1
|
Ciurli A, Zamboni A, Varanini Z. Early transcriptomic changes in cucumber and maize roots in response to FePO 4 nanoparticles as a source of P and Fe. Sci Rep 2025; 15:11786. [PMID: 40189639 PMCID: PMC11973210 DOI: 10.1038/s41598-025-95989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
The use of nanoparticles as an alternative to traditional fertilizers, aiming at a more efficient use of nutrients, is a recently developed concept that requires a thorough understanding of the processes occurring in the soil-plant system. A crucial aspect in this framework is to decipher the plant responses to the unique characteristics of these materials. In this work, we aim at decoding the transcriptional responses of cucumber and maize roots to FePO4 nanoparticles applied as P and Fe sources, respectively. The results demonstrate that P and Fe supplied as nanoscale salts support plant nutrition with an efficiency comparable to that of ionic forms of the nutrients. This supposition is confirmed by transcriptomic profiles that show no significant upregulation of transcripts typically induced by deficiencies in P and Fe in cucumber and maize plants in which these nutrients were provided by FePO4 nanoparticles. The analysis further revealed that nanoparticles alter the expression of genes involved in root development and stress responses, effect that appeared to be independent on the nutritional status of the plants. Our data further underline the challenge to identify generalizable elements of the impact of nanomaterials on plant species, as responses are intimately linked to the type of nanomaterials and differ among plant species.
Collapse
Affiliation(s)
- Andrea Ciurli
- Biotechnology Department, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, via G. Fanin 40, Bologna, 40127, Italy
| | - Anita Zamboni
- Biotechnology Department, University of Verona, Strada le Grazie 15, Verona, 37134, Italy.
| | - Zeno Varanini
- Biotechnology Department, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| |
Collapse
|
2
|
Thiébaut N, Sarthou M, Richtmann L, Pergament Persson D, Ranjan A, Schloesser M, Boutet S, Rezende L, Clemens S, Verbruggen N, Hanikenne M. Specific redox and iron homeostasis responses in the root tip of Arabidopsis upon zinc excess. THE NEW PHYTOLOGIST 2025. [PMID: 40165747 DOI: 10.1111/nph.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Zinc (Zn) excess negatively impacts primary root growth in Arabidopsis thaliana. Yet, the effects of Zn excess on specific growth processes in the root tip (RT) remain largely unexplored. Transcriptomics, ionomics, and metabolomics were used to examine the specific impact of Zn excess on the RT compared with the remaining root (RR). Zn excess exposure resulted in a shortened root apical meristem and elongation zone, with differentiation initiating closer to the tip of the root. Zn accumulated at a lower concentration in the RT than in the RR. This pattern was associated with lower expression of Zn homeostasis and iron (Fe) deficiency response genes. A distinct distribution of Zn and Fe in RT and RR was highlighted by laser ablation inductively coupled plasma-mass spectrometry analysis. Specialized tryptophan (Trp)-derived metabolism genes, typically associated with redox and biotic stress responses, were specifically upregulated in the RT upon Zn excess, among those Phytoalexin Deficient 3 (PAD3) encoding the last enzyme of camalexin synthesis. In the roots of wild-type seedlings, camalexin concentration increased by sixfold upon Zn excess, and a pad3 mutant displayed increased Zn sensitivity and an altered ionome. Our results indicate that distinct redox and iron homeostasis mechanisms are key elements of the response to Zn excess in the RT.
Collapse
Affiliation(s)
- Noémie Thiébaut
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Manon Sarthou
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Ludwig Richtmann
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Daniel Pergament Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Alok Ranjan
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Stéphanie Boutet
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Lucas Rezende
- Hedera-22 SA, Boulevard du Rectorat 27b, B-4000, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| |
Collapse
|
3
|
Yong J, Xu W, Wu M, Zhang R, Mann CWG, Liu G, Brosnan CA, Mitter N, Carroll BJ, Xu ZP. Lysozyme-coated nanoparticles for active uptake and delivery of synthetic RNA and plasmid-encoded genes in plants. NATURE PLANTS 2025; 11:131-144. [PMID: 39747606 DOI: 10.1038/s41477-024-01882-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes. The lysozyme-coated nanosheets efficiently delivered synthetic mRNA, double-stranded RNA, small interfering RNA and plasmid DNA up to 15 kb in size into tobacco roots, and also functional nucleic acids into leaves, callus, flowers and developing pollen of dicot and monocot species. Thus, lysozyme-coated LDH nanoparticles are a versatile tool for efficiently delivering functional nucleic acids into plants.
Collapse
Affiliation(s)
- Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Wang Xu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Christopher W G Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Christopher A Brosnan
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
4
|
Pang Z, Qiu LX, Guan DX, Zeng X, Wang Y, Peng H, Song A, Liang Y. A novel layered culture device reveals spatial dynamics of root element uptake and optimal silicon application site for mitigating chromium uptake by rice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123488. [PMID: 39615476 DOI: 10.1016/j.jenvman.2024.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
Understanding root uptake mechanisms for various elements is crucial for optimizing heavy metal remediation strategies and enhancing plant-nutrient interactions. However, simple and effective methods to differentiate the contributions of specific root segments in element uptake are lacking. Here, we developed a layered culture device consisting of a culture box and a plant suspension mechanism, which isolates different root segments through solid media and waterproof coating. Then, we used the device to investigate the roles of distinct root segments (0-1 cm and 1-2 cm from the tip) in heavy metal chromium (Cr) and beneficial element silicon (Si) uptake in rice. The results indicated that the 0-1 cm root segment contributed approximately 58% of leaf Cr(VI), with higher efflux compared to the 1-2 cm segment. Conversely, the 1-2 cm root segment served as the primary source of leaf Si and Cr(III), accounting for 62% and 54%, respectively. The translocation factors for Cr(VI) were similar for both segments (0.039 and 0.032), while the Cr(III) translocation factor for the 0-1 cm root segment (0.061) was 2.8 times that of the 1-2 cm segment. Notably, Si application to the 0-1 cm segment most effectively alleviated Cr (III) and Cr (VI) stress, boosting shoot length, fresh weight, and chlorophyll concentration and reducing Cr concentrations in roots and leaves by 24.7%-65.7%. In contrast, Si application to the 1-2 cm segment had minimal impact on rice growth or Cr uptake. These results suggest a deep Si application strategy for remediating Cr-contaminated soil. The innovative device provides a scientific foundation for distinguishing element uptake contributions of different root segments and enhancing the utilization efficiency of remediation materials and nutrient management in agriculture.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Li-Xue Qiu
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xian Zeng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Alin Song
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Zhou R, Wang S, Li J, Yang M, Liu C, Qi Z, Xu C, Wu X, Chen Q, Zhao Y. Transcriptional and Metabolomic Analyses Reveal That GmESR1 Increases Soybean Seed Protein Content Through the Phenylpropanoid Biosynthesis Pathway. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39483062 DOI: 10.1111/pce.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Soybeans are an economically vital food crop, which is employed as a key source of oil and plant protein globally. This study identified an EREBP-type transcription factor, GmESR1 (Enhance of Shot Regeneration). GmESR1 overexpression has been observed to significantly increase seed protein content. Furthermore, the molecular mechanism by which GmESR1 affects protein accumulation through transcriptome and metabolomics was also identified. The transcriptomic and metabolomic analyses identified 95 differentially expressed genes and 83 differentially abundant metabolites during the seed mid-maturity stage. Co-analysis strategies revealed that GmESR1 overexpression inhibited the biosynthesis of lignin, cellulose, hemicellulose, and pectin via the phenylpropane biosynthetic pathway, thereby redistributing biomass within cells. The key genes and metabolites impacted by this biochemical process included Gm4CL-like, GmCCR, Syringin, and Coniferin. Moreover, it was also found that GmESR1 binds to (AATATTATCATTAAGTACGGAC) during seed development and inhibits the transcription of GmCCR. GmESR1 overexpression also enhanced sucrose transporter gene expression during seed development and increased the sucrose transport rate. These results offer new insight into the molecular mechanisms whereby GmESR1 increases protein levels within soybean seeds, guiding future molecular-assisted breeding efforts aimed at establishing high-protein soybean varieties.
Collapse
Affiliation(s)
- Runnan Zhou
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Sihui Wang
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jianwei Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Chang Xu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xiaoxia Wu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Ying Zhao
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Wang M, Li Z, Wang H, Zhao J, Zhang Y, Lin K, Zheng S, Feng Y, Zhang Y, Teng W, Tong Y, Zhang W, Xue Y, Mao H, Li H, Zhang B, Rasheed A, Bhavani S, Liu C, Ling HQ, Hu YQ, Zhang Y. A Quantitative Computational Framework for Allopolyploid Single-Cell Data Integration and Core Gene Ranking in Development. Mol Biol Evol 2024; 41:msae178. [PMID: 39213378 PMCID: PMC11421573 DOI: 10.1093/molbev/msae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Polyploidization drives regulatory and phenotypic innovation. How the merger of different genomes contributes to polyploid development is a fundamental issue in evolutionary developmental biology and breeding research. Clarifying this issue is challenging because of genome complexity and the difficulty in tracking stochastic subgenome divergence during development. Recent single-cell sequencing techniques enabled probing subgenome-divergent regulation in the context of cellular differentiation. However, analyzing single-cell data suffers from high error rates due to high dimensionality, noise, and sparsity, and the errors stack up in polyploid analysis due to the increased dimensionality of comparisons between subgenomes of each cell, hindering deeper mechanistic understandings. In this study, we develop a quantitative computational framework, called "pseudo-genome divergence quantification" (pgDQ), for quantifying and tracking subgenome divergence directly at the cellular level. Further comparing with cellular differentiation trajectories derived from single-cell RNA sequencing data allows for an examination of the relationship between subgenome divergence and the progression of development. pgDQ produces robust results and is insensitive to data dropout and noise, avoiding high error rates due to multiple comparisons of genes, cells, and subgenomes. A statistical diagnostic approach is proposed to identify genes that are central to subgenome divergence during development, which facilitates the integration of different data modalities, enabling the identification of factors and pathways that mediate subgenome-divergent activity during development. Case studies have demonstrated that applying pgDQ to single-cell and bulk tissue transcriptomic data promotes a systematic and deeper understanding of how dynamic subgenome divergence contributes to developmental trajectories in polyploid evolution.
Collapse
Affiliation(s)
- Meiyue Wang
- Beijing Life Science Academy, Beijing, China
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences\Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haoyu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan 457004, China
| | - Junwei Zhao
- Beijing Life Science Academy, Beijing, China
| | - Yuyun Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kande Lin
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yilong Feng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu'e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Teng
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenli Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hude Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan 457004, China
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 81008, China
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- International Maize and Wheat Improvement Center (CIMMYT), China Office, c/o CAAS, Beijing, 100081, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do. de México, Mexico
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences\Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya, Hainan 572025, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Wu X, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121979. [PMID: 39088904 DOI: 10.1016/j.jenvman.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 μM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.
Collapse
Affiliation(s)
- Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China.
| |
Collapse
|
8
|
Imran M, Junaid M, Shafiq S, Liu S, Chen X, Wang J, Tang X. Multiomics analysis reveals a substantial decrease in nanoplastics uptake and associated impacts by nano zinc oxide in fragrant rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134640. [PMID: 38810581 DOI: 10.1016/j.jhazmat.2024.134640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) have emerged as global environmental pollutants with concerning implications for sustainable agriculture. Understanding the underlying mechanisms of NPs toxicity and devising strategies to mitigate their impact is crucial for crop growth and development. Here, we investigated the nanoparticles of zinc oxide (nZnO) to mitigate the adverse effects of 80 nm NPs on fragrant rice. Our results showed that optimized nZnO (25 mg L-1) concentration rescued root length and structural deficits by improving oxidative stress response, antioxidant defense mechanism and balanced nutrient levels, compared to seedlings subjected only to NPs stress (50 mg L-1). Consequently, microscopy observations, Zeta potential and Fourier transform infrared (FTIR) results revealed that NPs were mainly accumulated on the initiation joints of secondary roots and between cortical cells that blocks the nutrients uptake, while the supplementation of nZnO led to the formation of aggregates with NPs, which effectively impedes the uptake of NPs by the roots of fragrant rice. Transcriptomic analysis identified a total of 3973, 3513 and 3380 differentially expressed genes (DEGs) in response to NPs, nZnO and NPs+nZnO, respectively, compared to the control. Moreover, DEGs were significantly enriched in multiple pathways including biosynthesis of secondary metabolite, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, carotenoid biosynthesis, plant-pathogen interactions, MAPK signaling pathway, starch and sucrose metabolism, and plant hormone signal transduction. These pathways could play a significant role in alleviating NPs toxicity and restoring fragrant rice roots. Furthermore, metabolomic analysis demonstrated that nZnO application restored 2-acetyl-1-pyrroline (2-AP) pathways genes expression, enzymatic activities, and the content of essential precursors related to 2-AP biosynthesis under NPs toxicity, which ultimately led to the restoration of 2-AP content in the leaves. In conclusion, this study shows that optimized nZnO application effectively alleviates NPs toxic effects and restores both root structure and aroma production in fragrant rice leaves. This research offers a sustainable and practical strategy to enhance crop production under NPs toxicity while emphasizing the pivotal role of essential micronutrient nanomaterials in agriculture.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Sarfraz Shafiq
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyuan Chen
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Yu G, Zhang L, Xue H, Chen Y, Liu X, Del Pozo JC, Zhao C, Lozano-Duran R, Macho AP. Cell wall-mediated root development is targeted by a soil-borne bacterial pathogen to promote infection. Cell Rep 2024; 43:114179. [PMID: 38691455 DOI: 10.1016/j.celrep.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Yujiao Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
10
|
Dupouy G, Dong Y, Herzog E, Chabouté ME, Berr A. Nuclear envelope dynamics in connection to chromatin remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:963-981. [PMID: 37067011 DOI: 10.1111/tpj.16246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
The nucleus is a central organelle of eukaryotic cells undergoing dynamic structural changes during cellular fundamental processes such as proliferation and differentiation. These changes rely on the integration of developmental and stress signals at the nuclear envelope (NE), orchestrating responses at the nucleo-cytoplasmic interface for efficient genomic functions such as DNA transcription, replication and repair. While in animals, correlation has already been established between NE dynamics and chromatin remodeling using last-generation tools and cutting-edge technologies, this topic is just emerging in plants, especially in response to mechanical cues. This review summarizes recent data obtained in this field with more emphasis on the mechanical stress response. It also highlights similarities/differences between animal and plant cells at multiples scales, from the structural organization of the nucleo-cytoplasmic continuum to the functional impacts of NE dynamics.
Collapse
Affiliation(s)
- Gilles Dupouy
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Yihan Dong
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Etienne Herzog
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| |
Collapse
|
11
|
Muzaffar A, Chen Y, Lee H, Wu C, Le TT, Liang J, Lu C, Balasubramaniam H, Lo S, Yu L, Chan C, Chen K, Lee M, Hsing Y, Ho TD, Yu S. A newly evolved rice-specific gene JAUP1 regulates jasmonate biosynthesis and signalling to promote root development and multi-stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1417-1432. [PMID: 38193234 PMCID: PMC11022792 DOI: 10.1111/pbi.14276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024]
Abstract
Root architecture and function are critical for plants to secure water and nutrient supply from the soil, but environmental stresses alter root development. The phytohormone jasmonic acid (JA) regulates plant growth and responses to wounding and other stresses, but its role in root development for adaptation to environmental challenges had not been well investigated. We discovered a novel JA Upregulated Protein 1 gene (JAUP1) that has recently evolved in rice and is specific to modern rice accessions. JAUP1 regulates a self-perpetuating feed-forward loop to activate the expression of genes involved in JA biosynthesis and signalling that confers tolerance to abiotic stresses and regulates auxin-dependent root development. Ectopic expression of JAUP1 alleviates abscisic acid- and salt-mediated suppression of lateral root (LR) growth. JAUP1 is primarily expressed in the root cap and epidermal cells (EPCs) that protect the meristematic stem cells and emerging LRs. Wound-activated JA/JAUP1 signalling promotes crosstalk between the root cap of LR and parental root EPCs, as well as induces cell wall remodelling in EPCs overlaying the emerging LR, thereby facilitating LR emergence even under ABA-suppressive conditions. Elevated expression of JAUP1 in transgenic rice or natural rice accessions enhances abiotic stress tolerance and reduces grain yield loss under a limited water supply. We reveal a hitherto unappreciated role for wound-induced JA in LR development under abiotic stress and suggest that JAUP1 can be used in biotechnology and as a molecular marker for breeding rice adapted to extreme environmental challenges and for the conservation of water resources.
Collapse
Affiliation(s)
- Adnan Muzaffar
- Molecular and Cell Biology, Taiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan, ROC
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan, ROC
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
| | - Yi‐Shih Chen
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Hsiang‐Ting Lee
- Molecular and Cell Biology, Taiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan, ROC
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan, ROC
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Cheng‐Chieh Wu
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan, ROC
| | - Trang Thi Le
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
| | - Jin‐Zhang Liang
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
- Department of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwan, ROC
| | - Chun‐Hsien Lu
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipeiTaiwan, ROC
| | - Hariharan Balasubramaniam
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate ProgramAcademia Sinica and National Chung Hsing UniversityTaipeiTaiwan, ROC
| | - Shuen‐Fang Lo
- International Bachelor Program of AgribusinessNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Lin‐Chih Yu
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
| | - Chien‐Hao Chan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
| | - Ku‐Ting Chen
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
| | - Miin‐Huey Lee
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Yue‐Ie Hsing
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan, ROC
| | - Tuan‐Hua David Ho
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan, ROC
| | - Su‐May Yu
- Molecular and Cell Biology, Taiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan, ROC
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan, ROC
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipeiTaiwan, ROC
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate ProgramAcademia Sinica and National Chung Hsing UniversityTaipeiTaiwan, ROC
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| |
Collapse
|
12
|
Ercoli MF, Shigenaga AM, de Araujo AT, Jain R, Ronald PC. Tyrosine-sulfated peptide hormone induces flavonol biosynthesis to control elongation and differentiation in Arabidopsis primary root. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578681. [PMID: 38352507 PMCID: PMC10862922 DOI: 10.1101/2024.02.02.578681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
In Arabidopsis roots, growth initiation and cessation are organized into distinct zones. How regulatory mechanisms are integrated to coordinate these processes and maintain proper growth progression over time is not well understood. Here, we demonstrate that the peptide hormone PLANT PEPTIDE CONTAINING SULFATED TYROSINE 1 (PSY1) promotes root growth by controlling cell elongation. Higher levels of PSY1 lead to longer differentiated cells with a shootward displacement of characteristics common to mature cells. PSY1 activates genes involved in the biosynthesis of flavonols, a group of plant-specific secondary metabolites. Using genetic and chemical approaches, we show that flavonols are required for PSY1 function. Flavonol accumulation downstream of PSY1 occurs in the differentiation zone, where PSY1 also reduces auxin and reactive oxygen species (ROS) activity. These findings support a model where PSY1 signals the developmental-specific accumulation of secondary metabolites to regulate the extent of cell elongation and the overall progression to maturation.
Collapse
Affiliation(s)
- Maria Florencia Ercoli
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley 94720
| | - Alexandra M Shigenaga
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Artur Teixeira de Araujo
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Joint Bioenergy Institute, Emeryville, California
| | - Rashmi Jain
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley 94720
- The Joint Bioenergy Institute, Emeryville, California
| |
Collapse
|
13
|
Kaur H, Teulon JM, Godon C, Desnos T, Chen SWW, Pellequer JL. Correlation between plant cell wall stiffening and root extension arrest phenotype in the combined abiotic stress of Fe and Al. PLANT, CELL & ENVIRONMENT 2024; 47:574-584. [PMID: 37876357 DOI: 10.1111/pce.14744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/01/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
The plasticity and growth of plant cell walls (CWs) remain poorly understood at the molecular level. In this work, we used atomic force microscopy (AFM) to observe elastic responses of the root transition zone of 4-day-old Arabidopsis thaliana wild-type and almt1-mutant seedlings grown under Fe or Al stresses. Elastic parameters were deduced from force-distance curve measurements using the trimechanic-3PCS framework. The presence of single metal species Fe2+ or Al3+ at 10 µM exerts no noticeable effect on the root growth compared with the control conditions. On the contrary, a mix of both the metal ions produced a strong root-extension arrest concomitant with significant increase of CW stiffness. Raising the concentration of either Fe2+ or Al3+ to 20 µM, no root-extension arrest was observed; nevertheless, an increase in root stiffness occurred. In the presence of both the metal ions at 10 µM, root-extension arrest was not observed in the almt1 mutant, which substantially abolishes the ability to exude malate. Our results indicate that the combination of Fe2+ and Al3+ with exuded malate is crucial for both CW stiffening and root-extension arrest. However, stiffness increase induced by single Fe2+ or Al3+ is not sufficient for arresting root growth in our experimental conditions.
Collapse
Affiliation(s)
| | | | - Christian Godon
- Aix Marseille Université, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, Cadarache, France
| | - Thierry Desnos
- Aix Marseille Université, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, Cadarache, France
| | - Shu-Wen W Chen
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Rue Cyprien Jullin, Vinay, France
| | | |
Collapse
|
14
|
Dash L, Swaminathan S, Šimura J, Gonzales CLP, Montes C, Solanki N, Mejia L, Ljung K, Zabotina OA, Kelley DR. Changes in cell wall composition due to a pectin biosynthesis enzyme GAUT10 impact root growth. PLANT PHYSIOLOGY 2023; 193:2480-2497. [PMID: 37606259 PMCID: PMC10663140 DOI: 10.1093/plphys/kiad465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as β-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to β-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.
Collapse
Affiliation(s)
- Linkan Dash
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Caitlin Leigh P Gonzales
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Iowa City, IA 50011, USA
| | - Neel Solanki
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Ludvin Mejia
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| |
Collapse
|
15
|
Alonso Baez L, Bacete L. Cell wall dynamics: novel tools and research questions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6448-6467. [PMID: 37539735 PMCID: PMC10662238 DOI: 10.1093/jxb/erad310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Years ago, a classic textbook would define plant cell walls based on passive features. For instance, a sort of plant exoskeleton of invariable polysaccharide composition, and probably painted in green. However, currently, this view has been expanded to consider plant cell walls as active, heterogeneous, and dynamic structures with a high degree of complexity. However, what do we mean when we refer to a cell wall as a dynamic structure? How can we investigate the different implications of this dynamism? While the first question has been the subject of several recent publications, defining the ideal strategies and tools needed to address the second question has proven to be challenging due to the myriad of techniques available. In this review, we will describe the capacities of several methodologies to study cell wall composition, structure, and other aspects developed or optimized in recent years. Keeping in mind cell wall dynamism and plasticity, the advantages of performing long-term non-invasive live-imaging methods will be emphasized. We specifically focus on techniques developed for Arabidopsis thaliana primary cell walls, but the techniques could be applied to both secondary cell walls and other plant species. We believe this toolset will help researchers in expanding knowledge of these dynamic/evolving structures.
Collapse
Affiliation(s)
- Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, Trondheim, 7491, Norway
| | - Laura Bacete
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, Trondheim, 7491, Norway
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
16
|
Sreedasyam A, Plott C, Hossain MS, Lovell J, Grimwood J, Jenkins J, Daum C, Barry K, Carlson J, Shu S, Phillips J, Amirebrahimi M, Zane M, Wang M, Goodstein D, Haas F, Hiss M, Perroud PF, Jawdy S, Yang Y, Hu R, Johnson J, Kropat J, Gallaher S, Lipzen A, Shakirov E, Weng X, Torres-Jerez I, Weers B, Conde D, Pappas M, Liu L, Muchlinski A, Jiang H, Shyu C, Huang P, Sebastian J, Laiben C, Medlin A, Carey S, Carrell A, Chen JG, Perales M, Swaminathan K, Allona I, Grattapaglia D, Cooper E, Tholl D, Vogel J, Weston DJ, Yang X, Brutnell T, Kellogg E, Baxter I, Udvardi M, Tang Y, Mockler T, Juenger T, Mullet J, Rensing S, Tuskan G, Merchant S, Stacey G, Schmutz J. JGI Plant Gene Atlas: an updateable transcriptome resource to improve functional gene descriptions across the plant kingdom. Nucleic Acids Res 2023; 51:8383-8401. [PMID: 37526283 PMCID: PMC10484672 DOI: 10.1093/nar/gkad616] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.
Collapse
Affiliation(s)
| | | | - Md Shakhawat Hossain
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry W Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Christopher Daum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joseph Carlson
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shengqiang Shu
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Phillips
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mojgan Amirebrahimi
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Zane
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mei Wang
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Goodstein
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Sara S Jawdy
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Yongil Yang
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Rongbin Hu
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jenifer Johnson
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
| | - Anna Lipzen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eugene V Shakirov
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Brock Weers
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Marilia R Pappas
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, EPQB Final W5 Norte, Brasília, Brazil
| | - Lifeng Liu
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Muchlinski
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Hui Jiang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Christine Shyu
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Pu Huang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Jose Sebastian
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Carol Laiben
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Alyssa Medlin
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Sankalpi Carey
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Dario Grattapaglia
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, EPQB Final W5 Norte, Brasília, Brazil
| | | | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - John P Vogel
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaohan Yang
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | | | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | | | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
| | - Gary Stacey
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
17
|
Chen C, Ge Y, Lu L. Opportunities and challenges in the application of single-cell and spatial transcriptomics in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1185377. [PMID: 37636094 PMCID: PMC10453814 DOI: 10.3389/fpls.2023.1185377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
Single-cell and spatial transcriptomics have diverted researchers' attention from the multicellular level to the single-cell level and spatial information. Single-cell transcriptomes provide insights into the transcriptome at the single-cell level, whereas spatial transcriptomes help preserve spatial information. Although these two omics technologies are helpful and mature, further research is needed to ensure their widespread applicability in plant studies. Reviewing recent research on plant single-cell or spatial transcriptomics, we compared the different experimental methods used in various plants. The limitations and challenges are clear for both single-cell and spatial transcriptomic analyses, such as the lack of applicability, spatial information, or high resolution. Subsequently, we put forth further applications, such as cross-species analysis of roots at the single-cell level and the idea that single-cell transcriptome analysis needs to be combined with other omics analyses to achieve superiority over individual omics analyses. Overall, the results of this review suggest that combining single-cell transcriptomics, spatial transcriptomics, and spatial element distribution can provide a promising research direction, particularly for plant research.
Collapse
Affiliation(s)
- Ce Chen
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yining Ge
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lingli Lu
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Ribone AI, Fass M, Gonzalez S, Lia V, Paniego N, Rivarola M. Co-Expression Networks in Sunflower: Harnessing the Power of Multi-Study Transcriptomic Public Data to Identify and Categorize Candidate Genes for Fungal Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2767. [PMID: 37570920 PMCID: PMC10421300 DOI: 10.3390/plants12152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Fungal plant diseases are a major threat to food security worldwide. Current efforts to identify and list loci involved in different biological processes are more complicated than originally thought, even when complete genome assemblies are available. Despite numerous experimental and computational efforts to characterize gene functions in plants, about ~40% of protein-coding genes in the model plant Arabidopsis thaliana L. are still not categorized in the Gene Ontology (GO) Biological Process (BP) annotation. In non-model organisms, such as sunflower (Helianthus annuus L.), the number of BP term annotations is far fewer, ~22%. In the current study, we performed gene co-expression network analysis using eight terabytes of public transcriptome datasets and expression-based functional prediction to categorize and identify loci involved in the response to fungal pathogens. We were able to construct a reference gene network of healthy green tissue (GreenGCN) and a gene network of healthy and stressed root tissues (RootGCN). Both networks achieved robust, high-quality scores on the metrics of guilt-by-association and selective constraints versus gene connectivity. We were able to identify eight modules enriched in defense functions, of which two out of the three modules in the RootGCN were also conserved in the GreenGCN, suggesting similar defense-related expression patterns. We identified 16 WRKY genes involved in defense related functions and 65 previously uncharacterized loci now linked to defense response. In addition, we identified and classified 122 loci previously identified within QTLs or near candidate loci reported in GWAS studies of disease resistance in sunflower linked to defense response. All in all, we have implemented a valuable strategy to better describe genes within specific biological processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Máximo Rivarola
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA—Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, Hurlingham 1686, Argentina; (A.I.R.); (M.F.); (S.G.); (V.L.); (N.P.)
| |
Collapse
|
19
|
Kikuchi S, Sakamoto T, Matsunaga S, Iwamoto A. Novel whole-mount FISH analysis for intact root of Arabidopsis thaliana with spatial reference to 3D visualization. JOURNAL OF PLANT RESEARCH 2023; 136:423-428. [PMID: 36719512 DOI: 10.1007/s10265-023-01438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Whole-mount fluorescent in situ hybridization (WM-FISH) is an effective tool to observe chromosome behavior in tissues or organs. However, it is difficult to obtain a precise spatial profile of fluorescent signals in roots using conventional WM-FISH mainly because of the severe damage caused during the processing. To address this problem, we established a novel WM-FISH analysis for intact roots of Arabidopsis thaliana and successfully obtained a precise spatial profile of nuclear size and centromere signals. The two main improvements in the novel WM-FISH analysis are: (i) hybridization was performed directly on MAS-coated glass slides covered with silicon wells and (ii) conditions for enzyme treatment were optimized (37 °C, 45 s). After the WM-FISH using a centromere probe, we analyzed the results by 3D data processing to quantify the nuclear volume and number of centromere signals of the obtained cortical cell files and determined the position of each nucleus in intact roots. Then we plotted the nuclear volume and number of centromere signals versus distance from the quiescent center to evaluate the precise spatial profile of each parameter.
Collapse
Affiliation(s)
- Suzuka Kikuchi
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, 2946, 259-1293, Tsuchiya, Hiratsuka, Kanagawa, Japan.
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, 278-8510, Noda, Chiba, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, 277-8561, Kashiwa, Chiba, Japan
| | - Akitoshi Iwamoto
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, 2946, 259-1293, Tsuchiya, Hiratsuka, Kanagawa, Japan
- Department of Biological Science, Faculty of Science, Kanagawa University, 2946, 259-1293, Tsuchiya, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
20
|
Wu Y, Zhao C, Zhao X, Yang L, Liu C, Jiang L, Liu G, Liu P, Luo L. Multi-omics-based identification of purple acid phosphatases and metabolites involved in phosphorus recycling in stylo root exudates. Int J Biol Macromol 2023; 241:124569. [PMID: 37100319 DOI: 10.1016/j.ijbiomac.2023.124569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Stylo (Stylosanthes guianensis) is a tropical forage and cover crop that possesses low phosphate (Pi) tolerance traits. However, the mechanisms underlying its tolerance to low-Pi stress, particularly the role of root exudates, remain unclear. This study employed an integrated approach using physiological, biochemical, multi-omics, and gene function analyses to investigate the role of stylo root exudates in response to low-Pi stress. Widely targeted metabolomic analysis revealed that eight organic acids and one amino acid (L-cysteine) were significantly increased in the root exudates of Pi-deficient seedlings, among which tartaric acid and L-cysteine had strong abilities to dissolve insoluble-P. Furthermore, flavonoid-targeted metabolomic analysis identified 18 flavonoids that were significantly increased in root exudates under low-Pi conditions, mainly belonging to the isoflavonoid and flavanone subclasses. Additionally, transcriptomic analysis revealed that 15 genes encoding purple acid phosphatases (PAPs) had upregulated expression in roots under low-Pi conditions. Among them, SgPAP10 was characterized as a root-secreted phosphatase, and overexpression of SgPAP10 enhanced organic-P utilization by transgenic Arabidopsis. Overall, these findings provide detailed information regarding the importance of stylo root exudates in adaptation to low-Pi stress, highlighting the plant's ability to release Pi from organic-P and insoluble-P sources through root-secreted organic acids, amino acids, flavonoids, and PAPs.
Collapse
Affiliation(s)
- Yuanhang Wu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Cang Zhao
- College of Tropical Crops, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Xingkun Zhao
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Liyun Yang
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Chun Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Lingyan Jiang
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Lijuan Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China.
| |
Collapse
|
21
|
Ban Y, Tan J, Xiong Y, Mo X, Jiang Y, Xu Z. Transcriptome analysis reveals the molecular mechanisms of Phragmites australis tolerance to CuO-nanoparticles and/or flood stress induced by arbuscular mycorrhizal fungi. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130118. [PMID: 36303351 DOI: 10.1016/j.jhazmat.2022.130118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/24/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The molecular mechanism of arbuscular mycorrhizal fungi (AMF) in vertical flow constructed wetlands (VFCWs) for the purification of copper oxide nanoparticles (CuO-NPs) contaminated wastewater remains unclear. In this study, transcriptome analysis was used to explore the effect of AMF inoculation on the gene expression profile of Phragmites australis roots under different concentrations of CuO-NPs and/or flood stress. 551, 429 and 2281 differentially expressed genes (DEGs) were specially regulated by AMF under combined stresses of CuO-NPs and flood, single CuO-NPs stress and single flood stress, respectively. Based on the results of DEG function annotation and enrichment analyses, AMF inoculation under CuO-NPs and/or flood stress up-regulated the expression of a number of genes involved in antioxidant defense systems, cell wall biosynthesis and transporter protein, which may contribute to plant tolerance. The expression of 30 transcription factors (TFs) was up-regulated by AMF inoculation under combined stresses of CuO-NPs and flood, and 44 and 44 TFs were up-regulated under single CuO-NPs or flood condition, respectively, which may contribute to the alleviating effect of symbiosis on CuO-NPs and/or flood stress. These results provided a theoretical basis for enhancing the ecological restoration function of wetland plants for metallic nanoparticles (MNPs) by mycorrhizal technology in the future.
Collapse
Affiliation(s)
- Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jiayuan Tan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yang Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xiantong Mo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
22
|
Boter M, Pozas J, Jarillo JA, Piñeiro M, Pernas M. Brassica napus Roots Use Different Strategies to Respond to Warm Temperatures. Int J Mol Sci 2023; 24:ijms24021143. [PMID: 36674684 PMCID: PMC9863162 DOI: 10.3390/ijms24021143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Elevated growth temperatures are negatively affecting crop productivity by increasing yield losses. The modulation of root traits associated with improved response to rising temperatures is a promising approach to generate new varieties better suited to face the environmental constraints caused by climate change. In this study, we identified several Brassica napus root traits altered in response to warm ambient temperatures. Different combinations of changes in specific root traits result in an extended and deeper root system. This overall root growth expansion facilitates root response by maximizing root-soil surface interaction and increasing roots' ability to explore extended soil areas. We associated these traits with coordinated cellular events, including changes in cell division and elongation rates that drive root growth increases triggered by warm temperatures. Comparative transcriptomic analysis revealed the main genetic determinants of these root system architecture (RSA) changes and uncovered the necessity of a tight regulation of the heat-shock stress response to adjusting root growth to warm temperatures. Our work provides a phenotypic, cellular, and genetic framework of root response to warming temperatures that will help to harness root response mechanisms for crop yield improvement under the future climatic scenario.
Collapse
|
23
|
Martínez-Soto D, Yu H, Allen KS, Ma LJ. Differential Colonization of the Plant Vasculature Between Endophytic Versus Pathogenic Fusarium oxysporum Strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:4-13. [PMID: 36279112 PMCID: PMC10052776 DOI: 10.1094/mpmi-08-22-0166-sc] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant xylem colonization is the hallmark of vascular wilt diseases caused by phytopathogens within the Fusarium oxysporum species complex. Recently, xylem colonization has also been reported among endophytic F. oxysporum strains, resulting in some uncertainty. This study compares xylem colonization processes by pathogenic versus endophytic strains in Arabidopsis thaliana and Solanum lycopersicum, using Arabidopsis pathogen Fo5176, tomato pathogen Fol4287, and the endophyte Fo47, which can colonize both plant hosts. We observed that all strains were able to advance from epidermis to endodermis within 3 days postinoculation (dpi) and reached the root xylem at 4 dpi. However, this shared progression was restricted to lateral roots and the elongation zone of the primary root. Only pathogens reached the xylem above the primary-root maturation zone (PMZ). Related to the distinct colonization patterns, we also observed stronger induction of callose at the PMZ and lignin deposition at primary-lateral root junctions by the endophyte in both plants. This observation was further supported by stronger induction of Arabidopsis genes involved in callose and lignin biosynthesis during the endophytic colonization (Fo47) compared with the pathogenic interaction (Fo5176). Moreover, both pathogens encode more plant cell wall-degrading enzymes than the endophyte Fo47. Therefore, observed differences in callose and lignin deposition could be the combination of host production and the subsequent fungal degradation. In summary, this study demonstrates spatial differences between endophytic and pathogenic colonization, strongly suggesting that further investigations of molecular arm-races are needed to understand how plants differentiate friend from foe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
|
24
|
Sánchez-Correa MDS, Isidra-Arellano MC, Pozas-Rodríguez EA, Reyero-Saavedra MDR, Morales-Salazar A, del Castillo SMLC, Sanchez-Flores A, Jiménez-Jacinto V, Reyes JL, Formey D, Valdés-López O. Argonaute5 and its associated small RNAs modulate the transcriptional response during the rhizobia- Phaseolus vulgaris symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:1034419. [PMID: 36466235 PMCID: PMC9714512 DOI: 10.3389/fpls.2022.1034419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Both plant- and rhizobia-derived small RNAs play an essential role in regulating the root nodule symbiosis in legumes. Small RNAs, in association with Argonaute proteins, tune the expression of genes participating in nodule development and rhizobial infection. However, the role of Argonaute proteins in this symbiosis has been overlooked. In this study, we provide transcriptional evidence showing that Argonaute5 (AGO5) is a determinant genetic component in the root nodule symbiosis in Phaseolus vulgaris. A spatio-temporal transcriptional analysis revealed that the promoter of PvAGO5 is active in lateral root primordia, root hairs from rhizobia-inoculated roots, nodule primordia, and mature nodules. Transcriptional analysis by RNA sequencing revealed that gene silencing of PvAGO5 affected the expression of genes involved in the biosynthesis of the cell wall and phytohormones participating in the rhizobial infection process and nodule development. PvAGO5 immunoprecipitation coupled to small RNA sequencing revealed the small RNAs bound to PvAGO5 during the root nodule symbiosis. Identification of small RNAs associated to PvAGO5 revealed miRNAs previously known to participate in this symbiotic process, further supporting a role for AGO5 in this process. Overall, the data presented shed light on the roles that PvAGO5 plays during the root nodule symbiosis in P. vulgaris.
Collapse
Affiliation(s)
- María del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Mariel C. Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Eithan A. Pozas-Rodríguez
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - María del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Alfredo Morales-Salazar
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | | | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jose L. Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
25
|
McReynolds MR, Dash L, Montes C, Draves MA, Lang MG, Walley JW, Kelley DR. Temporal and spatial auxin responsive networks in maize primary roots. QUANTITATIVE PLANT BIOLOGY 2022; 3:e21. [PMID: 37077976 PMCID: PMC10095944 DOI: 10.1017/qpb.2022.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 05/03/2023]
Abstract
Auxin is a key regulator of root morphogenesis across angiosperms. To better understand auxin-regulated networks underlying maize root development, we have characterized auxin-responsive transcription across two time points (30 and 120 min) and four regions of the primary root: the meristematic zone, elongation zone, cortex and stele. Hundreds of auxin-regulated genes involved in diverse biological processes were quantified in these different root regions. In general, most auxin-regulated genes are region unique and are predominantly observed in differentiated tissues compared with the root meristem. Auxin gene regulatory networks were reconstructed with these data to identify key transcription factors that may underlie auxin responses in maize roots. Additionally, Auxin-Response Factor subnetworks were generated to identify target genes that exhibit tissue or temporal specificity in response to auxin. These networks describe novel molecular connections underlying maize root development and provide a foundation for functional genomic studies in a key crop.
Collapse
Affiliation(s)
- Maxwell R. McReynolds
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa50011, USA
| | - Linkan Dash
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa50011, USA
| | - Christian Montes
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa50011, USA
| | - Melissa A. Draves
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa50011, USA
| | - Michelle G. Lang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa50011, USA
- Corteva Agriscience, Johnston, Iowa50131, USA
| | - Justin W. Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa50011, USA
| | - Dior R. Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa50011, USA
| |
Collapse
|
26
|
Hong J, Geem KR, Kim J, Jo IH, Yang TJ, Shim D, Ryu H. Prolonged Exposure to High Temperature Inhibits Shoot Primary and Root Secondary Growth in Panax ginseng. Int J Mol Sci 2022; 23:11647. [PMID: 36232949 PMCID: PMC9569605 DOI: 10.3390/ijms231911647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
High temperature is one of the most significant abiotic stresses reducing crop yield and quality by inhibiting plant growth and development. Global warming has recently increased the frequency of heat waves, which negatively impacts agricultural fields. Despite numerous studies on heat stress responses and signal transduction in model plant species, the molecular mechanism underlying thermomorphogenesis in Panax ginseng remains largely unknown. Here, we investigated the high temperature response of ginseng at the phenotypic and molecular levels. Both the primary shoot growth and secondary root growth of ginseng plants were significantly reduced at high temperature. Histological analysis revealed that these decreases in shoot and root growth were caused by decreases in cell elongation and cambium stem cell activity, respectively. Analysis of P. ginseng RNA-seq data revealed that heat-stress-repressed stem and root growth is closely related to changes in photosynthesis, cell wall organization, cell wall loosening, and abscisic acid (ABA) and jasmonic acid (JA) signaling. Reduction in both the light and dark reactions of photosynthesis resulted in defects in starch granule development in the storage parenchymal cells of the main tap root. Thus, by combining bioinformatics and histological analyses, we show that high temperature signaling pathways are integrated with crucial biological processes that repress stem and root growth in ginseng, providing novel insight into the heat stress response mechanism of P. ginseng.
Collapse
Affiliation(s)
- Jeongeui Hong
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| | - Kyoung Rok Geem
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
27
|
Lou H, Tucker MR, Shirley NJ, Lahnstein J, Yang X, Ma C, Schwerdt J, Fusi R, Burton RA, Band LR, Bennett MJ, Bulone V. The cellulose synthase-like F3 (CslF3) gene mediates cell wall polysaccharide synthesis and affects root growth and differentiation in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1681-1699. [PMID: 35395116 PMCID: PMC9324092 DOI: 10.1111/tpj.15764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The barley cellulose synthase-like F (CslF) genes encode putative cell wall polysaccharide synthases. They are related to the cellulose synthase (CesA) genes involved in cellulose biosynthesis, and the CslD genes that influence root hair development. Although CslD genes are implicated in callose, mannan and cellulose biosynthesis, and are found in both monocots and eudicots, CslF genes are specific to the Poaceae. Recently the barley CslF3 (HvCslF3) gene was shown to be involved in the synthesis of a novel (1,4)-β-linked glucoxylan, but it remains unclear whether this gene contributes to plant growth and development. Here, expression profiling using qRT-PCR and mRNA in situ hybridization revealed that HvCslF3 accumulates in the root elongation zone. Silencing HvCslF3 by RNAi was accompanied by slower root growth, linked with a shorter elongation zone and a significant reduction in root system size. Polymer profiling of the RNAi lines revealed a significant reduction in (1,4)-β-linked glucoxylan levels. Remarkably, the heterologous expression of HvCslF3 in wild-type (Col-0) and root hair-deficient Arabidopsis mutants (csld3 and csld5) complemented the csld5 mutant phenotype, in addition to altering epidermal cell fate. Our results reveal a key role for HvCslF3 during barley root development and suggest that members of the CslD and CslF gene families have similar functions during root growth regulation.
Collapse
Affiliation(s)
- Haoyu Lou
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Matthew R. Tucker
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Neil J. Shirley
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Jelle Lahnstein
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Xiujuan Yang
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Chao Ma
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Julian Schwerdt
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Riccardo Fusi
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Rachel A. Burton
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Leah R. Band
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
- School of Mathematical SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - Malcolm J. Bennett
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Vincent Bulone
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and HealthRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSweden
| |
Collapse
|
28
|
Cheong BE, Yu D, Martinez-Seidel F, Ho WWH, Rupasinghe TWT, Dolferus R, Roessner U. The Effect of Cold Stress on the Root-Specific Lipidome of Two Wheat Varieties with Contrasting Cold Tolerance. PLANTS 2022; 11:plants11101364. [PMID: 35631789 PMCID: PMC9147729 DOI: 10.3390/plants11101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Complex glycerolipidome analysis of wheat upon low temperature stress has been reported for above-ground tissues only. There are no reports on the effects of cold stress on the root lipidome nor on tissue-specific responses of cold stress wheat roots. This study aims to investigate the changes of lipid profiles in the different developmental zones of the seedling roots of two wheat varieties with contrasting cold tolerance exposed to chilling and freezing temperatures. We analyzed 273 lipid species derived from 21 lipid classes using a targeted profiling approach based on MS/MS data acquired from schedule parallel reaction monitoring assays. For both the tolerant Young and sensitive Wyalkatchem species, cold stress increased the phosphatidylcholine and phosphatidylethanolamine compositions, but decreased the monohexosyl ceramide compositions in the root zones. We show that the difference between the two varieties with contrasting cold tolerance could be attributed to the change in the individual lipid species, rather than the fluctuation of the whole lipid classes. The outcomes gained from this study may advance our understanding of the mechanisms of wheat adaptation to cold and contribute to wheat breeding for the improvement of cold-tolerance.
Collapse
Affiliation(s)
- Bo Eng Cheong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan Universiti, Kota Kinabalu 88400, Malaysia
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Correspondence: ; Tel.: +60-88-320000 (ext. 8530)
| | - Dingyi Yu
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Protein Chemistry and Metabolism Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Federico Martinez-Seidel
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - William Wing Ho Ho
- Advanced Genomics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | | | - Rudy Dolferus
- CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT 2601, Australia;
| | - Ute Roessner
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
29
|
Cai B, Wang T, Sun H, Liu C, Chu J, Ren Z, Li Q. Gibberellins regulate lateral root development that is associated with auxin and cell wall metabolisms in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:110995. [PMID: 35193752 DOI: 10.1016/j.plantsci.2021.110995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 06/14/2023]
Abstract
Cucumber is an economically important crop cultivated worldwide. Gibberellins (GAs) play important roles in the development of lateral roots (LRs), which are critical for plant stress tolerance and productivity. Therefore, it is of great importance for cucumber production to study the role of GAs in LR development. Here, the results showed that GAs regulated cucumber LR development in a concentration-dependent manner. Treatment with 1, 10, 50 and 100 μM GA3 significantly increased secondary root length, tertiary root number and length. Of these, 50 μM GA3 treatment had strong effects on increasing root dry weight and the root/shoot dry weight ratio. Pairwise comparisons identified 417 down-regulated genes enriched for GA metabolism-related processes and 447 up-regulated genes enriched for cell wall metabolism-related processes in GA3-treated roots. A total of 3523 non-redundant DEGs were identified in our RNA-Seq data through pairwise comparisons and linear factorial modeling. Of these, most of the genes involved in auxin and cell wall metabolisms were up-regulated in GA3-treated roots. Our findings not only shed light on LR regulation mediated by GA but also offer an important resource for functional studies of candidate genes putatively involved in the regulation of LR development in cucumber and other crops.
Collapse
Affiliation(s)
- Bingbing Cai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| | - Ting Wang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| | - Hong Sun
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Zhonghai Ren
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, Tai'an, Shandong, 271018, China.
| | - Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
30
|
Song J, Lu D, Niu Y, Sun H, Zhang P, Dong W, Li Y, Zhang Y, Lu L, Men Q, Zhang X, Ren P, Chen C. Label-free quantitative proteomics of maize roots from different root zones provides insight into proteins associated with enhance water uptake. BMC Genomics 2022; 23:184. [PMID: 35247985 PMCID: PMC8898408 DOI: 10.1186/s12864-022-08394-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Maize is one of the most important food crops worldwide. Roots play important role in maize productivity through water and nutrient uptake from the soil. Improving maize root traits for efficient water uptake will help to optimize irrigation and contribute to sustainable maize production. Therefore, we investigated the protein profiles of maize cv. Anyu308 root system divided into Upper root zone (UR), Middle root (MR), and Lower root (LR), by label free quantitative shotgun proteomic approach (LFQ). The aim of our study was to identify proteins and mechanisms associated with enhanced water uptake in different maize root zones under automatic irrigation system. RESULTS At field capacity, MR had the highest water uptake than the UR and LR. We identified a total of 489 differentially abundant proteins (DAPs) by pairwise comparison of MR, LR, and UR. Cluster analysis of DAPs revealed MR and UR had similar protein abundance patterns different from LR. More proteins were differentially abundant in MR/UR compared to LR/MR and LR/UR. Comparisons of protein profiles indicate that the DAPs in MR increased in abundance, compared to UR and LR which had more downregulated DAPs. The abundance patterns, functional category, and pathway enrichment analyses highlight chromatin structure and dynamics, ribosomal structures, polysaccharide metabolism, energy metabolism and transport, induction of water channels, inorganic ion transport, intracellular trafficking, and vesicular transport, and posttranslational modification as primary biological processes related to enhanced root water uptake in maize. Specifically, the abundance of histones, ribosomal proteins, and aquaporins, including mitochondrion electron transport proteins and the TCA cycle, underpinned MR's enhanced water uptake. Furthermore, proteins involved in folding and vascular transport supported the radial transport of solute across cell membranes in UR and MR. Parallel reaction monitoring analysis was used to confirmed profile of the DAPs obtained by LFQ-based proteomics. CONCLUSION The list of differentially abundant proteins identified in MR are interesting candidates for further elucidation of their role in enhanced water uptake in maize root. Overall, the current results provided an insight into the mechanisms of maize root water uptake.
Collapse
Affiliation(s)
- Junqiao Song
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Daowen Lu
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Yongfeng Niu
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Haichao Sun
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Pan Zhang
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Wenheng Dong
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Yongjiang Li
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Yingying Zhang
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Lianyong Lu
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Qi Men
- Hebei Runnong Water Saving Technology Co., Ltd., Tangshan, China
| | - Xiaohui Zhang
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Pengxun Ren
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Chuankui Chen
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China.
| |
Collapse
|
31
|
Aleamotuʻa M, Baker JK, McCurdy DW, Collings DA. Phi thickenings in Brassica oleracea roots are induced by osmotic stress and mechanical effects, both involving jasmonic acid. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:756-769. [PMID: 34677585 DOI: 10.1093/jxb/erab468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Phi thickenings are peculiar secondary cell wall thickenings found in radial walls of cortical cells in plant roots. However, while thickenings are widespread in the plant kingdom, research into their development has been lacking. Here, we describe a simple system for rapid induction of phi thickenings in primary roots of Brassica. Four-day-old seedlings were transferred from control agar plates to new plates containing increased levels of osmotica. Phi thickening development occurred within a narrow region of the differentiation zone proportional to osmolarity, with cellulose deposition and lignification starting after 12h and 15h, respectively. However, osmoprotectants not only failed to induce phi thickenings, but inhibited induction when tested in combination with thickening-inducing osmotica. An independent, biomechanical pathway exists regulating phi thickening induction, with root growth rates and substrate texture being important factors in determining thickening induction. Phi thickening development is also controlled by stress-related plant hormones, most notably jasmonic acid, but also abscisic acid. Our research not only provides the first understanding of the developmental pathways controlling phi thickening induction, but also provides tools with which the functions of these enigmatic structures might be clarified.
Collapse
Affiliation(s)
- Maketalena Aleamotuʻa
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jaime K Baker
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - David W McCurdy
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - David A Collings
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
32
|
Nizam A, Meera SP, Kumar A. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 2022; 25:103547. [PMID: 34988398 PMCID: PMC8693430 DOI: 10.1016/j.isci.2021.103547] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mangroves are halophytic plants belonging to diverse angiosperm families that are adapted to highly stressful intertidal zones between land and sea. They are special, unique, and one of the most productive ecosystems that play enormous ecological roles and provide a large number of benefits to the coastal communities. To thrive under highly stressful conditions, mangroves have innovated several key morphological, anatomical, and physio-biochemical adaptations. The evolution of the unique adaptive modifications might have resulted from a host of genetic and molecular changes and to date we know little about the nature of these genetic and molecular changes. Although slow, new information has accumulated over the last few decades on the genetic and molecular regulation of the mangrove adaptations, a comprehensive review on it is not yet available. This review provides up-to-date consolidated information on the genetic, epigenetic, and molecular regulation of mangrove adaptive traits.
Collapse
Affiliation(s)
- Ashifa Nizam
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Suraj Prasannakumari Meera
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Palayad, Kerala 670661, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| |
Collapse
|
33
|
Abstract
High-throughput single-cell transcriptomic approaches have revolutionized our view of gene expression at the level of individual cells, providing new insights into their heterogeneity, identities, and functions. Recently, technical challenges to the application of single-cell transcriptomics to plants have been overcome, and many plant organs and tissues have now been subjected to analyses at single-cell resolution. In this review, we describe these studies and their impact on our understanding of the diversity, differentiation, and activities of plant cells. We particularly highlight their impact on plant cell identity, including unprecedented views of cell transitions and definitions of rare and novel cell types. We also point out current challenges and future opportunities for the application and analyses of single-cell transcriptomics in plants. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kook Hui Ryu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; , ,
| | - Yan Zhu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; , ,
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; , ,
| |
Collapse
|
34
|
Gibberellin Signaling Promotes the Secondary Growth of Storage Roots in Panax ginseng. Int J Mol Sci 2021; 22:ijms22168694. [PMID: 34445398 PMCID: PMC8395461 DOI: 10.3390/ijms22168694] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Gibberellins (GAs) are an important group of phytohormones associated with diverse growth and developmental processes, including cell elongation, seed germination, and secondary growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling pathways and related genes in model plant species. However, functional genomics analyses of GA signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-known economical and medicinal importance. Here, we conducted functional characterization of GA receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots. We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s (PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved. Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA) response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary root growth in P. ginseng.
Collapse
|
35
|
Defects in Cell Wall Differentiation of the Arabidopsis Mutant rol1-2 Is Dependent on Cyclin-Dependent Kinase CDK8. Cells 2021; 10:cells10030685. [PMID: 33808926 PMCID: PMC8003768 DOI: 10.3390/cells10030685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition.
Collapse
|
36
|
Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. MOLECULAR PLANT 2021; 14:372-383. [PMID: 33422696 DOI: 10.1016/j.molp.2021.01.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 05/22/2023]
Abstract
Similar to other complex organisms, plants consist of diverse and specialized cell types. The gain of unique biological functions of these different cell types is the consequence of the establishment of cell-type-specific transcriptional programs. As a necessary step in gaining a deeper understanding of the regulatory mechanisms controlling plant gene expression, we report the use of single-nucleus RNA sequencing (sNucRNA-seq) and single-nucleus assay for transposase accessible chromatin sequencing (sNucATAC-seq) technologies on Arabidopsis roots. The comparison of our single-nucleus transcriptomes to the published protoplast transcriptomes validated the use of nuclei as biological entities to establish plant cell-type-specific transcriptomes. Furthermore, our sNucRNA-seq results uncovered the transcriptomes of additional cell subtypes not identified by single-cell RNA-seq. Similar to our transcriptomic approach, the sNucATAC-seq approach led to the distribution of the Arabidopsis nuclei into distinct clusters, suggesting the differential accessibility of chromatin between groups of cells according to their identity. To reveal the impact of chromatin accessibility on gene expression, we integrated sNucRNA-seq and sNucATAC-seq data and demonstrated that cell-type-specific marker genes display cell-type-specific patterns of chromatin accessibility. Our data suggest that the differential chromatin accessibility is a critical mechanism to regulate gene activity at the cell-type level.
Collapse
Affiliation(s)
- Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA
| | - Kook Hui Ryu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA.
| |
Collapse
|
37
|
Network Analysis of Gene Transcriptions of Arabidopsis thaliana in Spaceflight Microgravity. Genes (Basel) 2021; 12:genes12030337. [PMID: 33668919 PMCID: PMC7996555 DOI: 10.3390/genes12030337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
The transcriptomic datasets of the plant model organism Arabidopsis thaliana grown in the International Space Station provided by GeneLab have been mined to isolate the impact of spaceflight microgravity on gene expressions related to root growth. A set of computational tools is used to identify the hub genes that respond differently in spaceflight with controlled lighting compared to on the ground. These computational tools based on graph-theoretic approaches are used to infer gene regulatory networks from the transcriptomic datasets. The three main algorithms used for network analyses are Least Absolute Shrinkage and Selection Operator (LASSO), Pearson correlation, and the Hyperlink-Induced Topic Search (HITS) algorithm. Graph-based spectral analyses reveal distinct properties of the spaceflight microgravity networks for the Wassilewskija (WS), Columbia (Col)-0, and mutant phytochromeD (phyD) ecotypes. The set of hub genes that are significantly altered in spaceflight microgravity are mainly involved in cell wall synthesis, protein transport, response to auxin, stress responses, and catabolic processes. Network analysis highlights five important root growth-regulating hub genes that have the highest outdegree distribution in spaceflight microgravity networks. These concerned genes coding for proteins are identified from the Gene Regulatory Networks (GRNs) corresponding to spaceflight total light environment. Furthermore, network analysis uncovers genes that encode nucleotide-diphospho-sugar interconversion enzymes that have higher transcriptional regulation in spaceflight microgravity and are involved in cell wall biosynthesis.
Collapse
|
38
|
Zluhan-Martínez E, López-Ruíz BA, García-Gómez ML, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Garay-Arroyo A. Integrative Roles of Phytohormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. FRONTIERS IN PLANT SCIENCE 2021; 12:659155. [PMID: 33981325 PMCID: PMC8107238 DOI: 10.3389/fpls.2021.659155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/24/2021] [Indexed: 05/17/2023]
Abstract
The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primary root of Arabidopsis thaliana offers many advantages toward understanding growth homeostasis as root cells are continuously produced and move from cell proliferation to elongation and differentiation that are processes spatially separated and could be studied along the longitudinal axis. Hormones fine tune plant growth responses and a huge amount of information has been recently generated on the role of these compounds in Arabidopsis primary root development. In this review, we summarized the participation of nine hormones in the regulation of the different zones and domains of the Arabidopsis primary root. In some cases, we found synergism between hormones that function either positively or negatively in proliferation, elongation or differentiation. Intriguingly, there are other cases where the interaction between hormones exhibits unexpected results. Future analysis on the molecular mechanisms underlying crosstalk hormone action in specific zones and domains will unravel their coordination over PR development.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Brenda Anabel López-Ruíz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica L. García-Gómez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Adriana Garay-Arroyo,
| |
Collapse
|
39
|
Mase K, Tsukagoshi H. Reactive Oxygen Species Link Gene Regulatory Networks During Arabidopsis Root Development. FRONTIERS IN PLANT SCIENCE 2021; 12:660274. [PMID: 33986765 PMCID: PMC8110921 DOI: 10.3389/fpls.2021.660274] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
Plant development under altered nutritional status and environmental conditions and during attack from invaders is highly regulated by plant hormones at the molecular level by various signaling pathways. Previously, reactive oxygen species (ROS) were believed to be harmful as they cause oxidative damage to cells; however, in the last decade, the essential role of ROS as signaling molecules regulating plant growth has been revealed. Plant roots accumulate relatively high levels of ROS, and thus, maintaining ROS homeostasis, which has been shown to regulate the balance between cell proliferation and differentiation at the root tip, is important for proper root growth. However, when the balance is disturbed, plants are unable to respond to the changes in the surrounding conditions and cannot grow and survive. Moreover, ROS control cell expansion and cell differentiation processes such as root hair formation and lateral root development. In these processes, the transcription factor-mediated gene expression network is important downstream of ROS. Although ROS can independently regulate root growth to some extent, a complex crosstalk occurs between ROS and other signaling molecules. Hormone signals are known to regulate root growth, and ROS are thought to merge with these signals. In fact, the crosstalk between ROS and these hormones has been elucidated, and the central transcription factors that act as a hub between these signals have been identified. In addition, ROS are known to act as important signaling factors in plant immune responses; however, how they also regulate plant growth is not clear. Recent studies have strongly indicated that ROS link these two events. In this review, we describe and discuss the role of ROS signaling in root development, with a particular focus on transcriptional regulation. We also summarize the crosstalk with other signals and discuss the importance of ROS as signaling molecules for plant root development.
Collapse
|
40
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
41
|
Akita E, Yalikun Y, Okano K, Yamasaki Y, Ohtani M, Tanaka Y, Demura T, Hosokawa Y. In situ measurement of cell stiffness of Arabidopsis roots growing on a glass micropillar support by atomic force microscopy. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:417-422. [PMID: 33850428 PMCID: PMC8034704 DOI: 10.5511/plantbiotechnology.20.1016a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 05/25/2023]
Abstract
Atomic force microscopy (AFM) can measure the mechanical properties of plant tissue at the cellular level, but for in situ observations, the sample must be held in place on a rigid support and it is difficult to obtain accurate data for living plants without inhibiting their growth. To investigate the dynamics of root cell stiffness during seedling growth, we circumvented these problems by using an array of glass micropillars as a support to hold an Arabidopsis thaliana root for AFM measurements without inhibiting root growth. The root elongated in the gaps between the pillars and was supported by the pillars. The AFM cantilever could contact the root for repeated measurements over the course of root growth. The elasticity of the root epidermal cells was used as an index of the stiffness. By contrast, we were not able to reliably observe roots on a smooth glass substrate because it was difficult to retain contact between the root and the cantilever without the support of the pillars. Using adhesive to fix the root on the smooth glass plane overcame this issue, but prevented root growth. The glass micropillar support allowed reproducible measurement of the spatial and temporal changes in root cell elasticity, making it possible to perform detailed AFM observations of the dynamics of root cell stiffness.
Collapse
Affiliation(s)
- Eri Akita
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0871, Japan
| | - Kazunori Okano
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yuki Yamasaki
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Misato Ohtani
- Division of Biological Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0871, Japan
| | - Taku Demura
- Division of Biological Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
42
|
Graças JP, Ranocha P, Vitorello VA, Savelli B, Jamet E, Dunand C, Burlat V. The Class III Peroxidase Encoding Gene AtPrx62 Positively and Spatiotemporally Regulates the Low pH-Induced Cell Death in Arabidopsis thaliana Roots. Int J Mol Sci 2020; 21:ijms21197191. [PMID: 33003393 PMCID: PMC7582640 DOI: 10.3390/ijms21197191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Exogenous low pH stress causes cell death in root cells, limiting root development, and agricultural production. Different lines of evidence suggested a relationship with cell wall (CW) remodeling players. We investigated whether class III peroxidase (CIII Prx) total activity, CIII Prx candidate gene expression, and reactive oxygen species (ROS) could modify CW structure during low pH-induced cell death in Arabidopsis thaliana roots. Wild-type roots displayed a good spatio-temporal correlation between the low pH-induced cell death and total CIII Prx activity in the early elongation (EZs), transition (TZs), and meristematic (MZs) zones. In situ mRNA hybridization showed that AtPrx62 transcripts accumulated only in roots treated at pH 4.6 in the same zones where cell death was induced. Furthermore, roots of the atprx62-1 knockout mutant showed decreased cell mortality under low pH compared to wild-type roots. Among the ROS, there was a drastic decrease in O2●− levels in the MZs of wild-type and atprx62-1 roots upon low pH stress. Together, our data demonstrate that AtPrx62 expression is induced by low pH and that the produced protein could positively regulate cell death. Whether the decrease in O2●− level is related to cell death induced upon low pH treatment remains to be elucidated.
Collapse
Affiliation(s)
- Jonathas Pereira Graças
- Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, 13418-900 São Paulo, Brazil
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | | | - Bruno Savelli
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| |
Collapse
|
43
|
Wang J, Sun W, Kong X, Zhao C, Li J, Chen Y, Gao Z, Zuo K. The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively affect lateral root development by repressing the vacuolar invertase VIN2 in Arabidopsis. PLANTA 2020; 252:52. [PMID: 32945964 DOI: 10.1007/s00425-020-03459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively modulate lateral root development by repressing vacuolar invertase VIN2 activity. Lateral root (LR) architecture greatly affects the efficiency of nutrient absorption and the anchorage of plants. Although the internal phytohormone regulatory mechanisms that control LR development are well known, how external nutrients influence lateral root development remains elusive. Here, we characterized the function of two FK506-binding proteins, namely, FKBP15-1 and FKBP15-2, in Arabidopsis. FKBP15-1/15-2 genes were expressed prominently in the vascular bundles of the root basal meristem region, and the FKBP15-1/15-2 proteins were localized to the endoplasmic reticulum of the cells. Using IP-MS, Co-IP, and BiFC assays, we demonstrated that FKBP15-1 and FKBP15-2 interacted with vacuolar invertase 2 (VIN2). Compared to Col-0 and the single mutants, the fkbp15-1fkbp15-2 double mutant had more LRs, and presented higher sucrose catalytic activity. Moreover, genetic analysis showed genetic epistasis of VIN2 over FKBP15-1/FKBP15-2 in controlling LR development. Our results indicate that FKBP15-1 and FKBP15-2 participate in the control of LR number by inhibiting the catalytic activity of VIN2. Owing to the conserved peptidylprolyl cis-trans isomerase activity of FKBP family proteins, our results provide a clue for further analysis of the interplay between lateral root development and protein modification by FKBPs.
Collapse
Affiliation(s)
- Jun Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuzhen Kong
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyan Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianfu Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaijing Zuo
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
44
|
Arunraj R, Skori L, Kumar A, Hickerson NM, Shoma N, M. V, Samuel MA. Spatial regulation of alpha-galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in Cicer arietinum. PLANT SIGNALING & BEHAVIOR 2020; 15:1709707. [PMID: 31906799 PMCID: PMC8570745 DOI: 10.1080/15592324.2019.1709707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Alpha-galactosides or Raffinose Family Oligosaccharides (RFOs) are enriched in legumes and are considered as anti-nutritional factors responsible for inducing flatulence. Due to a lack of alpha-galactosidases in the stomachs of humans and other monogastric animals, these RFOs are not metabolized and are passed to the intestines to be processed by gut bacteria leading to distressing flatulence. In plants, alpha(α)-galactosides are involved in desiccation tolerance during seed maturation and act as a source of stored energy utilized by germinating seeds. The hydrolytic enzyme alpha-galactosidase (α-GAL) can break down RFOs into sucrose and galactose releasing the monosaccharide α-galactose back into the system. Through characterization of RFOs, sucrose, reducing sugars, and α-GAL activity in maturing and germinating chickpeas, we show that stored RFOs are likely required to maintain a steady-state level of reducing sugars. These reducing sugars can then be readily converted to generate energy required for the high energy-demanding germination process. Our observations indicate that RFO levels are lowest in imbibed seeds and rapidly increase post-imbibition. Both RFOs and the α-GAL activity are possibly required to maintain a steady-state level of the reducing monosaccharide sugars, starting from dry seeds all the way through post-germination, to provide the energy for increased germination vigor.
Collapse
Affiliation(s)
- Rex Arunraj
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- Department of Genetic Engineering, SRM Institute of Technology, Chennai, India
| | - Logan Skori
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Abhinandan Kumar
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | - Naskar Shoma
- Department of Genetic Engineering, SRM Institute of Technology, Chennai, India
| | - Vairamani M.
- Department of Genetic Engineering, SRM Institute of Technology, Chennai, India
| | - Marcus A. Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
45
|
Michels L, Gorelova V, Harnvanichvech Y, Borst JW, Albada B, Weijers D, Sprakel J. Complete microviscosity maps of living plant cells and tissues with a toolbox of targeting mechanoprobes. Proc Natl Acad Sci U S A 2020; 117:18110-18118. [PMID: 32669427 PMCID: PMC7395454 DOI: 10.1073/pnas.1921374117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mechanical patterns control a variety of biological processes in plants. The microviscosity of cellular structures effects the diffusion rate of molecules and organelles, thereby affecting processes such as metabolism and signaling. Spatial variations in local viscosity are also generated during fundamental events in the cell life cycle. While crucial to a complete understanding of plant mechanobiology, resolving subcellular microviscosity patterns in plants has remained an unsolved challenge. We present an imaging microviscosimetry toolbox of molecular rotors that yield complete microviscosity maps of cells and tissues, specifically targeting the cytosol, vacuole, plasma membrane, and wall of plant cells. These boron-dipyrromethene (BODIPY)-based molecular rotors are rigidochromic by means of coupling the rate of an intramolecular rotation, which depends on the mechanics of their direct surroundings, with their fluorescence lifetime. This enables the optical mapping of fluidity and porosity patterns in targeted cellular compartments. We show how apparent viscosity relates to cell function in the root, how the growth of cellular protrusions induces local tension, and how the cell wall is adapted to perform actuation surrounding leaf pores. These results pave the way to the noninvasive micromechanical mapping of complex tissues.
Collapse
Affiliation(s)
- Lucile Michels
- Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Vera Gorelova
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Yosapol Harnvanichvech
- Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| |
Collapse
|
46
|
Dual functions of Expansin in cell wall extension and compression during cotton fiber development. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00514-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Root Development and Stress Tolerance in rice: The Key to Improving Stress Tolerance without Yield Penalties. Int J Mol Sci 2020; 21:ijms21051807. [PMID: 32155710 PMCID: PMC7084713 DOI: 10.3390/ijms21051807] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
Roots anchor plants and take up water and nutrients from the soil; therefore, root development strongly affects plant growth and productivity. Moreover, increasing evidence indicates that root development is deeply involved in plant tolerance to abiotic stresses such as drought and salinity. These findings suggest that modulating root growth and development provides a potentially useful approach to improve plant abiotic stress tolerance. Such targeted approaches may avoid the yield penalties that result from growth-defense trade-offs produced by global induction of defenses against abiotic stresses. This review summarizes the developmental mechanisms underlying root development and discusses recent studies about modulation of root growth and stress tolerance in rice.
Collapse
|
48
|
The dynamic responses of plant physiology and metabolism during environmental stress progression. Mol Biol Rep 2019; 47:1459-1470. [PMID: 31823123 DOI: 10.1007/s11033-019-05198-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
At adverse environmental conditions, plants produce various kinds of primary and secondary metabolites to protect themselves. Both primary and secondary metabolites play a significant role during the heat, drought, salinity, genotoxic and cold conditions. A multigene response is activated during the progression of these stresses in the plants which stimulate changes in various signaling molecules, amino acids, proteins, primary and secondary metabolites. Plant metabolism is perturbed because of either the inhibition of metabolic enzymes, shortage of substrates, excess demand for specific compounds or a combination of these factors. In this review, we aim to present how plants synthesize different kinds of natural products during the perception of various abiotic stresses. We also discuss how time-scale variable stresses influence secondary metabolite profiles, could be used as a stress marker in plants. This article has the potential to get the attention of researchers working in the area of quantitative trait locus mapping using metabolites as well as metabolomics genome-wide association.
Collapse
|
49
|
Meidani C, Ntalli NG, Giannoutsou E, Adamakis IDS. Cell Wall Modifications in Giant Cells Induced by the Plant Parasitic Nematode Meloidogyne incognita in Wild-Type (Col-0) and the fra2 Arabidopsis thaliana Katanin Mutant. Int J Mol Sci 2019; 20:E5465. [PMID: 31684028 PMCID: PMC6862268 DOI: 10.3390/ijms20215465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Meloidogyne incognita is a root knot nematode (RKN) species which is among the most notoriously unmanageable crop pests with a wide host range. It inhabits plants and induces unique feeding site structures within host roots, known as giant cells (GCs). The cell walls of the GCs undergo the process of both thickening and loosening to allow expansion and finally support nutrient uptake by the nematode. In this study, a comparative in situ analysis of cell wall polysaccharides in the GCs of wild-type Col-0 and the microtubule-defective fra2 katanin mutant, both infected with M. incognita has been carried out. The fra2 mutant had an increased infection rate. Moreover, fra2 roots exhibited a differential pectin and hemicellulose distribution when compared to Col-0 probably mirroring the fra2 root developmental defects. Features of fra2 GC walls include the presence of high-esterified pectic homogalacturonan and pectic arabinan, possibly to compensate for the reduced levels of callose, which was omnipresent in GCs of Col-0. Katanin severing of microtubules seems important in plant defense against M. incognita, with the nematode, however, to be nonchalant about this "katanin deficiency" and eventually induce the necessary GC cell wall modifications to establish a feeding site.
Collapse
Affiliation(s)
- Christianna Meidani
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece.
| | - Nikoletta G Ntalli
- Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 14561 Athens, Greece.
| | - Eleni Giannoutsou
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece.
| | | |
Collapse
|
50
|
Nitrogen Starvation Differentially Influences Transcriptional and Uptake Rate Profiles in Roots of Two Maize Inbred Lines with Different NUE. Int J Mol Sci 2019; 20:ijms20194856. [PMID: 31574923 PMCID: PMC6801476 DOI: 10.3390/ijms20194856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Nitrogen use efficiency (NUE) of crops is estimated to be less than 50%, with a strong impact on environment and economy. Genotype-dependent ability to cope with N shortage has been only partially explored in maize and, in this context, the comparison of molecular responses of lines with different NUE is of particular interest in order to dissect the key elements underlying NUE. Changes in root transcriptome and NH4+/NO3- uptake rates during growth (after 1 and 4 days) without N were studied in high (Lo5) and low (T250) NUE maize inbred lines. Results suggests that only a small set of transcripts were commonly modulated in both lines in response to N starvation. However, in both lines, transcripts linked to anthocyanin biosynthesis and lateral root formation were positively affected. On the contrary, those involved in root elongation were downregulated. The main differences between the two lines reside in the ability to modulate the transcripts involved in the transport, distribution and assimilation of mineral nutrients. With regard to N mineral forms, only the Lo5 line responded to N starvation by increasing the NH4+ fluxes as supported by the upregulation of a transcript putatively involved in its transport.
Collapse
|