1
|
Naz M, Afzal MR, Qi SS, Dai Z, Sun Q, Du D. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. CHEMOSPHERE 2024; 365:143397. [PMID: 39313079 DOI: 10.1016/j.chemosphere.2024.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Phytoremediation, the use of plants to remove heavy metals from polluted environments, has been extensively studied. However, abiotic stresses such as drought, salt, and high temperatures can limit plant growth and metal uptake, reducing phytoremediation efficiency. High levels of HMs are also toxic to plants, further decreasing phytoremediation efficacy. This manuscript explores the potential of microbial-assisted and chelation-supported approaches to improve phytoremediation under abiotic stress conditions. Microbial assistance involves the use of specific microbes, including fungi that can produce siderophores. Siderophores bind essential metal ions, increasing their solubility and bioavailability for plant uptake. Chelation-supported methods employ organic acids and amino acids to enhance soil absorption and supply of essential metal ions. These chelating agents bind HMs ions, reducing their toxicity to plants and enabling plants to better withstand abiotic stresses like drought and salinity. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of heavy metal and abiotic stresses. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of HMs and abiotic stresses.These strategies represent a significant advancement in phytoremediation technology, potentially expanding its applicability to more challenging environmental conditions. In this review, we examined how microbial-assisted and chelation-supported techniques can enhance phytoremediation a method that uses plants to remove heavy metals from contaminated sites. These approaches not only boost plant growth and metal uptake but also alleviate the toxic effects of HMs and abiotic stresses like drought and salinity. By doing so, they make phytoremediation a more viable and effective solution for environmental remediation.
Collapse
Affiliation(s)
- Misbah Naz
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Shan Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Zhicong Dai
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu Province, PR China.
| | - Qiuyang Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
2
|
Cho H, Lee DH, Jeong DH, Jang JH, Son Y, Lee SY, Kim HJ. Study on Betaine and Growth Characteristics of Lycium chinense Mill. in Different Cultivation Environments in South Korea. PLANTS (BASEL, SWITZERLAND) 2024; 13:2316. [PMID: 39204752 PMCID: PMC11359574 DOI: 10.3390/plants13162316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Betaine is a useful compound that has various activities and is the marker compound of Lycium chinense fruit in Korean Pharmacopoeia. we seek to support the stable production of medicinal goji berries, which have significant potential in the pharmaceutical industry due to their high values, and to provide foundational data for consistent quality control. This study's purpose was to examine the correlation among betaine content, environmental variables, and the growth characteristics of L. chinense fruits. The fruits were collected from 25 cultivation sites across South Korea. We investigated five growth characteristics and betaine contents in L. chinense fruits and twelve soil physicochemical properties, and seven meteorological data at cultivation sites. The fruit's growth characteristics included a length of 15.62-26.49 mm, a width of 7.09-11.38 mm, a fresh weight of 0.73-1.62 g, and a sugar content of 11.10-19.62 Brix°. Its betaine content ranged from 0.54% to 0.97%. The betaine content was positively correlated with electrical conductivity (0.327 **), exchangeable potassium (0.314 **), and sodium (0.259 *) and negatively correlated with annual average minimum temperature (-0.256 *) and annual average temperature (-0.242 *). Also, betaine showed a positive correlation with the length of the fruit (0.294 *) and the fresh weight of the fruit (0.238 *). These results can be used to find the best cultivation method and to manage quality control for the highly economical L. chinense fruit.
Collapse
Affiliation(s)
- Hyejung Cho
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Dong Hwan Lee
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Dae Hui Jeong
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Jun Hyuk Jang
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Yonghwan Son
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Sun-Young Lee
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Hyun-Jun Kim
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| |
Collapse
|
3
|
Akhtar K, Ain NU, Prasad PVV, Naz M, Aslam MM, Djalovic I, Riaz M, Ahmad S, Varshney RK, He B, Wen R. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. THE PLANT GENOME 2024; 17:e20461. [PMID: 38797919 DOI: 10.1002/tpg2.20461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Nitrogen (N) as an inorganic macronutrient is inevitable for plant growth, development, and biomass production. Many external factors and stresses, such as acidity, alkalinity, salinity, temperature, oxygen, and rainfall, affect N uptake and metabolism in plants. The uptake of ammonium (NH4 +) and nitrate (NO3 -) in plants mainly depends on soil properties. Under the sufficient availability of NO3 - (>1 mM), low-affinity transport system is activated by gene network NRT1, and under low NO3 - availability (<1 mM), high-affinity transport system starts functioning encoded by NRT2 family of genes. Further, under limited N supply due to edaphic and climatic factors, higher expression of the AtNRT2.4 and AtNRT2.5T genes of the NRT2 family occur and are considered as N remobilizing genes. The NH4 + ion is the final form of N assimilated by cells mediated through the key enzymes glutamine synthetase and glutamate synthase. The WRKY1 is a major transcription factor of the N regulation network in plants. However, the transcriptome and metabolite profiles show variations in N assimilation metabolites, including glycine, glutamine, and aspartate, under abiotic stresses. The overexpression of NO3 - transporters (OsNRT2.3a and OsNRT1.1b) can significantly improve the biomass and yield of various crops. Altering the expression levels of genes could be a valuable tool to improve N metabolism under the challenging conditions of soil and environment, such as unfavorable temperature, drought, salinity, heavy metals, and nutrient stress.
Collapse
Affiliation(s)
- Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - P V Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Tounsi S, Giorgi D, Kuzmanović L, Jrad O, Farina A, Capoccioni A, Ben Ayed R, Brini F, Ceoloni C. Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic Thinopyrum species greatly enhance tolerance of recipient durum wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1378186. [PMID: 38766466 PMCID: PMC11099908 DOI: 10.3389/fpls.2024.1378186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Increased soil salinization, tightly related to global warming and drought and exacerbated by intensified irrigation supply, implies highly detrimental effects on staple food crops such as wheat. The situation is particularly alarming for durum wheat (DW), better adapted to arid/semi-arid environments yet more sensitive to salt stress than bread wheat (BW). To enhance DW salinity tolerance, we resorted to chromosomally engineered materials with introgressions from allied halophytic Thinopyrum species. "Primary" recombinant lines (RLs), having portions of their 7AL arms distally replaced by 7el1L Th. ponticum segments, and "secondary" RLs, harboring Th. elongatum 7EL insertions "nested" into 7el1L segments, in addition to near-isogenic lines lacking any alien segment (CLs), cv. Om Rabia (OR) as salt tolerant control, and BW introgression lines with either most of 7el1 or the complete 7E chromosome substitution as additional CLs, were subjected to moderate (100 mM) and intense (200 mM) salt (NaCl) stress at early growth stages. The applied stress altered cell cycle progression, determining a general increase of cells in G1 and a reduction in S phase. Assessment of morpho-physiological and biochemical traits overall showed that the presence of Thinopyrum spp. segments was associated with considerably increased salinity tolerance versus its absence. For relative water content, Na+ accumulation and K+ retention in roots and leaves, oxidative stress indicators (malondialdehyde and hydrogen peroxide) and antioxidant enzyme activities, the observed differences between stressed and unstressed RLs versus CLs was of similar magnitude in "primary" and "secondary" types, suggesting that tolerance factors might reside in defined 7el1L shared portion(s). Nonetheless, the incremental contribution of 7EL segments emerged in various instances, greatly mitigating the effects of salt stress on root and leaf growth and on the quantity of photosynthetic pigments, boosting accumulation of compatible solutes and minimizing the decrease of a powerful antioxidant like ascorbate. The seemingly synergistic effect of 7el1L + 7EL segments/genes made "secondary" RLs able to often exceed cv. OR and equal or better perform than BW lines. Thus, transfer of a suite of genes from halophytic germplasm by use of fine chromosome engineering strategies may well be the way forward to enhance salinity tolerance of glycophytes, even the sensitive DW.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Debora Giorgi
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Anna Farina
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Alessandra Capoccioni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Rayda Ben Ayed
- Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT), University of Carthage, Tunis, Tunisia
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, Hammam-lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
5
|
Wang J, Dou J, Yue Z, Wang J, Chen T, Li J, Dai H, Dou T, Yu J, Liu Z. Effect of hydrogen sulfide on cabbage photosynthesis under black rot stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108453. [PMID: 38417309 DOI: 10.1016/j.plaphy.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Hydrogen sulfide (H2S), as a potential gaseous signaling molecule, is involved in mediating biotic and abiotic stress in plants. Currently, there are no studies investigating the mechanism by which H2S improves photosynthesis under black rot (BR) stress caused by Xanthomonas campestris pv. Campestris (Xcc). In this study, we investigated the effect of exogenous H2S on Xcc induced photosynthetic impairment in cabbage seedlings. BR has an inhibitory effect on the photosynthetic ability of cabbage seedlings. Xcc infection can significantly reduce the chlorophyll content, photosynthetic characteristics, chlorophyll fluorescence, Calvin cycle related enzyme activity and gene expression in cabbage leaves. The use of H2S can alleviate this inhibitory effect, reduce chlorophyll decomposition, improve gas exchange, enhance the activity of Calvin cycle related enzymes, and increase the expression of related genes. Transcriptome analysis showed that all differential genes related to photosynthesis were up regulated under H2S treatment compared to normal inoculation. Therefore, spraying exogenous H2S can improve the photosynthetic capacity of cabbage seedlings, reduce Xcc induced photoinhibition, and improve plant resistance.
Collapse
Affiliation(s)
- Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianhua Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhibin Yue
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jue Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tongyan Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinbao Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Haojie Dai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tingting Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
6
|
Zuzunaga-Rosas J, Calone R, Mircea DM, Shakya R, Ibáñez-Asensio S, Boscaiu M, Fita A, Moreno-Ramón H, Vicente O. Mitigation of salt stress in lettuce by a biostimulant that protects the root absorption zone and improves biochemical responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1341714. [PMID: 38434431 PMCID: PMC10906269 DOI: 10.3389/fpls.2024.1341714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Horticultural crops constantly face abiotic stress factors such as salinity, which have intensified in recent years due to accelerated climate change, significantly affecting their yields and profitability. Under these conditions, it has become necessary to implement effective and sustainable solutions to guarantee agricultural productivity and food security. The influence of BALOX®, a biostimulant of plant origin, was tested on the responses to salinity of Lactuca sativa L. var. longifolia plants exposed to salt concentrations up to 150 mM NaCl, evaluating different biometric and biochemical properties after 25 days of treatment. Control plants were cultivated under the same conditions but without the biostimulant treatment. An in situ analysis of root characteristics using a non-destructive, real-time method was also performed. The salt stress treatments inhibited plant growth, reduced chlorophyll and carotenoid contents, and increased the concentrations of Na+ and Cl- in roots and leaves while reducing those of Ca2+. BALOX® application had a positive effect because it stimulated plant growth and the level of Ca2+ and photosynthetic pigments. In addition, it reduced the content of Na+ and Cl- in the presence and the absence of salt. The biostimulant also reduced the salt-induced accumulation of stress biomarkers, such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2). Therefore, BALOX® appears to significantly reduce osmotic, ionic and oxidative stress levels in salt-treated plants. Furthermore, the analysis of the salt treatments' and the biostimulant's direct effects on roots indicated that BALOX®'s primary mechanism of action probably involves improving plant nutrition, even under severe salt stress conditions, by protecting and stimulating the root absorption zone.
Collapse
Affiliation(s)
- Javier Zuzunaga-Rosas
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
- Innovak Global S. A. de C. V., La Concordia, Chihuahua, Mexico
| | - Roberta Calone
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, Bologna, Rome, Italy
| | - Diana M. Mircea
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Rashmi Shakya
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
- Department of Botany, Miranda House, University of Delhi, Delhi, India
| | - Sara Ibáñez-Asensio
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Valencia, Spain
| | - Ana Fita
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Héctor Moreno-Ramón
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
7
|
Liu L, Wang J, Zhang Q, Sun T, Wang P. Cloning of the Soybean GmNHL1 Gene and Functional Analysis under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3869. [PMID: 38005766 PMCID: PMC10675494 DOI: 10.3390/plants12223869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
When encountered in the soybean seedling stage, salt stress has serious impacts on plant growth and development. This study explores the role of the soybean NDR1/HIN1-like family gene GmNHL1 under salt stress. First, the GmNHL1 gene was successfully cloned, and bioinformatic analysis revealed multiple cis-acting elements which are related to adversity stress and involved in the oxidative response in the promoter region. Sub-cellular localization analysis indicated that the protein expressed by GmNHL1 was localized on the cell membrane. An over-expression vector of the target gene and a CRISPR/Cas9 gene-editing vector were constructed, and the recipient soybean variety Jinong 74 was genetically transformed using the Agrobacterium tumefaciens-mediated method. By analyzing the performance of the different plants under salt stress, the results showed that GmNHL1 was over-expressed in the T2 generation. The germination potential, germination rate, germination index, and vitality index of the strain were significantly higher than those of the recipient control JN74. Under salt stress conditions, the root microanatomical structure of the GmNHL1 over-expressing material remained relatively intact, and its growth was better than that of the recipient control JN74. Measurement of physiological and biochemical indicators demonstrated that, compared with the receptor control JN74, the malondialdehyde and O2- contents of the GmNHL1 over-expressing material were significantly reduced, while the antioxidant enzyme activity, proline content, and chlorophyll content significantly increased; however, the results for GmNHL1 gene-edited materials were the opposite. In summary, over-expression of GmNHL1 can improve the salt tolerance of plants and maintain the integrity of the root anatomical structure, thereby more effectively and rapidly reducing the accumulation of malondialdehyde and O2- content and increasing antioxidant enzyme activity. This reduces cell membrane damage, thereby improving the salt tolerance of soybean plants. These results help to better understand the mechanism of salt tolerance in soybean plants, laying a theoretical foundation for breeding new stress-resistant varieties of soybean.
Collapse
Affiliation(s)
- Lu Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jiabao Wang
- The Center of Biotechnology, Jilin Agricultural University, Changchun 130118, China
| | - Qi Zhang
- The Center of Biotechnology, Jilin Agricultural University, Changchun 130118, China
| | - Tingting Sun
- The Center of Biotechnology, Jilin Agricultural University, Changchun 130118, China
| | - Piwu Wang
- The Center of Biotechnology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Naseem A, Iqbal S, Jabeen K, Umar A, Alharbi K, Antar M, Grądecka-Jakubowska K, Gancarz M, Ali I. Organic amendments improve salinity-induced osmotic and oxidative stress tolerance in Okra (Abelmoschus esculentus (L.)Moench). BMC PLANT BIOLOGY 2023; 23:522. [PMID: 37891469 PMCID: PMC10605961 DOI: 10.1186/s12870-023-04527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
AIMS Salinity adversely affects okra [Abelmoschus esculentus (L.) Moench] plants by inducing osmotic and oxidative stresses. This study was designed to enhance salinity-induced osmotic and oxidative stress tolerance in okra plants by applying organic amendments. METHODS The effects of different organic amendments (municipal solid waste compost, farmyard manure (FYM) and press mud) on osmotic potential, water use efficiency, activities of antioxidant enzymes, total soluble sugar, total soluble proline, total soluble protein and malondialdehyde (MDA) contents of okra plants grown under saline conditions (50 mM sodium chloride) were evaluated in a pot experiment. The organic amendments were applied each at the rate of 5% and 10% per pot or in various combinations (compost + FYM, FYM + press mud and compost + press mud each at the rate of 2.5% and 5% per pot). RESULTS As compared to control, high total soluble sugar (60.41), total soluble proline (33.88%) and MDA (51%) contents and increased activities of antioxidant enzymes [superoxide dismutase (83.54%), catalase (78.61%), peroxidase (53.57%] in salinity-stressed okra plants, were indicative of oxidative stress. Salinity significantly reduced the osmotic potential (41.78%) and water use efficiency (4.75%) of okra plants compared to control. Under saline conditions, 5% (farmyard manure + press mud) was the most effective treatment, which significantly improved osmotic potential (27.05%), total soluble sugar (4.20%), total soluble protein (73.62%) and total soluble proline (23.20%) contents and superoxide dismutase activity (32.41%), compared to saline soil. Application of 2.5% (FYM + press mud), 5% press mud, and 10% compost significantly reduced MDA content (27%) and improved activities of catalase (38.64%) and peroxidase (48.29%), respectively, compared to saline soil, thus facilitated to alleviate oxidative stress in okra plants. CONCLUSIONS Using organic amendments (municipal solid waste compost, farmyard manure and press mud) was a cost-effective approach to improve salinity-induced osmotic and oxidative stress tolerance in okra plants.
Collapse
Affiliation(s)
- Alia Naseem
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Iqbal
- Department of Botany, Lahore College for Women University, Lahore, Pakistan.
| | - Khajista Jabeen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Aisha Umar
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Khadiga Alharbi
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohammed Antar
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Katarzyna Grądecka-Jakubowska
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, Krakow, 30-149, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, Krakow, 30-149, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| | - Iftikhar Ali
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
9
|
Yadav P, Ansari MW, Kaula BC, Rao YR, Meselmani MA, Siddiqui ZH, Brajendra, Kumar SB, Rani V, Sarkar A, Rakwal R, Gill SS, Tuteja N. Regulation of ethylene metabolism in tomato under salinity stress involving linkages with important physiological signaling pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111736. [PMID: 37211221 DOI: 10.1016/j.plantsci.2023.111736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - β-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, β-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Babeeta C Kaula
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Yalaga Rama Rao
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Moaed Al Meselmani
- School of Biosciences, Alfred Denny Building, Grantham Centre, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, England, UK
| | | | - Brajendra
- Division of Soil Science, ICAR-IIRR, Hyderabad, Telangana, India
| | - Shashi Bhushan Kumar
- Department of Soil Science, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Varsha Rani
- Department of Crop Physiology, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Abhijit Sarkar
- Department of Botany, University of GourBanga, Malda 732103, West Bengal, India
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
10
|
Peng Z, Rehman A, Li X, Jiang X, Tian C, Wang X, Li H, Wang Z, He S, Du X. Comprehensive Evaluation and Transcriptome Analysis Reveal the Salt Tolerance Mechanism in Semi-Wild Cotton ( Gossypium purpurascens). Int J Mol Sci 2023; 24:12853. [PMID: 37629034 PMCID: PMC10454576 DOI: 10.3390/ijms241612853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated salinity significantly threatens cotton growth, particularly during the germination and seedling stages. The utilization of primitive species of Gossypium hirsutum, specifically Gossypium purpurascens, has the potential to facilitate the restoration of genetic diversity that has been depleted due to selective breeding in modern cultivars. This investigation evaluated 45 G. purpurascens varieties and a salt-tolerant cotton variety based on 34 morphological, physiological, and biochemical indicators and comprehensive salt tolerance index values. This study effectively identified a total of 19 salt-tolerant and two salt-resistant varieties. Furthermore, transcriptome sequencing of a salt-tolerant genotype (Nayanmian-2; NY2) and a salt-sensitive genotype (Sanshagaopao-2; GP2) revealed 2776, 6680, 4660, and 4174 differentially expressed genes (DEGs) under 0.5, 3, 12, and 24 h of salt stress. Gene ontology enrichment analysis indicated that the DEGs exhibited significant enrichment in biological processes like metabolic (GO:0008152) and cellular (GO:0009987) processes. MAPK signaling, plant-pathogen interaction, starch and sucrose metabolism, plant hormone signaling, photosynthesis, and fatty acid metabolism were identified as key KEGG pathways involved in salinity stress. Among the DEGs, including NAC, MYB, WRKY, ERF, bHLH, and bZIP, transcription factors, receptor-like kinases, and carbohydrate-active enzymes were crucial in salinity tolerance. Weighted gene co-expression network analysis (WGCNA) unveiled associations of salt-tolerant genotypes with flavonoid metabolism, carbon metabolism, and MAPK signaling pathways. Identifying nine hub genes (MYB4, MYB105, MYB36, bZIP19, bZIP43, FRS2 SMARCAL1, BBX21, F-box) across various intervals offered insights into the transcriptional regulation mechanism of salt tolerance in G. purpurascens. This study lays the groundwork for understanding the important pathways and gene networks in response to salt stress, thereby providing a foundation for enhancing salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Xiawen Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xuran Jiang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Chunyan Tian
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xiaoyang Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Zhenzhen Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
11
|
Karumannil S, Khan TA, Kappachery S, Gururani MA. Impact of Exogenous Melatonin Application on Photosynthetic Machinery under Abiotic Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2948. [PMID: 37631160 PMCID: PMC10458501 DOI: 10.3390/plants12162948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Inhospitable conditions that hinder plant growth and development encompass a range of abiotic stresses, such as drought, extreme temperatures (both low and high), salinity, exposure to heavy metals, and irradiation. The cumulative impact of these stresses leads to a considerable reduction in agricultural productivity worldwide. The generation of reactive oxygen species (ROS) is a shared mechanism of toxicity induced by all these abiotic stimuli in plants, resulting in oxidative damage and membrane instability. Extensive research has shed light on the dual role of melatonin in plants, where it serves as both a growth regulator, fostering growth and development, and a potent protector against abiotic stresses. The inherent potential of melatonin to function as a natural antioxidant positions it as a promising biostimulant for agricultural use, bolstering plants' abilities to withstand a wide array of environmental challenges. Beyond its antioxidant properties, melatonin has demonstrated its capacity to regulate the expression of genes associated with the photosynthetic process. This additional characteristic enhances its appeal as a versatile chemical agent that can be exogenously applied to plants, particularly in adverse conditions, to improve their resilience and optimize photosynthetic efficiency in every phase of the plant life cycle. An examination of the molecular mechanisms underlying the stress-protective effects of exogenous melatonin on the photosynthetic machinery of plants under various abiotic stresses is presented in this paper. In addition, future prospects are discussed for developing stress-tolerant crops for sustainable agriculture in challenging environments.
Collapse
Affiliation(s)
| | | | | | - Mayank Anand Gururani
- Biology Department, College of Science, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
12
|
Broccanello C, Bellin D, DalCorso G, Furini A, Taranto F. Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1101271. [PMID: 36778704 PMCID: PMC9911883 DOI: 10.3389/fpls.2023.1101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment.
Collapse
Affiliation(s)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
13
|
Sehgal D, Dhakate P, Ambreen H, Shaik KHB, Rathan ND, Anusha NM, Deshmukh R, Vikram P. Wheat Omics: Advancements and Opportunities. PLANTS (BASEL, SWITZERLAND) 2023; 12:426. [PMID: 36771512 PMCID: PMC9919419 DOI: 10.3390/plants12030426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Plant omics, which includes genomics, transcriptomics, metabolomics and proteomics, has played a remarkable role in the discovery of new genes and biomolecules that can be deployed for crop improvement. In wheat, great insights have been gleaned from the utilization of diverse omics approaches for both qualitative and quantitative traits. Especially, a combination of omics approaches has led to significant advances in gene discovery and pathway investigations and in deciphering the essential components of stress responses and yields. Recently, a Wheat Omics database has been developed for wheat which could be used by scientists for further accelerating functional genomics studies. In this review, we have discussed various omics technologies and platforms that have been used in wheat to enhance the understanding of the stress biology of the crop and the molecular mechanisms underlying stress tolerance.
Collapse
Affiliation(s)
- Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco 56237, Mexico
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Priyanka Dhakate
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110076, India
| | - Heena Ambreen
- School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Khasim Hussain Baji Shaik
- Faculty of Agriculture Sciences, Georg-August-Universität, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Nagenahalli Dharmegowda Rathan
- Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
- Corteva Agriscience, Hyderabad 502336, Telangana, India
| | | | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| | - Prashant Vikram
- Bioseed Research India Ltd., Hyderabad 5023324, Telangana, India
| |
Collapse
|
14
|
Puccio G, Ingraffia R, Mercati F, Amato G, Giambalvo D, Martinelli F, Sunseri F, Frenda AS. Transcriptome changes induced by Arbuscular mycorrhizal symbiosis in leaves of durum wheat (Triticum durum Desf.) promote higher salt tolerance. Sci Rep 2023; 13:116. [PMID: 36596823 PMCID: PMC9810663 DOI: 10.1038/s41598-022-26903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
The salinity of soil is a relevant environmental problem around the world, with climate change raising its relevance, particularly in arid and semiarid areas. Arbuscular Mycorrhizal Fungi (AMF) positively affect plant growth and health by mitigating biotic and abiotic stresses, including salt stress. The mechanisms through which these benefits manifest are, however, still unclear. This work aimed to identify key genes involved in the response to salt stress induced by AMF using RNA-Seq analysis on durum wheat (Triticum turgidum L. subsp. durum Desf. Husn.). Five hundred sixty-three differentially expressed genes (DEGs), many of which involved in pathways related to plant stress responses, were identified. The expression of genes involved in trehalose metabolism, RNA processing, vesicle trafficking, cell wall organization, and signal transduction was significantly enhanced by the AMF symbiosis. A downregulation of genes involved in both enzymatic and non-enzymatic oxidative stress responses as well as amino acids, lipids, and carbohydrates metabolisms was also detected, suggesting a lower oxidative stress condition in the AMF inoculated plants. Interestingly, many transcription factor families, including WRKY, NAC, and MYB, already known for their key role in plant abiotic stress response, were found differentially expressed between treatments. This study provides valuable insights on AMF-induced gene expression modulation and the beneficial effects of plant-AMF interaction in durum wheat under salt stress.
Collapse
Affiliation(s)
- Guglielmo Puccio
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy ,grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, Palermo, Italy
| | - Rosolino Ingraffia
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy ,grid.14095.390000 0000 9116 4836Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Francesco Mercati
- grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, Palermo, Italy
| | - Gaetano Amato
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Federico Martinelli
- grid.8404.80000 0004 1757 2304Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Sunseri
- grid.11567.340000000122070761Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Alfonso S. Frenda
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Kebert M, Kostić S, Čapelja E, Vuksanović V, Stojnić S, Markić AG, Zlatković M, Milović M, Galović V, Orlović S. Ectomycorrhizal Fungi Modulate Pedunculate Oak's Heat Stress Responses through the Alternation of Polyamines, Phenolics, and Osmotica Content. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233360. [PMID: 36501399 PMCID: PMC9736408 DOI: 10.3390/plants11233360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 05/13/2023]
Abstract
The physiological and biochemical responses of pedunculate oaks (Quercus robur L.) to heat stress (HS) and mycorrhization (individually as well in combination) were estimated. One-year-old Q. robur seedlings were grown under controlled conditions in a pot experiment, inoculated with a commercial inoculum of ectomycorrhizal (ECM) fungi, and subjected to 72 h of heat stress (40 °C/30 °C day/night temperature, relative humidity 80%, photoperiod 16/8 h) in a climate chamber, and they were compared with seedlings that were grown at room temperature (RT). An in-depth analysis of certain well-known stress-related metrics such as proline, total phenolics, FRAP, ABTS, non-protein thiols, and lipid peroxidation revealed that mycorrhized oak seedlings were more resistant to heat stress (HS) than non-mycorrhized oaks. Additionally, levels of specific polyamines, total phenolics, flavonoids, and condensed tannins as well as osmotica (proline and glycine betaine) content were measured and compared between four treatments: plants inoculated with ectomycorrhizal fungi exposed to heat stress (ECM-HS) and those grown only at RT (ECM-RT) versus non-mycorrhized controls exposed to heat stress (NM-HS) and those grown only at room temperature (NM-RT). In ectomycorrhiza inoculated oak seedlings, heat stress led to not only a rise in proline, total phenols, FRAP, ABTS, non-protein thiols, and lipid peroxidation but a notable decrease in glycine betaine and flavonoids. Amounts of three main polyamines (putrescine, spermine, and spermidine) were quantified by using high-performance liquid chromatography coupled with fluorescent detection (HPLC/FLD) after derivatization with dansyl-chloride. Heat stress significantly increased putrescine levels in non-mycorrhized oak seedlings but had no effect on spermidine or spermine levels, whereas heat stress significantly increased all inspected polyamine levels in oak seedlings inoculated with ectomycorrhizal inoculum. Spermidine (SPD) and spermine (SPM) contents were significantly higher in ECM-inoculated plants during heat stress (approximately 940 and 630 nmol g-1 DW, respectively), whereas these compounds were present in smaller amounts in non-mycorrhized oak seedlings (between 510 and 550 nmol g-1 DW for Spd and between 350 and 450 nmol g-1 DW for Spm). These findings supported the priming and biofertilizer roles of ectomycorrhizal fungi in the mitigation of heat stress in pedunculate oaks by modification of polyamines, phenolics, and osmotica content.
Collapse
Affiliation(s)
- Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
- Correspondence: ; Tel.: +381-616-142-706
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Eleonora Čapelja
- Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vanja Vuksanović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Srđan Stojnić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Anđelina Gavranović Markić
- Division for Genetics, Forest Tree Breeding and Seed Science, Croatian Forest Research Institute, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Marina Milović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Vladislava Galović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Saša Orlović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| |
Collapse
|
16
|
Akhter MS, Noreen S, Ummara U, Aqeel M, Saleem N, Ahmed MM, Mahmood S, Athar HUR, Alyemeni MN, Kaushik P, Ahmad P. Silicon-Induced Mitigation of NaCl Stress in Barley ( Hordeum vulgare L.), Associated with Enhanced Enzymatic and Non-Enzymatic Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:2379. [PMID: 36145782 PMCID: PMC9503217 DOI: 10.3390/plants11182379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 01/03/2023]
Abstract
Salt stress obstructs plant's growth by affecting metabolic processes, ion homeostasis and over-production of reactive oxygen species. In this regard silicon (Si) has been known to augment a plant's antioxidant defense system to combat adverse effects of salinity stress. In order to quantify the Si-mediated salinity tolerance, we studied the role of Si (200 ppm) applied through rooting media on antioxidant battery system of barley genotypes; B-10008 (salt-tolerant) and B-14011 (salt-sensitive) subjected to salt stress (200 mM NaCl). A significant decline in the accumulation of shoot (35-74%) and root (30-85%) biomass was observed under salinity stress, while Si application through rooting media enhancing biomass accumulation of shoots (33-49%) and root (32-37%) under salinity stress. The over-accumulation reactive oxygen species i.e., hydrogen peroxide (H2O2) is an inevitable process resulting into lipid peroxidation, which was evident by enhanced malondialdehyde levels (13-67%) under salinity stress. These events activated a defense system, which was marked by higher levels of total soluble proteins and uplifted activities of antioxidants enzymatic (SOD, POD, CAT, GR and APX) and non-enzymatic (α-tocopherol, total phenolics, AsA, total glutathione, GSH, GSSG and proline) in roots and leaves under salinity stress. The Si application through rooting media further strengthened the salt stressed barley plant's defense system by up-regulating the activities of enzymatic and non-enzymatic antioxidant in order to mitigate excessive H2O2 efficiently. The results revealed that although salt-tolerant genotype (B-10008) was best adopted to tolerate salt stress, comparably the response of salt-sensitive genotype (B-14011) was more prominent (accumulation of antioxidant) after application of Si through rooting media under salinity stress.
Collapse
Affiliation(s)
- Muhammad Salim Akhter
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | - Sibgha Noreen
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | - Ume Ummara
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Rahim Yar Khan 64200, Pakistan;
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China;
| | - Nawishta Saleem
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | | | - Seema Mahmood
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | - Habib-ur-Rehman Athar
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | | | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
17
|
García-Caparrós P, Vogelsang L, Persicke M, Wirtz M, Kumar V, Dietz KJ. Differential sensitivity of metabolic pathways in sugar beet roots to combined salt, heat, and light stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13786. [PMID: 36169530 DOI: 10.1111/ppl.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/16/2023]
Abstract
Plants in nature commonly encounter combined stress scenarios. The response to combined stressors is often unpredictable from the response to single stresses. To address stress interference in roots, we applied salinity, heat, and high light to hydroponically grown sugar beet. Two main patterns of metabolomic acclimation were apparent. High salt of 300 mM NaCl considerably lowered metabolite amounts, for example, those of most amino acids, γ-amino butyric acid (GABA), and glucose. Very few metabolites revealed the opposite trend with increased contents at high salts, mostly organic acids such as citric acid and isocitric acid, but also tryptophan, tyrosine, and the compatible solute proline. High temperature (31°C vs. 21°C) also frequently lowered root metabolite pools. The individual effects of salinity and heat were superimposed under combined stress. Under high light and high salt conditions, there was a significant decline in root chloride, mannitol, ribulose 5-P, cysteine, and l-aspartate contents. The results reveal the complex interaction pattern of environmental parameters and urge researchers to elaborate in much more detail and width on combinatorial stress effects to bridge work under controlled growth conditions to growth in nature, and also to better understand acclimation to the consequences of climate change.
Collapse
Affiliation(s)
- Pedro García-Caparrós
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Markus Wirtz
- Heidelberg University, Centre for Organismal Studies, Heidelberg, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
18
|
Identification of Alkaline Salt Tolerance Genes in Brassica napus L. by Transcriptome Analysis. Genes (Basel) 2022; 13:genes13081493. [PMID: 36011404 PMCID: PMC9408751 DOI: 10.3390/genes13081493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Soil salt alkalization is one major abiotic factor reducing the productivity of crops, including rapeseed, an indispensable oil crop and vegetable. The mechanism studies of alkali salt tolerance can help breed highly resistant varieties. In the current study, rapeseed (B. napus) line 2205 exhibited more tolerance to alkaline salt than line 1423 did. In line 2205, the lesser plasma membrane damage index, the accumulated osmotic solute, and higher antioxidant enzyme activities contributed to alkaline tolerance. A more integrated mesophyll-cell structure was revealed under alkali salt stress by ultrastructure observation in line 2205, which also implied a lesser injury. Transcriptome analysis showed that more genes responded to alkaline salt in line 2205. The expression of specific-response genes in line 1423 was lower than in line 2205. However, most of the specific-response genes in line 2205 had higher expression, which was mainly enriched in carbohydrate metabolism, photosynthetic processes, ROS regulating, and response to salt stress. It can be seen that the tolerance to alkaline salt is attributed to the high expression of some genes in these pathways. Based on these, twelve cross-differentially expressed genes were proposed as candidates. They provide clues for further analysis of the resistance mechanism of rapeseed.
Collapse
|
19
|
Zhu X, Su M, Wang B, Wei X. Transcriptome analysis reveals the main metabolic pathway of c-GMP induced by salt stress in tomato ( Solanum lycopersicum) seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:784-798. [PMID: 35930479 DOI: 10.1071/fp21337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Tomato (Solanum lycopersicum L.) is a model crop as well as an important food worldwide. In arid areas, increasing soil salinity has limited higher yields in tomato production. As a second messenger molecule, cyclic guanosine monophosphate (c-GMP) plays an indispensable role in plant response to salt stress by regulating cell processes to promote plant growth and development. However, this mechanism has not been fully explored in tomato seedlings. In this experiment, tomato seeds were cultured in four treatments: (1) distilled water (CK); (2) 20μM c-GMP (T1); (3) 50mM NaCl (T2); and (4) 20μM c-GMP+50mM NaCl (T3). The results show that 20μM c-GMP effectively alleviated the inhibitory effect of 50mM NaCl on growth and development, and induced the expression of 1580 differentially expressed genes (DEGs). Seedlings in the CK vs T1 shared 95 upregulated and 442 downregulated DEGs, whereas T2 vs T3 shared 271 upregulated and 772 downregulated DEGs. Based on KEGG (Kyoto Encyclopaedia of Genes and Genomes) analysis, the majority of DEGs were involved in metabolism; exogenous c-GMP induced significant enrichment of pathways associated with carbohydrates, phenylpropanoids and fatty acid metabolism. Most PMEs , acCoA , PAL , PODs , FADs , and AD were upregulated, and GAPDHs , PL , PG , BXL4 , and β-G were downregulated, which reduced susceptibility of tomato seedlings to salt and promoted their salt tolerance. The application of c-GMP increased soluble sugar, flavonoid and lignin contents, reduced accumulation of malondialdehyde (MDA), and enhanced the activity of peroxidase (POD). Thus, our results provide insights into the molecular mechanisms associated with salt tolerance of tomato seedlings.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Meifei Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
20
|
Bouteraa MT, Mishra A, Romdhane WB, Hsouna AB, Siddique KHM, Saad RB. Bio-Stimulating Effect of Natural Polysaccharides from Lobularia maritima on Durum Wheat Seedlings: Improved Plant Growth, Salt Stress Tolerance by Modulating Biochemical Responses and Ion Homeostasis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1991. [PMID: 35956469 PMCID: PMC9370194 DOI: 10.3390/plants11151991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Bioactivities of polysaccharides derived from halophyte plants have gained attention in recent years. The use of biostimulants in agriculture is an innovative method of dealing with environmental stressors affecting plant growth and development. Here, we investigated the use of natural polysaccharides derived from the halophyte plant Lobularia maritima (PSLm) as a biostimulant in durum wheat seedlings under salt stress. Treatment with polysaccharide extract (0.5, 1, and 2 mg/mL PSLm) stimulated in vitro wheat growth, including germination, shoot length, root length, and fresh weight. PSLm at 2 mg/mL provided tolerance to plants against NaCl stress with improved membrane stability and low electrolyte leakage, increased antioxidant activities (catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD)), enhanced leaf chlorophyll fluorescence, proline, and total sugar contents, decreased lipid peroxidation (MDA), and reactive oxygen species (H2O2) levels, and coordinated the efflux and compartmentation of intracellular ions. The expression profile analyses of ten stress-related genes (NHX1, HKT1.4, SOS1, SOD, CAT, GA20-ox1, GA3-ox1, NRT1.1, NRT2.1, and GS) using RT-qPCR revealed the induction of several key genes in durum wheat growing in media supplemented with PSLm extract, even in unstressed conditions that could be related to the observed tolerance. This study revealed that PSLm extract contributes to salt tolerance in durum wheat seedlings, thereby enhancing their reactive oxygen species scavenging ability, and provided evidence for exploring PSLm as a plant biostimulant for sustainable and organic agriculture.
Collapse
Affiliation(s)
- Mohamed Taieb Bouteraa
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ‘1177’, Sfax 3018, Tunisia; (M.T.B.); (W.B.R.); (A.B.H.)
| | - Avinash Mishra
- CSIR—Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India;
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ‘1177’, Sfax 3018, Tunisia; (M.T.B.); (W.B.R.); (A.B.H.)
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ‘1177’, Sfax 3018, Tunisia; (M.T.B.); (W.B.R.); (A.B.H.)
- Departments of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, Gafsa 2112, Tunisia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ‘1177’, Sfax 3018, Tunisia; (M.T.B.); (W.B.R.); (A.B.H.)
| |
Collapse
|
21
|
Chen Y, Liu Y, Ge J, Li R, Zhang R, Zhang Y, Huo Z, Xu K, Wei H, Dai Q. Improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate. FRONTIERS IN PLANT SCIENCE 2022; 13:982637. [PMID: 35968148 PMCID: PMC9372507 DOI: 10.3389/fpls.2022.982637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Numerous papers studied the relations between nitrogen rate and rice yield in saline soils, whereas the rice root morphological and physiological characteristics mediating nitrogen rates in yield formation under varied salinity levels remain less concerns. Through a field experiment applied with five nitrogen rates (0, 210, 255, 300, 345, and 390 kg ha-1) in saline land, we found that rice yield peaked at 7.7 t ha-1 under 300 kg ha-1 nitrogen, and excessive N was not conductive for increasing yield. To further elucidate its internal physiological mechanism, a pot experiment was designed with three N rates (210 [N1], 300 [N2], 390 [N3] kg ha-1) and three salt concentrations (0 [S0], 1.5 [S1], 3.0 [S2] g kg-1 NaCl). Results showed that the average grain yield was decreased by 19.1 and 51.1% under S1 and S2, respectively, while notably increased by 18.5 and 14.5% under N2 and N3, respectively. Salinity stress significantly inhibited root biomass, root length and surface area, root oxidation capacity (ROC), K+ and K+/Na+ ratio, and nitrogen metabolism-related enzyme activities, whereas root Na+ and antioxidant enzyme activities were notably increased. The mechanism of how insufficient N supply (N1) affected rice yield formation was consistent at different salinity levels, which displayed adverse impacts on root morphological and physiological traits, thereby significantly inhibiting leaf photosynthesis and grain yield of rice. However, the mechanism thorough which excessive N (N3) affected yield formation was quite different under varied salinity levels. Under lower salinity (S0 and S1), no significant differences on root morphological traits and grain yield were observed except the significantly decline in activities of NR and GS between N3 and N2 treatments. Under higher salinity level (S2), the decreased ROC, K+/Na+ ratio due to increased Na+, antioxidant enzyme activities, and NR and GS activities were the main reason leading to undesirable root morphological traits and leaf photosynthesis, which further triggered decreased grain yield under N3 treatment, compared to that under N2 treatment. Overall, our results suggest that improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate.
Collapse
Affiliation(s)
- Yinglong Chen
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Yang Liu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Jianfei Ge
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Rongkai Li
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Rui Zhang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Yang Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zhongyang Huo
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Ke Xu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Huanhe Wei
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Qigen Dai
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Photosynthetic Responses, Growth, Production, and Tolerance of Traditional Varieties of Cowpea under Salt Stress. PLANTS 2022; 11:plants11141863. [PMID: 35890497 PMCID: PMC9320130 DOI: 10.3390/plants11141863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
Highlights Abstract Cowpea is the main subsistence crop—protein source—for the Brazilian semi-arid region. The use of salt-stress-tolerant varieties can improve crop yields. We evaluated the effect of irrigation with brackish water on the growth, photosynthetic responses, production, and tolerance of fifteen traditional varieties of cowpea. The experiment was conducted in randomized blocks, in a 15 × 2 factorial scheme, composed of 15 traditional varieties of cowpea and two salinity levels of irrigation water (0.5 and 4.5 dS m−1), with five replicates. Plants were grown in pots containing 10 dm3 of soil for 80 days. The reduction in the photosynthetic rate of cowpea varieties occurs mainly due to the decrease in stomatal conductance caused by salt stress. Salt stress increased the electron transport rate and photochemical quenching of cowpea varieties, but stress-tolerant varieties increased the CO2 assimilation rate and instantaneous carboxylation efficiency. The Ceará, Costela de Vaca, Pingo de Ouro, Ovo de Peru, and Sempre Verde varieties are tolerant to salt stress. Salt stress decreases 26% of the production of tolerant varieties to salt stress and 54% of susceptible varieties. The present findings show the existence of variability for saline stress tolerance in traditional varieties of cowpea and that Ceará, Costela de Vaca, Pingo de Ouro, and Ovo de Peru varieties are more suitable for crops irrigated with saline water.
Collapse
|
23
|
Nasrallah AK, Atia MAM, Abd El-Maksoud RM, Kord MA, Fouad AS. Salt Priming as a Smart Approach to Mitigate Salt Stress in Faba Bean (Vicia faba L.). PLANTS 2022; 11:plants11121610. [PMID: 35736763 PMCID: PMC9228577 DOI: 10.3390/plants11121610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/24/2023]
Abstract
The present investigation aims to highlight the role of salt priming in mitigating salt stress on faba bean. In the absence of priming, the results reflected an increase in H2O2 generation and lipid peroxidation in plants subjected to 200 mM salt shock for one week, accompanied by a decline in growth, photosynthetic pigments, and yield. As a defense, the shocked plants showed enhancements in ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) activities. Additionally, the salt shock plants revealed a significant increase in phenolics and proline content, as well as an increase in the expression levels of glutathione (GSH) metabolism-related genes (the L-ascorbate peroxidase (L-APX) gene, the spermidine synthase (SPS) gene, the leucyl aminopeptidase (LAP) gene, the aminopeptidase N (AP-N) gene, and the ribonucleo-side-diphosphate reductase subunit M1 (RDS-M) gene). On the other hand, priming with increasing concentrations of NaCl (50–150 mM) exhibited little significant reduction in some growth- and yield-related traits. However, it maintained a permanent alert of plant defense that enhanced the expression of GSH-related genes, proline accumulation, and antioxidant enzymes, establishing a solid defensive front line ameliorating osmotic and oxidative consequences of salt shock and its injurious effect on growth and yield.
Collapse
Affiliation(s)
- Amira K. Nasrallah
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
| | - Mohamed A. M. Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt
- Correspondence: (M.A.M.A.); (A.S.F.); Tel.: +20-1000164922 (M.A.M.A.); +20-1203770992 (A.S.F.)
| | - Reem M. Abd El-Maksoud
- Nucleic Acid & Protein Chemistry Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Maimona A. Kord
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
| | - Ahmed S. Fouad
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
- Correspondence: (M.A.M.A.); (A.S.F.); Tel.: +20-1000164922 (M.A.M.A.); +20-1203770992 (A.S.F.)
| |
Collapse
|
24
|
Carillo P, Rouphael Y. Nitrate Uptake and Use Efficiency: Pros and Cons of Chloride Interference in the Vegetable Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:899522. [PMID: 35783949 PMCID: PMC9244799 DOI: 10.3389/fpls.2022.899522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/20/2022] [Indexed: 05/29/2023]
Abstract
Over the past five decades, nitrogen (N) fertilization has been an essential tool for boosting crop productivity in agricultural systems. To avoid N pollution while preserving the crop yields and profit margins for farmers, the scientific community is searching for eco-sustainable strategies aimed at increasing plants' nitrogen use efficiency (NUE). The present article provides a refined definition of the NUE based on the two important physiological factors (N-uptake and N-utilization efficiency). The diverse molecular and physiological mechanisms underlying the processes of N assimilation, translocation, transport, accumulation, and reallocation are revisited and critically discussed. The review concludes by examining the N uptake and NUE in tandem with chloride stress and eustress, the latter being a new approach toward enhancing productivity and functional quality of the horticultural crops, particularly facilitated by soilless cultivation.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Turan M, Ekinci M, Kul R, Boynueyri FG, Yildirim E. Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide. JOURNAL OF PLANT RESEARCH 2022; 135:517-529. [PMID: 35445911 DOI: 10.1007/s10265-022-01391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H2S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H2S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H2S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H2S applied leaves had lower MP and higher LRWC than non-H2S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H2S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H2S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H2S treatments under salt stress. Mitigation of salt stress damage in cucumber using H2S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation.
Collapse
Affiliation(s)
- Metin Turan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Melek Ekinci
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Raziye Kul
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | | | - Ertan Yildirim
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
26
|
An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments. BIOLOGY 2022; 11:biology11040597. [PMID: 35453796 PMCID: PMC9028878 DOI: 10.3390/biology11040597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary This review focuses on plant growth and development harmed by abiotic stress, primarily salt stress. Salt stress raises the intracellular osmotic pressure, leading to hazardous sodium buildup. Plants react to salt stress signals by regulating ion homeostasis, activating the osmotic stress pathway, modulating plant hormone signaling, and altering cytoskeleton dynamics and cell wall composition. Understanding the processes underlying these physiological and biochemical responses to salt stress could lead to more effective agricultural crop yield measures. In this review, researchers outline recent advances in plant salt stress control. The study of plant salt tolerance processes is essential, both theoretically and practically, to improve agricultural output, produce novel salt-tolerant cultivars, and make full use of saline soil. Based on past research, this paper discusses the adverse effects of salt stress on plants, including photosynthesis suppression, ion homeostasis disturbance, and membrane peroxidation. The authors have also covered the physiological mechanisms of salt tolerance, such as the scavenging of reactive oxygen species and osmotic adjustment. This study further identifies specific salt stress-responsive mechanisms linked to physiological systems. Based on previous studies, this article reviews the current methodologies and techniques for improving plant salt tolerance. Overall, it is hoped that the above-mentioned points will impart helpful background information for future agricultural and crop plant production. Abstract Salinity is significant abiotic stress that affects the majority of agricultural, irrigated, and cultivated land. It is an issue of global importance, causing many socio-economic problems. Salt stress mainly occurs due to two factors: (1) soil type and (2) irrigation water. It is a major environmental constraint, limiting crop growth, plant productivity, and agricultural yield. Soil salinity is a major problem that considerably distorts ecological habitats in arid and semi-arid regions. Excess salts in the soil affect plant nutrient uptake and osmotic balance, leading to osmotic and ionic stress. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, the production of enzymes, compatible solutes, metabolites, and molecular or genetic networks. Different plant species have different salt overly sensitive pathways and high-affinity K+ channel transporters that maintain ion homeostasis. However, little progress has been made in developing salt-tolerant crop varieties using different breeding approaches. This review highlights the interlinking of plant morpho-physiological, molecular, biochemical, and genetic approaches to produce salt-tolerant plant species. Most of the research emphasizes the significance of plant growth-promoting rhizobacteria in protecting plants from biotic and abiotic stressors. Plant growth, survival, and yield can be stabilized by utilizing this knowledge using different breeding and agronomical techniques. This information marks existing research areas and future gaps that require more attention to reveal new salt tolerance determinants in plants—in the future, creating genetically modified plants could help increase crop growth and the toleration of saline environments.
Collapse
|
27
|
Song C, Acuña T, Adler-Agmon M, Rachmilevitch S, Barak S, Fait A. Leveraging a graft collection to develop metabolome-based trait prediction for the selection of tomato rootstocks with enhanced salt tolerance. HORTICULTURE RESEARCH 2022; 9:uhac061. [PMID: 35531316 PMCID: PMC9071376 DOI: 10.1093/hr/uhac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Grafting has been demonstrated to significantly enhance the salt tolerance of crops. However, breeding efforts to develop enhanced graft combinations are hindered by knowledge-gaps as to how rootstocks mediate scion-response to salt stress. We grafted the scion of cultivated M82 onto rootstocks of 254 tomato accessions and explored the morphological and metabolic responses of grafts under saline conditions (EC = 20 dS m-1) as compared to self-grafted M82 (SG-M82). Correlation analysis and Least Absolute Shrinkage and Selection Operator were performed to address the association between morphological diversification and metabolic perturbation. We demonstrate that grafting the same variety onto different rootstocks resulted in scion phenotypic heterogeneity and emphasized the productivity efficiency of M82 irrespective of the rootstock. Spectrophotometric analysis to test lipid oxidation showed largest variability of malondialdehyde (MDA) equivalents across the population, while the least responsive trait was the ratio of fruit fresh weight to total fresh weight (FFW/TFW). Generally, grafts showed greater values for the traits measured than SG-M82, except for branch number and wild race-originated rootstocks; the latter were associated with smaller scion growth parameters. Highly responsive and correlated metabolites were identified across the graft collection including malate, citrate, and aspartate, and their variance was partly related to rootstock origin. A group of six metabolites that consistently characterized exceptional graft response was observed, consisting of sorbose, galactose, sucrose, fructose, myo-inositol, and proline. The correlation analysis and predictive modelling, integrating phenotype- and leaf metabolite data, suggest a potential predictive relation between a set of leaf metabolites and yield-related traits.
Collapse
Affiliation(s)
- Chao Song
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Tania Acuña
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | | | - Shimon Rachmilevitch
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Simon Barak
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Aaron Fait
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| |
Collapse
|
28
|
Soil Amendment with Arbuscular Mycorrhizal Fungi and Biochar Improves Salinity Tolerance, Growth, and Lipid Metabolism of Common Wheat (Triticum aestivum L.). SUSTAINABILITY 2022. [DOI: 10.3390/su14063210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Salt stress in soils impacts grain crop yield. Soil amendment with biochar and arbuscular mycorrhizal alone has been analyzed to improve the growth of several crops under salinity stress. However, the combined application of biochar and arbuscular mycorrhizal fungi for the remediation of salinity and improvement of crop productivity in wheat are rarely discussed and have remained unclear. Therefore, this experiment was performed to investigate the effect with biochar (150 g biochar per each treated pot containing 3 kg soil) and/or arbuscular mycorrhizal fungi (20 g AMF inoculum containing 80% mycorrhizal roots, 100–160 spores, and extraradical hyphae per each treated pot) on the productivity of wheat (Triticum aestivum L.) under four salt stress gradients; 0, 50, 100, and 150 mM NaCl. The results show salinity significantly reduced plant height (9.9% to 22.9%), shoot fresh weight (35.6% to 64.4%), enzymatic activities (34.1% to 39.3%), and photosynthetic pigments—i.e., total chlorophyll contents (75.0%) and carotenoids contents (56.2%) of plants—as compared with control. Under exclusive biochar application, the plants were moderately tolerant to salinity stress, which was evident in their growth, moderately reduced fatty acid content, partially impaired enzymatic activity, and photosynthetic pigments, while under the exclusive AMF application, the wheat plants were relatively sensitive to salinity stress, resulting in impaired growth rate, decreased unsaturated fatty acid composition, enzymatic activity, and photosynthetic pigments. Conversely, under the co-application of biochar and AMF, wheat plants partially increased plant height (14.1%), shoot fresh biomass (75.7%), root fresh biomass (24.9%), partially increased enzymatic activity (49.5%), and unimpaired photosynthetic pigments (30.2% to 54.8%) of wheat under salinity stress. Current findings concluded that exclusive incorporation of biochar, and the synergistic application of AMF and biochar, could be utilized as a promising way to reduce the deleterious effects of salinity stress in wheat production.
Collapse
|
29
|
Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010075] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Water salinity is one of the major abiotic stresses, and the use of saline water for the agricultural sector will incur greater demand in the coming decades. Recently, nanoparticles (NPs) have been used for developing numerous plant fertilizers as a smart and powerful form of material with dual action that can alleviate the adverse effects of salinity and provide the plant with more efficient nutrient forms. This study evaluated the influence of calcium phosphate NPs (CaP-NPs) as a soil fertilizer application on the production and bioactive compounds of broad bean plants under salinity stress. Results showed that salinity had deleterious effects on plant yield with 55.9% reduction compared to control. On the other hand, CaP-NPs dramatically improved plant yield by 30% compared to conventional fertilizer under salinity stress. This improvement could be attributed to significantly higher enhancement in total soluble sugars, antioxidant enzymes, proline content, and total phenolics recorded use of nano-fertilizer compared to conventional use under salt stress. Additionally, nano-fertilizer reflected better mitigatory effects on plant growth parameters, photosynthetic pigments, and oxidative stress indicators (MDA and H2O2). Therefore, our results support the replacement of traditional fertilizers comprising Ca2+ or P with CaP-nano-fertilizers for higher plant productivity and sustainability under salt stress.
Collapse
|
30
|
Min K, Cho Y, Kim E, Lee M, Lee SR. Exogenous Glycine Betaine Application Improves Freezing Tolerance of Cabbage ( Brassica oleracea L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122821. [PMID: 34961292 PMCID: PMC8703899 DOI: 10.3390/plants10122821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 05/11/2023]
Abstract
Exogenous glycine betaine (GB) application has been reported to improve plant tolerance to various abiotic stresses, but its effect on freezing tolerance has not been well studied. We investigated the effect of exogenous GB on freezing tolerance of cabbage (Brassica oleracea L.) leaves. Seedlings fed with 30 mM GB via sub-irrigation showed effectively assimilated GB as evident by higher GB concentration. Exogenous GB did not retard leaf-growth (fresh weight, dry weight, and leaf area) rather slightly promoted it. Temperature controlled freeze-thaw tests proved GB-fed plants were more freeze-tolerant as indicated by lower electrolyte leakage (i.e., indication of less membrane damage) and alleviating oxidative stress (less accumulation of O2•- and H2O2, as well as of malondialdehyde (MDA)) following a relatively moderate or severe freeze-thaw stress, i.e., -2.5 and -3.5 °C. Improved freezing tolerance induced by exogenous GB application may be associated with accumulation of compatible solute (proline) and antioxidant (glutathione). GB-fed leaves also had higher activity of antioxidant enzymes, catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). These changes, together, may improve freezing tolerance through membrane protection from freeze-desiccation and alleviation of freeze-induced oxidative stress.
Collapse
Affiliation(s)
- Kyungwon Min
- Department of Biological and Environmental Science, Dongguk University, Seoul 04620, Korea; (K.M.); (Y.C.); (E.K.)
| | - Yunseo Cho
- Department of Biological and Environmental Science, Dongguk University, Seoul 04620, Korea; (K.M.); (Y.C.); (E.K.)
| | - Eunjeong Kim
- Department of Biological and Environmental Science, Dongguk University, Seoul 04620, Korea; (K.M.); (Y.C.); (E.K.)
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea
- Correspondence: (M.L.); (S.-R.L.)
| | - Sang-Ryong Lee
- Department of Biological and Environmental Science, Dongguk University, Seoul 04620, Korea; (K.M.); (Y.C.); (E.K.)
- Correspondence: (M.L.); (S.-R.L.)
| |
Collapse
|
31
|
Gao M, Sun H, Shi M, Wu Q, Ji D, Wang B, Zhang L, Liu Y, Han L, Ruan X, Xu H, Yang W. 2-Keto-L-Gulonic Acid Improved the Salt Stress Resistance of Non-heading Chinese Cabbage by Increasing L-Ascorbic Acid Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:697184. [PMID: 34804078 PMCID: PMC8599927 DOI: 10.3389/fpls.2021.697184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Salt stress has long been a prominent obstacle that restricts crop growth, and increasing the L-ascorbic acid (ASA) content of crops is an effective means of alleviating this stress. 2-Keto-L-gulonic acid (2KGA) is a precursor used in industrial ASA production as well as an ASA degradation product in plants. However, to date, no study has investigated the effects of 2KGA on ASA metabolism and salt stress. Here, we evaluated the potential of using 2KGA to improve crop resistance to salt stress (100mM NaCl) through a cultivation experiment of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). The results showed that the leaf and root biomass were significantly improved by 2KGA application. The levels of metabolites and enzymes related to stress resistance were increased, whereas the hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were decreased. Lipid peroxidation and cell membrane damage were alleviated following 2KGA treatment. Positive correlations were found between photosynthetic pigments and organic solutes, ASA and photosynthetic pigments, and ASA and antioxidant enzymes. In contrast, negative correlations were observed between antioxidant enzymes and H2O2/MDA. Moreover, the expression levels of L-gulono-1,4-lactone oxidase, GDP-mannose pyrophosphorylase, dehydroascorbate reductase-3, and ascorbate peroxidase were increased by 2KGA treatment. These results suggested that exogenous 2KGA application can relieve the inhibitory effect of salt stress on plant growth, and the promotion of ASA synthesis may represent a critical underlying mechanism. Our findings have significant implications for the future application of 2KGA or its fermentation residue in agriculture.
Collapse
Affiliation(s)
- Mingfu Gao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Meijun Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Wu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxu Ji
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, China
| | - Yang Liu
- Yikang Environment Biotechnology Development Co., Ltd, Shenyang, China
| | - Litao Han
- Yikang Environment Biotechnology Development Co., Ltd, Shenyang, China
| | - Xicheng Ruan
- Yikang Environment Biotechnology Development Co., Ltd, Shenyang, China
| | - Hui Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Weichao Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
32
|
Ben Youssef R, Jelali N, Boukari N, Albacete A, Martinez C, Alfocea FP, Abdelly C. The Efficiency of Different Priming Agents for Improving Germination and Early Seedling Growth of Local Tunisian Barley under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112264. [PMID: 34834627 PMCID: PMC8623335 DOI: 10.3390/plants10112264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The current work aimed to investigate the effect of seed priming with different agents (CaCl2, KCl, and KNO3) on germination and seedling establishment in seeds of the barley species of both Hordeum vulgare (L. Manel) and Hordeum maritimum germinated with three salt concentrations (0, 100, and 200 mM NaCl). The results showed that under unprimed conditions, salt stress significantly reduced the final germination rate, the mean daily germination, and the seedling length and dry weight. It led to a decrease in the essential nutrient content (iron, calcium, magnesium, and potassium) against an increase in sodium level in both of the barley species. Moreover, this environmental constraint provoked a membrane injury caused by a considerable increase in electrolyte leakage and the malondialdehyde content (MDA). Data analysis proved that seed priming with CaCl2, KCl, and KNO3 was an effective method for alleviating barley seed germination caused by salt stress to varying degrees. Different priming treatments clearly stimulated germination parameters and the essential nutrient concentration, in addition to increasing the seedling growth rate. The application of seed priming reduced the accumulation of sodium ions and mitigated the oxidative stress of seeds caused by salt. This mitigation was traduced by the maintenance of low levels of MDA and electrolyte leakage. We conclude that the priming agents can be classed into three ranges based on their efficacy on the different parameters analyzed; CaCl2 was placed in the first range, followed closely by KNO3, while the least effective was KCl, which placed in the third range.
Collapse
Affiliation(s)
- Rim Ben Youssef
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (N.B.); (C.A.)
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1060, Tunisia
- Centro de Edafología y Biología Aplicada del Segura, Spanish National Research Council (CEBAS-CSIC), Departameno Nutricion Vegetal, 30100 Murcia, Spain; (A.A.); (C.M.); (F.P.A.)
| | - Nahida Jelali
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (N.B.); (C.A.)
| | - Nadia Boukari
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (N.B.); (C.A.)
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1060, Tunisia
| | - Alfonso Albacete
- Centro de Edafología y Biología Aplicada del Segura, Spanish National Research Council (CEBAS-CSIC), Departameno Nutricion Vegetal, 30100 Murcia, Spain; (A.A.); (C.M.); (F.P.A.)
| | - Cristina Martinez
- Centro de Edafología y Biología Aplicada del Segura, Spanish National Research Council (CEBAS-CSIC), Departameno Nutricion Vegetal, 30100 Murcia, Spain; (A.A.); (C.M.); (F.P.A.)
| | - Francisco Perez Alfocea
- Centro de Edafología y Biología Aplicada del Segura, Spanish National Research Council (CEBAS-CSIC), Departameno Nutricion Vegetal, 30100 Murcia, Spain; (A.A.); (C.M.); (F.P.A.)
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (N.B.); (C.A.)
| |
Collapse
|
33
|
Aycan M, Baslam M, Asiloglu R, Mitsui T, Yildiz M. Development of new high-salt tolerant bread wheat (Triticum aestivum L.) genotypes and insight into the tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:314-327. [PMID: 34147724 DOI: 10.1016/j.plaphy.2021.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 05/24/2023]
Abstract
The loss of cropland soils, climate change, and population growth are directly affecting the food supply. Given the higher incidence of salinity and extreme events, the cereal performance and yield are substantially hampered. Wheat is forecast to decline over the coming years due to the salinization widespread as one of the oldest and most environmental severe constraints facing global cereal production. To increase salinity tolerance of wheat, in this study, we developed two new salt-tolerant bread wheats, named 'Maycan' and 'Yıldız'. The salinity tolerance of these lines, their parents, and a salt-sensitive cultivar has been tested from measurements of physiological, biochemical, and genes associated with osmotic adjustment/plant tolerance in cultures containing 0 and 150 mM NaCl at the seedling stage. Differential growth reductions to increased salinity were observed in the salt-sensitive cultivar, with those newly developed exhibiting significantly greater root length, growth of shoot and water content as salinity tolerances overall than their parents. 'Maycan' and 'Yıldız' had higher osmoregulator proline content and antioxidants enzyme activities under salinity than the other bread wheat tested. Notably, an important upregulation in the expression of genes related to cellular ion balance, osmolytes accumulation, and abscisic acid was observed in both new wheat germplasms, which may improve salt tolerance. These finding revealed that 'Maycan' and 'Yıldız' exhibit high-salt tolerance at the seedling stage and differing in their tolerance mechanisms to the other tested cultivars, thereby providing an opportunity for their exploitation as modern bread wheats.
Collapse
Affiliation(s)
- Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Rasit Asiloglu
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Mustafa Yildiz
- Department of Field Crops, Faculty of Agriculture, Ankara University, Ankara, Turkey.
| |
Collapse
|
34
|
Hamid S, Ahmad I, Akhtar MJ, Iqbal MN, Shakir M, Tahir M, Rasool A, Sattar A, Khalid M, Ditta A, Zhu B. Bacillus subtilis Y16 and biogas slurry enhanced potassium to sodium ratio and physiology of sunflower (Helianthus annuus L.) to mitigate salt stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38637-38647. [PMID: 33735413 DOI: 10.1007/s11356-021-13419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/09/2021] [Indexed: 05/26/2023]
Abstract
Salinity harms crop productivity; thereby, the management of salt-affected soils is a prerequisite to obtaining optimum crop yields and achieving UN-SDGs. The application of bio-organic amendments is an eco-friendly and cost-effective technique for the management of salt-affected soils. Therefore, this study examined the effect of salt-tolerant Bacillus subtilis strain Y16 and biogas slurry (BGS) on growth, physiology, and yield of sunflower under salt-affected soil conditions. Three levels of soil salinity (original electrical conductivity (EC): 3 dS m-1; induced EC: 6 dS m-1 and 8 dS m-1) were evaluated against three levels of BGS (0 kg ha-1, 600 kg ha-1, and 800 kg ha-1) with and without bacterial inoculation. Soil salinity (EC = 8 dS m-1) significantly (P < 0.05) increased Na+ contents (86%), which significantly (P < 0.05) reduced growth (17-56%), physiology (39-53%), and yield (58%) of sunflower. However, the combined application of BGS and B. subtilis alleviated salt stress and significantly (P < 0.05) improved sunflower growth (11-179%), physiology (10-84%), and yield (106%). The correlation analysis showed the superiority of B. subtilis for inducing salt-stress tolerance in sunflower as compared to BGS through homeostasis of K+/Na+ ratio. The tolerance indices and heat map analysis revealed an increased salt-stress tolerance in sunflower by the synergistic application of BGS and B. subtilis at original (3 dS m-1) and induced (6 dS m-1) soil salinity. Based on the results, we conclude that the combined application of B. subtilis and BGS enhanced growth and yield of sunflower by improving physiological processes and adjustment of K+/Na+ ratio in shoot under moderate salt-stress soil conditions.
Collapse
Affiliation(s)
- Samina Hamid
- Soil Fertility Research Institute Lahore, Lahore, Punjab, Pakistan
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
- Soil and Water Testing Laboratory, Sheikhupura, Punjab, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Muhammad Javed Akhtar
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Muhammad Shakir
- Soil Fertility Research Institute Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Tahir
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Atta Rasool
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Annum Sattar
- Soil Fertility Research Institute Lahore, Lahore, Punjab, Pakistan
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Mahreen Khalid
- Soil Fertility Research Institute Lahore, Lahore, Punjab, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal Dir (U), , Khyber Pakhtunkhwa, 18000, Pakistan
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
35
|
El-Badri AM, Batool M, A. A. Mohamed I, Wang Z, Khatab A, Sherif A, Ahmad H, Khan MN, Hassan HM, Elrewainy IM, Kuai J, Zhou G, Wang B. Antioxidative and Metabolic Contribution to Salinity Stress Responses in Two Rapeseed Cultivars during the Early Seedling Stage. Antioxidants (Basel) 2021; 10:antiox10081227. [PMID: 34439475 PMCID: PMC8389040 DOI: 10.3390/antiox10081227] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.
Collapse
Affiliation(s)
- Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Ibrahim A. A. Mohamed
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Zongkai Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Ahmed Sherif
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Hasan Ahmad
- National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Mohammad Nauman Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Hamada Mohamed Hassan
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Ibrahim M. Elrewainy
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Correspondence: ; Tel.:+86-027-8728-2130 or +86-137-0719-2880
| |
Collapse
|
36
|
Zhang Z, Yu Z, Zhang Y, Shi Y. Optimized nitrogen fertilizer application strategies under supplementary irrigation improved winter wheat ( Triticum aestivum L.) yield and grain protein yield. PeerJ 2021; 9:e11467. [PMID: 34141470 PMCID: PMC8179224 DOI: 10.7717/peerj.11467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Background Exploring suitable split nitrogen management is essential for winter wheat production in the Huang-Huai-Hai Plain of China (HPC) under water-saving irrigation conditions, which can increase grain and protein yields by improving nitrogen translocation, metabolic enzyme activity and grain nitrogen accumulation. Methods Therefore, a 2-year field experiment was conducted to investigate these effects in HPC. Nitrogen fertilizer was applied at a constant total rate (240 kg/ha), split between the sowing and at winter wheat jointing growth stage in varying ratios, N1 (0% basal and 100% dressing fertilizer), N2 (30% basal and 70% dressing fertilizer), N3 (50% basal and 50% dressing fertilizer), N4 (70% basal and 30% dressing fertilizer), and N5 (100% basal and 0% dressing fertilizer). Results We found that the N3 treatment significantly increased nitrogen accumulation post-anthesis and nitrogen translocation to grains. In addition, this treatment significantly increased flag leaf free amino acid levels, and nitrate reductase and glutamine synthetase activities, as well as the accumulation rate, active accumulation period, and accumulation of 1000-grain nitrogen. These factors all contributed to high grain nitrogen accumulation. Finally, grain yield increase due to N3 ranging from 5.3% to 15.4% and protein yield from 13.7% to 31.6%. The grain and protein yields were significantly and positively correlated with nitrogen transport parameters, nitrogen metabolic enzyme activity levels, grain nitrogen filling parameters. Conclusions Therefore, the use of split nitrogen fertilizer application at a ratio of 50%:50% basal-topdressing is recommended for supporting high grain protein levels and strong nitrogen translocation, in pursuit of high-quality grain yield.
Collapse
Affiliation(s)
- Zhen Zhang
- Shandong Agricultural University, Taian, China
| | - Zhenwen Yu
- Shandong Agricultural University, Taian, China
| | | | - Yu Shi
- Shandong Agricultural University, Taian, China
| |
Collapse
|
37
|
Zou P, Yang X, Yuan Y, Jing C, Cao J, Wang Y, Zhang L, Zhang C, Li Y. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. Int J Biol Macromol 2021; 180:547-558. [PMID: 33741372 DOI: 10.1016/j.ijbiomac.2021.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
A fuciodan (Mw = 11.1 kDa) was obtained and purified from Macrocystis pyrifera (MPF). MPF was an acid heteropolysaccharide including fucose, mannose, xylose, galactose, rhamnose, glucuronic acid, and glucose in a molar ratio of 3.1:1.0:0.86:0.63:0.25:0.33:0.11. Sulfate content in MPF was 28.6%, and the molar ratio of fucose to sulfate (Fuc:SO42-) was 1.0:0.58. The structure of MPF was mainly consist of repeating →3)-β-L-Fucp (2SO3-)-(1→ and →4)-β-D-Xylp-(1→3)-β-L-Fucp(2SO3-)-(1→ and with α-L-Fucp-(1→ and →6)-α-D-Galp-(1→ in branches. Moreover, the effects of different MPF concentrations on plant salt tolerance were investigated. The results indicated that MPF could improve the salt tolerance of wheat seedlings. Among the five concentrations (0.05, 0.1, 0.5, 1, and 2 mg/ml), 0.5 and 1 mg/ml MPF were optimal for effective plant salt-resistance activity. These results suggested that MPF extracted from brown seaweed show potential as plant stimulators that may be used to improve salt resistance of plants.
Collapse
Affiliation(s)
- Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jianmin Cao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Wang
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao 266000, China
| | - Lin Zhang
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao 266000, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
38
|
Dell’Aversana E, Cirillo V, Van Oosten MJ, Di Stasio E, Saiano K, Woodrow P, Ciarmiello LF, Maggio A, Carillo P. Ascophyllum nodosum Based Extracts Counteract Salinity Stress in Tomato by Remodeling Leaf Nitrogen Metabolism. PLANTS 2021; 10:plants10061044. [PMID: 34064272 PMCID: PMC8224312 DOI: 10.3390/plants10061044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress.
Collapse
Affiliation(s)
- Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Michael James Van Oosten
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Katya Saiano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Loredana Filomena Ciarmiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
- Correspondence: ; Tel.: +39-0823-274562
| |
Collapse
|
39
|
Abbasi-Vineh MA, Sabet MS, Karimzadeh G. Identification and Functional Analysis of Two Purple Acid Phosphatases AtPAP17 and AtPAP26 Involved in Salt Tolerance in Arabidopsis thaliana Plant. FRONTIERS IN PLANT SCIENCE 2021; 11:618716. [PMID: 33679819 PMCID: PMC7928345 DOI: 10.3389/fpls.2020.618716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/31/2020] [Indexed: 05/06/2023]
Abstract
Tolerance to salinity is a complex genetic trait including numerous physiological processes, such as metabolic pathways and gene networks; thereby, identification of genes indirectly affecting, as well as those directly influencing, is of utmost importance. In this study, we identified and elucidated the functional characterization of AtPAP17 and AtPAP26 genes, as two novel purple acid phosphatases associated with high-salt tolerance in NaCl-stressed conditions. Here, the overexpression of both genes enhanced the expression level of AtSOS1, AtSOS2, AtSOS3, AtHKT1, AtVPV1, and AtNHX1 genes, involving in the K+/Na+ homeostasis pathway. The improved expression of the genes led to facilitating intracellular Na+ homeostasis and decreasing the ion-specific damages occurred in overexpressed genotypes (OEs). An increase in potassium content and K+/Na+ ratio was observed in OE17 and OE26 genotypes as well; however, lower content of sodium accumulated in these plants at 150 mM NaCl. The overexpression of these two genes resulted in the upregulation of the activity of the catalase, guaiacol peroxidase, and ascorbate peroxidase. Consequently, the overexpressed plants showed the lower levels of hydrogen peroxide where the lowest amount of lipid peroxidation occurred in these lines. Besides the oxidation resistance, the boost of the osmotic regulation through the increased proline and glycine-betaine coupled with a higher content of pigments and carbohydrates resulted in significantly enhancing biomass production and yield in the OEs under 150 mM NaCl. High-salt stress was also responsible for a sharp induction on the expression of both PAP17 and PAP26 genes. Our results support the hypothesis that these two phosphatases are involved in plant responses to salt stress by APase activity and/or non-APase activity thereof. The overexpression of PAP17 and PAP26 could result in increasing the intracellular APase activity in both OEs, which exhibited significant increases in the total phosphate and free Pi content compared to the wild-type plants. Opposite results witnessed in mutant genotypes (Mu17, Mu26, and DM), associating with the loss of AtPAP17 and AtPAP26 functions, clearly confirmed the role of these two genes in salt tolerance. Hence, these genes can be used as candidate genes in molecular breeding approaches to improve the salinity tolerance of crop plants.
Collapse
Affiliation(s)
- Mohammad Ali Abbasi-Vineh
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ghasem Karimzadeh
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
40
|
Salinity Duration Differently Modulates Physiological Parameters and Metabolites Profile in Roots of Two Contrasting Barley Genotypes. PLANTS 2021; 10:plants10020307. [PMID: 33562862 PMCID: PMC7914899 DOI: 10.3390/plants10020307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Hordeum maritimum With. is a wild salt tolerant cereal present in the saline depressions of the Eastern Tunisia, where it significantly contributes to the annual biomass production. In a previous study on shoot tissues it was shown that this species withstands with high salinity at the seedling stage restricting the sodium entry into shoot and modulating over time the leaf synthesis of organic osmolytes for osmotic adjustment. However, the tolerance strategy mechanisms of this plant at root level have not yet been investigated. The current research aimed at elucidating the morphological, physiological and biochemical changes occurring at root level in H. maritimum and in the salt sensitive cultivar Hordeum vulgare L. cv. Lamsi during five-weeks extended salinity (200 mM NaCl), salt removal after two weeks of salinity and non-salt control. H. maritimum since the first phases of salinity was able to compartmentalize higher amounts of sodium in the roots compared to the other cultivar, avoiding transferring it to shoot and impairing photosynthetic metabolism. This allowed the roots of wild plants to receive recent photosynthates from leaves, gaining from them energy and carbon skeletons to compartmentalize toxic ions in the vacuoles, synthesize and accumulate organic osmolytes, control ion and water homeostasis and re-establish the ability of root to grow. H. vulgare was also able to accumulate compatible osmolytes but only in the first weeks of salinity, while soon after the roots stopped up taking potassium and growing. In the last week of salinity stress, the wild species further increased the root to shoot ratio to enhance the root retention of toxic ions and consequently delaying the damages both to shoot and root. This delay of few weeks in showing the symptoms of stress may be pivotal for enabling the survival of the wild species when soil salinity is transient and not permanent.
Collapse
|
41
|
Soni S, Kumar A, Sehrawat N, Kumar A, Kumar N, Lata C, Mann A. Effect of saline irrigation on plant water traits, photosynthesis and ionic balance in durum wheat genotypes. Saudi J Biol Sci 2021; 28:2510-2517. [PMID: 33911962 PMCID: PMC8071897 DOI: 10.1016/j.sjbs.2021.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
In the era of climate change, decreased precipitation and increased evapo-transpiration hampers the yield of several cereal crops along with the soil salinity and poor ground water resource. Wheat being the moderately tolerant crop face many challenges in the arid and semi-arid regions under irrigated agriculture. In view of this, the study was planned to explore the potential of durum wheat genotypes under salinity on the basis of physiological traits. Experiment was designed as RBD in three replications to evaluate 15 wheat genotypes with moderate saline irrigation (ECiw – 6 dS m−1) and extreme saline irrigation (ECiw – 10 dS m−1) along with one set of control (Best available water). Different physiological traits such as water potential (ψp), osmotic potential (ψs), relative water content (RWC), Na+ and K+ content were recorded in roots as well as shoots at the reproductive stage whereas photosynthetic rate and chlorophyll content were measured in the flag leaves. A significant variability (p < 0.001) was noted among the genotypes under different stress environments and it was observed that durum genotype HI 8728 and HI 8737 showed less reduction in plant water traits (RWC, ψp and ψs) than the salinity tolerant checks of bread wheat KRL 99 and KRL 3–4. HD 4728 and HI 8708 maintained higher photosynthetic rate as well as higher chlorophyll content under the extreme salinity level of ECiw – 10 dSm−1. No significant differences were found in root Na+ in genotypes KRL 99 (3.17g), KRL 3–4 (3.34g) and HI 8737 (3.41g) while in shoots, lowest accumulation was seen in KRL 99, MACS 3949 and KRL 3–4 at ECiw – 10 dSm−1. The mean range of K+ content was 7.60–9.74% in roots and 4.21–6.61% in shoots under control environment which decreased to 50.77% in roots and 46.05% in shoots under extreme salinity condition of ECiw – 10 dSm−1. At ECiw – 10 dSm−1, KRL 99 maintained highest K+/Na+ in both root and shoot followed by KRL 3–4, HI 8737, MACS 3949, HD 4728 in roots and MACS 3949, KRL 3–4, MACS 4020, HD 4758, MACS 3972 and HI 8713 in shoots. The differential response of durum wheat genotypes under salinity particularly for physiological traits, confer their adaptability towards stress environments and exhibit their potential as genetic sources in breeding programs for improving salt stress tolerance.
Collapse
Affiliation(s)
- Shobha Soni
- ICAR - Central Soil Salinity Research Institute, Karnal 132001, India
- Maharishi Markendeshwar (Deemed to be University), Mullana, Ambala 133203, India
| | - Ashwani Kumar
- ICAR - Central Soil Salinity Research Institute, Karnal 132001, India
| | - Nirmala Sehrawat
- Maharishi Markendeshwar (Deemed to be University), Mullana, Ambala 133203, India
| | - Arvind Kumar
- ICAR - Central Soil Salinity Research Institute, Karnal 132001, India
| | - Naresh Kumar
- ICAR - Central Soil Salinity Research Institute, Karnal 132001, India
| | - Charu Lata
- ICAR - Central Soil Salinity Research Institute, Karnal 132001, India
| | - Anita Mann
- ICAR - Central Soil Salinity Research Institute, Karnal 132001, India
| |
Collapse
|
42
|
do Rosário Rosa V, Farias Dos Santos AL, Alves da Silva A, Peduti Vicentini Sab M, Germino GH, Barcellos Cardoso F, de Almeida Silva M. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:228-243. [PMID: 33218845 DOI: 10.1016/j.plaphy.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 11/05/2020] [Indexed: 05/01/2023]
Abstract
To meet the growing demand for soybean it is necessary to increase crop yield, even in low water availability conditions. To circumvent the negative effects of water deficit, application of biostimulants with anti-stress effect has been adopted, including products based on fulvic acids and Ascophyllum nodosum (L.) seaweed extracts. In this study, we determined which formulation and dosage of a biostimulant is more efficient in promoting the recovery of soybean plants after stress due to water deficit. The experiment was conducted in a greenhouse, in a double-factorial randomized block design with two additional factors, four repetitions and eleven treatments consisting of three biostimulant formulations (F1, F2 and F3), and three dosages (0.25; 0.50 and 1.0 kg ha-1); a control with water deficit and a control without water deficit. Soybean plants were kept at 50% of the pot's water capacity for three days, then rehydrated and submitted to the application of treatments with biostimulant. After two days of recovery, growth, physiological, biochemical and yield parameters were evaluated. All plants that received the application of the biostimulant produced more than the water-stressed control plants. The biostimulant provided higher photosynthetic rates, more efficient mechanisms for dissipating excess energy and higher activities of antioxidant enzymes. Plants treated with biostimulant were more efficient in the recovery of the metabolic activities after rewatering, resulting in increased soybean tolerance to water deficit and reduced yield losses. The best result obtained was through the application of formulation 2 of the biostimulant at a dosage of 0.25 kg ha-1.
Collapse
Affiliation(s)
- Vanessa do Rosário Rosa
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Anna Luiza Farias Dos Santos
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Adinan Alves da Silva
- Laboratory of Ecophysiology and Crop Production, Federal Goianian Institute (IF Goiano), Campus Rio Verde, GO, Brazil.
| | - Mariana Peduti Vicentini Sab
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Gabriel Henrique Germino
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | | | - Marcelo de Almeida Silva
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
43
|
Terletskaya NV, Lee TE, Altayeva NA, Kudrina NO, Blavachinskaya IV, Erezhetova U. Some Mechanisms Modulating the Root Growth of Various Wheat Species under Osmotic-Stress Conditions. PLANTS 2020; 9:plants9111545. [PMID: 33187339 PMCID: PMC7696822 DOI: 10.3390/plants9111545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
The role of the root in water supply and plant viability is especially important if plants are subjected to stress at the juvenile stage. This article describes the study of morphophysiological and cytological responses, as well as elements of the anatomical structure of primary roots of three wheat species, Triticum monococcum L., Triticum dicoccum Shuebl., and Triticum aestivum L., to osmotic stress. It was shown that the degree of plasticity of root morphology in water deficit affected the growth and development of aboveground organs. It was found that in conditions of osmotic stress, the anatomical root modulations were species-specific. In control conditions the increase in absolute values of root diameter was reduced with the increase in the ploidy of wheat species. Species-specific cytological responses to water deficit of apical meristem cells were also shown. The development of plasmolysis, interpreted as a symptom of reduced viability apical meristem cells, was revealed. A significant increase in enzymatic activity of superoxide dismutase under osmotic stress was found to be one of the mechanisms that could facilitate root elongation in adverse conditions. The tetraploid species T. dicoccum Shuebl. were confirmed as a source of traits of drought tolerant primary root system for crosses with wheat cultivars.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan; (I.V.B.); (U.E.)
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, Almaty 050040, Kazakhstan;
- Correspondence: (N.V.T.); (T.E.L.); (N.O.K.); Tel.: +7-(777)-2993335 (N.V.T.); +7-(707)-6844924 (T.E.L.); +7-(705)-1811440 (N.O.K.)
| | - Tamara E. Lee
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, Almaty 050040, Kazakhstan;
- Correspondence: (N.V.T.); (T.E.L.); (N.O.K.); Tel.: +7-(777)-2993335 (N.V.T.); +7-(707)-6844924 (T.E.L.); +7-(705)-1811440 (N.O.K.)
| | - Nazira A. Altayeva
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, Almaty 050040, Kazakhstan;
| | - Nataliya O. Kudrina
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan; (I.V.B.); (U.E.)
- Central Laboratory for Biocontrol, Certification and Preclinical Trials, Al-Farabi av., 93, Almaty 050040, Kazakhstan
- Correspondence: (N.V.T.); (T.E.L.); (N.O.K.); Tel.: +7-(777)-2993335 (N.V.T.); +7-(707)-6844924 (T.E.L.); +7-(705)-1811440 (N.O.K.)
| | - Irina V. Blavachinskaya
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan; (I.V.B.); (U.E.)
- Central Laboratory for Biocontrol, Certification and Preclinical Trials, Al-Farabi av., 93, Almaty 050040, Kazakhstan
| | - Ulzhan Erezhetova
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan; (I.V.B.); (U.E.)
| |
Collapse
|
44
|
Physiological and Nutraceutical Quality of Green and Red Pigmented Lettuce in Response to NaCl Concentration in Two Successive Harvests. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nutritional eustress such as salinity or nutrient stress applied in soilless systems, is a convenient pre-harvest factor efficient in modulating the phytochemical components of horticultural crops, by triggering defensive mechanisms and accumulating plant secondary metabolites in plants tissues. Nevertheless, genetic material (cultivars with different pigmentation) dictates lettuce metabolites and physiological response to extrinsic eustress, with red leaf cultivars being highly nutrient packed notwithstanding the stress. Product quality can be meliorated equally by applying several cuts, a practice proven to increase bioactive compounds accumulation. In this study, we analyzed the effects of four salinity levels (1, 10, 20 and 30 mM NaCl) on green and red pigmented Salad Bowl lettuce (Lactuca sativa L. var. acephala) in two successive harvests cultivated in a floating raft system. The morphological parameters, mineral composition, leaf gas exchanges, bioactive compounds, and antioxidant activity of both cultivars were assessed. The green cultivar exhibited superior crop productivity but was more prone to salinity effect than the red cultivar. Irrespective of cultivar and cut order, the net photosynthesis decreased with increasing salinity in the nutrient solution. The second cut incurred higher dry biomass, greater accumulation of most minerals and higher photosynthetic activity. In red lettuce, 20 mM NaCl proved adequate eustress to increase phytonutrients and beneficial minerals (K, Ca, and Mg) with minimal loss of yield. Mild salinity and sequential harvest have proven effective pre-harvest tools in positively modulating the quality of lettuce. Eustress interaction with genotype was demonstrated as a promising field for future breeding programs targeting select genotypes for agronomic application of eustress to improve the nutraceutical value of vegetable crops.
Collapse
|
45
|
Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10070938] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
Collapse
|
46
|
Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040577] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alfalfa (Medicago sativa L.) is an important legume forage crop. However, its genetic improvement for salt tolerance is challenging, as alfalfa’s response to salt stress is genetically and physiologically complex. A review was made to update the knowledge of morphological, physiological, biochemical, and genetic responses of alfalfa plants to salt stress, and to discuss the potential of applying modern plant technologies to enhance alfalfa salt-resistant breeding, including genomic selection, RNA-Seq analysis, and cutting-edge Synchrotron beamlines. It is clear that alfalfa salt tolerance can be better characterized, genes conditioning salt tolerance be identified, and new marker-based tools be developed to accelerate alfalfa breeding for salt tolerance.
Collapse
|
47
|
Liu L, Wang B, Liu D, Zou C, Wu P, Wang Z, Wang Y, Li C. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. BMC PLANT BIOLOGY 2020; 20:138. [PMID: 32245415 PMCID: PMC7118825 DOI: 10.1186/s12870-020-02349-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/23/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Beta vulgaris L. is one of the main sugar-producing crop species and is highly adaptable to saline soil. This study explored the alterations to the carbon and nitrogen metabolism mechanisms enabling the roots of sugar beet seedlings to adapt to salinity. RESULTS The ionome, metabolome, and transcriptome of the roots of sugar beet seedlings were evaluated after 1 day (short term) and 7 days (long term) of 300 mM Na+ treatment. Salt stress caused reactive oxygen species (ROS) damage and ion toxicity in the roots. Interestingly, under salt stress, the increase in the Na+/K+ ratio compared to the control ratio on day 7 was lower than that on day 1 in the roots. The transcriptomic results showed that a large number of differentially expressed genes (DEGs) were enriched in various metabolic pathways. A total of 1279 and 903 DEGs were identified on days 1 and 7, respectively, and were mapped mainly to 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the genes were involved in carbon metabolism and amino acid (AA) biosynthesis. Furthermore, metabolomic analysis revealed that sucrose metabolism and the activity of the tricarboxylic acid (TCA) cycle increased in response to salt stress. After 1 day of stress, the content of sucrose decreased, whereas the content of organic acids (OAs) such as L-malic acid and 2-oxoglutaric acid increased. After 7 days of salt stress, nitrogen-containing metabolites such as AAs, betaine, melatonin, and (S)-2-aminobutyric acid increased significantly. In addition, multiomic analysis revealed that the expression of the gene encoding xanthine dehydrogenase (XDH) was upregulated and that the expression of the gene encoding allantoinase (ALN) was significantly downregulated, resulting in a large accumulation of allantoin. Correlation analysis revealed that most genes were significantly related to only allantoin and xanthosine. CONCLUSIONS Our study demonstrated that carbon and nitrogen metabolism was altered in the roots of sugar beet plants under salt stress. Nitrogen metabolism plays a major role in the late stages of salt stress. Allantoin, which is involved in the purine metabolic pathway, may be a key regulator of sugar beet salt tolerance.
Collapse
Affiliation(s)
- Lei Liu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Bin Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Dan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Chunlei Zou
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Peiran Wu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Ziyang Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Yubo Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Caifeng Li
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| |
Collapse
|
48
|
Munns R, Passioura JB, Colmer TD, Byrt CS. Osmotic adjustment and energy limitations to plant growth in saline soil. THE NEW PHYTOLOGIST 2020; 225:1091-1096. [PMID: 31006123 DOI: 10.1111/nph.15862] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/18/2019] [Indexed: 05/18/2023]
Abstract
Plant roots must exclude almost all of the Na+ and Cl- in saline soil while taking up water, otherwise these ions would build up to high concentrations in leaves. Plants evaporate c. 50 times more water than they retain, so 98% exclusion would result in shoot NaCl concentrations equal to that of the external medium. Taking up just 2% of the NaCl allows a plant to osmotically adjust the Na+ and Cl- in vacuoles, while organic solutes provide the balancing osmotic pressure in the cytoplasm. We quantify the costs of this exclusion by roots, the regulation of Na+ and Cl- transport through the plant, and the costs of osmotic adjustment with organic solutes in roots.
Collapse
Affiliation(s)
- Rana Munns
- ARC Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | - Timothy D Colmer
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, and School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
49
|
Sarabia LD, Boughton BA, Rupasinghe T, Callahan DL, Hill CB, Roessner U. Comparative spatial lipidomics analysis reveals cellular lipid remodelling in different developmental zones of barley roots in response to salinity. PLANT, CELL & ENVIRONMENT 2020; 43:327-343. [PMID: 31714612 PMCID: PMC7063987 DOI: 10.1111/pce.13653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 05/18/2023]
Abstract
Salinity-induced metabolic, ionic, and transcript modifications in plants have routinely been studied using whole plant tissues, which do not provide information on spatial tissue responses. The aim of this study was to assess the changes in the lipid profiles in a spatial manner and to quantify the changes in the elemental composition in roots of seedlings of four barley cultivars before and after a short-term salt stress. We used a combination of liquid chromatography-tandem mass spectrometry, inductively coupled plasma mass spectrometry, matrix-assisted laser desorption/ionization mass spectrometry imaging, and reverse transcription - quantitative real time polymerase chain reaction platforms to examine the molecular signatures of lipids, ions, and transcripts in three anatomically different seminal root tissues before and after salt stress. We found significant changes to the levels of major lipid classes including a decrease in the levels of lysoglycerophospholipids, ceramides, and hexosylceramides and an increase in the levels of glycerophospholipids, hydroxylated ceramides, and hexosylceramides. Our results revealed that modifications to lipid and transcript profiles in plant roots in response to a short-term salt stress may involve recycling of major lipid species, such as phosphatidylcholine, via resynthesis from glycerophosphocholine.
Collapse
Affiliation(s)
- Lenin D. Sarabia
- School of BioSciences and Metabolomics AustraliaUniversity of MelbourneParkvilleVIC3010Australia
| | | | | | - Damien L. Callahan
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, (Burwood Campus)Deakin University, Geelong, Australia221 Burwood HighwayBurwoodVIC3125Australia
| | - Camilla B. Hill
- School of Veterinary and Life SciencesMurdoch UniversityMurdochWA6150Australia
| | - Ute Roessner
- School of BioSciences and Metabolomics AustraliaUniversity of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
50
|
Compared salt tolerance of five local wheat ( Triticum aestivum L.) cultivars of Albania based on morphology, pigment synthesis and glutathione content. THE EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Stressful saline concentrations in soils affect photosynthesis by damaging pigments, photosystems, components of electron transport system, and enzymes involved in the process. Plants respond through very complex stress adaptation mechanisms including proteome modulation, alterations in pigment content, cell osmotic adjustment and control of ion and water homeostasis mechanisms, which stabilize cytosolic glutathione redox potential, etc. The level of plant sensitivity depends on salt toxicity levels, growth stage, physiological and genetic factors. With aim the investigation of the salinity tolerant cultivars, and for the elucidation of mechanisms underlying this complex biological process, here we analyze the impact of four NaCl concentrations (0-50-100-200mM) in growth parameters (root, shoot and leaves length), pigment content (chla, chlb, carotenoids), and GSH content, during seedling of five bread wheat (Triticum aestivum L.) cultivars in modified Hoagland solutions. Based on biometric parameters, pigment synthesis and GSH content cultivar Nogal is salt-sensitive (growth and pigments reduced); cultivar Viktoria is medium-tolerant (growth partially impaired, pigments constant), cultivar Toborzo and cultivar Suba are medium-tolerant (growth partially impaired, pigments increased), cultivar Dajti salt-tolerant (growth partially impaired/ leaves developed, pigments increased). Quantity of GSH in response to different levels of salinity is cultivar specific, and time of exposure to salinity is in negative correlation to GSH content for all investigated cultivars.
Collapse
|