1
|
Yan Q, Gomis Perez C, Karatekin E. Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes. Physiology (Bethesda) 2024; 39:0. [PMID: 38501962 PMCID: PMC11368524 DOI: 10.1152/physiol.00007.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024] Open
Abstract
Cell membrane tension affects and is affected by many fundamental cellular processes, yet it is poorly understood. Recent experiments show that membrane tension can propagate at vastly different speeds in different cell types, reflecting physiological adaptations. Here we briefly review the current knowledge about membrane tension gradients, membrane flows, and their physiological context.
Collapse
Affiliation(s)
- Qi Yan
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Carolina Gomis Perez
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
2
|
David A, Louis M, Tahrioui A, Rodrigues S, Labbé C, Maillot O, Barreau M, Lesouhaitier O, Cornelis P, Chevalier S, Bouffartigues E. cmpX overexpression in Pseudomonas aeruginosa affects biofilm formation and cell morphology in response to shear stress. Biofilm 2024; 7:100191. [PMID: 38544741 PMCID: PMC10965496 DOI: 10.1016/j.bioflm.2024.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of Escherichia coli. The cmpX gene is part of a transcriptional cfrX-cmpX unit that is under the control of the cell envelope stress response ECF sigma factor SigX. CmpX was shown to regulate the activity of the hybrid sensor kinase PA1611 involved in the regulation of transition from a planktonic to a biofilm lifestyle. The deletion of cmpX leads to increased biofilm formation under static conditions. Herein, the effect of cmpX overexpression was investigated by confocal laser scanning microscopy in terms of biofilm formation and architecture, and matrix components production, in dynamic conditions. We show that overexpression of cmpX in P. aeruginosa leads to enhanced and altered biofilm architecture that seems to be associated to increased matrix components and the emergence of filamentous cells. These phenotypic alterations might occur potentially through a shear stress induced by the medium flow rate. Importance CmpX is involved in biofilm formation and cell filamentation with regards to the medium flow.
Collapse
Affiliation(s)
- Audrey David
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Mélissande Louis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100, Lorient, France
| | - Clarisse Labbé
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Maillot
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Magalie Barreau
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sylvie Chevalier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| |
Collapse
|
3
|
Chen X, Zhao C, Yun P, Yu M, Zhou M, Chen ZH, Shabala S. Climate-resilient crops: Lessons from xerophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1815-1835. [PMID: 37967090 DOI: 10.1111/tpj.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Developing climate-resilient crops is critical for future food security and sustainable agriculture under current climate scenarios. Of specific importance are drought and soil salinity. Tolerance traits to these stresses are highly complex, and the progress in improving crop tolerance is too slow to cope with the growing demand in food production unless a major paradigm shift in crop breeding occurs. In this work, we combined bioinformatics and physiological approaches to compare some of the key traits that may differentiate between xerophytes (naturally drought-tolerant plants) and mesophytes (to which the majority of the crops belong). We show that both xerophytes and salt-tolerant mesophytes have a much larger number of copies in key gene families conferring some of the key traits related to plant osmotic adjustment, abscisic acid (ABA) sensing and signalling, and stomata development. We show that drought and salt-tolerant species have (i) higher reliance on Na for osmotic adjustment via more diversified and efficient operation of Na+ /H+ tonoplast exchangers (NHXs) and vacuolar H+ - pyrophosphatase (VPPases); (ii) fewer and faster stomata; (iii) intrinsically lower ABA content; (iv) altered structure of pyrabactin resistance/pyrabactin resistance-like (PYR/PYL) ABA receptors; and (v) higher number of gene copies for protein phosphatase 2C (PP2C) and sucrose non-fermenting 1 (SNF1)-related protein kinase 2/open stomata 1 (SnRK2/OST1) ABA signalling components. We also show that the past trends in crop breeding for Na+ exclusion to improve salinity stress tolerance are counterproductive and compromise their drought tolerance. Incorporating these genetic insights into breeding practices could pave the way for more drought-tolerant and salt-resistant crops, securing agricultural yields in an era of climate unpredictability.
Collapse
Affiliation(s)
- Xi Chen
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7250, Australia
| | - Ping Yun
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7250, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
4
|
Tyagi A, Ali S, Park S, Bae H. Deciphering the role of mechanosensitive channels in plant root biology: perception, signaling, and adaptive responses. PLANTA 2023; 258:105. [PMID: 37878056 DOI: 10.1007/s00425-023-04261-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
MAIN CONCLUSION Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
5
|
Gorobets O, Gorobets S, Sharai I, Polyakova T, Zablotskii V. Interaction of magnetic fields with biogenic magnetic nanoparticles on cell membranes: Physiological consequences for organisms in health and disease. Bioelectrochemistry 2023; 151:108390. [PMID: 36746089 DOI: 10.1016/j.bioelechem.2023.108390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The interaction mechanisms between magnetic fields (MFs) and living systems, which remained hidden for more than a hundred years, continue to attract the attention of researchers from various disciplines: physics, biology, medicine, and life sciences. Revealing these mechanisms at the cellular level would allow to understand complex cell systems and could help to explain and predict cell responses to MFs, intervene in organisms' reactions to MFs of different strengths, directions, and spatial distributions. We suggest several new physical mechanisms of the MF impacts on endothelial and cancer cells by the MF interaction with chains of biogenic and non-biogenic magnetic nanoparticles on cell membranes. The revealed mechanisms can play a hitherto unexpected role in creating physiological responses of organisms to externally applied MFs. We have also a set of theoretical models that can predict how cells will individually and collectively respond to a MF exposure. The physiological sequences of the MF - cell interactions for organisms in health and disease are discussed. The described effects and their underlying mechanisms are general and should take place in a large family of biological effects of MFs. The results are of great importance for further developing novel approaches in cell biology, cell therapy and medicine.
Collapse
Affiliation(s)
- Oksana Gorobets
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine; Institute of Magnetism of NAS and MES of Ukraine, Ukraine.
| | - Svitlana Gorobets
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
| | - Iryna Sharai
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine; Institute of Magnetism of NAS and MES of Ukraine, Ukraine
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic; International Magnetobiology Frontier Research Center (iMFRC), Science Island, China
| |
Collapse
|
6
|
Louf JF, Alexander SLM. Poroelastic plant-inspired structures & materials to sense, regulate flow, and move. BIOINSPIRATION & BIOMIMETICS 2022; 18:015002. [PMID: 36317663 DOI: 10.1088/1748-3190/ac9e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Despite their lack of a nervous system and muscles, plants are able to feel, regulate flow, and move. Such abilities are achieved through complex multi-scale couplings between biology, chemistry, and physics, making them difficult to decipher. A promising approach is to decompose plant responses in different blocks that can be modeled independently, and combined later on for a more holistic view. In this perspective, we examine the most recent strategies for designing plant-inspired soft devices that leverage poroelastic principles to sense, manipulate flow, and even generate motion. We will start at the organism scale, and study how plants can use poroelasticity to carry informationin-lieuof a nervous system. Then, we will go down in size and look at how plants manage to passively regulate flow at the microscopic scale using valves with encoded geometric non-linearities. Lastly, we will see at an even smaller scale, at the nanoscopic scale, how fibers orientation in plants' tissues allow them to induce motion using water instead of muscles.
Collapse
Affiliation(s)
- Jean-François Louf
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States of America
| | - Symone L M Alexander
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States of America
| |
Collapse
|
7
|
Carattino MD, Ruiz WG, Apodaca G. Ex Vivo Analysis of Mechanically Activated Ca2+ Transients in Urothelial Cells. J Vis Exp 2022:10.3791/64532. [PMID: 36279534 PMCID: PMC10069332 DOI: 10.3791/64532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mechanically activated ion channels are biological transducers that convert mechanical stimuli such as stretch or shear forces into electrical and biochemical signals. In mammals, mechanically activated channels are essential for the detection of external and internal stimuli in processes as diverse as touch sensation, hearing, red blood cell volume regulation, basal blood pressure regulation, and the sensation of urinary bladder fullness. While the function of mechanically activated ion channels has been extensively studied in the in vitro setting using the patch-clamp technique, assessing their function in their native environment remains a difficult task, often because of limited access to the sites of expression of these channels (e.g., afferent terminals, Merkel cells, baroreceptors, and kidney tubules) or difficulties applying the patch-clamp technique (e.g., the apical surfaces of urothelial umbrella cells). This protocol describes a procedure to assess mechanically evoked Ca2+ transients using the fluorescent sensor GCaMP5G in an ex vivo urothelial preparation, a technique that could be readily adapted for the study of mechanically evoked Ca2+ events in other native tissue preparations.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh; Department of Cell Biology, University of Pittsburgh;
| | - Wily G Ruiz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh
| | - Gerard Apodaca
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh; Department of Cell Biology, University of Pittsburgh
| |
Collapse
|
8
|
Park CJ, Shin R. Calcium channels and transporters: Roles in response to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:964059. [PMID: 36161014 PMCID: PMC9493244 DOI: 10.3389/fpls.2022.964059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium (Ca2+) serves as a ubiquitous second messenger by mediating various signaling pathways and responding to numerous environmental conditions in eukaryotes. Therefore, plant cells have developed complex mechanisms of Ca2+ communication across the membrane, receiving the message from their surroundings and transducing the information into cells and organelles. A wide range of biotic and abiotic stresses cause the increase in [Ca2+]cyt as a result of the Ca2+ influx permitted by membrane-localized Ca2+ permeable cation channels such as CYCLIC NUCLEOTIDE-GATE CHANNELs (CNGCs), and voltage-dependent HYPERPOLARIZATION-ACTIVATED CALCIUM2+ PERMEABLE CHANNELs (HACCs), as well as GLUTAMATE RECEPTOR-LIKE RECEPTORs (GLRs) and TWO-PORE CHANNELs (TPCs). Recently, resistosomes formed by some NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT RECEPTORs (NLRs) are also proposed as a new type of Ca2+ permeable cation channels. On the contrary, some Ca2+ transporting membrane proteins, mainly Ca2+-ATPase and Ca2+/H+ exchangers, are involved in Ca2+ efflux for removal of the excessive [Ca2+]cyt in order to maintain the Ca2+ homeostasis in cells. The Ca2+ efflux mechanisms mediate the wide ranges of cellular activities responding to external and internal stimuli. In this review, we will summarize and discuss the recent discoveries of various membrane proteins involved in Ca2+ influx and efflux which play an essential role in fine-tuning the processing of information for plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
9
|
Guichard M, Thomine S, Frachisse JM. Mechanotransduction in the spotlight of mechano-sensitive channels. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102252. [PMID: 35772372 DOI: 10.1016/j.pbi.2022.102252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The study of mechanosensitive channels (MS) in living organisms has progressed considerably over the past two decades. The understanding of their roles in mechanosensation and mechanotransduction was consecrated by the awarding of the Nobel Prize in 2021 to A. Patapoutian for his discoveries on the role of MS channels in mechanoperception in humans. In this review, we first summarize the fundamental properties of MS channels and their mode of operation. Then in a second step, we provide an update on the knowledge on the families of MS channels identified in plants and the roles and functions that have been attributed to them.
Collapse
Affiliation(s)
- Marjorie Guichard
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sébastien Thomine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Marie Frachisse
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
The Power of Touch: Type 4 Pili, the von Willebrand A Domain, and Surface Sensing by Pseudomonas aeruginosa. J Bacteriol 2022; 204:e0008422. [PMID: 35612303 PMCID: PMC9210963 DOI: 10.1128/jb.00084-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most microbes in the biosphere are attached to surfaces, where they experience mechanical forces due to hydrodynamic flow and cell-to-substratum interactions. These forces likely serve as mechanical cues that influence bacterial physiology and eventually drive environmental adaptation and fitness. Mechanosensors are cellular components capable of sensing a mechanical input and serve as part of a larger system for sensing and transducing mechanical signals. Two cellular components in bacteria that have emerged as candidate mechanosensors are the type IV pili (TFP) and the flagellum. Current models posit that bacteria transmit and convert TFP- and/or flagellum-dependent mechanical force inputs into biochemical signals, including cAMP and c-di-GMP, to drive surface adaptation. Here, we discuss the impact of force-induced changes on the structure and function of two eukaryotic proteins, titin and the human von Willebrand factor (vWF), and these proteins’ relevance to bacteria. Given the wealth of understanding about these eukaryotic mechanosensors, we can use them as a framework to understand the effect of force on Pseudomonas aeruginosa during the early stages of biofilm formation, with a particular emphasis on TFP and the documented surface-sensing mechanosensors PilY1 and FimH. We also discuss the importance of disulfide bonds in mediating force-induced conformational changes, which may modulate mechanosensing and downstream biochemical signaling. We conclude by sharing our perspective on the state of the field and what we deem exciting frontiers in studying bacterial mechanosensing to better understand the mechanisms whereby bacteria transition from a planktonic to a biofilm lifestyle.
Collapse
|
11
|
Guo J, He J, Dehesh K, Cui X, Yang Z. CamelliA-based simultaneous imaging of Ca2+ dynamics in subcellular compartments. PLANT PHYSIOLOGY 2022; 188:2253-2271. [PMID: 35218352 PMCID: PMC8968278 DOI: 10.1093/plphys/kiac020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
As a universal second messenger, calcium (Ca2+) transmits specific cellular signals via a spatiotemporal signature generated from its extracellular source and internal stores. Our knowledge of the mechanisms underlying the generation of a Ca2+ signature is hampered by limited tools for simultaneously monitoring dynamic Ca2+ levels in multiple subcellular compartments. To overcome the limitation and to further improve spatiotemporal resolutions, we have assembled a molecular toolset (CamelliA lines) in Arabidopsis (Arabidopsis thaliana) that enables simultaneous and high-resolution monitoring of Ca2+ dynamics in multiple subcellular compartments through imaging different single-colored genetically encoded calcium indicators. We uncovered several Ca2+ signatures in three types of Arabidopsis cells in response to internal and external cues, including rapid oscillations of cytosolic Ca2+ and apical plasma membrane Ca2+ influx in fast-growing Arabidopsis pollen tubes, the spatiotemporal relationship of Ca2+ dynamics in four subcellular compartments of root epidermal cells challenged with salt, and a shockwave-like Ca2+ wave propagating in laser-wounded leaf epidermis. These observations serve as a testimony to the wide applicability of the CamelliA lines for elucidating the subcellular sources contributing to the Ca2+ signatures in plants.
Collapse
Affiliation(s)
- Jingzhe Guo
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Jiangman He
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Xinping Cui
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Statistics, University of California, Riverside, 92521 California, USA
| | | |
Collapse
|
12
|
Wang Y, Coomey J, Miller K, Jensen GS, Haswell ES. Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1533-1545. [PMID: 34849746 DOI: 10.1093/jxb/erab525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Cells employ multiple systems to maintain cellular integrity, including mechanosensitive ion channels and the cell wall integrity (CWI) pathway. Here, we use pollen as a model system to ask how these different mechanisms are interconnected at the cellular level. MscS-Like 8 (MSL8) is a mechanosensitive channel required to protect Arabidopsis thaliana pollen from osmotic challenges during in vitro rehydration, germination, and tube growth. New CRISPR/Cas9 and artificial miRNA-generated msl8 alleles produced unexpected pollen phenotypes, including the ability to germinate a tube after bursting, dramatic defects in cell wall structure, and disorganized callose deposition at the germination site. We document complex genetic interactions between MSL8 and two previously established components of the CWI pathway, MARIS and ANXUR1/2. Overexpression of MARISR240C-FP suppressed the bursting, germination, and callose deposition phenotypes of msl8 mutant pollen. Null msl8 alleles suppressed the internalized callose structures observed in MARISR240C-FP lines. Similarly, MSL8-YFP overexpression suppressed bursting in the anxur1/2 mutant background, while anxur1/2 alleles reduced the strong rings of callose around ungerminated pollen grains in MSL8-YFP overexpressors. These data show that mechanosensitive ion channels modulate callose deposition in pollen and provide evidence that cell wall and membrane surveillance systems coordinate in a complex manner to maintain cell integrity.
Collapse
Affiliation(s)
- Yanbing Wang
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- NSF Center for Engineering Mechanobiology
| | - Joshua Coomey
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- NSF Center for Engineering Mechanobiology
| | - Kari Miller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gregory S Jensen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- NSF Center for Engineering Mechanobiology
| |
Collapse
|
13
|
Patteson AE, Asp ME, Janmey PA. Materials science and mechanosensitivity of living matter. APPLIED PHYSICS REVIEWS 2022; 9:011320. [PMID: 35392267 PMCID: PMC8969880 DOI: 10.1063/5.0071648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Living systems are composed of molecules that are synthesized by cells that use energy sources within their surroundings to create fascinating materials that have mechanical properties optimized for their biological function. Their functionality is a ubiquitous aspect of our lives. We use wood to construct furniture, bacterial colonies to modify the texture of dairy products and other foods, intestines as violin strings, bladders in bagpipes, and so on. The mechanical properties of these biological materials differ from those of other simpler synthetic elastomers, glasses, and crystals. Reproducing their mechanical properties synthetically or from first principles is still often unattainable. The challenge is that biomaterials often exist far from equilibrium, either in a kinetically arrested state or in an energy consuming active state that is not yet possible to reproduce de novo. Also, the design principles that form biological materials often result in nonlinear responses of stress to strain, or force to displacement, and theoretical models to explain these nonlinear effects are in relatively early stages of development compared to the predictive models for rubberlike elastomers or metals. In this Review, we summarize some of the most common and striking mechanical features of biological materials and make comparisons among animal, plant, fungal, and bacterial systems. We also summarize some of the mechanisms by which living systems develop forces that shape biological matter and examine newly discovered mechanisms by which cells sense and respond to the forces they generate themselves, which are resisted by their environment, or that are exerted upon them by their environment. Within this framework, we discuss examples of how physical methods are being applied to cell biology and bioengineering.
Collapse
Affiliation(s)
- Alison E. Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Merrill E. Asp
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Paul A. Janmey
- Institute for Medicine and Engineering and Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia PA, 19104, USA
| |
Collapse
|
14
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
15
|
Wang CF, Han GL, Yang ZR, Li YX, Wang BS. Plant Salinity Sensors: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:859224. [PMID: 35463402 PMCID: PMC9022007 DOI: 10.3389/fpls.2022.859224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 05/07/2023]
Abstract
Salt stress is a major limiting factor for plant growth and crop yield. High salinity causes osmotic stress followed by ionic stress, both of which disturb plant growth and metabolism. Understanding how plants perceive salt stress will help efforts to improve salt tolerance and ameliorate the effect of salt stress on crop growth. Various sensors and receptors in plants recognize osmotic and ionic stresses and initiate signal transduction and adaptation responses. In the past decade, much progress has been made in identifying the sensors involved in salt stress. Here, we review current knowledge of osmotic sensors and Na+ sensors and their signal transduction pathways, focusing on plant roots under salt stress. Based on bioinformatic analyses, we also discuss possible structures and mechanisms of the candidate sensors. With the rapid decline of arable land, studies on salt-stress sensors and receptors in plants are critical for the future of sustainable agriculture in saline soils. These studies also broadly inform our overall understanding of stress signaling in plants.
Collapse
|
16
|
Dependence of Protein Structure on Environment: FOD Model Applied to Membrane Proteins. MEMBRANES 2021; 12:membranes12010050. [PMID: 35054576 PMCID: PMC8778870 DOI: 10.3390/membranes12010050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
The natural environment of proteins is the polar aquatic environment and the hydrophobic (amphipathic) environment of the membrane. The fuzzy oil drop model (FOD) used to characterize water-soluble proteins, as well as its modified version FOD-M, enables a mathematical description of the presence and influence of diverse environments on protein structure. The present work characterized the structures of membrane proteins, including those that act as channels, and a water-soluble protein for contrast. The purpose of the analysis was to verify the possibility that an external force field can be used in the simulation of the protein-folding process, taking into account the diverse nature of the environment that guarantees a structure showing biological activity.
Collapse
|
17
|
Blonski S, Aureille J, Badawi S, Zaremba D, Pernet L, Grichine A, Fraboulet S, Korczyk PM, Recho P, Guilluy C, Dolega ME. Direction of epithelial folding defines impact of mechanical forces on epithelial state. Dev Cell 2021; 56:3222-3234.e6. [PMID: 34875225 DOI: 10.1016/j.devcel.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
Cell shape dynamics during development is tightly regulated and coordinated with cell fate determination. Triggered by an interplay between biochemical and mechanical signals, epithelia form complex tissues by undergoing coordinated cell shape changes, but how such spatiotemporal coordination is controlled remains an open question. To dissect biochemical signaling from purely mechanical cues, we developed a microfluidic system that experimentally triggers epithelial folding to recapitulate stereotypic deformations observed in vivo. Using this system, we observe that the apical or basal direction of folding results in strikingly different mechanical states at the fold boundary, where the balance between tissue tension and torque (arising from the imposed curvature) controls the spread of folding-induced calcium waves at a short timescale and induces spatial patterns of gene expression at longer timescales. Our work uncovers that folding-associated gradients of cell shape and their resulting mechanical stresses direct spatially distinct biochemical responses within the monolayer.
Collapse
Affiliation(s)
- Slawomir Blonski
- Institute of Fundamental Technological Research, IPPT, Polish Academy of Sciences, Department of Biosystems and Soft Matter, 02106 Warsaw, Poland
| | - Julien Aureille
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Sara Badawi
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Damian Zaremba
- Institute of Fundamental Technological Research, IPPT, Polish Academy of Sciences, Department of Biosystems and Soft Matter, 02106 Warsaw, Poland
| | - Lydia Pernet
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Sandrine Fraboulet
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Piotr M Korczyk
- Institute of Fundamental Technological Research, IPPT, Polish Academy of Sciences, Department of Biosystems and Soft Matter, 02106 Warsaw, Poland
| | - Pierre Recho
- LIPhy, University Grenoble Alpes, CNRS UMR 5588, 38000 Grenoble, France
| | - Christophe Guilluy
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Monika E Dolega
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France.
| |
Collapse
|
18
|
MCAs in Arabidopsis are Ca 2+-permeable mechanosensitive channels inherently sensitive to membrane tension. Nat Commun 2021; 12:6074. [PMID: 34667173 PMCID: PMC8526687 DOI: 10.1038/s41467-021-26363-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/02/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanosensitive (MS) ion channels respond to mechanical stress and convert it into intracellular electric and ionic signals. Five MS channel families have been identified in plants, including the Mid1-Complementing Activity (MCA) channel; however, its activation mechanisms have not been elucidated in detail. We herein demonstrate that the MCA2 channel is a Ca2+-permeable MS channel that is directly activated by membrane tension. The N-terminal 173 residues of MCA1 and MCA2 were synthesized in vitro, purified, and reconstituted into artificial liposomal membranes. Liposomes reconstituted with MCA1(1-173) or MCA2(1-173) mediate Ca2+ influx and the application of pressure to the membrane reconstituted with MCA2(1-173) elicits channel currents. This channel is also activated by voltage. Blockers for MS channels inhibit activation by stretch, but not by voltage. Since MCA proteins are found exclusively in plants, these results suggest that MCA represent plant-specific MS channels that open directly with membrane tension. Mechanosensitive ion channels convert mechanical stimuli into intracellular electric and ionic signals. Here the authors show that Arabidopsis MCA2 is a Ca2+-permeable mechanosensitive channel that is directly activated by membrane tension.
Collapse
|
19
|
Steigenberger J, Verleysen Y, Geudens N, Martins JC, Heerklotz H. The Optimal Lipid Chain Length of a Membrane-Permeabilizing Lipopeptide Results From the Balance of Membrane Partitioning and Local Damage. Front Microbiol 2021; 12:669709. [PMID: 34594308 PMCID: PMC8476953 DOI: 10.3389/fmicb.2021.669709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudodesmin A (PSD) is a cyclic lipodepsipeptide produced by Pseudomonas that kills certain bacteria at MIC1/2 in the single micromolar range, probably by permeabilizing their cellular membranes. Synthetic PSD variants, where the native decanoic (C10) acyl chain is varied in length from C4 to C8 and C12 to C14 carbons, were described to be not or less active against a panel of gram-positive strains, as compared to native PSD-C10. Here, we test the membrane-permeabilizing activity of PSD-C4 through PSD-C14 in terms of calcein release from liposomes, which is characterized in detail by the fluorescence-lifetime based leakage assay. Antagonistic concentrations and their chain length dependence agree well for liposome leakage and antimicrobial activity. The optimal chain length is governed by a balance between membrane partitioning (favoring longer chains) and the local perturbation or “damage” inflicted by a membrane-bound molecule (weakening for longer chains). Local perturbation, in turn, may involve at least two modes of action. Asymmetry stress between outer and inner leaflet builds up as the lipopeptides enter the outer leaflet and when it reaches a system-specific stability threshold, it causes a transient membrane failure that allows for the flip of some molecules from the outer to the inner leaflet. This cracking-in may be accompanied by transient, incomplete leakage from the aqueous cores of the liposomes observed, typically, for some seconds or less. The mismatch of the lipopeptide with the lipid leaflet geometry, expressed for example in terms of a spontaneous curvature, has two effects. First, it affects the threshold for transient leakage as described. Second, it controls the rate of equilibrium leakage proceeding as the lipopeptide has reached sufficient local concentrations in both leaflets to form quasi-toroidal defects or pores. Both modes of action, transient and equilibrium leakage, synergize for intermediate chain lengths such as the native, i.e., for PSD-C10. These mechanisms may also account for the reported chain-length dependent specificities of antibiotic action against the target bacteria.
Collapse
Affiliation(s)
- Jessica Steigenberger
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Freiburg, Germany
| | - Yentl Verleysen
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Freiburg, Germany.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Xie Y, Chen D, Jiang K, Song L, Qian N, Du Y, Yang Y, Wang F, Chen T. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-α axis. Cell Stem Cell 2021; 29:70-85.e6. [PMID: 34624205 DOI: 10.1016/j.stem.2021.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/19/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022]
Abstract
In aging, androgenic alopecia, and genetic hypotrichosis disorders, hair shaft miniaturization is often associated with hair follicle stem cell (HFSC) loss. However, the mechanism causing this stem cell depletion in vivo remains elusive. Here we show that hair shaft loss or a reduction in diameter shrinks the physical niche size, which results in mechanical compression of HFSCs and their apoptotic loss. Mechanistically, cell compression activates the mechanosensitive channel Piezo1, which triggers calcium influx. This confers tumor necrosis factor alpha (TNF-α) sensitivity in a hair-cycle-dependent manner in otherwise resistant HFSCs and induces ectopic apoptosis. Persistent hair shaft miniaturization during aging and genetic hypotrichosis disorders causes long-term HFSC loss by inducing continuous ectopic apoptosis through Piezo1. Our results identify an unconventional role of the inert hair shaft structure as a functional niche component governing HFSC survival and reveal a mechanosensory axis that regulates physical-niche-atrophy-induced stem cell depletion in vivo.
Collapse
Affiliation(s)
- Yuhua Xie
- China Agricultural University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Daoming Chen
- National Institute of Biological Sciences, Beijing, China
| | - Kaiju Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Lifang Song
- National Institute of Biological Sciences, Beijing, China
| | - Nannan Qian
- National Institute of Biological Sciences, Beijing, China
| | - Yingxue Du
- National Institute of Biological Sciences, Beijing, China
| | - Yong Yang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Ting Chen
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
21
|
Dave N, Cetiner U, Arroyo D, Fonbuena J, Tiwari M, Barrera P, Lander N, Anishkin A, Sukharev S, Jimenez V. A novel mechanosensitive channel controls osmoregulation, differentiation, and infectivity in Trypanosoma cruzi. eLife 2021; 10:67449. [PMID: 34212856 PMCID: PMC8282336 DOI: 10.7554/elife.67449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
The causative agent of Chagas disease undergoes drastic morphological and biochemical modifications as it passes between hosts and transitions from extracellular to intracellular stages. The osmotic and mechanical aspects of these cellular transformations are not understood. Here we identify and characterize a novel mechanosensitive channel in Trypanosoma cruzi (TcMscS) belonging to the superfamily of small-conductance mechanosensitive channels (MscS). TcMscS is activated by membrane tension and forms a large pore permeable to anions, cations, and small osmolytes. The channel changes its location from the contractile vacuole complex in epimastigotes to the plasma membrane as the parasites develop into intracellular amastigotes. TcMscS knockout parasites show significant fitness defects, including increased cell volume, calcium dysregulation, impaired differentiation, and a dramatic decrease in infectivity. Our work provides mechanistic insights into components supporting pathogen adaptation inside the host, thus opening the exploration of mechanosensation as a prerequisite for protozoan infectivity.
Collapse
Affiliation(s)
- Noopur Dave
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Ugur Cetiner
- Department of Biology, University of Maryland, College Park, United States
| | - Daniel Arroyo
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Joshua Fonbuena
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Megna Tiwari
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Patricia Barrera
- Departmento de Biología, Facultad de Ciencias Exactas y Naturales, Instituto de Histologia y Embriologia IHEM-CONICET, Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, United States
| | - Veronica Jimenez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| |
Collapse
|
22
|
Dobránszki J. Application of naturally occurring mechanical forces in in vitro plant tissue culture and biotechnology. PLANT SIGNALING & BEHAVIOR 2021; 16:1902656. [PMID: 33902398 PMCID: PMC8143234 DOI: 10.1080/15592324.2021.1902656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Cues and signals of the environment in nature can be either beneficial or detrimental from the growth and developmental perspectives. Plants, despite their limited spatial mobility, have developed advanced strategies to overcome the various and changing environmental impacts including stresses. In vitro plantlets, tissues and cells are constantly exposed to the influence of their environment that is well controlled. Light has a widely known morphogenetic effect on plants; however, other physical cues and signals are at least as important but were often neglected. In this review, I summarize our knowledge about the role of the mechanical stimuli, like sound, ultrasound, touch, or wounding in in vitro plant cultures. I summarize the molecular, biochemical, physiological, growth, and developmental changes they cause and how these processes are controlled; moreover, how their regulating or stimulating roles are applied in various plant biotechnological applications. Recent studies revealed that mechanical forces can be used for affecting the plant development and growth in plant tissue culture efficiently, and for increasing the efficacy of other plant biotechnological methods, like genetic transformation and secondary metabolite production.
Collapse
Affiliation(s)
- Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
23
|
Cellular transduction of mechanical oscillations in plants by the plasma-membrane mechanosensitive channel MSL10. Proc Natl Acad Sci U S A 2021; 118:1919402118. [PMID: 33372153 DOI: 10.1073/pnas.1919402118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plants spend most of their life oscillating around 1-3 Hz due to the effect of the wind. Therefore, stems and foliage experience repetitive mechanical stresses through these passive movements. However, the mechanism of the cellular perception and transduction of such recurring mechanical signals remains an open question. Multimeric protein complexes forming mechanosensitive (MS) channels embedded in the membrane provide an efficient system to rapidly convert mechanical tension into an electrical signal. So far, studies have mostly focused on nonoscillatory stretching of these channels. Here, we show that the plasma-membrane MS channel MscS-LIKE 10 (MSL10) from the model plant Arabidopsis thaliana responds to pulsed membrane stretching with rapid activation and relaxation kinetics in the range of 1 s. Under sinusoidal membrane stretching MSL10 presents a greater activity than under static stimulation. We observed this amplification mostly in the range of 0.3-3 Hz. Above these frequencies the channel activity is very close to that under static conditions. With a localization in aerial organs naturally submitted to wind-driven oscillations, our results suggest that the MS channel MSL10, and by extension MS channels sharing similar properties, represents a molecular component allowing the perception of oscillatory mechanical stimulations by plants.
Collapse
|
24
|
Harnvanichvech Y, Gorelova V, Sprakel J, Weijers D. The Arabidopsis embryo as a quantifiable model for studying pattern formation. QUANTITATIVE PLANT BIOLOGY 2021; 2:e3. [PMID: 37077211 PMCID: PMC10095805 DOI: 10.1017/qpb.2021.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 05/03/2023]
Abstract
Phenotypic diversity of flowering plants stems from common basic features of the plant body pattern with well-defined body axes, organs and tissue organisation. Cell division and cell specification are the two processes that underlie the formation of a body pattern. As plant cells are encased into their cellulosic walls, directional cell division through precise positioning of division plane is crucial for shaping plant morphology. Since many plant cells are pluripotent, their fate establishment is influenced by their cellular environment through cell-to-cell signaling. Recent studies show that apart from biochemical regulation, these two processes are also influenced by cell and tissue morphology and operate under mechanical control. Finding a proper model system that allows dissecting the relationship between these aspects is the key to our understanding of pattern establishment. In this review, we present the Arabidopsis embryo as a simple, yet comprehensive model of pattern formation compatible with high-throughput quantitative assays.
Collapse
Affiliation(s)
- Yosapol Harnvanichvech
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Vera Gorelova
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
25
|
Trinh DC, Alonso-Serra J, Asaoka M, Colin L, Cortes M, Malivert A, Takatani S, Zhao F, Traas J, Trehin C, Hamant O. How Mechanical Forces Shape Plant Organs. Curr Biol 2021; 31:R143-R159. [PMID: 33561417 DOI: 10.1016/j.cub.2020.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs - spheres, cylinders and lamina - can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features - folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi, Vietnam
| | - Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariko Asaoka
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Leia Colin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shogo Takatani
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Feng Zhao
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
26
|
Johnson SC, Veres J, Malcolm HR. Exploring the diversity of mechanosensitive channels in bacterial genomes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:25-36. [PMID: 33244613 DOI: 10.1007/s00249-020-01478-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Mechanosensitive ion channels are responsible for touch sensation and proprioception in higher level organisms such as humans and recovery after osmotic stress in bacteria. Bacterial mechanosensitive channels are homologous to either the mechanosensitive channel of large conductance (MscL) or the mechanosensitive channel of small conductance (MscS). In the E. coli genome there are seven unique mechanosensitive channels, a single MscL homologue, and six MscS homologues. The six MscS homologues are members of the diverse MscS superfamily of ion channels, and these channels show variation on both the N and C termini when compared to E. coli MscS. In bacterial strains with phenotypic analysis of the endogenous mechanosensors, the quantity of MscS superfamily members in the genome range from 2 to 6 and all of the strains contain a copy of MscL. Here, we show an in-depth analysis of over 150 diverse bacterial genomes, encompassing nine phyla, to determine the number of genomes that contain an MscL homologue and the average number of MscS superfamily members per genome. We determined that the average genome contains 4 ± 3 MscS homologues and 67% of bacterial genomes encode for a MscL homologue.
Collapse
Affiliation(s)
- Sarah C Johnson
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - Jordyn Veres
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - Hannah R Malcolm
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA.
| |
Collapse
|
27
|
Kaur A, Taneja M, Tyagi S, Sharma A, Singh K, Upadhyay SK. Genome-wide characterization and expression analysis suggested diverse functions of the mechanosensitive channel of small conductance-like (MSL) genes in cereal crops. Sci Rep 2020; 10:16583. [PMID: 33024170 PMCID: PMC7538590 DOI: 10.1038/s41598-020-73627-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022] Open
Abstract
Mechanosensitive ion channels are pore-forming transmembrane proteins that allow ions to move down their electrochemical gradient in response to mechanical stimuli. They participate in many plant developmental processes including the maintenance of plastid shape, pollen tube growth, etc. Herein, a total of 11, 10, 6, 30, 9, and 8 MSL genes were identified in Aegilops tauschii, Hordeum vulgare, Sorghum bicolor, Triticum aestivum, Triticum urartu, and Zea mays, respectively. These genes were located on various chromosomes of their respective cereal, while MSLs of T. urartu were found on scaffolds. The phylogenetic analysis, subcellular localization, and sequence homology suggested clustering of MSLs into two classes. These genes consisted of cis-regulatory elements related to growth and development, responsive to light, hormone, and stress. Differential expression of various MSL genes in tissue developmental stages and stress conditions revealed their precise role in development and stress responses. Altered expression during CaCl2 stress suggested their role in Ca2+ homeostasis and signaling. The co-expression analysis suggested their interactions with other genes involved in growth, defense responses etc. A comparative expression profiling of paralogous genes revealed either retention of function or pseudo-functionalization. The present study unfolded various characteristics of MSLs in cereals, which will facilitate their in-depth functional characterization in future studies.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Mehak Taneja
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
28
|
Cox CD, Bavi N, Martinac B. Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction. Cell Rep 2020; 29:1-12. [PMID: 31577940 DOI: 10.1016/j.celrep.2019.08.075] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/09/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Recent rapid progress in the field of mechanobiology has been driven by novel emerging tools and methodologies and growing interest from different scientific disciplines. Specific progress has been made toward understanding how cell mechanics is linked to intracellular signaling and the regulation of gene expression in response to a variety of mechanical stimuli. There is a direct link between the mechanoreceptors at the cell surface and intracellular biochemical signaling, which in turn controls downstream effector molecules. Among the mechanoreceptors in the cell membrane, mechanosensitive (MS) ion channels are essential for the ultra-rapid (millisecond) transduction of mechanical stimuli into biologically relevant signals. The three decades of research on mechanosensitive channels resulted in the formulation of two basic principles of mechanosensitive channel gating: force-from-lipids and force-from-filament. In this review, we revisit the biophysical principles that underlie the innate force-sensing ability of mechanosensitive channels as contributors to the force-dependent evolution of life forms.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
29
|
Deng Z, Maksaev G, Schlegel AM, Zhang J, Rau M, Fitzpatrick JAJ, Haswell ES, Yuan P. Structural mechanism for gating of a eukaryotic mechanosensitive channel of small conductance. Nat Commun 2020; 11:3690. [PMID: 32704140 PMCID: PMC7378837 DOI: 10.1038/s41467-020-17538-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023] Open
Abstract
Mechanosensitive ion channels transduce physical force into electrochemical signaling that underlies an array of fundamental physiological processes, including hearing, touch, proprioception, osmoregulation, and morphogenesis. The mechanosensitive channels of small conductance (MscS) constitute a remarkably diverse superfamily of channels critical for management of osmotic pressure. Here, we present cryo-electron microscopy structures of a MscS homolog from Arabidopsis thaliana, MSL1, presumably in both the closed and open states. The heptameric MSL1 channel contains an unusual bowl-shaped transmembrane region, which is reminiscent of the evolutionarily and architecturally unrelated mechanosensitive Piezo channels. Upon channel opening, the curved transmembrane domain of MSL1 flattens and expands. Our structures, in combination with functional analyses, delineate a structural mechanism by which mechanosensitive channels open under increased membrane tension. Further, the shared structural feature between unrelated channels suggests the possibility of a unified mechanical gating mechanism stemming from membrane deformation induced by a non-planar transmembrane domain. Mechanosensitive channels transduce physical force into electrochemical signaling in processes such as hearing, touch, proprioception, osmoregulation, and morphogenesis. Here, authors use cryo-electron microscopy to provide structural insights into the mechanical gating mechanism.
Collapse
Affiliation(s)
- Zengqin Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Grigory Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Angela M Schlegel
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, 63130, USA.,NSF Center for Engineering Mechanobiology, Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Jingying Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Michael Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, 63130, USA.,NSF Center for Engineering Mechanobiology, Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA. .,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
30
|
A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. PLoS Biol 2020; 18:e3000740. [PMID: 32649659 PMCID: PMC7351144 DOI: 10.1371/journal.pbio.3000740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The carnivorous Venus flytrap catches prey by an ingenious snapping mechanism. Based on work over nearly 200 years, it has become generally accepted that two touches of the trap’s sensory hairs within 30 s, each one generating an action potential, are required to trigger closure of the trap. We developed an electromechanical model, which, however, suggests that under certain circumstances one touch is sufficient to generate two action potentials. Using a force-sensing microrobotic system, we precisely quantified the sensory-hair deflection parameters necessary to trigger trap closure and correlated them with the elicited action potentials in vivo. Our results confirm the model’s predictions, suggesting that the Venus flytrap may be adapted to a wider range of prey movements than previously assumed. It is generally accepted that two touches of the Venus flytrap’s sensory hairs within 30 seconds are required to trigger closure of the trap. Here, however, quantification of the plant’s sensory hair deflection parameters reveals that one stimulus is sufficient.
Collapse
|
31
|
Hernando A, Galvez F, García MA, Soto-León V, Alonso-Bonilla C, Aguilar J, Oliviero A. Effects of Moderate Static Magnetic Field on Neural Systems Is a Non-invasive Mechanical Stimulation of the Brain Possible Theoretically? Front Neurosci 2020; 14:419. [PMID: 32508563 PMCID: PMC7248270 DOI: 10.3389/fnins.2020.00419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Static magnetic fields have been shown to induce effects on the human brain. Different experiments seem to support the idea that moderate static magnetic field can exert some influence on the gating processes of the membrane channels. In this article we visit the order of magnitude of the energy magnetic terms associated with moderate applied field (between 10 and 200 milliteslas). It is shown that gradients of the Zeeman energy associated with the inhomogeneous applied fields can induce pressures of the order of 10–2Pa. The surface tension generated by the magnetic pressure, on the surface delimiting the brain region subject to relevant field and gradients, is found to range between 10–1 and 1 mN⋅m–1. These pressures seem to be strong enough to interfere with the elastic and electrostatic energies involved in the channel activation-inactivation-deactivation mechanisms of biological membranes. It has been described that small mechanical force can activate voltage gated potassium channels. Moreover, stretch-activated ion channels are widely described in different biological tissues. Virtually, all these channels can modify their activity if stressed by a sufficient pressure delivered for enough time. We propose mechanical stimulation – possibly not exclusively – as a candidate mechanism how static magnetic field can produce effects in biological systems. It must be emphasized, that such field gradients were not previously proposed as a possible source of neural activity modification.
Collapse
Affiliation(s)
- Antonio Hernando
- Instituto Magnetismo Avanzad, Laboratorio Salvador Velayos, Universidad Complutense de Madrid-Consejo Superior Investigación Cientifica-Administrador Infraestructuras Ferroviarias, Madrid, Spain.,Instituto Madrileños de Estudios Avanzados Nanociencia, Madrid, Spain.,Donostia International Physics Centre, San Sebastián, Spain
| | - Fernando Galvez
- Instituto Magnetismo Avanzad, Laboratorio Salvador Velayos, Universidad Complutense de Madrid-Consejo Superior Investigación Cientifica-Administrador Infraestructuras Ferroviarias, Madrid, Spain
| | - Miguel A García
- Instituto de Cerámica y Vidrio, Consejo Superior Investigación Cientifica, Madrid, Spain
| | - Vanesa Soto-León
- Functional Exploration and Neuromodulation of the Nervosus System Investigation Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Carlos Alonso-Bonilla
- Functional Exploration and Neuromodulation of the Nervosus System Investigation Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Juan Aguilar
- Experimental Neurophysiology, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Antonio Oliviero
- Functional Exploration and Neuromodulation of the Nervosus System Investigation Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain.,Hospital Los Madroños, Madrid, Spain
| |
Collapse
|
32
|
Leronni A, Bardella L, Dorfmann L, Pietak A, Levin M. On the coupling of mechanics with bioelectricity and its role in morphogenesis. J R Soc Interface 2020; 17:20200177. [PMID: 32486953 DOI: 10.1098/rsif.2020.0177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of endogenous bioelectricity in morphogenesis has recently been explored through the finite volume-based code BioElectric Tissue Simulation Engine. We extend this platform to electrostatic and osmotic forces due to bioelectrical ion fluxes, causing cell cluster deformation. We further account for mechanosensitive ion channels, which, gated by membrane tension, modulate ion fluxes and, ultimately, bioelectrical forces. We illustrate the potentialities of this combined model of actuation and sensing with reference to cancer progression, osmoregulation, symmetry breaking and long-range signalling. This suggests control strategies for the manipulation of cell networks in vivo.
Collapse
Affiliation(s)
- A Leronni
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy
| | - L Bardella
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy
| | - L Dorfmann
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA.,Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - A Pietak
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - M Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
33
|
The Plasma Membrane-An Integrating Compartment for Mechano-Signaling. PLANTS 2020; 9:plants9040505. [PMID: 32295309 PMCID: PMC7238056 DOI: 10.3390/plants9040505] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/30/2022]
Abstract
Plants are able to sense their mechanical environment. This mechanical signal is used by the plant to determine its phenotypic features. This is true also at a smaller scale. Morphogenesis, both at the cell and tissue level, involves mechanical signals that influence specific patterns of gene expression and trigger signaling pathways. How a mechanical stress is perceived and how this signal is transduced into the cell remains a challenging question in the plant community. Among the structural components of plant cells, the plasma membrane has received very little attention. Yet, its position at the interface between the cell wall and the interior of the cell makes it a key factor at the nexus between biochemical and mechanical cues. So far, most of the key players that are described to perceive and maintain mechanical cell status and to respond to a mechanical stress are localized at or close to the plasma membrane. In this review, we will focus on the importance of the plasma membrane in mechano-sensing and try to illustrate how the composition of this dynamic compartment is involved in the regulatory processes of a cell to respond to mechanical stress.
Collapse
|
34
|
Frachisse JM, Thomine S, Allain JM. Calcium and plasma membrane force-gated ion channels behind development. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:57-64. [PMID: 31783322 DOI: 10.1016/j.pbi.2019.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
During development, tissues are submitted to high variation of compression and tension forces. The roles of the cell wall, the cytoskeleton, the turgor pressure and the cell geometry during this process have received due attention. In contrast, apart from its role in the establishment of turgor pressure, the involvement of the plasma membrane as a transducer of mechanical forces during development has been under studied. Force-gated (FG) or Mechanosensitive (MS) ion channels embedded in the bilayer represent 'per se' archetypal mechanosensor able to directly and instantaneously transduce membrane forces into electrical and calcium signals. We discuss here how their fine-tuning, combined with their ability to detect micro-curvature and local membrane tension, allows FG channels to transduce mechanical cues into developmental signals.
Collapse
Affiliation(s)
- Jean-Marie Frachisse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Sciences Plant Saclay, 91198 Gif sur Yvette Cedex, France.
| | - Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Sciences Plant Saclay, 91198 Gif sur Yvette Cedex, France
| | - Jean-Marc Allain
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Inria, Palaiseau, France.
| |
Collapse
|
35
|
Pavlovič A, Libiaková M, Bokor B, Jakšová J, Petřík I, Novák O, Baluška F. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula). ANNALS OF BOTANY 2020; 125:173-183. [PMID: 31677265 PMCID: PMC6948209 DOI: 10.1093/aob/mcz177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovakia
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | | |
Collapse
|
36
|
Martinac B, Nikolaev YA, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac AD, Rohde P, Bavi O, Cox CD. Cell membrane mechanics and mechanosensory transduction. CURRENT TOPICS IN MEMBRANES 2020; 86:83-141. [DOI: 10.1016/bs.ctm.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Anisimov AV, Dautova NR, Suslov MA. Growth function and intercellular water transfer in excised roots. PROTOPLASMA 2019; 256:1425-1432. [PMID: 31134406 DOI: 10.1007/s00709-019-01388-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
On the example of maize seedling roots, it was shown that segments of the root suction zone excised from intact mother seedlings maintain the function of elongation growth and are able to regulate water transfer. Using the gradient NMR method, the effective intercellular permeability of root suction zone segments was shown to reduce with respect to intact seedling roots. The segment fragmentation into smaller pieces 3 mm long resulted in the permeability decrease by 60%. The reduction is associated with the cell defensive response to water loss through cuts and blocking of the additive water transfer along the segment length, resulting from segment cutting.
Collapse
Affiliation(s)
- A V Anisimov
- FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Lobachevskogo 2/31 st, P.O. Box 30, Kazan, 420111, Russia
| | - N R Dautova
- FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Lobachevskogo 2/31 st, P.O. Box 30, Kazan, 420111, Russia
| | - Maksim A Suslov
- FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Lobachevskogo 2/31 st, P.O. Box 30, Kazan, 420111, Russia.
| |
Collapse
|
38
|
Fruleux A, Verger S, Boudaoud A. Feeling Stressed or Strained? A Biophysical Model for Cell Wall Mechanosensing in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:757. [PMID: 31244875 PMCID: PMC6581727 DOI: 10.3389/fpls.2019.00757] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/24/2019] [Indexed: 05/21/2023]
Abstract
Mechanical signals have recently emerged as a major cue in plant morphogenesis, notably influencing cytoskeleton organization, gene expression, protein polarity, or cell division. Although many putative mechanosensing proteins have been identified, it is unclear what mechanical cue they might sense and how this would occur. Here we briefly explain the notions of mechanical stress and strain. We present the challenges to understand their sensing by plants, focusing on the cell wall and the plasma membrane, and we review putative mechanosensing structures. We propose minimal biophysical models of mechanosensing, revealing the modes of mechanosensing according to mechanosensor lifetime, threshold force for mechanosensor dissociation, and type of association between the mechanosensor and the cell wall, as the sensor may be associated to a major load-bearing structure such as cellulose or to a minor load-bearing structure such as pectins or the plasma membrane. Permanent strain, permanent expansion, and relatively slow variations thereof are sensed in all cases; variations of stress are sensed in all cases; permanent stress is sensed only in the following specific cases: sensors associated to minor load-bearing structures slowly relaxing in a growing wall, long-lived sensors with high dissociation force and associated to major-load-bearing structures, and sensors with low dissociation force associated to major-load-baring structures behaving elastically. We also find that all sensors respond to variations in the composition or the mechanical properties of the cell wall. The level of sensing is modulated by the properties of all of mechanosensor, cell wall components, and plasma membrane. Although our models are minimal and not fully realistic, our results yield a framework to start investigating the possible functions of putative mechanosensors.
Collapse
Affiliation(s)
- Antoine Fruleux
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, Lyon, France
| | - Stéphane Verger
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, Lyon, France
| |
Collapse
|
39
|
Amirbakhtiar N, Ismaili A, Ghaffari MR, Nazarian Firouzabadi F, Shobbar ZS. Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. PLoS One 2019; 14:e0213305. [PMID: 30875373 PMCID: PMC6420002 DOI: 10.1371/journal.pone.0213305] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
Salt stress is one of the major adverse environmental factors limiting crop productivity. Considering Iran as one of the bread wheat origins, we sequenced root transcriptome of an Iranian salt tolerant cultivar, Arg, under salt stress to extend our knowledge of the molecular basis of salinity tolerance in Triticum aestivum. RNA sequencing resulted in more than 113 million reads and about 104013 genes were obtained, among which 26171 novel transcripts were identified. A comparison of abundances showed that 5128 genes were differentially expressed due to salt stress. The differentially expressed genes (DEGs) were annotated with Gene Ontology terms, and the key pathways were identified using Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping. The DEGs could be classified into 227 KEGG pathways among which transporters, phenylpropanoid biosynthesis, transcription factors, glycosyltransferases, glutathione metabolism and plant hormone signal transduction represented the most significant pathways. Furthermore, the expression pattern of nine genes involved in salt stress response was compared between the salt tolerant (Arg) and susceptible (Moghan3) cultivars. A panel of novel genes and transcripts is found in this research to be differentially expressed under salinity in Arg cultivar and a model is proposed for salt stress response in this salt tolerant cultivar of wheat employing the DEGs. The achieved results can be beneficial for better understanding and improvement of salt tolerance in wheat.
Collapse
Affiliation(s)
- Nazanin Amirbakhtiar
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
40
|
Kamm RD, Bashir R, Arora N, Dar RD, Gillette MU, Griffith LG, Kemp ML, Kinlaw K, Levin M, Martin AC, McDevitt TC, Nerem RM, Powers MJ, Saif TA, Sharpe J, Takayama S, Takeuchi S, Weiss R, Ye K, Yevick HG, Zaman MH. Perspective: The promise of multi-cellular engineered living systems. APL Bioeng 2018; 2:040901. [PMID: 31069321 PMCID: PMC6481725 DOI: 10.1063/1.5038337] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Recent technological breakthroughs in our ability to derive and differentiate induced pluripotent stem cells, organoid biology, organ-on-chip assays, and 3-D bioprinting have all contributed to a heightened interest in the design, assembly, and manufacture of living systems with a broad range of potential uses. This white paper summarizes the state of the emerging field of "multi-cellular engineered living systems," which are composed of interacting cell populations. Recent accomplishments are described, focusing on current and potential applications, as well as barriers to future advances, and the outlook for longer term benefits and potential ethical issues that need to be considered.
Collapse
Affiliation(s)
- Roger D. Kamm
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Rashid Bashir
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - Natasha Arora
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Roy D. Dar
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | | | - Linda G. Griffith
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Melissa L. Kemp
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Adam C. Martin
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | | - Robert M. Nerem
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Mark J. Powers
- Thermo Fisher Scientific, Frederick, Maryland 21704, USA
| | - Taher A. Saif
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona 08003, Spain
| | | | | | - Ron Weiss
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Kaiming Ye
- Binghamton University, Binghamton, New York 13902, USA
| | - Hannah G. Yevick
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | |
Collapse
|
41
|
Mechanosensitive channels and their functions in stem cell differentiation. Exp Cell Res 2018; 374:259-265. [PMID: 30500393 DOI: 10.1016/j.yexcr.2018.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Stem cells continuously perceive and respond to various environmental signals during development, tissue homeostasis, and pathological conditions. Mechanical force, one of the fundamental signals in the physical world, plays a vital role in the regulation of multiple functions of stem cells. The importance of cell adhesion to the extracellular matrix (ECM), cell-cell junctions, and a mechanoresponsive cell cytoskeleton has been under intensive study in the fields of stem cell biology and mechanobiology. However, the involvement of mechanosensitive (MS) ion channels in the mechanical regulation of stem cell activity has just begun to be realized. Here, we review the diversity and importance of mechanosensitive channels (MSCs), and discuss recently discovered functions of MSCs in stem cell regulation, especially in the determination of cell fate.
Collapse
|
42
|
Chiatante D, Rost T, Bryant J, Scippa GS. Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium. ANNALS OF BOTANY 2018; 122:697-710. [PMID: 29394314 PMCID: PMC6215048 DOI: 10.1093/aob/mcy003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/08/2018] [Indexed: 05/07/2023]
Abstract
Background The production of a new lateral root from parental root primary tissues has been investigated extensively, and the most important regulatory mechanisms are now well known. A first regulatory mechanism is based on the synthesis of small peptides which interact ectopically with membrane receptors to elicit a modulation of transcription factor target genes. A second mechanism involves a complex cross-talk between plant hormones. It is known that lateral roots are formed even in parental root portions characterized by the presence of secondary tissues, but there is not yet agreement about the putative tissue source providing the cells competent to become founder cells of a new root primordium. Scope We suggest models of possible regulatory mechanisms for inducing specific root vascular cambium (VC) stem cells to abandon their activity in the production of xylem and phloem elements and to start instead the construction of a new lateral root primordium. Considering the ontogenic nature of the VC, the models which we suggest are the result of a comparative review of mechanisms known to control the activity of stem cells in the root apical meristem, procambium and VC. Stem cells in the root meristems can inherit various competences to play different roles, and their fate could be decided in response to cross-talk between endogenous and exogenous signals. Conclusions We have found a high degree of relatedness among the regulatory mechanisms controlling the various root meristems. This fact suggests that competence to form new lateral roots can be inherited by some stem cells of the VC lineage. This kind of competence could be represented by a sensitivity of specific stem cells to factors such as those presented in our models.
Collapse
Affiliation(s)
- Donato Chiatante
- Dipartimento di Biotecnologie e Scienze della Vita, University of Insubria, Varese, Italy
| | - Thomas Rost
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - John Bryant
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
43
|
Astreinidi Blandin A, Bernardeschi I, Beccai L. Biomechanics in Soft Mechanical Sensing: From Natural Case Studies to the Artificial World. Biomimetics (Basel) 2018; 3:E32. [PMID: 31105254 PMCID: PMC6352697 DOI: 10.3390/biomimetics3040032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/25/2022] Open
Abstract
Living beings use mechanical interaction with the environment to gather essential cues for implementing necessary movements and actions. This process is mediated by biomechanics, primarily of the sensory structures, meaning that, at first, mechanical stimuli are morphologically computed. In the present paper, we select and review cases of specialized sensory organs for mechanical sensing-from both the animal and plant kingdoms-that distribute their intelligence in both structure and materials. A focus is set on biomechanical aspects, such as morphology and material characteristics of the selected sensory organs, and on how their sensing function is affected by them in natural environments. In this route, examples of artificial sensors that implement these principles are provided, and/or ways in which they can be translated artificially are suggested. Following a biomimetic approach, our aim is to make a step towards creating a toolbox with general tailoring principles, based on mechanical aspects tuned repeatedly in nature, such as orientation, shape, distribution, materials, and micromechanics. These should be used for a future methodical design of novel soft sensing systems for soft robotics.
Collapse
Affiliation(s)
- Afroditi Astreinidi Blandin
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy.
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, 56025 Pisa, Italy.
| | - Irene Bernardeschi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy.
| | - Lucia Beccai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
44
|
Bioinformatics Analysis and Functional Prediction of Transmembrane Proteins in Entamoeba histolytica. Genes (Basel) 2018; 9:genes9100499. [PMID: 30332795 PMCID: PMC6209943 DOI: 10.3390/genes9100499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Entamoeba histolytica is an invasive, pathogenic parasite causing amoebiasis. Given that proteins involved in transmembrane (TM) transport are crucial for the adherence, invasion, and nutrition of the parasite, we conducted a genome-wide bioinformatics analysis of encoding proteins to functionally classify and characterize all the TM proteins in E. histolytica. In the present study, 692 TM proteins have been identified, of which 546 are TM transporters. For the first time, we report a set of 141 uncharacterized proteins predicted as TM transporters. The percentage of TM proteins was found to be lower in comparison to the free-living eukaryotes, due to the extracellular nature and functional diversification of the TM proteins. The number of multi-pass proteins is larger than the single-pass proteins; though both have their own significance in parasitism, multi-pass proteins are more extensively required as these are involved in acquiring nutrition and for ion transport, while single-pass proteins are only required at the time of inciting infection. Overall, this intestinal parasite implements multiple mechanisms for establishing infection, obtaining nutrition, and adapting itself to the new host environment. A classification of the repertoire of TM transporters in the present study augments several hints on potential methods of targeting the parasite for therapeutic benefits.
Collapse
|
45
|
Martinac B, Bavi N, Ridone P, Nikolaev YA, Martinac AD, Nakayama Y, Rohde PR, Bavi O. Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys Rev 2018; 10:1377-1384. [PMID: 30182202 DOI: 10.1007/s12551-018-0450-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 01/04/2023] Open
Abstract
Mechanical stimuli acting on the cellular membrane are linked to intracellular signaling events and downstream effectors via different mechanoreceptors. Mechanosensitive (MS) ion channels are the fastest known primary mechano-electrical transducers, which convert mechanical stimuli into meaningful intracellular signals on a submillisecond time scale. Much of our understanding of the biophysical principles that underlie and regulate conversion of mechanical force into conformational changes in MS channels comes from studies based on MS channel reconstitution into lipid bilayers. The bilayer reconstitution methods have enabled researchers to investigate the structure-function relationship in MS channels and probe their specific interactions with their membrane lipid environment. This brief review focuses on close interactions between MS channels and the lipid bilayer and emphasizes the central role that the transbilayer pressure profile plays in mechanosensitivity and gating of these fascinating membrane proteins.
Collapse
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, University of New South Wales, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| | - Pietro Ridone
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia
| | - Yury A Nikolaev
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- Dept. of Cellular & Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520-8026, USA
| | - Adam D Martinac
- NeuRA, Margarete Ainsworth Building, Barker St, Randwick, NSW, 2031, Australia
| | - Yoshitaka Nakayama
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
| | - Paul R Rohde
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
| | - Omid Bavi
- Institute for Nanoscience and Nanotechnology, Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, 7155713876, Iran
| |
Collapse
|
46
|
Maksaev G, Shoots JM, Ohri S, Haswell ES. Nonpolar residues in the presumptive pore-lining helix of mechanosensitive channel MSL10 influence channel behavior and establish a nonconducting function. PLANT DIRECT 2018; 2:e00059. [PMID: 30506019 PMCID: PMC6261518 DOI: 10.1002/pld3.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mechanosensitive (MS) ion channels provide a universal mechanism for sensing and responding to increased membrane tension. MscS-like (MSL) 10 is a relatively well-studied MS ion channel from Arabidopsis thaliana that is implicated in cell death signaling. The relationship between the amino acid sequence of MSL10 and its conductance, gating tension, and opening and closing kinetics remains unstudied. Here, we identify several nonpolar residues in the presumptive pore-lining transmembrane helix of MSL10 (TM6) that contribute to these basic channel properties. F553 and I554 are essential for wild type channel conductance and the stability of the open state. G556, a glycine residue located at a predicted kink in TM6, is essential for channel conductance. The increased tension sensitivity of MSL10 compared to close homolog MSL8 may be attributed to F563, but other channel characteristics appear to be dictated by more global differences in structure. Finally, MSL10 F553V and MSL10 G556V provided the necessary tools to establish that MSL10's ability to trigger cell death is independent of its ion channel function.
Collapse
Affiliation(s)
- Grigory Maksaev
- Department of Biology and Center for Engineering MechanoBiologyWashington University in Saint LouisSaint LouisMissouri
- Present address:
Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability DiseasesWashington University School of MedicineSaint LouisMO
| | - Jennette M. Shoots
- Department of Biology and Center for Engineering MechanoBiologyWashington University in Saint LouisSaint LouisMissouri
| | - Simran Ohri
- Department of Biology and Center for Engineering MechanoBiologyWashington University in Saint LouisSaint LouisMissouri
| | - Elizabeth S. Haswell
- Department of Biology and Center for Engineering MechanoBiologyWashington University in Saint LouisSaint LouisMissouri
| |
Collapse
|
47
|
Wall M, Butler D, El Haj A, Bodle JC, Loboa EG, Banes AJ. Key developments that impacted the field of mechanobiology and mechanotransduction. J Orthop Res 2018; 36:605-619. [PMID: 28817244 DOI: 10.1002/jor.23707] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 02/04/2023]
Abstract
Advances in mechanobiology have evolved through insights from multiple disciplines including structural engineering, biomechanics, vascular biology, and orthopaedics. In this paper, we reviewed the impact of key reports related to the study of applied loads on tissues and cells and the resulting signal transduction pathways. We addressed how technology has helped advance the burgeoning field of mechanobiology (over 33,600 publications from 1970 to 2016). We analyzed the impact of critical ideas and then determined how these concepts influenced the mechanobiology field by looking at the citation frequency of these reports as well as tracking how the overall number of citations within the field changed over time. These data allowed us to understand how a key publication, idea, or technology guided or enabled the field. Initial observations of how forces acted on bone and soft tissues stimulated the development of computational solutions defining how forces affect tissue modeling and remodeling. Enabling technologies, such as cell and tissue stretching, compression, and shear stress devices, allowed more researchers to explore how deformation and fluid flow affect cells. Observation of the cell as a tensegrity structure and advanced methods to study genetic regulation in cells further advanced knowledge of specific mechanisms of mechanotransduction. The future of the field will involve developing gene and drug therapies to simulate or augment beneficial load regimens in patients and in mechanically conditioning organs for implantation. Here, we addressed a history of the field, but we limited our discussions to advances in musculoskeletal mechanobiology, primarily in bone, tendon, and ligament tissues. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:605-619, 2018.
Collapse
Affiliation(s)
- Michelle Wall
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, North Carolina
| | - David Butler
- Department of Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Alicia El Haj
- Institute for Science & Technology in Medicine, Keele University, Staffordshire, UK
| | | | | | - Albert J Banes
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, North Carolina.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
48
|
Basu D, Haswell ES. Plant mechanosensitive ion channels: an ocean of possibilities. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:43-48. [PMID: 28750206 PMCID: PMC5714682 DOI: 10.1016/j.pbi.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 05/19/2023]
Abstract
Mechanosensitive ion channels, transmembrane proteins that directly couple mechanical stimuli to ion flux, serve to sense and respond to changes in membrane tension in all branches of life. In plants, mechanosensitive channels have been implicated in the perception of important mechanical stimuli such as osmotic pressure, touch, gravity, and pathogenic invasion. Indeed, three established families of plant mechanosensitive ion channels play roles in cell and organelle osmoregulation and root mechanosensing - and it is likely that many other channels and functions await discovery. Inspired by recent discoveries in bacterial and animal systems, we are beginning to establish the conserved and the unique ways in which mechanosensitive channels function in plants.
Collapse
Affiliation(s)
- Debarati Basu
- Department of Biology, Mailcode 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Mailcode 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA.
| |
Collapse
|
49
|
|
50
|
Tran D, Galletti R, Neumann ED, Dubois A, Sharif-Naeini R, Geitmann A, Frachisse JM, Hamant O, Ingram GC. A mechanosensitive Ca 2+ channel activity is dependent on the developmental regulator DEK1. Nat Commun 2017; 8:1009. [PMID: 29044106 PMCID: PMC5647327 DOI: 10.1038/s41467-017-00878-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Responses of cells to mechanical stress are thought to be critical in coordinating growth and development. Consistent with this idea, mechanically activated channels play important roles in animal development. For example, the PIEZO1 channel controls cell division and epithelial-layer integrity and is necessary for vascular development in mammals. In plants, the actual contribution of mechanoperception to development remains questionable because very few putative mechanosensors have been identified and the phenotypes of the corresponding mutants are rather mild. Here, we show that the Arabidopsis Defective Kernel 1 (DEK1) protein, which is essential for development beyond early embryogenesis, is associated with a mechanically activated Ca2+ current in planta, suggesting that perception of mechanical stress plays a critical role in plant development.
Collapse
Affiliation(s)
- Daniel Tran
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Sciences Plant Saclay, Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
- Department of Physiology and Cell Information Systems, McGill University, Montreal, Québec, Canada, H3G-0B1
| | - Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Enrique D Neumann
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Annick Dubois
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems, McGill University, Montreal, Québec, Canada, H3G-0B1
| | - Anja Geitmann
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Montreal, Québec, Canada, H9X3V9
| | - Jean-Marie Frachisse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Sciences Plant Saclay, Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|