1
|
Liu H, Zhang X, Shang Y, Zhao S, Li Y, Zhou X, Huo X, Qiao P, Wang X, Dai K, Li H, Guo J, Shi W. Genome-wide association study reveals genetic loci for ten trace elements in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:186. [PMID: 39017920 DOI: 10.1007/s00122-024-04690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
KEY MESSAGE One hundred and fifty-five QTL for trace element concentrations in foxtail millet were identified using a genome-wide association study, and a candidate gene associated with Ni-Co-Cr concentrations was detected. Foxtail millet (Setaria italica) is an important regional crop known for its rich mineral nutrient content, which has beneficial effects on human health. We assessed the concentrations of ten trace elements (Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn) in the grain of 408 foxtail millet accessions. Significant differences in the concentrations of five elements (Ba, Co, Ni, Sr, and Zn) were observed between two subpopulations of spring- and summer-sown foxtail millet varieties. Moreover, 84.4% of the element pairs exhibited significant correlations. To identify the genetic factors influencing trace element accumulation, a comprehensive genome-wide association study was conducted, identifying 155 quantitative trait locus (QTL) for the ten trace elements across three different environments. Among them, ten QTL were consistently detected in multiple environments, including qZn2.1, qZn4.4, qCr4.1, qFe6.3, qFe6.5, qCo6.1, qPb7.3, qPb7.5, qBa9.1, and qNi9.1. Thirteen QTL clusters were detected for multiple elements, which partially explained the correlations between elements. Additionally, the different concentrations of five elements between foxtail millet subpopulations were caused by the different frequencies of high-concentration alleles associated with important marker-trait associations. Haplotype analysis identified a candidate gene SETIT_036676mg associated with Ni accumulation, with the GG haplotype significantly increasing Ni-Co-Cr concentrations in foxtail millet. A cleaved amplified polymorphic sequence marker (cNi6676) based on the two haplotypes of SETIT_036676mg was developed and validated. Results of this study provide valuable reference information for the genetic research and improvement of trace element content in foxtail millet.
Collapse
Affiliation(s)
- Hanxiao Liu
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xin Zhang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yuping Shang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Shaoxing Zhao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yingjia Li
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xutao Zhou
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xiaoyu Huo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Pengfei Qiao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xin Wang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Keli Dai
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Huixia Li
- Millet Research Institute, Shanxi Agricultural University, Changzhi, 046000, China
| | - Jie Guo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Weiping Shi
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
2
|
Zhong S, Li X, Fang L, Bai J, Gao R, Huang Y, Huang Y, Liu Y, Liu C, Yin H, Liu T, Huang F, Li F. Multifunctional Roles of Zinc in Cadmium Transport in Soil-Rice Systems: Novel Insights from Stable Isotope Fractionation and Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12467-12476. [PMID: 38966939 DOI: 10.1021/acs.est.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The effect of Zn on Cd accumulation in rice varies under flooding and drainage conditions, and the underlying mechanism during uptake and transport from the soil to grains remains unclear. Isotope fractionation and gene expression were investigated using pot experiments under distinct water regimes and with Zn addition to gain a deeper understanding of the molecular effects of Zn on Cd uptake and transport in rice. The higher OsHMA2 expression but constitutively lower expression of zinc-regulated, iron-regulated transporter-like protein (ZIP) family genes in roots under the drainage regime than the flooding regime caused the enrichment of nonheavy Zn isotopes in the shoots relative to roots but minimally affected Cd isotopic fractionation. Drainage regime seem to exert a striking effect on the root-to-shoot translocation of Zn rather than Cd, and increased Zn transport via OsHMA2. The changes in expression patterns in response to Zn addition were similar to those observed upon switching from the flooding to drainage regime, except for OsNRAMP1 and OsNRAMP5. However, soil solution-to-rice plants and root-to-shoot fractionation toward light Zn isotopes with Zn addition (Δ66Znrice plant-soil solution = -0.49 to -0.40‰, Δ66Znshoot-root = -0.36 to -0.27‰) indicated that Zn transport occurred via nonspecific uptake pathways and OsHMA2, respectively. Accordingly, the less pronounced and minimally varied Cd isotope fractionation suggested that OsNRAMP5 and OsHMA2 are crucial for Cd uptake and root-to-shoot transport, respectively, facilitating Cd accumulation in grains. This study demonstrated that a high Zn supply promotes Cd uptake and root-to-shoot transport in rice by sharing distinct pathways, and by utilizing a non-Zn-sensitive pathway with a high affinity for Cd.
Collapse
Affiliation(s)
- Songxiong Zhong
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jianghao Bai
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ruichuan Gao
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yingmei Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yuhui Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chuanping Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Tongxu Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Duan Z, Chen C, Ni C, Xiong J, Wang Z, Cai J, Tan W. How different is the remediation effect of biochar for cadmium contaminated soil in various cropping systems? A global meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130939. [PMID: 36860073 DOI: 10.1016/j.jhazmat.2023.130939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) poses great threats to human health as a major contaminant in agricultural soil. Biochar shows great potential in the remediation of agricultural soil. However, it remains unclear whether the remediation effect of biochar on Cd pollution is affected by various cropping systems. Here, this study used 2007 paired observations from 227 peer-reviewed articles and employed hierarchical meta-analysis to investigate the response of three types of cropping systems to the remediation of Cd pollution by using biochar. As a result, biochar application significantly reduced the Cd content in soil, plant roots and edible parts of various cropping systems. The decrease in Cd level ranged from 24.9% to 45.0%. The feedstock, application rate, and pH of biochar as well as soil pH and cation exchange capacity were dominant factors for Cd remediation effect of biochar, and their relative importance all exceeded 37.4%. Lignocellulosic and herbal biochar were found to be suitable for all cropping systems, while the effects of manure, wood and biomass biochar were limited in cereal cropping systems. Furthermore, biochar exhibited a more long-lasting remediation effect on paddy soils than on dryland. This study provides new insights into the sustainable agricultural management of typical cropping systems.
Collapse
Affiliation(s)
- Zihao Duan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunlan Ni
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Junxiong Cai
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Academy of Ecological and Environmental Science, Wuhan, Hubei 430072, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Limmer MA, Webb SM, Seyfferth AL. Evaluation of quantitative synchrotron radiation micro-X-ray fluorescence in rice grain. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:407-416. [PMID: 36891854 PMCID: PMC10000813 DOI: 10.1107/s1600577523000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Concentrations of nutrients and contaminants in rice grain affect human health, specifically through the localization and chemical form of elements. Methods to spatially quantify the concentration and speciation of elements are needed to protect human health and characterize elemental homeostasis in plants. Here, an evaluation was carried out using quantitative synchrotron radiation microprobe X-ray fluorescence (SR-µXRF) imaging by comparing average rice grain concentrations of As, Cu, K, Mn, P, S and Zn measured with rice grain concentrations from acid digestion and ICP-MS analysis for 50 grain samples. Better agreement was found between the two methods for high-Z elements. Regression fits between the two methods allowed quantitative concentration maps of the measured elements. These maps revealed that most elements were concentrated in the bran, although S and Zn permeated into the endosperm. Arsenic was highest in the ovular vascular trace (OVT), with concentrations approaching 100 mg kg-1 in the OVT of a grain from a rice plant grown in As-contaminated soil. Quantitative SR-µXRF is a useful approach for comparison across multiple studies but requires careful consideration of sample preparation and beamline characteristics.
Collapse
Affiliation(s)
- Matt A. Limmer
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Samuel M. Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Angelia L. Seyfferth
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
5
|
Peera Sheikh Kulsum PG, Khanam R, Das S, Nayak AK, Tack FMG, Meers E, Vithanage M, Shahid M, Kumar A, Chakraborty S, Bhattacharya T, Biswas JK. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. ENVIRONMENTAL RESEARCH 2023; 220:115098. [PMID: 36586716 DOI: 10.1016/j.envres.2022.115098] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a major contaminant of concern, has been extensively reviewed and debated for its anthropogenic global shifts. Cadmium levels in rice grains raise wide food safety concerns. The aim of this review is therefore to capture the dynamics of Cd in paddy soil, translocation pathways of Cd from soil to consumption rice, and assess its bio-accessibility in human consumption. In crop plants, Cd reduces absorption of nutrients and water, triggers oxidative stress, and inhibits plant metabolism. Understanding the mechanisms and behaviour of Cd in paddy soil and rice allows to explain, predict and intervene in Cd transferability from soil to grains and human exposure. Factors affecting Cd movement in soil, and further to rice grain, are elucidated. Recently, physiological and molecular understanding of Cd transport in rice plants have been advanced. Morphological-biochemical characteristics and Cd transporters of plants in such a movement were also highlighted. Ecologically viable remediation approaches, including low input cost agronomic methods, phytoremediation and microbial bioremediation methods, are emerging.
Collapse
Affiliation(s)
| | - Rubina Khanam
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Shreya Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Amaresh Kumar Nayak
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Mohammad Shahid
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Anjani Kumar
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Sukalyan Chakraborty
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Tanushree Bhattacharya
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies &International Centre for Ecological Engineering, Universityof Kalyani, Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
6
|
Huang Z, Li S, Lv Z, Tian Y, Chen Y, Zhu Y, Wang J, Deng H, Sun L, Tang W. Identification of subspecies-divergent genetic loci responsible for mineral accumulation in rice grains. Front Genet 2023; 14:1133600. [PMID: 36824439 PMCID: PMC9941327 DOI: 10.3389/fgene.2023.1133600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Rice (Oryza sativa L.) is a major staple food that provides not only dietary calories but also trace elements for the global inhabitants. The insufficiency of mineral nutrients and the potential accumulation of excessive toxic elements in grains pose risks to human health. The substantial natural variations in mineral accumulation in rice grains presents potentials for genetic improvements of rice via biofortifications of essential mineral nutrients and eliminations of toxic elements in grains. However, the genetic mechanisms underlying the natural variations in mineral accumulation have not been fully explored to date owing to unstable phenotypic variations, which are attributed to poor genetic performance and strong environmental effects. In this study, we first compared the genetic performance of different normalization approaches in determining the grain-Cd, grain-Mn, and grain-Zn variations in rice in different genetic populations. Then through quantitative trait loci (QTLs) identification in two rice inter-ectype populations, three QTLs, including qCd7, qMn3, and qZn7, were identified and the QTLs were found to exhibit allelic differentiation in the different ecotypes. Our results were expected to broaden our understanding for mineral accumulation in rice and propose the potential functional alleles that can be explored for further genetic improvement of rice.
Collapse
Affiliation(s)
- Zijian Huang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Sai Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhaokun Lv
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yan Tian
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Yibo Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yuxing Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jiurong Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huabing Deng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,*Correspondence: Wenbang Tang, ; Liang Sun,
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha, China,State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China,*Correspondence: Wenbang Tang, ; Liang Sun,
| |
Collapse
|
7
|
Tsakirpaloglou N, Bueno-Mota GM, Soriano JC, Arcillas E, Arines FM, Yu SM, Stangoulis J, Trijatmiko KR, Reinke R, Tohme J, Bouis H, Slamet-Loedin IH. Proof of concept and early development stage of market-oriented high iron and zinc rice expressing dicot ferritin and rice nicotianamine synthase genes. Sci Rep 2023; 13:676. [PMID: 36635301 PMCID: PMC9837094 DOI: 10.1038/s41598-022-26854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Micronutrient deficiencies such as iron (Fe), zinc (Zn), and vitamin A, constitute a severe global public health phenomenon. Over half of preschool children and two-thirds of nonpregnant women of reproductive age worldwide have micronutrient deficiencies. Biofortification is a cost-effective strategy that comprises a meaningful and sustainable means of addressing this issue by delivering micronutrients through staple foods to populations with limited access to diverse diets and other nutritional interventions. Here, we report on the proof-of-concept and early development stage of a collection of biofortified rice events with a high density of Fe and Zn in polished grains that have been pursued further to advance development for product release. In total, eight constructs were developed specifically expressing dicot ferritins and the rice nicotianamine synthase 2 (OsNAS2) gene under different combinations of promoters. A large-scale transformation of these constructs to Bangladesh and Philippines commercial indica cultivars and subsequent molecular screening and confined field evaluations resulted in the identification of a pool of ten events with Fe and Zn concentrations in polished grains of up to 11 μg g-1 and up to 37 μg g-1, respectively. The latter has the potential to reduce the prevalence of inadequate Zn intake for women of childbearing age in Bangladesh and in the Philippines by 30% and 50%, respectively, compared to the current prevalence. To our knowledge, this is the first potential biotechnology public-sector product that adopts the product cycle phase-gated approach, routinely applied in the private sector.
Collapse
Affiliation(s)
- Nikolaos Tsakirpaloglou
- International Rice Research Institute (IRRI), Metro Manila, The Philippines.
- Crop Genome Editing Laboratory (CGEL), Soil and Crop Sciences Department, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, USA.
| | | | | | - Erwin Arcillas
- International Rice Research Institute (IRRI), Metro Manila, The Philippines
| | - Felichi Mae Arines
- International Rice Research Institute (IRRI), Metro Manila, The Philippines
- Board Institute of MIT and Harvard, Cambridge, MA, USA
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Naknag, Taipei, Taiwan, ROC
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Russell Reinke
- International Rice Research Institute (IRRI), Metro Manila, The Philippines
| | - Joseph Tohme
- Bioversity International and International Center for Tropical Agriculture (CIAT) Alliance, Cali, Colombia
| | - Howarth Bouis
- International Food Policy Research Institute (IFPRI) - Emeritus Fellow, Washington, DC, USA
| | | |
Collapse
|
8
|
Veena M, Puthur JT. Seed nutripriming with zinc is an apt tool to alleviate malnutrition. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2355-2373. [PMID: 34365568 PMCID: PMC8349239 DOI: 10.1007/s10653-021-01054-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/26/2021] [Indexed: 05/21/2023]
Abstract
More than 2 billion people worldwide suffer from micronutrient malnutrition, sometimes known as hidden hunger. Zn malnutrition affects around a third of the world's population. The physicochemical features of soil, which limit the availability of Zn to plants, cause Zn deficiency. The eating habits of certain populations are more depended on Zn-deficient staple foods. Due to the high expense and certain interventions such as diet diversification, zinc supplementation and food fortification cannot be achieved in disadvantaged populations. Biofortification is the most practical technique for alleviating Zn malnutrition. Seed priming with nutrients is a promising biofortification approach for edible crops. Seed nutripriming with zinc is a cost-effective and environmentally benign approach of biofortification. Seeds can be nutriprimed with Zn using a variety of methods such as Zn fertilisers, Zn chelated compounds and Zn nanoparticles. Nutripriming with nanoparticles is gaining popularity these days due to its numerous advantages and vast biofortification potential. Seeds enriched with Zn also aid plant performance in Zn-deficient soil. Zn an essential trace element can regulate physiological, biochemical and molecular processes of plant cells and thus can enhance germination, growth, yield and bioavailable Zn in edible crops. Moreover, zinc emerges as an important element of choice for the management of COVID-19 symptoms.
Collapse
Affiliation(s)
- Mathew Veena
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Calicut, Kerala, 673635, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Calicut, Kerala, 673635, India.
| |
Collapse
|
9
|
Agronomic Biofortification of Zinc in Rice for Diminishing Malnutrition in South Asia. SUSTAINABILITY 2022. [DOI: 10.3390/su14137747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Zinc (Zn) is increasingly recognized as an essential trace element in the human diet that mediates a plethora of health conditions, including immune responses to infectious diseases. Interestingly, the geographical distribution of human dietary Zn deficiency overlaps with soil Zn deficiency. In South Asia, Zn malnutrition is high due to excessive consumption of rice with low Zn content. Interventions such as dietary diversification, food fortification, supplementation, and biofortification are followed to address Zn malnutrition. Among these, Zn biofortification of rice is the most encouraging, cost-effective, and sustainable for South Asia. Biofortification through conventional breeding and transgenic approaches has been achieved in cereals; however, if the soil is deficient in Zn, then these approaches are not advantageous. Therefore, in this article, we review strategies for enhancing the Zn concentration of rice through agronomic biofortification such as timing, dose, and method of Zn fertilizer application, and how nitrogen and phosphorus application as well as crop establishment methods influence Zn concentration in rice. We also propose data-driven Zn recommendations to anticipate crop responses to Zn fertilization and targeted policies that support agronomic biofortification in regions where crop responses to Zn fertilizer are high.
Collapse
|
10
|
Zhang ZW, Deng ZL, Tao Q, Peng HQ, Wu F, Fu YF, Yang XY, Xu PZ, Li Y, Wang CQ, Chen YE, Yuan M, Lan T, Tang XY, Chen GD, Zeng J, Yuan S. Salicylate and glutamate mediate different Cd accumulation and tolerance between Brassica napus and B. juncea. CHEMOSPHERE 2022; 292:133466. [PMID: 34973246 DOI: 10.1016/j.chemosphere.2021.133466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Most hyperaccumulator plants have little economic values, and therefore have not been widely used in Cd-contaminated soils. Rape species are Cd hyperaccumulators with high economic values. Black mustard seed (Brassica juncea) has a higher accumulation ability and a higher tolerance for Cd than oilseed rape (Brassica napus), but its biomass is relatively low and its geographical distribution is limited. However, it is unknown why B. juncea (Bj) is more tolerant to and accumulates more Cd than B. napus (Bn). Here, we found that the differences in Cd accumulation and tolerance between the two species is mainly because Bj plants have higher levels of salicylic acid and glutamic acid than Bn plants. Exogenous salicylate and glutamate treatments enhanced Cd accumulation (salicylate + glutamate co-treatment doubled Cd accumulation level in Bn seedlings) but reduced oxidative stresses by increasing glutathione biosynthesis and activating phytochelatin-based sequestration of Cd into vacuoles. Our results provide a new idea to simultaneously improve Cd accumulation and Cd tolerance in B. napus.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zong-Lin Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong-Qian Peng
- Agriculture and Rural Affairs Committee of Shapingba District, Chongqing, 400030, China
| | - Fan Wu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610015, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei-Zhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yun Li
- Rape Research Institute, Chengdu Academy of Agriculture and Forestry, Chengdu, Sichuan, 611130, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Koç E, Karayiğit B. Assessment of Biofortification Approaches Used to Improve Micronutrient-Dense Plants That Are a Sustainable Solution to Combat Hidden Hunger. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2022; 22:475-500. [PMID: 34754134 PMCID: PMC8567986 DOI: 10.1007/s42729-021-00663-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 05/05/2023]
Abstract
Malnutrition causes diseases, immune system disorders, deterioration in physical growth, mental development, and learning capacity worldwide. Micronutrient deficiency, known as hidden hunger, is a serious global problem. Biofortification is a cost-effective and sustainable agricultural strategy for increasing the concentrations or bioavailability of essential elements in the edible parts of plants, minimizing the risks of toxic metals, and thus reducing malnutrition. It has the advantage of delivering micronutrient-dense food crops to a large part of the global population, especially poor populations. Agronomic biofortification and biofertilization, traditional plant breeding, and optimized fertilizer applications are more globally accepted methods today; however, genetic biofortification based on genetic engineering such as increasing or manipulating (such as CRISPR-Cas9) the expression of genes that affect the regulation of metal homeostasis and carrier proteins that serve to increase the micronutrient content for higher nutrient concentration and greater productivity or that affect bioavailability is also seen as a promising high-potential strategy in solving this micronutrient deficiency problem. Data that micronutrients can help strengthen the immune system against the COVID-19 pandemic and other diseases has highlighted the importance of tackling micronutrient deficiencies. In this study, biofortification approaches such as plant breeding, agronomic techniques, microbial fertilization, and some genetic and nanotechnological methods used in the fight against micronutrient deficiency worldwide were compiled.
Collapse
Affiliation(s)
- Esra Koç
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Belgizar Karayiğit
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Iron Supplement-Enhanced Growth and Development of Hydrangea macrophylla In Vitro under Normal and High pH. Cells 2021; 10:cells10113151. [PMID: 34831377 PMCID: PMC8622367 DOI: 10.3390/cells10113151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrangea macrophylla is a popular perennial ornamental shrub commercially grown as potted plants, landscape plants, and cut flowers. In the process of reproduction and production of ornamental plants, the absorption of nutrients directly determines the value of the ornamental plants. Hydrangea macrophylla is very sensitive to the content and absorption of the micronutrient iron (Fe) that affects growth of its shoots. However, the physiological activity of Fe as affected by deficiency or supplementation is unknown. This work aimed at preliminary exploring the relationship between Fe and photosynthesis, and also to find the most favorable iron source and level of pH for the growth of H. macrophylla. Two Fe sources, non-chelated iron sulfate (FeSO4) and iron ethylenediaminetetraacetic acid (Fe-EDTA), were supplemented to the multipurpose medium with a final Fe concentration of 2.78 mg·L-1. The medium without any Fe supplementation was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70, before autoclaving. The experiment was conducted in a culture room for 60 days with 25/18 °C day and night temperatures, and a 16-hour photoperiod provided at a light intensity of 50 mmol·m-2·s-1 photosynthetic photon flux density (PPFD) from white light-emitting diodes. Supplementary Fe increased the tissue Fe content, and leaves were greener with the medium pH of 4.70, regardless of the Fe source. Compared to the control, the number of leaves for plantlets treated with FeSO4 and Fe-EDTA were 2.0 and 1.5 times greater, respectively. The chlorophyll, macronutrient, and micronutrient contents were the greatest with Fe-EDTA at pH 4.70. Furthermore, the Fe in the leaf affected the photosynthesis by regulating stomata development, pigment content, and antioxidant system, and also by adjusting the expression of genes related to Fe absorption, transport, and redistribution. Supplementation of Fe in a form chelated with EDTA along with a medium pH of 4.70 was found to be the best for the growth and development of H. macrophylla plantlets cultured in vitro.
Collapse
|
13
|
Maltzahn LE, Zenker SG, Lopes JL, Pereira RM, Verdi CA, Rother V, Busanello C, Viana VE, Batista BL, de Oliveira AC, Pegoraro C. Brazilian Genetic Diversity for Desirable and Undesirable Elements in the Wheat Grain. Biol Trace Elem Res 2021; 199:2351-2365. [PMID: 32797369 DOI: 10.1007/s12011-020-02338-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022]
Abstract
Micronutrient deficiency affects billions of people, especially in countries where the diet is low in diversity with inadequate consumption of fruits, vegetables, and animal-source foods, and higher consumption of staple food, i.e., cereals, that have low concentrations of micronutrients. Genetic biofortification is a strategy to mitigate this problem and ensure nutritional security. Wheat is a target of genetic biofortification since it contributes significantly to the caloric requirement. The biofortification process involves a screening related to the presence of genetic variability for grain mineral content. Also, the accumulation of toxic elements must be considered to ensure food safety, because if ingested above the allowed concentrations, it represents health risks. In this sense, this study aimed to quantify the micronutrients iron, zinc, copper, selenium, and manganese and toxic elements arsenic and cadmium in a Brazilian wheat panel grown in Southern Brazil. The presence of genetic variability for the accumulation of micronutrients in the grain was detected; however, we observed that only the copper and manganese accumulation meet the human daily requirements. Iron, zinc, and selenium were detected in insufficient concentration to meet the daily demand. Arsenic and cadmium accumulation were not detected in wheat grain. The wheat genotypes grown in Brazil displayed a similar profile to that found in other countries which may be due to common high-yield breeding goals and the narrowing of the genetic variability, observed worldwide. Thus, the wheat genetic biofortification success in Brazil depends on the introduction of foreign genotypes, landraces, and wild relatives.
Collapse
Affiliation(s)
- Latóia Eduarda Maltzahn
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Stefânia Garcia Zenker
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Jennifer Luz Lopes
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Rodrigo Mendes Pereira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Campus Santo André, Santo André, SP, 09210-580, Brazil
| | - Cezar Augusto Verdi
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Vianei Rother
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Carlos Busanello
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Vívian Ebeling Viana
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Campus Santo André, Santo André, SP, 09210-580, Brazil
| | - Antonio Costa de Oliveira
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Camila Pegoraro
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil.
| |
Collapse
|
14
|
Kawakami Y, Bhullar NK. Delineating the future of iron biofortification studies in rice: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2099-2113. [PMID: 32974681 DOI: 10.1093/jxb/eraa446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Iron (Fe) deficiency in humans is a widespread problem worldwide. Fe biofortification of rice (Oryza sativa) is a promising approach to address human Fe deficiency. Since its conceptualization, various biofortification strategies have been developed, some of which have resulted in significant increases in grain Fe concentration. However, there are still many aspects that have not yet been addressed in the studies to date. In this review, we first overview the important rice Fe biofortification strategies reported to date and the complications associated with them. Next, we highlight the key outstanding questions and hypotheses related to rice Fe biofortification. Finally, we make suggestions for the direction of future rice biofortification studies.
Collapse
Affiliation(s)
- Yuta Kawakami
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
15
|
Lurthy T, Pivato B, Lemanceau P, Mazurier S. Importance of the Rhizosphere Microbiota in Iron Biofortification of Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:744445. [PMID: 34925398 PMCID: PMC8679237 DOI: 10.3389/fpls.2021.744445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/29/2021] [Indexed: 05/13/2023]
Abstract
Increasing the iron content of plant products and iron assimilability represents a major issue for human nutrition and health. This is also a major challenge because iron is not readily available for plants in most cultivated soils despite its abundance in the Earth's crust. Iron biofortification is defined as the enhancement of the iron content in edible parts of plants. This biofortification aims to reach the objectives defined by world organizations for human nutrition and health while being environment friendly. A series of options has been proposed to enhance plant iron uptake and fight against hidden hunger, but they all show limitations. The present review addresses the potential of soil microorganisms to promote plant iron nutrition. Increasing knowledge on the plant microbiota and plant-microbe interactions related to the iron dynamics has highlighted a considerable contribution of microorganisms to plant iron uptake and homeostasis. The present overview of the state of the art sheds light on plant iron uptake and homeostasis, and on the contribution of plant-microorganism (plant-microbe and plant-plant-microbe) interactions to plant nutritition. It highlights the effects of microorganisms on the plant iron status and on the co-occurring mechanisms, and shows how this knowledge may be valued through genetic and agronomic approaches. We propose a change of paradigm based on a more holistic approach gathering plant and microbial traits mediating iron uptake. Then, we present the possible applications in plant breeding, based on plant traits mediating plant-microbe interactions involved in plant iron uptake and physiology.
Collapse
|
16
|
Zhou YM, Long SS, Li BY, Huang YY, Li YJ, Yu JY, Du HH, Khan S, Lei M. Enrichment of cadmium in rice (Oryza sativa L.) grown under different exogenous pollution sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44249-44256. [PMID: 32767006 DOI: 10.1007/s11356-020-10282-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In order to unravel the cadmium (Cd) enrichment patterns in rice (Oryza sativa L.) grown under different exogenous exposure pathways, the pot experiment was conducted in a greenhouse. Cd was added to the soil-rice system via mixing soil with Cd-containing solution, irrigating the pots with Cd-containing water and leaf-spraying with Cd solution to simulate soil pollution (SPS), irrigation water pollution (IPS), and atmospheric deposit pollution sources (APS), respectively. No significant (p > 0.05) differences in plant height and rice grain yield were observed among all treatments including three different Cd pollution sources and control. The contents of Cd in rice plants significantly (p < 0.05) increased with increase in Cd concentrations in three pollution sources. The distribution pattern of Cd in the rice plant organs treated with SPS and IPS followed the order: roots > stems > leaves > husk > brown rice, while it was leaves > roots > stems > husk > brown rice treated with APS. At the same level of treatment, the highest concentration of Cd was observed in rice organs (except for middle and high concentrations treatment roots) grown under APS, followed by IPS and SPS, suggesting that the Cd bioavailability from different pollution sources followed the order of APS > IPS > SPS. It is concluded that the atmospheric pollution contributed more enrichment of rice with Cd. Therefore, in field environment, air deposits should also be analyzed for toxic metals during assessment of food chain contamination and health risk.
Collapse
Affiliation(s)
- Yi-Min Zhou
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Si-Si Long
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Bing-Yu Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Ya-Yuan Huang
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Yong-Jie Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Jia-Yan Yu
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Hui-Hui Du
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ming Lei
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China.
| |
Collapse
|
17
|
Guha T, Barman S, Mukherjee A, Kundu R. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice. CHEMOSPHERE 2020; 260:127533. [PMID: 32679374 DOI: 10.1016/j.chemosphere.2020.127533] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/24/2020] [Indexed: 05/27/2023]
Abstract
In recent decades, nanoscale zero valent iron (nZVI) has been found to be a promising approach for heavy metal remediation. This study is the first report highlighting the role of nZVI to ameliorate Cadmium (Cd) stress in rice along with its effects in expressions of transporter genes, agronomic parameters and grain nutrient status. Initially, 3 concentration of Cd (10, 50, 250 μM) and nZVI (50, 100, 200 mg L-1) were selected. PCA analysis based on growth parameters, photosynthetic pigment contents and lipid peroxidation rate confirmed that 100 mg L-1 nZVI was most suitable for remediation of 10 μM Cd. It was evident that, nZVI can alleviate Cd-induced toxic effects by enhancing antioxidant defense mechanisms and other physiological processes in plants. nZVI treated rice seedlings also showed upregulation of phytochelatins which aided in Cd chelation within vacuoles. Study of root morphology with scanning electron microscopy and ROS imaging with confocal microscopy confirmed that nZVI could alleviate oxidative stress due to Cd uptake. In nZVI treated rice seedlings, gene expressions of iron (Fe) transporters (like, IRT1,IRT2,YSL2,YSL15) which are responsible for both Fe and Cd uptake were significantly down-regulated whereas, OsVIT1 and OsCAX4 genes were over expressed which lead to sequestration of Cd in vacuoles. Cd localization assay with leadmium proved that Cd translocation was reduced with nZVI treatment. To further validate our findings a pot experiment was carried out where it was found that nZVI could immobilize Cd in soil prevented accumulation of Cd in rice grains in addition to improving yield.
Collapse
Affiliation(s)
- Titir Guha
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India
| | - Sandip Barman
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Rita Kundu
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India.
| |
Collapse
|
18
|
Distribution of Selected Heavy Metals Bioaccumulation in Various Parts of Indigenous Rice (Bokilong, Ponsulak and Taragang) in North Borneo. BORNEO JOURNAL OF RESOURCE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.33736/bjrst.2317.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prospect of three native upland paddy landraces known as Bokilong, Ponsulak and Taragang as heavy metals accumulator for phytoremediation was determined. Bioaccumulation of heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Zn) in various parts of paddy plants collected from Kiulu valley, North Borneo in the natural conditions during the vegetative phase and harvest season were analysed by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). All selected heavy metals were traced in soil samples of all three paddy landraces rhizosphere where the most available heavy metals were Fe followed by Zn. Heavy metals bioavailability in soil seemed to be influenced by the local climate of the cultivation field. Bokilong landrace is an accumulator of As, Cd, Cu, Pb and Zn. Ponsulak paddy can help clean up the soil by phytoextraction of As, Cr, Cu, Fe and Zn. Taragang paddy has a prospect in phytoextraction of Cd and Pb to remediate excess amount of this element in the soil. Different heavy metals concentration trends were accumulated in these three paddy landraces in grain indicated different nutritional values. Heavy metal uptake characteristic differs between upland paddy landraces and there was also environmental influence affecting the mobility rate of these elements in paddy plant depending on the element type and paddy genotype.
Collapse
|
19
|
Wu Z, Naveed S, Zhang C, Ge Y. Adequate supply of sulfur simultaneously enhances iron uptake and reduces cadmium accumulation in rice grown in hydroponic culture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114327. [PMID: 32179232 DOI: 10.1016/j.envpol.2020.114327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) pollution poses serious risks to human health and the rice consumption is a major contribution to dietary intake of this toxic metal. In addition, Cd causes interference to iron (Fe) uptake by rice, leading to Fe deficiency, which is a common malnutrition worldwide. Sulfur (S) is essential for the rice yield and quality; however, the roles of S supply in the Cd and Fe absorption and distribution in rice have not been systematically investigated. Here, we conducted a hydroponic experiment to examine the effects of S application on the uptake and translocation of Cd and Fe in rice under Cd treatment (1.0 μM) combined with four S levels (0, 1.75, 3.5, 7.0 mM). Rice growth was suppressed by Cd but the toxicity was alleviated with S treatment, which also led to decline of Cd concentrations in rice roots, stems and leaves. In the case of low S (1.75 mM), the Fe plaque on the root surface did not decline in the presence of Cd, but it markedly decreased with the increase of S supply (3.5 and 7.0 mM). The Fe contents in rice roots and leaves consistently increased with the S provision regardless of Cd treatment. In addition, the Cd exposure and S supply significantly promoted syntheses of thiol molecules and nicotianamine (NA), but the NA levels in rice tissues decreased when the S addition reached 7.0 mM. Taken together, results of this study demonstrate that sufficient supply of S may augment Fe bioavailability and minimize Cd accumulation in rice under hydroponic conditions.
Collapse
Affiliation(s)
- Zeying Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sadiq Naveed
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
Kawakami Y, Bhullar NK. Potential Implications of Interactions between Fe and S on Cereal Fe Biofortification. Int J Mol Sci 2020; 21:E2827. [PMID: 32325653 PMCID: PMC7216021 DOI: 10.3390/ijms21082827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/17/2023] Open
Abstract
Iron (Fe) and sulfur (S) are two essential elements for plants, whose interrelation is indispensable for numerous physiological processes. In particular, Fe homeostasis in cereal species is profoundly connected to S nutrition because phytosiderophores, which are the metal chelators required for Fe uptake and translocation in cereals, are derived from a S-containing amino acid, methionine. To date, various biotechnological cereal Fe biofortification strategies involving modulation of genes underlying Fe homeostasis have been reported. Meanwhile, the resultant Fe-biofortified crops have been minimally characterized from the perspective of interaction between Fe and S, in spite of the significance of the crosstalk between the two elements in cereals. Here, we intend to highlight the relevance of Fe and S interrelation in cereal Fe homeostasis and illustrate the potential implications it has to offer for future cereal Fe biofortification studies.
Collapse
Affiliation(s)
| | - Navreet K. Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland;
| |
Collapse
|
21
|
Liu C, Ding S, Zhang A, Hong K, Jiang H, Yang S, Ruan B, Zhang B, Dong G, Guo L, Zeng D, Qian Q, Gao Z. Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:349-359. [PMID: 31957138 DOI: 10.1111/jipb.12909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Enriching zinc (Zn) and selenium (Se) levels, while reducing cadmium (Cd) concentration in rice grains is of great benefit for human diet and health. Large natural variations in grain Zn, Se, and Cd concentrations in different rice accessions enable Zn/Se-biofortification and Cd-minimization through molecular breeding. Here, we report the development of new elite varieties by pyramiding major quantitative trait loci (QTLs) that significantly contribute to high Zn/Se and low Cd accumulation in grains. A chromosome segment substitution line CSSLGCC7 with the PA64s-derived GCC7 allele in the 93-11 background, exhibited steadily higher Mn and lower Cd concentrations in grains than those of 93-11. This elite chromosome segment substitution line (CSSL) was used as the core breeding material to cross with CSSLs harboring other major QTLs for essential mineral elements, especially CSSLGZC6 for grain Zn concentration and CSSLGSC5 for grain Se concentration. The CSSLGCC7+GZC6 and CSSLGCC7+GSC5 exhibited lower Cd concentration with higher Zn and Se concentrations in grains, respectively. Our study thus provides elite materials for rice breeding targeting high Zn/Se and low Cd concentrations in grains.
Collapse
Affiliation(s)
- Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shilin Ding
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Anpeng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Kai Hong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hongzhen Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shenglong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Bin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
22
|
Tan Y, Sun L, Song Q, Mao D, Zhou J, Jiang Y, Wang J, Fan T, Zhu Q, Huang D, Xiao H, Chen C. Genetic architecture of subspecies divergence in trace mineral accumulation and elemental correlations in the rice grain. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:529-545. [PMID: 31734869 DOI: 10.1007/s00122-019-03485-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/11/2019] [Indexed: 05/12/2023]
Abstract
Genome differentiation has shaped the divergence in element concentration between rice subspecies and contributed to the correlation among trace minerals in the rice grain. The balance between trace minerals in rice, a staple food for more than half of the world's population, is crucial for human health. However, the genetic basis underlying the correlation between trace minerals has not been fully elucidated. To address this issue, we first quantified the concentrations of 11 trace minerals in the grains of a diversity panel of 575 rice cultivars. We found that eight elements were accumulated at significantly different levels between the indica and japonica subspecies, and we also observed significant correlation patterns among a number of elements. Further, using a genome-wide association study, we identified a total of 96 significant association loci (SALs). The differentiation of the major-effect SALs along with the different number of high-concentration alleles present in the two subspecies shaped the different element performance in indica and japonica varieties. Only a few SALs located in clusters and the majority of SALs showed subspecies/subgroup differentiation, indicating that the correlations between elements in the diversity panel were mainly caused by genome differentiation instead of shared genetic basis. The genetic architecture unveiled in this study will facilitate improvement in breeding for trace mineral content.
Collapse
Affiliation(s)
- Yongjun Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Qingnan Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jieqiang Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Youru Jiang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jiurong Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Tony Fan
- University of Toronto, Toronto, M5S2E5, Canada
| | - Qihong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Daoyou Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Innovation Academy for Seed Design, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
23
|
Rice Biofortification: High Iron, Zinc, and Vitamin-A to Fight against “Hidden Hunger”. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120803] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
One out of three humans suffer from micronutrient deficiencies called “hidden hunger”. Underprivileged people, including preschool children and women, suffer most from deficiency diseases and other health-related issues. Rice (Oryza sativa), a staple food, is their source of nutrients, contributing up to 70% of daily calories for more than half of the world’s population. Solving “hidden hunger” through rice biofortification would be a sustainable approach for those people who mainly consume rice and have limited access to diversified food. White milled rice grains lose essential nutrients through polishing. Therefore, seed-specific higher accumulation of essential nutrients is a necessity. Through the method of biofortification (via genetic engineering/molecular breeding), significant increases in iron and zinc with other essential minerals and provitamin-A (β-carotene) was achieved in rice grain. Many indica and japonica rice cultivars have been biofortified worldwide, being popularly known as ‘high iron rice’, ‘low phytate rice’, ‘high zinc rice’, and ‘high carotenoid rice’ (golden rice) varieties. Market availability of such varieties could reduce “hidden hunger”, and a large population of the world could be cured from iron deficiency anemia (IDA), zinc deficiency, and vitamin-A deficiency (VAD). In this review, different approaches of rice biofortification with their outcomes have been elaborated and discussed. Future strategies of nutrition improvement using genome editing (CRISPR/Cas9) and the need of policy support have been highlighted.
Collapse
|
24
|
Gao S, Xiao Y, Xu F, Gao X, Cao S, Zhang F, Wang G, Sanders D, Chu C. Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice. THE NEW PHYTOLOGIST 2019; 224:202-215. [PMID: 31131881 DOI: 10.1111/nph.15962] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/21/2019] [Indexed: 05/06/2023]
Abstract
Zinc (Zn) deficiency is a critical problem in human nutrition. Rice is the main source of calories for nearly half the world's population but has the shortcoming, from a nutritional perspective, of being low in Zn and other essential nutrients. Here we performed analyses with cytokinin-related mutants and transgenic lines to provide unequivocal evidence that cytokinins have a key role in controlling Zn status in plants. Transporters responsible for Zn uptake and chelators for the internal transport of Zn were strictly controlled by cytokinins. Moreover, cytokinin metabolism was regulated in a highly dynamic way in response to Zn status, which allows rice to adapt to heterogeneous Zn availability. Subsequently, fine-tuning of cytokinin metabolism by root-specific expression of a cytokinin degradation enzyme was able to improve both Zn nutrient and yield traits. Importantly, X-ray fluorescence imaging revealed that the increased Zn was broadly distributed from the aleurone layer to the inner endosperm. These findings show that metabolic control of cytokinin could provide the key to breeding Zn-enriched rice.
Collapse
Affiliation(s)
- Shaopei Gao
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yunhua Xiao
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fan Xu
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaokai Gao
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shouyun Cao
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dale Sanders
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Lv G, Wang H, Xu C, Shuai H, Luo Z, Zhang Q, Zhu H, Wang S, Zhu Q, Zhang Y, Huang D. Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce Cd concentration in rice grains: a field study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9305-9313. [PMID: 30719674 DOI: 10.1007/s11356-019-04412-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Excess cadmium (Cd) in agricultural soils can be taken up by rice plants and concentrated in the grain, presenting a human health risk. In this study, we field tested the effects of three foliar treatments (zinc (Zn) alone, or combined with manganese (ZnMn) or phosphorus (ZnP)) on the Cd concentration and grain yield of six rice cultivars (C Liangyou 7, Fengyuanyou 272, Xiangwanxian 12, Tianyouhuazhan, Xiangwanxian 13, and Jinyou 284) at the grain filling stage. Our results showed that rice yield and Cd, Zn, Mn, P, and K concentrations were significantly different among the cultivars (p < 0.05); for example, Jinyou 284 recorded lower Cd levels than any other cultivar. Application of Zn, ZnMn, and ZnP had no significant effect on rice yield and Mn, P, and K concentrations for all cultivars. Compared with the control, Cd concentrations after treatment with Zn, ZnMn, and ZnP decreased by 19.03-32.55%, 36.63-55.78% (p < 0.05), and 25.72-49.10%, respectively, while Zn concentrations increased by 11.02-29.38%, 10.63-32.67%, and 11.97-36.82%, respectively. There was a significant negative correlation between Cd and Zn concentrations (p < 0.01). All three treatments increased Zn and reduced Cd concentration in rice grains, though ZnMn was most effective. Therefore, cultivar selection and Zn fertilizer application are effective strategies to minimize Cd concentration in rice grains. However, the lowest result still exceeded the Chinese Cd safety limit (0.2 mg Cd kg-1) by a factor of 2.6, demonstrating that additional effective measures should be simultaneously used to further reduce the accumulation of Cd in rice grains.
Collapse
Affiliation(s)
- Guanghui Lv
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hui Wang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Hong Shuai
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Zunchang Luo
- Soil and Fertilizer Institute of Hunan Province, Changsha, 410125, China
| | - Quan Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Hanhua Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Shuai Wang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qihong Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yangzhu Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Daoyou Huang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
26
|
Ludwig Y, Slamet-Loedin IH. Genetic Biofortification to Enrich Rice and Wheat Grain Iron: From Genes to Product. FRONTIERS IN PLANT SCIENCE 2019; 10:833. [PMID: 31379889 PMCID: PMC6646660 DOI: 10.3389/fpls.2019.00833] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/11/2019] [Indexed: 05/02/2023]
Abstract
The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product.
Collapse
|
27
|
Chen X, Wang Z, Zhu G, Nordberg GF, Ding X, Jin T. The Association Between Renal Tubular Dysfunction and Zinc Level in a Chinese Population Environmentally Exposed to Cadmium. Biol Trace Elem Res 2018; 186:114-121. [PMID: 29574673 DOI: 10.1007/s12011-018-1304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
Studies in vivo and in vitro have shown a protective effect of zinc against renal dysfunction caused by cadmium exposure. However, limited human data is available. In this study, we evaluated the association between renal tubular dysfunction and body zinc burden in a Chinese population exposed to cadmium. A total of 331 subjects (170 women and 161 men) living in control and cadmium-polluted area were included. Blood cadmium (BCd), urinary cadmium (UCd), serum zinc (SZn), zinc in hair (HZn), Zn/Cd ratio, and urinary β2Microglobulin (UBMG) were measured. The median UCd, BCd, SZn, and HZn were 2.8 and 13.6 μg/g cr, 1.3 and 12.2 μg/L, 1.31 and 1.12 mg/L, and 0.14 and 0.12 mg/g in subjects living in control and polluted areas. The UBMG level of subjects living in the polluted area was significantly higher than that of the control (0.27 vs 0.11 mg/g cr, p < 0.01). SZn, HZn, and Zn/Cd ratios were negatively correlated with UBMG (p < 0.05 or 0.01). Subjects with high SZn concentrations (≥ 1.62 mg/L) had reduced risks of elevated UBMG [(odds ratio (OR) = 0.26, 95% confidence interval (CI) 0.07-0.99)] after controlling for multiple covariates compared with those with lower zinc levels. A similar result was observed in subjects with high HZn (OR = 0.09, 95% CI 0.02-0.48). The ORs of the second, third, and fourth quartiles of Zn/Cd ratio were 0.40 (95% CI 0.19-0.84), 0.14 (95% CI 0.06-0.37), and 0.01 (95% CI 0.02-0.18) for renal dysfunction compared with those of the first quartile, respectively. For those subjects with high level of UCd, high level of SZn and HZn also had reduced risks of elevated UBMG. The results of the present study show that high zinc body burden is associated with a decrease risk of renal tubular dysfunction induced by cadmium. Zinc nutritional status should be considered in evaluating cadmium-induced renal damage.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Nephrology, Shanghai Key Laboratory of kidney and Dialysis, Zhongshan Hospital Fudan University, 180 Fenglin road, Shanghai, 200032, China
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu road, Shanghai, 200032, China
| | - Gunnar F Nordberg
- Department of Public Health and Clinical Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Xiaoqiang Ding
- Department of Nephrology, Shanghai Key Laboratory of kidney and Dialysis, Zhongshan Hospital Fudan University, 180 Fenglin road, Shanghai, 200032, China.
| | - Taiyi Jin
- Department of Occupational Medicine, School of Public Health, Fudan University, 150 Dongan road, Shanghai, 200032, China.
| |
Collapse
|
28
|
Kappara S, Neelamraju S, Ramanan R. Down regulation of a heavy metal transporter gene influences several domestication traits and grain Fe-Zn content in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:208-219. [PMID: 30348320 DOI: 10.1016/j.plantsci.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 05/07/2023]
Abstract
Biofortification of rice (Oryza sativa L.) would alleviate iron and zinc deficiencies in the target populations. We identified two alleles 261 and 284 of a Gramineae-specific heavy metal transporter gene OsHMA7 by analyzing expression patterns and sequences of genes within QTLs for high Fe & Zn, in Madhukar x Swarna recombinant inbred lines (RILs) with high (HL) or low (LL) grain Fe & Zn. Overexpression of 261 allele increased grain Fe and Zn but most of the transgenic plants either did not survive or did not yield enough seeds and could not be further characterized. Knocking down expression of OsHMA7 by RNAi silencing of endogenous gene resulted in plants with altered domestication traits such as plant height, tiller number, panicle size and architecture, grain color, shape, size, grain shattering, heading date and increased sensitivity to Fe and Zn deficiency. However, overexpression of 284 allele resulted in transgenic lines with either high grain Fe & Zn content (HL-ox) and tolerance to Fe and Zn deficiency or low grain Fe & Zn content (LL-ox) and phenotype similar to RNAi-lines. OsHMA7 transcript levels were five-fold higher in the HL-ox plants whereas LL-ox and RNAi plants showed 2-3 fold reduced levels compared to Kitaake control. Spraying LL-ox and RNAi lines with Fe & Zn at grain filling stage resulted in increased grain yield, significant increase in Fe & Zn content and brown pericarp. Altered expression of OsHMA7 influenced transcript levels of iron-responsive genes indicating cellular Fe-Zn homeostasis and also several domestication-related genes in rice. Our study shows that a novel heavy metal transporter gene influences yield and grain Fe & Zn content and has potential to improve rice production and biofortification.
Collapse
Affiliation(s)
| | - Sarla Neelamraju
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India.
| | | |
Collapse
|
29
|
Ricachenevsky FK, Punshon T, Lee S, Oliveira BHN, Trenz TS, Maraschin FDS, Hindt MN, Danku J, Salt DE, Fett JP, Guerinot ML. Elemental Profiling of Rice FOX Lines Leads to Characterization of a New Zn Plasma Membrane Transporter, OsZIP7. FRONTIERS IN PLANT SCIENCE 2018; 9:865. [PMID: 30018622 PMCID: PMC6037872 DOI: 10.3389/fpls.2018.00865] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/04/2018] [Indexed: 05/07/2023]
Abstract
Iron (Fe) and zinc (Zn) are essential micronutrients required for proper development in both humans and plants. Rice (Oryza sativa L.) grains are the staple food for nearly half of the world's population, but a poor source of metals such as Fe and Zn. Populations that rely on milled cereals are especially prone to Fe and Zn deficiencies, the most prevalent nutritional deficiencies in humans. Biofortification is a cost-effective solution for improvement of the nutritional quality of crops. However, a better understanding of the mechanisms underlying grain accumulation of mineral nutrients is required before this approach can achieve its full potential. Characterization of gene function is more time-consuming in crops than in model species such as Arabidopsis thaliana. Aiming to more quickly characterize rice genes related to metal homeostasis, we applied the concept of high throughput elemental profiling (ionomics) to Arabidopsis lines heterologously expressing rice cDNAs driven by the 35S promoter, named FOX (Full Length Over-eXpressor) lines. We screened lines expressing candidate genes that could be used in the development of biofortified grain. Among the most promising candidates, we identified two lines ovexpressing the metal cation transporter OsZIP7. OsZIP7 expression in Arabidopsis resulted in a 25% increase in shoot Zn concentrations compared to non-transformed plants. We further characterized OsZIP7 and showed that it is localized to the plasma membrane and is able to complement Zn transport defective (but not Fe defective) yeast mutants. Interestingly, we showed that OsZIP7 does not transport Cd, which is commonly transported by ZIP proteins. Importantly, OsZIP7-expressing lines have increased Zn concentrations in their seeds. Our results indicate that OsZIP7 is a good candidate for developing Zn biofortified rice. Moreover, we showed the use of heterologous expression of genes from crops in A. thaliana as a fast method for characterization of crop genes related to the ionome and potentially useful in biofortification strategies.
Collapse
Affiliation(s)
- Felipe K. Ricachenevsky
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Biologia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
- *Correspondence: Felipe K. Ricachenevsky,
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Sichul Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, South Korea
| | - Ben Hur N. Oliveira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thomaz S. Trenz
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria N. Hindt
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - John Danku
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - David E. Salt
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Janette P. Fett
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
30
|
Affholder MC, Weiss DJ, Wissuwa M, Johnson-Beebout SE, Kirk GJD. Soil CO 2 venting as one of the mechanisms for tolerance of Zn deficiency by rice in flooded soils. PLANT, CELL & ENVIRONMENT 2017; 40:3018-3030. [PMID: 28898428 DOI: 10.1111/pce.13069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/25/2017] [Indexed: 05/26/2023]
Abstract
We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter-intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn-deficient flooded soil at high and low planting densities and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO2 in the rhizosphere soil solution and resulting increases in pH. We suggest that the increases in pH caused solubilization of soil Zn by dissolution of alkali-soluble, Zn-complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO2 through root aerenchyma were responsible for the genotype and planting density effects.
Collapse
Affiliation(s)
| | - Dominik J Weiss
- Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Matthias Wissuwa
- Crop Production and Environment Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Sarah E Johnson-Beebout
- Crop and Environmental Sciences Division, International Rice Research Institute, DAPO BOX 7777, Metro Manila, Philippines
| | - Guy J D Kirk
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
31
|
Banakar R, Alvarez Fernandez A, Díaz-Benito P, Abadia J, Capell T, Christou P. Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4983-4995. [PMID: 29048564 PMCID: PMC5853871 DOI: 10.1093/jxb/erx304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/04/2017] [Indexed: 05/04/2023]
Abstract
Nicotianamine (NA) and 2'-deoxymugenic acid (DMA) are metal-chelating ligands that promote the accumulation of metals in rice endosperm, but it is unclear how these phytosiderophores regulate the levels of different metals and limit their accumulation. In this study, transgenic rice plants producing high levels of NA and DMA accumulated up to 4-fold more iron (Fe) and 2-fold more zinc (Zn) in the endosperm compared with wild-type plants. The distribution of Fe and Zn in vegetative tissues suggested that both metals are sequestered as a buffering mechanism to avoid overloading the seeds. The buffering mechanism involves the modulation of genes encoding metal transporters in the roots and aboveground vegetative tissues. As well as accumulating more Fe and Zn, the endosperm of the transgenic plants accumulated less cadmium (Cd), suggesting that higher levels of Fe and Zn competitively inhibit Cd accumulation. Our data show that although there is a strict upper limit for Fe (~22.5 µg g-1 dry weight) and Zn (~84 µg g-1 dry weight) accumulation in the endosperm, the careful selection of strategies to increase endosperm loading with essential minerals can also limit the accumulation of toxic metals such as Cd, thus further increasing the nutritional value of rice.
Collapse
Affiliation(s)
- Raviraj Banakar
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center Lleida, Spain
| | - Ana Alvarez Fernandez
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Pablo Díaz-Benito
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Javier Abadia
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Teresa Capell
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center Lleida, Spain
| | - Paul Christou
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys, Barcelona, Spain
| |
Collapse
|
32
|
Xiao L, Guan D, Peart MR, Chen Y, Li Q, Dai J. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain. CHEMOSPHERE 2017; 185:868-878. [PMID: 28746996 DOI: 10.1016/j.chemosphere.2017.07.096] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb.
Collapse
Affiliation(s)
- Ling Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongsheng Guan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - M R Peart
- Department of Geography, The University of Hong Kong, Hong Kong
| | - Yujuan Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiqi Li
- Environmental Monitoring Station of Xiangzhou District, Zhuhai 519000, China
| | - Jun Dai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
33
|
Connorton JM, Balk J, Rodríguez-Celma J. Iron homeostasis in plants - a brief overview. Metallomics 2017; 9:813-823. [PMID: 28686269 PMCID: PMC5708359 DOI: 10.1039/c7mt00136c] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/28/2017] [Indexed: 01/04/2023]
Abstract
Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches.
Collapse
Affiliation(s)
- James M Connorton
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jorge Rodríguez-Celma
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
34
|
Banakar R, Alvarez Fernández Á, Abadía J, Capell T, Christou P. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:423-432. [PMID: 27633505 PMCID: PMC5362680 DOI: 10.1111/pbi.12637] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 05/03/2023]
Abstract
Many metal transporters in plants are promiscuous, accommodating multiple divalent cations including some which are toxic to humans. Previous attempts to increase the iron (Fe) and zinc (Zn) content of rice endosperm by overexpressing different metal transporters have therefore led unintentionally to the accumulation of copper (Cu), manganese (Mn) and cadmium (Cd). Unlike other metal transporters, barley Yellow Stripe 1 (HvYS1) is specific for Fe. We investigated the mechanistic basis of this preference by constitutively expressing HvYS1 in rice under the control of the maize ubiquitin1 promoter and comparing the mobilization and loading of different metals. Plants expressing HvYS1 showed modest increases in Fe uptake, root-to-shoot translocation, seed accumulation and endosperm loading, but without any change in the uptake and root-to-shoot translocation of Zn, Mn or Cu, confirming the selective transport of Fe. The concentrations of Zn and Mn in the endosperm did not differ significantly between the wild-type and HvYS1 lines, but the transgenic endosperm contained significantly lower concentrations of Cu. Furthermore, the transgenic lines showed a significantly reduced Cd uptake, root-to-shoot translocation and accumulation in the seeds. The underlying mechanism of metal uptake and translocation reflects the down-regulation of promiscuous endogenous metal transporters revealing an internal feedback mechanism that limits seed loading with Fe. This promotes the preferential mobilization and loading of Fe, therefore displacing Cu and Cd in the seed.
Collapse
Affiliation(s)
- Raviraj Banakar
- Departament de Producció Vegetal i Ciència ForestalUniversitat de Lleida‐Agrotecnio Center LleidaLleidaSpain
| | - Ána Alvarez Fernández
- Department of Plant NutritionAula Dei Experimental StationConsejo Superior de Investigaciones Científicas (CSIC)ZaragozaSpain
| | - Javier Abadía
- Department of Plant NutritionAula Dei Experimental StationConsejo Superior de Investigaciones Científicas (CSIC)ZaragozaSpain
| | - Teresa Capell
- Departament de Producció Vegetal i Ciència ForestalUniversitat de Lleida‐Agrotecnio Center LleidaLleidaSpain
| | - Paul Christou
- Departament de Producció Vegetal i Ciència ForestalUniversitat de Lleida‐Agrotecnio Center LleidaLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
35
|
Singh SP, Keller B, Gruissem W, Bhullar NK. Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:283-292. [PMID: 27722771 PMCID: PMC5263203 DOI: 10.1007/s00122-016-2808-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE Iron and zinc deficiencies negatively impact human health worldwide. We developed wheat lines that meet or exceed recommended dietary target levels for iron and zinc in the grains. These lines represent useful germplasm for breeding new wheat varieties that can reduce iron and zinc deficiency-associated health burdens in the affected populations. Micronutrient deficiencies, including iron and zinc deficiencies, have negative impacts on human health globally. Iron-deficiency; anemia affects nearly two billion people worldwide and is the cause of reduced cognitive development, fatigue and overall low productivity. Similarly, zinc deficiency causes stunted growth, decreased immunity and increased risk of respiratory infections. Biofortification of staple crops is a sustainable and effective approach to reduce the burden of health problems associated with micronutrient deficiencies. Here, we developed wheat lines expressing rice NICOTIANAMINE SYNTHASE 2 (OsNAS2) and bean FERRITIN (PvFERRITIN) as single genes as well as in combination. NAS catalyzes the biosynthesis of nicotianamine (NA), which is a precursor of the iron chelator deoxymugeneic acid (DMA) required for long distance iron translocation. FERRITIN is important for iron storage in plants because it can store up to 4500 iron ions. We obtained significant increases of iron and zinc content in wheat grains of plants expressing either OsNAS2 or PvFERRTIN, or both genes. In particular, wheat lines expressing OsNAS2 greatly surpass the HarvestPlus recommended target level of 30 % dietary estimated average requirement (EAR) for iron, and 40 % of EAR for zinc, with lines containing 93.1 µg/g of iron and 140.6 µg/g of zinc in the grains. These wheat lines with dietary significant levels of iron and zinc represent useful germplasm for breeding new wheat varieties that can reduce micronutrient deficiencies in affected populations.
Collapse
Affiliation(s)
- Simrat Pal Singh
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Mahender A, Anandan A, Pradhan SK, Pandit E. Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches. SPRINGERPLUS 2016; 5:2086. [PMID: 28018794 PMCID: PMC5148756 DOI: 10.1186/s40064-016-3744-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/25/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rice breeding program needs to focus on development of nutrient dense rice for value addition and helping in reducing malnutrition. Mineral and vitamin deficiency related problems are common in the majority of the population and more specific to developing countries as their staple food is rice. RESULTS Genes and QTLs are recently known for the nutritional quality of rice. By comprehensive literature survey and public domain database, we provided a critical review on nutritional aspects like grain protein and amino acid content, vitamins and minerals, glycemic index value, phenolic and flavonoid compounds, phytic acid, zinc and iron content along with QTLs linked to these traits. In addition, achievements through transgenic and advanced genomic approaches have been discussed. The information available on genes and/or QTLs involved in enhancement of micronutrient element and amino acids are summarized with graphical representation. CONCLUSION Compatible QTLs/genes may be combined together to design a desirable genotype with superior in multiple grain quality traits. The comprehensive review will be helpful to develop nutrient dense rice cultivars by integrating molecular markers and transgenic assisted breeding approaches with classical breeding.
Collapse
Affiliation(s)
- Anumalla Mahender
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly, Central Rice Research Institute), Cuttack, Odisha 753006 India
| | - Annamalai Anandan
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly, Central Rice Research Institute), Cuttack, Odisha 753006 India
| | - Sharat Kumar Pradhan
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly, Central Rice Research Institute), Cuttack, Odisha 753006 India
| | - Elssa Pandit
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly, Central Rice Research Institute), Cuttack, Odisha 753006 India
| |
Collapse
|
37
|
Gao L, Chang J, Chen R, Li H, Lu H, Tao L, Xiong J. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice. RICE (NEW YORK, N.Y.) 2016; 9:39. [PMID: 27502932 PMCID: PMC4977236 DOI: 10.1186/s12284-016-0112-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/31/2016] [Indexed: 05/09/2023]
Abstract
Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice.
Collapse
Affiliation(s)
- Lei Gao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Jiadong Chang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Ruijie Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Hubo Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Hongfei Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Longxing Tao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Jie Xiong
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
38
|
Swamy BPM, Rahman MA, Inabangan-Asilo MA, Amparado A, Manito C, Chadha-Mohanty P, Reinke R, Slamet-Loedin IH. Advances in breeding for high grain Zinc in Rice. RICE (NEW YORK, N.Y.) 2016; 9:49. [PMID: 27671163 PMCID: PMC5037106 DOI: 10.1186/s12284-016-0122-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/16/2016] [Indexed: 05/18/2023]
Abstract
Zinc (Zn) is one of the most essential micronutrients required for the growth and development of human beings. More than one billion people, particularly children and pregnant women suffer from Zn deficiency related health problems in Asia. Rice is the major staple food for Asians, but the presently grown popular high yielding rice varieties are poor supplier of Zn in their polished form. Breeding rice varieties with high grain Zn has been suggested to be a sustainable, targeted, food-based and cost effective approach in alleviating Zn deficiency. The physiological, genetic and molecular mechanisms of Zn homeostasis have been well studied, but these mechanisms need to be characterized from a biofortification perspective and should be well integrated with the breeding processes. There is a significant variation for grain Zn in rice germplasm and efforts are being directed at exploiting this variation through breeding to develop high Zn rice varieties. Several QTLs and gene specific markers have been identified for grain Zn and there is a great potential to use them in Marker-Assisted Breeding. A thorough characterization of genotype and environmental interactions is essential to identify key environmental factors influencing grain Zn. Agronomic biofortification has shown inconsistent results, but a combination of genetic and agronomic biofortification strategies may be more effective. Significant progress has been made in developing high Zn rice lines for release in target countries. A holistic breeding approach involving high Zn trait development, high Zn product development, product testing and release, including bioefficacy and bioavailability studies is essential for successful Zn biofortification.
Collapse
Affiliation(s)
- B. P. Mallikarjuna Swamy
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Mohammad Akhlasur Rahman
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | - Mary Ann Inabangan-Asilo
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Amery Amparado
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Christine Manito
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Prabhjit Chadha-Mohanty
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Russell Reinke
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Inez H. Slamet-Loedin
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
39
|
Detterbeck A, Pongrac P, Rensch S, Reuscher S, Pečovnik M, Vavpetič P, Pelicon P, Holzheu S, Krämer U, Clemens S. Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation. THE NEW PHYTOLOGIST 2016; 211:1241-54. [PMID: 27125321 DOI: 10.1111/nph.13987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/23/2016] [Indexed: 05/21/2023]
Abstract
Genetic biofortification requires knowledge on natural variation and the underlying mechanisms of micronutrient accumulation. We therefore studied diversity in grain micronutrient concentrations and spatial distribution in barley (Hordeum vulgare), a genetically tractable model cereal and an important crop with widespread cultivation. We assembled a diverse collection of barley cultivars and landraces and analysed grain micronutrient profiles in genebank material and after three independent cultivations. Lines with contrasting grain zinc (Zn) accumulation were selected for in-depth analysis of micronutrient distribution within the grain by micro-proton-induced X-ray emission (μ-PIXE). Also, we addressed association with grain cadmium (Cd) accumulation. The analysis of > 120 lines revealed substantial variation, especially in grain Zn concentrations. A large fraction of this variation is due to genetic differences. Grain dissection and μ-PIXE analysis of contrasting lines showed that differences in grain Zn accumulation apply to all parts of the grain including the endosperm. Cd concentrations exceeded the Codex Alimentarius threshold in most of the representative barley lines after cultivation in a Cd-contaminated agricultural soil. Two important conclusions for biofortification are: first, high-Zn grains contain more Zn also in the consumed parts of the grain; and second, higher micronutrient concentrations are strongly associated with higher Cd accumulation.
Collapse
Affiliation(s)
- Amelie Detterbeck
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Paula Pongrac
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Stefan Rensch
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Stefan Reuscher
- Department of Plant Physiology, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Matic Pečovnik
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Stefan Holzheu
- Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95440, Bayreuth, Germany
| | - Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
- Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95440, Bayreuth, Germany
| |
Collapse
|
40
|
Boonyaves K, Gruissem W, Bhullar NK. NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. PLANT MOLECULAR BIOLOGY 2016; 90:207-15. [PMID: 26560141 PMCID: PMC4717176 DOI: 10.1007/s11103-015-0404-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/03/2015] [Indexed: 05/18/2023]
Abstract
Rice is a staple food for over half of the world's population, but it contains only low amounts of bioavailable micronutrients for human nutrition. Consequently, micronutrient deficiency is a widespread health problem among people who depend primarily on rice as their staple food. Iron deficiency anemia is one of the most serious forms of malnutrition. Biofortification of rice grains for increased iron content is an effective strategy to reduce iron deficiency. Unlike other grass species, rice takes up iron as Fe(II) via the IRON REGULATED TRANSPORTER (IRT) in addition to Fe(III)-phytosiderophore chelates. We expressed Arabidopsis IRT1 (AtIRT1) under control of the Medicago sativa EARLY NODULIN 12B promoter in our previously developed high-iron NFP rice lines expressing NICOTIANAMINE SYNTHASE (AtNAS1) and FERRITIN. Transgenic rice lines expressing AtIRT1 alone had significant increases in iron and combined with NAS and FERRITIN increased iron to 9.6 µg/g DW in the polished grains that is 2.2-fold higher as compared to NFP lines. The grains of AtIRT1 lines also accumulated more copper and zinc but not manganese. Our results demonstrate that the concerted expression of AtIRT1, AtNAS1 and PvFERRITIN synergistically increases iron in both polished and unpolished rice grains. AtIRT1 is therefore a valuable transporter for iron biofortification programs when used in combination with other genes encoding iron transporters and/or storage proteins.
Collapse
Affiliation(s)
- Kulaporn Boonyaves
- Plant Biotechnology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology Zurich), Universitaetsstrasse 2, 8092, Zurich, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology Zurich), Universitaetsstrasse 2, 8092, Zurich, Switzerland
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology Zurich), Universitaetsstrasse 2, 8092, Zurich, Switzerland.
| |
Collapse
|
41
|
Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AAT, Tohme J, Barry G, Slamet-Loedin IH. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 2016; 6:19792. [PMID: 26806528 PMCID: PMC4726380 DOI: 10.1038/srep19792] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/07/2015] [Indexed: 12/23/2022] Open
Abstract
More than two billion people are micronutrient deficient. Polished grains of popular rice varieties have concentration of approximately 2 μg g(-1) iron (Fe) and 16 μg g(-1) zinc (Zn). The HarvestPlus breeding programs for biofortified rice target 13 μg g(-1) Fe and 28 μg g(-1) Zn to reach approximately 30% of the estimated average requirement (EAR). Reports on engineering Fe content in rice have shown an increase up to 18 μg g(-1) in glasshouse settings; in contrast, under field conditions, 4 μg g(-1) was the highest reported concentration. Here, we report on selected transgenic events, field evaluated in two countries, showing 15 μg g(-1) Fe and 45.7 μg g(-1) Zn in polished grain. Rigorous selection was applied to 1,689 IR64 transgenic events for insert cleanliness and, trait and agronomic performances. Event NASFer-274 containing rice nicotianamine synthase (OsNAS2) and soybean ferritin (SferH-1) genes showed a single locus insertion without a yield penalty or altered grain quality. Endosperm Fe and Zn enrichment was visualized by X-ray fluorescence imaging. The Caco-2 cell assay indicated that Fe is bioavailable. No harmful heavy metals were detected in the grain. The trait remained stable in different genotype backgrounds.
Collapse
Affiliation(s)
- Kurniawan R. Trijatmiko
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Bogor 16111, Indonesia
| | - Conrado Dueñas
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Nikolaos Tsakirpaloglou
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Lina Torrizo
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Felichi Mae Arines
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Cheryl Adeva
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jeanette Balindong
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Norman Oliva
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Maria V. Sapasap
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jaime Borrero
- Centro Internacional de Agricultura Tropical, Cali, Colombia
| | - Jessica Rey
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Perigio Francisco
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Andy Nelson
- Social Sciences Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede 7500 AE, The Netherlands
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 Japan
| | - Enzo Lombi
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Australia
| | - Elad Tako
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, New York
| | - Raymond P. Glahn
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, New York
| | - James Stangoulis
- School of Biological Sciences, Flinders University of South Australia, Adelaide, Australia
| | - Prabhjit Chadha-Mohanty
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | | | - Joe Tohme
- Centro Internacional de Agricultura Tropical, Cali, Colombia
| | - Gerard Barry
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Inez H. Slamet-Loedin
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong 16911, Indonesia
| |
Collapse
|
42
|
He F, Liu Q, Zheng L, Cui Y, Shen Z, Zheng L. RNA-Seq Analysis of Rice Roots Reveals the Involvement of Post-Transcriptional Regulation in Response to Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1136. [PMID: 26734039 PMCID: PMC4685130 DOI: 10.3389/fpls.2015.01136] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/30/2015] [Indexed: 05/20/2023]
Abstract
Widely-spread cadmium (Cd) pollution in the soil threatens both crop production and human health. How plants deal with the excess Cd are largely unknown. To evaluate the molecular mechanism by which plants respond to Cd stress, rice seedlings were treated with two concentrations of Cd and subjected to deep RNA sequencing. Comprehensive RNA-Seq analysis of rice roots under two gradients of Cd treatment revealed 1169 Cd toxicity-responsive genes. These genes were involved in the reactive oxygen species scavenging system, stress response, cell wall formation, ion transport, and signal transduction. Nine out of 93 predicted long non-coding RNAs (lncRNAs) were detected as Cd-responsive lncRNAs due to their high correlation with the Cd stress response. In addition, we analyzed alternative splicing (AS) events under different Cd concentrations. Four hundred and seventy-six differential alternatively spliced genes with 542 aberrant splicing events were identified. GO analysis indicated that these genes were highly enriched in oxidation reduction and cellular response to chemical stimulus. Real-time qRT-PCR validation analysis strengthened the reliability of our RNA-Seq results. The results suggest that post-transcriptional AS regulation may also be involved in plant responses to high Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|