tissues and developmental stages. Transcriptional profiles indicate that the transcriptional levels of more than half of the ST genes are higher in kelp basal blades than in distal blades. Except for ST5 and ST28, most ST genes are down-regulated with the kelp development stages. The expression levels of nine ST genes were detected by real-time quantitative PCR, which demonstrates that they responded to low salinity and drought stresses. CONCLUSIONS Various characteristics of the STs allow the feasibilities of S. japonica to synthesize fucoidans with different sulfate groups. This enables the kelp the potential to adapt to the costal environments and meet the needs of S. japonica growth.
Collapse
Affiliation(s)
- Chang Lu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 P. R. China
| | - Pengyan Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 P. R. China
- Division of Mariculture Ecology and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 P. R. China
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co Ltd, Qingdao, 266400 P. R. China
| |
Collapse
|
32
|
Lackus ND, Müller A, Kröber TDU, Reichelt M, Schmidt A, Nakamura Y, Paetz C, Luck K, Lindroth RL, Constabel CP, Unsicker SB, Gershenzon J, Köllner TG. The Occurrence of Sulfated Salicinoids in Poplar and Their Formation by Sulfotransferase1. PLANT PHYSIOLOGY 2020; 183:137-151. [PMID: 32098786 PMCID: PMC7210634 DOI: 10.1104/pp.19.01447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/16/2020] [Indexed: 05/23/2023]
Abstract
Salicinoids form a specific class of phenolic glycosides characteristic of the Salicaceae. Although salicinoids accumulate in large amounts and have been shown to be involved in plant defense, their biosynthesis is unclear. We identified two sulfated salicinoids, salicin-7-sulfate and salirepin-7-sulfate, in black cottonwood (Populus trichocarpa). Both compounds accumulated in high amounts in above-ground tissues including leaves, petioles, and stems, but were also found at lower concentrations in roots. A survey of salicin-7-sulfate and salirepin-7-sulfate in a subset of poplar (Populus sp.) and willow (Salix sp.) species revealed a broader distribution within the Salicaceae. To elucidate the formation of these compounds, we studied the sulfotransferase (SOT) gene family in P trichocarpa (PtSOT). One of the identified genes, PtSOT1, was shown to encode an enzyme able to convert salicin and salirepin into salicin-7-sulfate and salirepin-7-sulfate, respectively. The expression of PtSOT1 in different organs of P trichocarpa matched the accumulation of sulfated salicinoids in planta. Moreover, RNA interference-mediated knockdown of SOT1 in gray poplar (Populus × canescens) resulted in decreased levels of sulfated salicinoids in comparison to wild-type plants, indicating that SOT1 is responsible for their formation in planta. The presence of a nonfunctional SOT1 allele in black poplar (Populus nigra) was shown to correlate with the absence of salicin-7-sulfate and salirepin-7-sulfate in this species. Food choice experiments with leaves from wild-type and SOT1 knockdown trees suggest that sulfated salicinoids do not affect the feeding preference of the generalist caterpillar Lymantria dispar A potential role of the sulfated salicinoids in sulfur storage and homeostasis is discussed.
Collapse
Affiliation(s)
- Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Andrea Müller
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tabea D U Kröber
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yoko Nakamura
- Nuclear Magnetic Resonance Department, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Christian Paetz
- Nuclear Magnetic Resonance Department, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - C Peter Constabel
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
33
|
Koudounas K. Sulfotransferase1 Is the Enzymatic Hub of Sulfated Salicinoids in Poplar. PLANT PHYSIOLOGY 2020; 183:13-14. [PMID: 32385174 PMCID: PMC7210657 DOI: 10.1104/pp.20.00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Konstantinos Koudounas
- Assistant Features Editor
- EA2106-Biomolecules and Plant Biotechnology, University of Tours, 37200 Tours, France
| |
Collapse
|
34
|
Fernández-Milmanda GL, Crocco CD, Reichelt M, Mazza CA, Köllner TG, Zhang T, Cargnel MD, Lichy MZ, Fiorucci AS, Fankhauser C, Koo AJ, Austin AT, Gershenzon J, Ballaré CL. A light-dependent molecular link between competition cues and defence responses in plants. NATURE PLANTS 2020; 6:223-230. [PMID: 32170284 DOI: 10.1038/s41477-020-0604-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/22/2020] [Indexed: 05/19/2023]
Abstract
Growth responses to competition1 and defence responses to the attack of consumer organisms2 are two classic examples of adaptive phenotypic plasticity in plants. However, the mechanistic and functional links between these responses are not well understood. Jasmonates, a family of lipid-derived signals, are potent growth inhibitors and central regulators of plant immunity to herbivores and pathogens3,4, with both roles being evolutionarily conserved from bryophytes5 to angiosperms6. When shade-intolerant plants perceive the proximity of competitors using the photoreceptor phytochrome B, they activate the shade-avoidance syndrome and downregulate jasmonate responses7. Despite the central implications of this light-mediated change in the growth/defence balance for plant adaptation and crop yield8,9, the mechanisms by which photoreceptors relay light cues to the jasmonate signalling pathway remain poorly understood10. Here, we identify a sulfotransferase (ST2a) that is strongly upregulated by plant proximity perceived by phytochrome B via the phytochrome B-phytochrome interacting factor signalling module. By catalysing the formation of a sulfated jasmonate derivative, ST2a acts to reduce the pool of precursors of active forms of jasmonates and represents a direct molecular link between photoreceptors and hormone signalling in plants. The metabolic step defined by this enzyme provides a molecular mechanism for prioritizing shade avoidance over defence under intense plant competition.
Collapse
Affiliation(s)
| | - Carlos D Crocco
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Carlos A Mazza
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Tong Zhang
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- College of Agriculture, South China Agricultural University, Guangdong, China
| | - Miriam D Cargnel
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Z Lichy
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anne-Sophie Fiorucci
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, Lausanne, Switzerland
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Amy T Austin
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina.
- IIBIO, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Benninghaus VA, van Deenen N, Müller B, Roelfs KU, Lassowskat I, Finkemeier I, Prüfer D, Schulze Gronover C. Comparative proteome and metabolome analyses of latex-exuding and non-exuding Taraxacum koksaghyz roots provide insights into laticifer biology. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1278-1293. [PMID: 31740929 PMCID: PMC7031084 DOI: 10.1093/jxb/erz512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Taraxacum koksaghyz has been identified as one of the most promising alternative rubber crops. Its high-quality rubber is produced in the latex of laticifers, a specialized cell type that is organized in a network of elongated tubules throughout the entire plant body. In order to gain insights into the physiological role(s) of latex and hence laticifer biology, we examine the effects of barnase-induced latex RNA degradation on the metabolite and protein compositions in the roots. We established high-quality datasets that enabled precise discrimination between cellular and physiological processes in laticifers and non-laticifer cell types of roots at different vegetative stages. We identified numerous latex-specific proteins, including a perilipin-like protein that has not been studied in plants yet. The barnase-expressing plants revealed a phenotype that did not exude latex, which may provide a valuable genetic basis for future studies of plant-environment interactions concerning latex and also help to clarify the evolution and arbitrary distribution of latex throughout the plant kingdom. The overview of temporal changes in composition and protein abundance provided by our data opens the way for a deeper understanding of the molecular interactions, reactions, and network relationships that underlie the different metabolic pathways in the roots of this potential rubber crop.
Collapse
Affiliation(s)
| | - Nicole van Deenen
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Muenster, Germany
| | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Muenster, Germany
| | - Ines Lassowskat
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Muenster, Germany
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | | |
Collapse
|
36
|
Pariasca-Tanaka J, Baertschi C, Wissuwa M. Identification of Loci Through Genome-Wide Association Studies to Improve Tolerance to Sulfur Deficiency in Rice. FRONTIERS IN PLANT SCIENCE 2020; 10:1668. [PMID: 32010158 PMCID: PMC6975283 DOI: 10.3389/fpls.2019.01668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/27/2019] [Indexed: 06/01/2023]
Abstract
Sulfur (S) is an essential nutrient for plant growth and development; however, S supply for crop production is decreasing due to reduced inputs from atmospheric deposition and reduced application of S-containing fertilizers. Sulfur deficiency in soil is therefore becoming a widespread cause of reduced grain yield and quality in rice (Oryza sativa L). We therefore assessed the genotypic variation for tolerance to S deficiency in rice and identified loci associated with improved tolerance. Plants were grown in nutrient solution with either low (0.01 mM) or high (1.0 mM) supply of S. Plants grown under low-S treatment showed a reduction in total biomass, mainly due to a marked reduction in shoot biomass, while root biomass and root-to-shoot ratio increased, relative to plants under high-S treatment. Genome-wide association studies (GWAS) identified loci associated with root length (qSUE2-3, qSUE4, and qSUE9), and root (qSUE1, qSUE2-1, and qSUE3-1 and qSUE3-2) or total dry matter (qSUE2, qSUE3-1, and qSUE11). Candidate genes identified at associated loci coded for enzymes involved in secondary S metabolic pathways (sulfotransferases), wherein the sulfated compounds play several roles in plant responses to abiotic stress; cell wall metabolism including wall loosening and modification (carbohydrate hydrolases: beta-glucosidase and beta-gluconase) important for root growth; and cell detoxification (glutathione S-transferase). This study confirmed the existence of genetic variation conferring tolerance to S deficiency among traditional aus rice varieties. The advantageous haplotypes identified could be exploited through marker assisted breeding to improve tolerance to S-deficiency in modern cultivars in order to achieve sustainable crop production and food security.
Collapse
|
37
|
Knollenberg BJ, Li GX, Lambert JD, Maximova SN, Guiltinan MJ. Clovamide, a Hydroxycinnamic Acid Amide, Is a Resistance Factor Against Phytophthora spp. in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2020; 11:617520. [PMID: 33424909 PMCID: PMC7786005 DOI: 10.3389/fpls.2020.617520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/04/2020] [Indexed: 05/13/2023]
Abstract
The hydroxycinnamic acid amides (HCAAs) are a diverse group of plant-specialized phenylpropanoid metabolites distributed widely in the plant kingdom and are known to be involved in tolerance to abiotic and biotic stress. The HCAA clovamide is reported in a small number of distantly related species. To explore the contribution of specialized metabolites to disease resistance in cacao (Theobroma cacao L., chocolate tree), we performed untargeted metabolomics using liquid chromatography - tandem mass spectrometry (LC-MS/MS) and compared the basal metabolite profiles in leaves of two cacao genotypes with contrasting levels of susceptibility to Phytophthora spp. Leaves of the tolerant genotype 'Scavina 6' ('Sca6') were found to accumulate dramatically higher levels of clovamide and several other HCAAs compared to the susceptible 'Imperial College Selection 1' ('ICS1'). Clovamide was the most abundant metabolite in 'Sca6' leaf extracts based on MS signal, and was up to 58-fold higher in 'Sca6' than in 'ICS1'. In vitro assays demonstrated that clovamide inhibits growth of three pathogens of cacao in the genus Phytophthora, is a substrate for cacao polyphenol oxidase, and is a contributor to enzymatic browning. Furthermore, clovamide inhibited proteinase and pectinase in vitro, activities associated with defense in plant-pathogen interactions. Fruit epidermal peels from both genotypes contained substantial amounts of clovamide, but two sulfated HCAAs were present at high abundance exclusively in 'Sca6' suggesting a potential functional role of these compounds. The potential to breed cacao with increased HCAAs for improved agricultural performance is discussed.
Collapse
Affiliation(s)
- Benjamin J. Knollenberg
- Plant Biology PhD Program ‐ Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
| | - Guo-Xing Li
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Joshua D. Lambert
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan,
| |
Collapse
|
38
|
Wang L, Liu X, Wang X, Pan Z, Geng X, Chen B, Liu B, Du X, Song X. Identification and characterization analysis of sulfotransferases (SOTs) gene family in cotton (Gossypium) and its involvement in fiber development. BMC PLANT BIOLOGY 2019; 19:595. [PMID: 31888489 PMCID: PMC6938023 DOI: 10.1186/s12870-019-2190-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/08/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Sulfotransferases (SOTs) (EC 2.8.2.-) play a crucial role in the sulphate conjugation reaction involved in plant growth, vigor, stress resistance and pathogen infection. SOTs in Arabidopsis have been carried out and divided into 8 groups. However, the systematic analysis and functional information of SOT family genes in cotton have rarely been reported. RESULTS According to the results of BLASTP and HMMER, we isolated 46, 46, 76 and 77 SOT genes in the genome G. arboreum, G. raimondii, G. barbadense and G. hirsutum, respectively. A total of 170 in 245 SOTs were further classified into four groups based on the orthologous relationships comparing with Arabidopsis, and tandem replication primarily contributed to the expansion of SOT gene family in G. hirsutum. Expression profiles of the GhSOT showed that most genes exhibited a high level of expression in the stem, leaf, and the initial stage of fiber development. The localization analysis indicated that GhSOT67 expressed in cytoplasm and located in stem and leaf tissue. Additionally, the expression of GhSOT67 were induced and the length of stem and leaf hairs were shortened after gene silencing mediated by Agrobacterium, compared with the blank and negative control plants. CONCLUSIONS Our findings indicated that SOT genes might be associated with fiber development in cotton and provided valuable information for further studies of SOT genes in Gossypium.
Collapse
Affiliation(s)
- Liyuan Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, 271018, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiyan Liu
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, 271018, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baoshen Liu
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, 271018, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianliang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
39
|
Stuchlíková LR, Jakubec P, Langhansová L, Podlipná R, Navrátilová M, Szotáková B, Skálová L. The uptake, effects and biotransformation of monepantel in meadow plants used as a livestock feed. CHEMOSPHERE 2019; 237:124434. [PMID: 31374394 DOI: 10.1016/j.chemosphere.2019.124434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Drugs are potentially dangerous environmental contaminants, as they are designed to have biological effects at low concentrations. Monepantel (MOP), an amino-acetonitrile derivative, is frequently used veterinary anthelmintics, but information about MOP environmental circulation and impact is almost non-existent. We studied the phytotoxicity, uptake and biotransformation of MOP in two fodder plants, Plantago lanceolata and Medicago sativa. The seeds and whole plant regenerants were cultivated with MOP. The plant roots and the leaves were collected after 1, 2, 3, 4, 5 and 6 weeks of cultivation. The lengths of roots and proline concentrations in the roots and leaves were measured to evaluate MOP phytotoxicity. The UHPLC-MS/MS technique with a Q-TOF mass analyser was used for the identification and semi-quantification of MOP and its metabolites. Our results showed no phytotoxicity of MOP. However, both plants were able to uptake, transport and metabolize MOP. Comparing both plants, the uptake of MOP was much more extensive in Medicago sativa (almost 10-times) than in Plantago lanceolate. Moreover, 9 various metabolites of MOP were detected in Medicago sativa, while only 7 MOP metabolites were found in Plantago lanceolata. Based on metabolites structures, scheme of the metabolic pathways of MOP in both plants was proposed. MOP and its main metabolite (MOP sulfone), both anthelmintically active, were present not only in roots but also in leaves that can be consumed by animals. This indicates the potential for undesirable circulation of MOP in the environment, which could lead to many pharmacological and toxicological consequences.
Collapse
Affiliation(s)
- Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Pavel Jakubec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Langhansová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Lysolaje, Czech Republic.
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Lysolaje, Czech Republic.
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
40
|
Ledesma-Ramírez L, Solís-Moya E, Iturriaga G, Sehgal D, Reyes-Valdes MH, Montero-Tavera V, Sansaloni CP, Burgueño J, Ortiz C, Aguirre-Mancilla CL, Ramírez-Pimentel JG, Vikram P, Singh S. GWAS to Identify Genetic Loci for Resistance to Yellow Rust in Wheat Pre-Breeding Lines Derived From Diverse Exotic Crosses. FRONTIERS IN PLANT SCIENCE 2019; 10:1390. [PMID: 31781137 PMCID: PMC6831551 DOI: 10.3389/fpls.2019.01390] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/08/2019] [Indexed: 05/05/2023]
Abstract
Yellow rust (YR) or stripe rust, caused by Puccinia striformis f. sp tritici Eriks (Pst), is a major challenge to resistance breeding in wheat. A genome wide association study (GWAS) was performed using 22,415 single nucleotide polymorphism (SNP) markers and 591 haplotypes to identify genomic regions associated with resistance to YR in a subset panel of 419 pre-breeding lines (PBLs) developed at International Center for Maize and Wheat Improvement (CIMMYT). The 419 PBLs were derived from an initial set of 984 PBLs generated by a three-way crossing scheme (exotic/elite1//elite2) among 25 best elites and 244 exotics (synthetics, landraces) from CIMMYT's germplasm bank. For the study, 419 PBLs were characterized with 22,415 high-quality DArTseq-SNPs and phenotyped for severity of YR disease at five locations in Mexico. A population structure was evident in the panel with three distinct subpopulations, and a genome-wide linkage disequilibrium (LD) decay of 2.5 cM was obtained. Across all five locations, 14 SNPs and 7 haplotype blocks were significantly (P < 0.001) associated with the disease severity explaining 6.0 to 14.1% and 7.9 to 19.9% of variation, respectively. Based on average LD decay of 2.5 cM, identified 14 SNP-trait associations were delimited to seven quantitative trait loci in total. Seven SNPs were part of the two haplotype blocks on chromosome 2A identified in haplotypes-based GWAS. In silico analysis of the identified SNPs showed hits with interesting candidate genes, which are related to pathogenic process or known to regulate induction of genes related to pathogenesis such as those coding for glunolactone oxidase, quinate O-hydroxycinnamoyl transferase, or two-component histidine kinase. The two-component histidine kinase, for example, acts as a sensor in the perception of phytohormones ethylene and cytokinin. Ethylene plays a very important role in regulation of multiple metabolic processes of plants, including induction of defense mechanisms mediated by jasmonate. The SNPs linked to the promising genes identified in the study can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Lourdes Ledesma-Ramírez
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Ernesto Solís-Moya
- Programa de mejoramiento genetico de trigo, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Bajío, Celaya, Mexico
| | - Gabriel Iturriaga
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Deepmala Sehgal
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | | | - Víctor Montero-Tavera
- Programa de mejoramiento genetico de trigo, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Bajío, Celaya, Mexico
| | - Carolina P. Sansaloni
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - Juan Burgueño
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - Cynthia Ortiz
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - César L. Aguirre-Mancilla
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Juan G. Ramírez-Pimentel
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Prashant Vikram
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - Sukhwinder Singh
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
- Department of Biotechnology, Geneshifters, Pullman, WA, United States
| |
Collapse
|
41
|
Mi-Ichi F, Yoshida H. Unique Features of Entamoeba Sulfur Metabolism; Compartmentalization, Physiological Roles of Terminal Products, Evolution and Pharmaceutical Exploitation. Int J Mol Sci 2019; 20:ijms20194679. [PMID: 31546588 PMCID: PMC6801973 DOI: 10.3390/ijms20194679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
Sulfur metabolism is essential for all living organisms. Recently, unique features of the Entamoeba metabolic pathway for sulfated biomolecules have been described. Entamoeba is a genus in the phylum Amoebozoa and includes the causative agent for amoebiasis, a global public health problem. This review gives an overview of the general features of the synthesis and degradation of sulfated biomolecules, and then highlights the characteristics that are unique to Entamoeba. Future biological and pharmaceutical perspectives are also discussed.
Collapse
Affiliation(s)
- Fumika Mi-Ichi
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
42
|
Jendresen CB, Nielsen AT. Production of zosteric acid and other sulfated phenolic biochemicals in microbial cell factories. Nat Commun 2019; 10:4071. [PMID: 31492833 PMCID: PMC6731281 DOI: 10.1038/s41467-019-12022-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/19/2019] [Indexed: 12/23/2022] Open
Abstract
Biological production and application of a range of organic compounds is hindered by their limited solubility and toxicity. This work describes a process for functionalization of phenolic compounds that increases solubility and decreases toxicity. We achieve this by screening a wide range of sulfotransferases for their activity towards a range of compounds, including the antioxidant resveratrol. We demonstrate how to engineer cell factories for efficiently creating sulfate esters of phenolic compounds through the use of sulfotransferases and by optimization of sulfate uptake and sulfate nucleotide pathways leading to the 3′-phosphoadenosine 5′-phosphosulfate precursor (PAPS). As an example we produce the antifouling agent zosteric acid, which is the sulfate ester of p-coumaric acid, reaching a titer of 5 g L−1 in fed-batch fermentation. The described approach enables production of sulfate esters that are expected to provide new properties and functionalities to a wide range of application areas. Toxicity and limited solubility inhibits the biological production of many organic compounds. Here the authors metabolically engineer sulfate uptake and activation in order to produce sulfate esters of phenolic compounds, such as zosteric acid, thereby addressing these issues.
Collapse
Affiliation(s)
- Christian Bille Jendresen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs, Lyngby, Denmark. .,Cysbio ApS, Agern Allé 1, 2970, Hørsholm, Denmark.
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs, Lyngby, Denmark. .,Cysbio ApS, Agern Allé 1, 2970, Hørsholm, Denmark.
| |
Collapse
|
43
|
Chan KX, Phua SY, Van Breusegem F. Secondary sulfur metabolism in cellular signalling and oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4237-4250. [PMID: 30868163 DOI: 10.1093/jxb/erz119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/08/2019] [Indexed: 05/27/2023]
Abstract
The sulfur metabolism pathway in plants produces a variety of compounds that are central to the acclimation response to oxidative stresses such as drought and high light. Primary sulfur assimilation provides the amino acid cysteine, which is utilized in protein synthesis and as a precursor for the cellular redox buffer glutathione. In contrast, the secondary sulfur metabolism pathway produces sulfated compounds such as glucosinolates and sulfated peptides, as well as a corresponding by-product 3'-phosphoadenosine 5'-phosphate (PAP). Emerging evidence over the past decade has shown that secondary sulfur metabolism also has a crucial engagement during oxidative stress. This occurs across various cellular, tissue, and organismal levels including chloroplast-to-nucleus retrograde signalling events mediated by PAP, modulation of hormonal signalling by sulfated compounds and PAP, control of physiological responses such as stomatal closure, and potential regulation of plant growth. In this review, we examine the contribution of the different components of plant secondary metabolism to oxidative stress homeostasis, and how this pathway is metabolically regulated. We further outline the key outstanding questions in the field that are necessary to understand how and why this 'specialized' metabolic pathway plays significant roles in plant oxidative stress tolerance.
Collapse
Affiliation(s)
- Kai Xun Chan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Su Yin Phua
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Frank Van Breusegem
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| |
Collapse
|
44
|
Jin L, Ouyang N, Huang Y, Liu C, Ruan Y. Genome-wide analysis of sulfotransferase genes and their responses to abiotic stresses in Chinese cabbage (Brassica rapa L.). PLoS One 2019; 14:e0221422. [PMID: 31425555 PMCID: PMC6699706 DOI: 10.1371/journal.pone.0221422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
Sulfotransferases (SOTs; EC 2.8.2.-), which are widespread from prokaryotes to eukaryotes, constitute a multi-protein family that plays crucial roles in plant growth, development and stress adaptation. However, this family has not been systemically investigated in Brassica rapa. Here, a genome-wide systemic analysis of SOT genes in B. rapa subsp. pekinensis, a globally cultivated vegetable, were conducted. We identified 56 SOT genes from the whole B. rapa genome using Arabidopsis SOT sequences as queries and classified them into nine groups, rather than the eight groups of previous research. 56 B. rapa SOT genes (BraSOTs) were distributed on all 10 chromosomes except for chromosome 5. Of these, 27 BraSOTs were distributed in seven clusters on five chromosomes (ChrA01, ChrA02, Chr03, ChrA07, and Chr09). Among the BraSOT proteins, 48 had only one SOT_1 domain and 6 had two, while 2 had one SOT_3 domain. Additionally, 47 BraSOT proteins contained only known SOT domains. The remaining nine proteins, five in group-VIII and two in group-IX, contained additional transmembrane domains. Specific motif regions I and IV for 3′-phosphoadenosine 5′-phosphosulfate binding were found in 41 BraSOT proteins. Introns were present in only 18 BraSOT genes, and all seven BraSOT genes in groups VIII and IX had more than three introns. To identify crucial SOTs mediating the response to abiotic stress in B. rapa, expression changes in 56 BraSOT genes were determined by quantitative RT-PCR after drought, salinity, and ABA treatments, and some BraSOT genes were associated with NaCl, drought and ABA stress, e.g. Bra017370, Bra009300, Bra027880.
Collapse
Affiliation(s)
- Lu Jin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, China
| | - Ning Ouyang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, China
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, China
| | - Chunlin Liu
- Agricultural College of Hunan Agricultural University, Changsha, China
| | - Ying Ruan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, China
- * E-mail:
| |
Collapse
|
45
|
Kaufmann C, Sauter M. Sulfated plant peptide hormones. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4267-4277. [PMID: 31231771 PMCID: PMC6698702 DOI: 10.1093/jxb/erz292] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/11/2019] [Indexed: 05/08/2023]
Abstract
Sulfated peptides are plant hormones that are active at nanomolar concentrations. The sulfation at one or more tyrosine residues is catalysed by tyrosylprotein sulfotransferase (TPST), which is encoded by a single-copy gene. The sulfate group is provided by the co-substrate 3´-phosphoadenosine 5´-phosphosulfate (PAPS), which links synthesis of sulfated signaling peptides to sulfur metabolism. The precursor proteins share a conserved DY-motif that is implicated in specifying tyrosine sulfation. Several sulfated peptides undergo additional modification such as hydroxylation of proline and glycosylation of hydroxyproline. The modifications render the secreted signaling molecules active and stable. Several sulfated signaling peptides have been shown to be perceived by leucine-rich repeat receptor-like kinases (LRR-RLKs) but have signaling pathways that, for the most part, are yet to be elucidated. Sulfated peptide hormones regulate growth and a wide variety of developmental processes, and intricately modulate immunity to pathogens. While basic research on sulfated peptides has made steady progress, their potential in agricultural and pharmaceutical applications has yet to be explored.
Collapse
Affiliation(s)
- Christine Kaufmann
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten, Kiel, Germany
- Correspondence:
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten, Kiel, Germany
| |
Collapse
|
46
|
Smita S, Katiyar A, Lenka SK, Dalal M, Kumar A, Mahtha SK, Yadav G, Chinnusamy V, Pandey DM, Bansal KC. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis. Funct Integr Genomics 2019; 20:29-49. [PMID: 31286320 DOI: 10.1007/s10142-019-00697-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Abiotic stress tolerance is a complex trait regulated by multiple genes and gene networks in plants. A range of abiotic stresses are known to limit rice productivity. Meta-transcriptomics has emerged as a powerful approach to decipher stress-associated molecular network in model crops. However, retaining specificity of gene expression in tolerant and susceptible genotypes during meta-transcriptome analysis is important for understanding genotype-dependent stress tolerance mechanisms. Addressing this aspect, we describe here "abiotic stress tolerant" (ASTR) genes and networks specifically and differentially expressing in tolerant rice genotypes in response to different abiotic stress conditions. We identified 6,956 ASTR genes, key hub regulatory genes, transcription factors, and functional modules having significant association with abiotic stress-related ontologies and cis-motifs. Out of the 6956 ASTR genes, 73 were co-located within the boundary of previously identified abiotic stress trait-related quantitative trait loci. Functional annotation of 14 uncharacterized ASTR genes is proposed using multiple computational methods. Around 65% of the top ASTR genes were found to be differentially expressed in at least one of the tolerant genotypes under different stress conditions (cold, salt, drought, or heat) from publicly available RNAseq data comparison. The candidate ASTR genes specifically associated with tolerance could be utilized for engineering rice and possibly other crops for broad-spectrum tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Shuchi Smita
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amit Katiyar
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- ICMR-AIIMS Computational Genomics Center, Div. of I.S.R.M., Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Sangram Keshari Lenka
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India
| | - Monika Dalal
- ICAR-National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Amish Kumar
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjeet Kumar Mahtha
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Viswanathan Chinnusamy
- ICAR-Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dev Mani Pandey
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kailash Chander Bansal
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India.
| |
Collapse
|
47
|
Kleinenkuhnen N, Büchel F, Gerlich SC, Kopriva S, Metzger S. A Novel Method for Identification and Quantification of Sulfated Flavonoids in Plants by Neutral Loss Scan Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2019; 10:885. [PMID: 31333712 PMCID: PMC6625178 DOI: 10.3389/fpls.2019.00885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/21/2019] [Indexed: 05/25/2023]
Abstract
Sulfur is present in plants in a large range of essential primary metabolites, as well as in numerous natural products. Many of these secondary metabolites contain sulfur in the oxidized form of organic sulfate. However, except of glucosinolates, very little is known about other classes of such sulfated metabolites, mainly because of lack of specific and quantitative analytical methods. We developed an LC-MS method to analyze sulfated flavonoids, a group of sulfated secondary metabolites prominent, e.g., in plants of the genus Flaveria. The method uses a linear gradient of methanol/formic acid in water on a Restek Raptor C18 Core-Shell column for separation of the compounds. The sulfated flavonoids are detected by mass spectrometry (MS) in a negative mode, using a neutral loss of 80 Da after a collision induced dissociation. With this method we were also able to quantify the sulfated flavonoids. We could detect all (mono)sulfated flavonoids described before in Flaveria plus a number of new ones, such as isorhamnetin-sulfate-glycoside. In addition, we showed that sulfated flavonoids represent a substantial sulfur pool in Flaveria, larger than the thiols glutathione and cysteine. The individual species possess different sulfated flavonoids, but there is no correlation between the qualitative pattern and type of photosynthesis. Similar to other sulfur-containing secondary compounds, the concentration of sulfated flavonoids in leaves is reduced by sulfur starvation. The new LC-MS method will enable qualitative and quantitative detection of these secondary metabolites in plants as a pre-requisite to addressing their functions.
Collapse
Affiliation(s)
- Niklas Kleinenkuhnen
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, Cologne, Germany
| | - Felix Büchel
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, Cologne, Germany
| | - Silke C. Gerlich
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sabine Metzger
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, Cologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
49
|
Ehonen S, Yarmolinsky D, Kollist H, Kangasjärvi J. Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata. Antioxid Redox Signal 2019; 30:1220-1237. [PMID: 29237281 DOI: 10.1089/ars.2017.7455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Stomata sense the intercellular carbon dioxide (CO2) concentration (Ci) and water availability under changing environmental conditions and adjust their apertures to maintain optimal cellular conditions for photosynthesis. Stomatal movements are regulated by a complex network of signaling cascades where reactive oxygen species (ROS) play a key role as signaling molecules. Recent Advances: Recent research has uncovered several new signaling components involved in CO2- and abscisic acid-triggered guard cell signaling pathways. In addition, we are beginning to understand the complex interactions between different signaling pathways. CRITICAL ISSUES Plants close their stomata in reaction to stress conditions, such as drought, and the subsequent decrease in Ci leads to ROS production through photorespiration and over-reduction of the chloroplast electron transport chain. This reduces plant growth and thus drought may cause severe yield losses for agriculture especially in arid areas. FUTURE DIRECTIONS The focus of future research should be drawn toward understanding the interplay between various signaling pathways and how ROS, redox, and hormonal balance changes in space and time. Translating this knowledge from model species to crop plants will help in the development of new drought-resistant crop species with high yields.
Collapse
Affiliation(s)
- Sanna Ehonen
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland.,2 Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | | | - Hannes Kollist
- 3 Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jaakko Kangasjärvi
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proc Natl Acad Sci U S A 2019; 116:5015-5020. [PMID: 30804180 PMCID: PMC6421419 DOI: 10.1073/pnas.1812092116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The projected increase in drought severity and duration worldwide poses a significant threat to the health of terrestrial ecosystems. We reveal that unique genetic features of desiccation sensing and protection in streptophyte algae not only distinguish them from chlorophyte algae, but also represent a crucial evolutionary step that may have facilitated colonization and subsequent diversification of terrestrial habitats. We demonstrate the evolutionary significance of a molecular mechanism underlying how plants sense drought stress via the coordination of chloroplast retrograde signaling to trigger the closure of stomata, protecting vital photosynthetic tissue. Our findings constitute a significant step forward in understanding the evolution of plant drought tolerance, contributing to the diversification of terrestrial plant communities through past global climate transitions. Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3′-phosphoadenosine-5′-phosphate (PAP) metabolism, evolved in streptophyte algae—the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern Ceratopteris richardii, and the moss Physcomitrella patens. Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.
Collapse
|