1
|
Tartaglia M, Zuzolo D, Prigioniero A, Ranauda MA, Scarano P, Tienda-Parrilla M, Hernandez-Lao T, Jorrín-Novo J, Guarino C. Changes in the proteomics and metabolomics profiles of Cormus Domestica (L.) fruits during the ripening process. BMC PLANT BIOLOGY 2024; 24:945. [PMID: 39390371 PMCID: PMC11465947 DOI: 10.1186/s12870-024-05677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Cormus domestica (L.) is a monophyletic wild fruit tree belonging to the Rosaceae family, with well-documented use in the Mediterranean region. Traditionally, these fruits are harvested and stored for at least 2 weeks before consumption. During this period, the fruit reaches its well-known and peculiar organoleptic and texture characteristics. However, the spread of more profitable fruit tree species, resulted in its progressive erosion. In this work we performed proteomic and metabolomic fruit analyses at three times after harvesting, to characterise postharvest physiological and molecular changes, it related to nutritional and organoleptic properties at consumption. RESULTS Proteomics and metabolomics analysis were performed on fruits harvested at different time points: freshly harvested fruit (T0), fruit two weeks after harvest (T1) and fruit four weeks after harvest (T2). Proteomic analysis (Shotgun Proteomic in LC-MS/MS) resulted in 643 proteins identified. Most of the differentially abundant proteins between the three phases observed were involved in the softening process, carbohydrate metabolism and stress responses. Enzymes, such as xyloglucan endotransglucosylase/hydrolase, pectin acetylesterase, beta-galactosidase and pectinesterase, accumulated during fruit ripening and could explain the pulp breakdown observed in C. domestica. At the same time, enzymes abundant in the early stages (T0), such as sucrose synthase and malic enzyme, explain the accumulation of sugars and the lowering of acidity during the process. The metabolites extraction from C. domestica fruits enabled the identification of 606 statistically significant differentially abundant metabolites. Some compounds such as piptamine and resorcinol, well-known for their antimicrobial and antifungal properties, and several bioactive compounds such as endocannabinoids, usually described in the leaves, accumulate in C. domestica fruit during the post-harvest process. CONCLUSIONS The metabolomic and proteomic profiling of the C. domestica fruit during the postharvest process, evaluated in the study, provides a considerable contribution to filling the existing information gap, enabling the molecular and phytochemical characterisation of this erosion-endangered fruit. Data show biochemical changes that transform the harvested fruit into palatable consumable product.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy.
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy.
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Tamara Hernandez-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Jesús Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| |
Collapse
|
2
|
Huang F, Sun M, Yao Z, Zhou J, Bai Q, Chen X, Huang Y, Shen Y. Protein kinase SnRK2.6 phosphorylates transcription factor bHLH3 to regulate anthocyanin homeostasis during strawberry fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5627-5640. [PMID: 38808519 DOI: 10.1093/jxb/erae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Strawberry (Fragaria × ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA); however, the signaling of ABA in the regulation of fruit coloration is not fully understood. In this study, we identified the transcription factor BASIC HELIX-LOOP-HELIX 3 (bHLH3) as being key to fruit coloration via yeast two-hybrid library screening using the bait SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASE 2 (SnRK2.6), which is a core ABA signaling component that negatively regulates ripening. The interaction was also confirmed by firefly luciferase complementation assays and pull-down assays. RT-qPCR and western blot analysis confirmed that bHLH3 is expressed ubiquitously in strawberry tissues, and it is expressed stably during fruit development. Overexpression and RNAi of both bHLH3 and SnRK2.6 demonstrated that bHLH3 and SnRK2.6 promote and inhibit strawberry fruit coloration, respectively. Using EMSAs, we showed that bHLH3 promotes the expression of UDP-GLUCOSE: FLAVONOL-O-GLUCOSYLTRANSFERASE (UFGT), a key gene for anthocyanin biosynthesis, by directly binding to its promoter. We determined that SnRK2.6 can phosphorylate bHLH3 and that this inhibits its binding to the UFGT promoter, consequently suppressing expression. Altogether, we propose that increased ABA content during strawberry fruit ripening leads to decreased expression of SnRK2.6, which in turn releases the phosphorylation of bHLH3 and thereby enhances UFGT expression, ultimately promoting the coloration of the fruit.
Collapse
Affiliation(s)
- Fuli Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Mimi Sun
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Zhijin Yao
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Jing Zhou
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Qian Bai
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
- Ministry of Education Key Laboratory of Silviculture and Conservation, College of Forestry, Beijing Forestry University, 35 East Qinghua Road, Beijing 100083, P. R. China
| | - Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yun Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| |
Collapse
|
3
|
Cao X, Li X, Su Y, Zhang C, Wei C, Chen K, Grierson D, Zhang B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. PLANT PHYSIOLOGY 2024; 194:2049-2068. [PMID: 37992120 DOI: 10.1093/plphys/kiad627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1), and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1), and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (nonripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinzhao Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
4
|
Wang J, Wang J, Li Y, Lv Y, Zhao J, Li H, Zhang B, Zhang M, Tian J, Li X, Xing L. Epigenomic mechanism regulating the quality and ripeness of apple fruit with differing harvest maturity. PHYSIOLOGIA PLANTARUM 2024; 176:e14278. [PMID: 38644530 DOI: 10.1111/ppl.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 04/23/2024]
Abstract
Harvest maturity significantly affects the quality of apple fruit in post-harvest storage process. Although the regulatory mechanisms underlying fruit ripening have been studied, the associated epigenetic modifications remain unclear. Thus, we compared the DNA methylation changes and the transcriptional responses of mature fruit (MF) and immature fruit (NF). There were significant correlations between DNA methylation and gene expression. Moreover, the sugar contents (sucrose, glucose, and fructose) were higher in MF than in NF, whereas the opposite pattern was detected for the starch content. The expression-level differences were due to DNA methylations and ultimately resulted in diverse fruit textures and ripeness. Furthermore, the higher ethylene, auxin, and abscisic acid levels in MF than in NF, which influenced the fruit texture and ripening, were associated with multiple differentially expressed genes in hormone synthesis, signaling, and response pathways (ACS, ACO, ZEP, NCED, and ABA2) that were regulated by DNA methylations. Multiple transcription factor genes involved in regulating fruit ripening and quality via changes in DNA methylation were identified, including MIKCC-type MADS-box genes and fruit ripening-related genes (NAP, SPL, WRKY, and NAC genes). These findings reflect the diversity in the epigenetic regulation of gene expression and may be relevant for elucidating the epigenetic regulatory mechanism underlying the ripening and quality of apple fruit with differing harvest maturity.
Collapse
Affiliation(s)
- Jing Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiahe Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yu Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yongqian Lv
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Jianwen Tian
- Ningxia Academy of Agriculture and Forestry, Yinchuan, China
| | - Xiaolong Li
- Ningxia Academy of Agriculture and Forestry, Yinchuan, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
5
|
Charoimek N, Phusuwan S, Petcharak C, Huanhong K, Prasad SK, Junmahasathien T, Khemacheewakul J, Sommano SR, Sunanta P. Do Abiotic Stresses Affect the Aroma of Damask Roses? PLANTS (BASEL, SWITZERLAND) 2023; 12:3428. [PMID: 37836168 PMCID: PMC10574685 DOI: 10.3390/plants12193428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Roses are popular ornamental plants all over the world. Rosa damascena Mill., also known as the damask rose, is a well-known scented rose species cultivated to produce essential oil. The essential oils obtained are high in volatile organic compounds (VOCs), which are in demand across the pharmaceutical, food, perfume, and cosmetic industries. Citronellol, nonadecane, heneicosane, caryophyllene, geraniol, nerol, linalool, and phenyl ethyl acetate are the most important components of the rose essential oil. Abiotic factors, including as environmental stress and stress generated by agricultural practises, frequently exert a selective impact on particular floral characteristics, hence influencing the overall quality and quantity of rose products. Additionally, it has been observed that the existence of stress exerts a notable impact on the chemical composition and abundance of aromatic compounds present in roses. Therefore, understanding the factors that affect the biosynthesis of VOCs, especially those representing the aroma and scent of rose, as a response to abiotic stress is important. This review provides comprehensive information on plant taxonomy, an overview of the volatolomics involving aromatic profiles, and describes the influence of abiotic stresses on the biosynthesis of the VOCs in damask rose.
Collapse
Affiliation(s)
- Nutthawut Charoimek
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (T.J.)
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
| | - Sirinun Phusuwan
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (C.P.)
| | - Chaleerak Petcharak
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (C.P.)
| | - Kiattisak Huanhong
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Shashanka K. Prasad
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Taepin Junmahasathien
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (T.J.)
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Piyachat Sunanta
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Prusky D, Romanazzi G. Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:279-300. [PMID: 37201920 DOI: 10.1146/annurev-phyto-021722-035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel;
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy;
| |
Collapse
|
7
|
Huang M, Zhu X, Bai H, Wang C, Gou N, Zhang Y, Chen C, Yin M, Wang L, Wuyun T. Comparative Anatomical and Transcriptomics Reveal the Larger Cell Size as a Major Contributor to Larger Fruit Size in Apricot. Int J Mol Sci 2023; 24:ijms24108748. [PMID: 37240096 DOI: 10.3390/ijms24108748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Fruit size is one of the essential quality traits and influences the economic value of apricots. To explore the underlying mechanisms of the formation of differences in fruit size in apricots, we performed a comparative analysis of anatomical and transcriptomics dynamics during fruit growth and development in two apricot cultivars with contrasting fruit sizes (large-fruit Prunus armeniaca 'Sungold' and small-fruit P. sibirica 'F43'). Our analysis identified that the difference in fruit size was mainly caused by the difference in cell size between the two apricot cultivars. Compared with 'F43', the transcriptional programs exhibited significant differences in 'Sungold', mainly in the cell expansion period. After analysis, key differentially expressed genes (DEGs) most likely to influence cell size were screened out, including genes involved in auxin signal transduction and cell wall loosening mechanisms. Furthermore, weighted gene co-expression network analysis (WGCNA) revealed that PRE6/bHLH was identified as a hub gene, which interacted with 1 TIR1, 3 AUX/IAAs, 4 SAURs, 3 EXPs, and 1 CEL. Hence, a total of 13 key candidate genes were identified as positive regulators of fruit size in apricots. The results provide new insights into the molecular basis of fruit size control and lay a foundation for future breeding and cultivation of larger fruits in apricot.
Collapse
Affiliation(s)
- Mengzhen Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Xuchun Zhu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Haikun Bai
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Chu Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Ningning Gou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Yujing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Mingyu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Tana Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| |
Collapse
|
8
|
Sun Y, Liu Y, Liang J, Luo J, Yang F, Feng P, Wang H, Guo B, Ma F, Zhao T. Identification of PLATZ genes in Malus and expression characteristics of MdPLATZs in response to drought and ABA stresses. FRONTIERS IN PLANT SCIENCE 2023; 13:1109784. [PMID: 36743567 PMCID: PMC9890193 DOI: 10.3389/fpls.2022.1109784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Plant AT-rich sequences and zinc-binding proteins (PLATZ) play crucial roles in response to environmental stresses. Nevertheless, PLATZ gene family has not been systemically studied in Rosaceae species, such as in apple, pear, peach, or strawberry. In this study, a total of 134 PLATZ proteins were identified from nine Rosaceae genomes and were classified into seven phylogenetic groups. Subsequently, the chromosomal localization, duplication, and collinearity relationship for apple PLATZ genes were investigated, and segmental duplication is a major driving-force in the expansion of PLATZ in Malus. Expression profiles analysis showed that PLATZs had distinct expression patterns in different tissues, and multiple genes were significantly changed after drought and ABA treatments. Furthermore, the co-expression network combined with RNA-seq data showed that PLATZ might be involved in drought stress by regulating ABA signaling pathway. In summary, this study is the first in-depth and systematic identification of PLATZ gene family in Rosaceae species, especially for apple, and provided specific PLATZ gene resource for further functional research in response to abiotic stress.
Collapse
Affiliation(s)
- Yaqiang Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, Xinjiang, China
| | - Yunxiao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiakai Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiawei Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Peien Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hanyu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Bocheng Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Liang W, Wang M, Du B, Ling L, Bi Y, Zhang J, Sun Y, Zhou S, Zhang L, Ma X, Ma J, Wu L, Guo C. Transcriptome analysis of strawberry ( Fragaria × ananasa) responsive to Colletotrichum gloeosporioides inoculation and mining of resistance genes. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Wenwei Liang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
- Soybean Laboratory, Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Mingjie Wang
- Grape Laboratory, Gardening Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Binghao Du
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Lei Ling
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Yingdong Bi
- Soybean Laboratory, Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Jinghua Zhang
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Yimin Sun
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Shuang Zhou
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Lili Zhang
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Xiao Ma
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Jun Ma
- Resources Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Liren Wu
- Resources Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| |
Collapse
|
10
|
Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int J Mol Sci 2022; 23:12482. [PMID: 36293335 PMCID: PMC9604029 DOI: 10.3390/ijms232012482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit softening that occurs during fruit ripening and postharvest storage determines the fruit quality, shelf life and commercial value and makes fruits more attractive for seed dispersal. In addition, over-softening results in fruit eventual decay, render fruit susceptible to invasion by opportunistic pathogens. Many studies have been conducted to reveal how fruit softens and how to control softening. However, softening is a complex and delicate life process, including physiological, biochemical and metabolic changes, which are closely related to each other and are affected by environmental conditions such as temperature, humidity and light. In this review, the current knowledge regarding fruit softening mechanisms is summarized from cell wall metabolism (cell wall structure changes and cell-wall-degrading enzymes), plant hormones (ETH, ABA, IAA and BR et al.), transcription factors (MADS-Box, AP2/ERF, NAC, MYB and BZR) and epigenetics (DNA methylation, histone demethylation and histone acetylation) and a diagram of the regulatory relationship between these factors is provided. It will provide reference for the cultivation of anti-softening fruits.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tomislav Jemrić
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Wei C, Li M, Cao X, Jin Z, Zhang C, Xu M, Chen K, Zhang B. Linalool synthesis related PpTPS1 and PpTPS3 are activated by transcription factor PpERF61 whose expression is associated with DNA methylation during peach fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111200. [PMID: 35193748 DOI: 10.1016/j.plantsci.2022.111200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 05/24/2023]
Abstract
The monoterpene linalool is a major contributor to flavor of multiple fruit species. Although great progress has been made in identifying genes related to linalool formation, transcriptional regulation for the pathway remains largely unknown. As a super transcription factor family, roles of AP2/ERF in regulating linalool production have not been elucidated. Peach linalool is catalyzed by terpene synthases PpTPS1 and PpTPS3. Here, we observed that expression of PpERF61 correlated with these two PpTPSs during fruit ripening by transcriptome co-expression analysis. Dual-luciferase assay and EMSA results indicated that PpERF61 activated the PpTPS1 and PpTPS3 transcription by binding to the DRE/CRT motif in their promoters. Transient overexpressing PpERF61 in peach fruit significantly increased PpTPS1 and PpTPS3 expression and linalool content. Further study revealed significant correlation between PpERF61 transcripts and linalool contents across 30 peach cultivars. Besides transcriptional regulation, accumulated linalool was associated with DNA demethylation of PpERF61 during peach fruit ripening. In addition, interactions between PpERF61 and PpbHLH1 were evaluated, indicating these two transcription factors were associated with linalool production during peach fruit ripening. Overall, our results revealed a new insight into the regulation of linalool synthesis in fruit.
Collapse
Affiliation(s)
- Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Mengtao Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Zhengnan Jin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Min Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Canton M, Farinati S, Forestan C, Joseph J, Bonghi C, Varotto S. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in peach reproductive tissues. PLANT METHODS 2022; 18:43. [PMID: 35361223 PMCID: PMC8973749 DOI: 10.1186/s13007-022-00876-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Perennial fruit trees display a growth behaviour characterized by annual cycling between growth and dormancy, with complex physiological features. Rosaceae fruit trees represent excellent models for studying not only the fruit growth/patterning but also the progression of the reproductive cycle depending upon the impact of climate conditions. Additionally, current developments in high-throughput technologies have impacted Rosaceae tree research while investigating genome structure and function as well as (epi)genetic mechanisms involved in important developmental and environmental response processes during fruit tree growth. Among epigenetic mechanisms, chromatin remodelling mediated by histone modifications and other chromatin-related processes play a crucial role in gene modulation, controlling gene expression. Chromatin immunoprecipitation is an effective technique to investigate chromatin dynamics in plants. This technique is generally applied for studies on chromatin states and enrichment of post-transcriptional modifications (PTMs) in histone proteins. RESULTS Peach is considered a model organism among climacteric fruits in the Rosaceae family for studies on bud formation, dormancy, and organ differentiation. In our work, we have primarily established specific protocols for chromatin extraction and immunoprecipitation in reproductive tissues of peach (Prunus persica). Subsequently, we focused our investigations on the role of two chromatin marks, namely the trimethylation of histone H3 at lysine in position 4 (H3K4me3) and trimethylation of histone H3 at lysine 27 (H3K27me3) in modulating specific gene expression. Bud dormancy and fruit growth were investigated in a nectarine genotype called Fantasia as our model system. CONCLUSIONS We present general strategies to optimize ChIP protocols for buds and mesocarp tissues of peach and analyze the correlation between gene expression and chromatin mark enrichment/depletion. The procedures proposed may be useful to evaluate any involvement of histone modifications in the regulation of gene expression during bud dormancy progression and core ripening in fruits.
Collapse
Affiliation(s)
- Monica Canton
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Justin Joseph
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| |
Collapse
|
13
|
Li X, Zhang Y, Zhao S, Li B, Cai L, Pang X. Omics analyses indicate the routes of lignin related metabolites regulated by trypsin during storage of pitaya (Hylocereus undatus). Genomics 2021; 113:3681-3695. [PMID: 34509619 DOI: 10.1016/j.ygeno.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The storage quality of Hylocereus undatus was significantly improved by trypsin, a novel preservative. The transcriptomic results revealed that antioxidant signal pathways were induced, while lignin catabolic process was impeded by trypsin. In addition, the results of protein-protein interaction (PPI) network networks suggested that flavone 3'-O-methyltransferase 1 (OMT1), ferulic acid 5-hydroxylase 1 (CYP84A1), cellulose synthase isomer (CEV1), and 4-coumarate-CoA ligase 3 (4CL3) act as hubs of peroxidases, lignin related proteins, and proteins involved in the phenylpropanoid metabolism (PLPs) induced by trypsin. Trypsin also regulated the biosynthesis of lignin, chlorogenic acid, and flavonoids. Caffeic acid might be the hub in the metabolic network of the early pathways of phenylpropanoid biosynthesis. It has been hypothesized that trypsin might quickly induce lignin biosynthesis and then up-regulated bioactive metabolites to enhance storage quality of H. undatus.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Key Laboratory of Microbial Resources Exploitation and Utilization, Luoyang 471023, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471000, China
| | - Yinyin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shoujing Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Bairu Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Luning Cai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xinyue Pang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
14
|
Mu Q, Li X, Luo J, Pan Q, Li Y, Gu T. Characterization of expansin genes and their transcriptional regulation by histone modifications in strawberry. PLANTA 2021; 254:21. [PMID: 34216276 DOI: 10.1007/s00425-021-03665-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/16/2021] [Indexed: 05/22/2023]
Abstract
The possible candidate expansin genes, which may be important for strawberry fruit softening, have been identified in the diploid woodland strawberry Fragaria vesca and the octoploid cultivated strawberry Fragaria × ananassa and their transcriptional regulation by histone modifications has been studied. Softening process greatly affects fruit texture and shelf life. Expansins (EXPs) are a group of structural proteins participating in cell wall loosening, which break the hydrogen bonding between cellulose microfibrils and hemicelluloses. However, our knowledge on how EXP genes are regulated in fruit ripening, especially in non-climacteric fleshy fruits, is limited. Here, we have identified the EXP genes in both the octoploid cultivated strawberry (Fragaria × ananassa) and one of its diploid progenitor species, woodland strawberry (Fragaria vesca). We found that EXP proteins in F. × ananassa were structurally more divergent than the ones in F. vesca. Transcriptome data suggested that FaEXP88, FaEXP114, FveEXP11 and FveEXP33 were the four candidate EXP genes more likely involved in fruit softening, whose transcript levels dramatically increased when firmness decreased during fruit maturation. Phylogenetic analyses showed that those candidate genes were closely clustered, indicating the presence of homoeolog expression dominance in the EXP gene family in strawberry. Moreover, we have performed chromatin immunoprecipitation (ChIP) experiments to investigate the distribution of histone modifications along the promoters and genic regions of the EXP genes in F. vesca. ChIP data revealed that the transcript levels of EXP genes were highly correlated with the enrichment of H3K9/K14 acetylation and H3K27 tri-methylation. Collectively, this study identifies the key EXP genes involved in strawberry fruit softening and reveals a regulatory role of histone modifications in their transcriptional regulation, which would facilitate functional studies of the EXP genes in the ripening of non-climacteric fruits.
Collapse
Affiliation(s)
- Qin Mu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xianyang Li
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianhua Luo
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qinwei Pan
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA.
| | - Tingting Gu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
15
|
Vall-Llaura N, Torres R, Lindo-García V, Muñoz P, Munné-Bosch S, Larrigaudière C, Teixidó N, Giné-Bordonaba J. PbSRT1 and PbSRT2 regulate pear growth and ripening yet displaying a species-specific regulation in comparison to other Rosaceae spp. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110925. [PMID: 34034873 DOI: 10.1016/j.plantsci.2021.110925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic regulation is crucial to ensure a coordinated control of the different events that occur during fruit development and ripening. Sirtuins are NAD+-dependent histone deacetylases involved in the regulation of gene expression of many biological processes. However, their implications in the Rosaceae family remains unexplored. Accordingly, in this work, we demonstrated the phylogenetic divergence of both sirtuins among Rosaceae species. We then characterized the expression pattern of both SRT1 and SRT2 in selected pome and stone fruit species. Both SRT1 and SRT2 significantly changed during the fruit development and ripening of apple, nectarine and pear fruit, displaying a different expression profile. Such differences could explain in part their different ripening behaviour. To further unravel the role of sirtuins on the fruit development and ripening processes, a deeper analysis was performed using pear as a fruit model. In pear, PbSRT1 gene expression levels were negatively correlated with specific hormones (i.e. abscisic acid, indole-3-acetic acid, gibberellin A1 and zeatin) during the first phases of fruit development. PbSRT2 seemed to directly mediate pear ripening in an ethylene-independent manner. This hypothesis was further reinforced by treating the fruit with the ethylene inhibitor 1-methylcyclopropene (1-MCP). Instead, enhanced PbSRT2 along pear growth/ripening positively correlated with the accumulation of major sugars (R2 > 0.94), reinforcing the idea that sugar metabolism may be a target of epigenetic modifications during fruit ripening. Overall, the results from this study point out, for the first time, the importance that sirtuins have in the regulation of fruit growth and ripening of pear fruit by likely regulating hormonal and sugar metabolism.
Collapse
Affiliation(s)
- Núria Vall-Llaura
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Violeta Lindo-García
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, 08028, Spain.
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, 08028, Spain.
| | - Christian Larrigaudière
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Jordi Giné-Bordonaba
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| |
Collapse
|
16
|
Cao X, Wei C, Duan W, Gao Y, Kuang J, Liu M, Chen K, Klee H, Zhang B. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:785-800. [PMID: 33595854 DOI: 10.1111/tpj.15200] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 05/27/2023]
Abstract
Flavor-associated volatile chemicals make major contributions to consumers' perception of fruits. Although great progress has been made in establishing the metabolic pathways associated with volatile synthesis, much less is known about the regulation of those pathways. Knowledge of how those pathways are regulated would greatly facilitate efforts to improve flavor. Volatile esters are major contributors to fruity flavor notes in many species, providing a good model to investigate the regulation of volatile synthesis pathways. Here we initiated a study of peach (Prunus persica L. Batsch) fruits, and identified that the alcohol acyltransferase PpAAT1 contributes to ester formation. We next identified the transcription factor (TF) PpNAC1 as an activator of PpAAT1 expression and ester production. These conclusions were based on in vivo and in vitro experiments and validated by correlation in a panel of 30 different peach cultivars. Based on homology between PpNAC1 and the tomato (Solanum lycopersicum) TF NONRIPENING (NOR), we identified a parallel regulatory pathway in tomato. Overexpression of PpNAC1 enhances ripening in a nor mutant and restores synthesis of volatile esters in tomato fruits. Furthermore, in the NOR-deficient mutant tomatoes generated by CRISPR/Cas9, lower transcript levels of SlAAT1 were detected. The apple (Malus domestica) homolog MdNAC5 also stimulates MdAAT1 expression via binding to this gene's promoter. In addition to transcriptional control, epigenetic analysis showed that increased expression of NACs and AATs is associated with removal of the repressive mark H3K27me3 during fruit ripening. Our results support a conserved molecular mechanism in which NAC TFs activate ripening-related AAT expression, which in turn catalyzes volatile ester formation in multiple fruit species.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wenyi Duan
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Ying Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jianfei Kuang
- Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Harry Klee
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Horticultural Sciences, Plant Innovation Center, Genetic Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
17
|
Regulation of Fruit Growth in a Peach Slow Ripening Phenotype. Genes (Basel) 2021; 12:genes12040482. [PMID: 33810423 PMCID: PMC8066772 DOI: 10.3390/genes12040482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/25/2023] Open
Abstract
Consumers' choices are mainly based on fruit external characteristics such as the final size, weight, and shape. The majority of edible fruit are by tree fruit species, among which peach is the genomic and genetic reference for Prunus. In this research, we used a peach with a slow ripening (SR) phenotype, identified in the Fantasia (FAN) nectarine, associated with misregulation of genes involved in mesocarp identity and showing a reduction of final fruit size. By investigating the ploidy level, we observed a progressive increase in endoreduplication in mesocarp, which occurred in the late phases of FAN fruit development, but not in SR fruit. During fruit growth, we also detected that genes involved in endoreduplication were differentially modulated in FAN compared to SR. The differential transcriptional outputs were consistent with different chromatin states at loci of endoreduplication genes. The impaired expression of genes controlling cell cycle and endocycle as well as those claimed to play a role in fruit tissue identity result in the small final size of SR fruit.
Collapse
|
18
|
da Silva Linge C, Cai L, Fu W, Clark J, Worthington M, Rawandoozi Z, Byrne DH, Gasic K. Multi-Locus Genome-Wide Association Studies Reveal Fruit Quality Hotspots in Peach Genome. FRONTIERS IN PLANT SCIENCE 2021; 12:644799. [PMID: 33732279 PMCID: PMC7959719 DOI: 10.3389/fpls.2021.644799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 05/23/2023]
Abstract
Peach is one of the most important fruit crops in the world, with the global annual production about 24.6 million tons. The United States is the fourth-largest producer after China, Spain, and Italy. Peach consumption has decreased over the last decade, most likely due to inconsistent quality of the fruit on the market. Thus, marker-assisted selection for fruit quality traits is highly desired in fresh market peach breeding programs and one of the major goals of the RosBREED project. The ability to use DNA information to select for desirable traits would enable peach breeders to efficiently plan crosses and select seedlings with desired quality traits early in the selection process before fruiting. Therefore, we assembled a multi-locus genome wide association study (GWAS) of 620 individuals from three public fresh market peach breeding programs (Arkansas, Texas, and South Carolina). The material was genotyped using 9K SNP array and the traits were phenotyped for three phenological (bloom date, ripening date, and days after bloom) and 11 fruit quality-related traits (blush, fruit diameter, fruit weight, adherence, fruit firmness, redness around pit, fruit texture, pit weight, soluble solid concentration, titratable acidity, and pH) over three seasons (2010, 2011, and 2012). Multi-locus association analyses, carried out using mrMLM 4.0 and FarmCPU R packages, revealed a total of 967 and 180 quantitative trait nucleotides (QTNs), respectively. Among the 88 consistently reliable QTNs detected using multiple multi-locus GWAS methods and/or at least two seasons, 44 were detected for the first time. Fruit quality hotspots were identified on chromosomes 1, 3, 4, 5, 6, and 8. Out of 566 candidate genes detected in the genomic regions harboring the QTN clusters, 435 were functionally annotated. Gene enrichment analyses revealed 68 different gene ontology (GO) terms associated with fruit quality traits. Data reported here advance our understanding of genetic mechanisms underlying important fruit quality traits and further support the development of DNA tools for breeding.
Collapse
Affiliation(s)
- Cassia da Silva Linge
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Lichun Cai
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Wanfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - John Clark
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Margaret Worthington
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
19
|
Dar MS, Dholakia BB, Kulkarni AP, Oak PS, Shanmugam D, Gupta VS, Giri AP. Influence of domestication on specialized metabolic pathways in fruit crops. PLANTA 2021; 253:61. [PMID: 33538903 DOI: 10.1007/s00425-020-03554-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/23/2020] [Indexed: 05/08/2023]
Abstract
During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.
Collapse
Affiliation(s)
- M Saleem Dar
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Bhushan B Dholakia
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
| | - Abhijeet P Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Pranjali S Oak
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Dhanasekaran Shanmugam
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
20
|
Kapazoglou A, Tani E, Avramidou EV, Abraham EM, Gerakari M, Megariti S, Doupis G, Doulis AG. Epigenetic Changes and Transcriptional Reprogramming Upon Woody Plant Grafting for Crop Sustainability in a Changing Environment. FRONTIERS IN PLANT SCIENCE 2021; 11:613004. [PMID: 33510757 PMCID: PMC7835530 DOI: 10.3389/fpls.2020.613004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/10/2020] [Indexed: 05/07/2023]
Abstract
Plant grafting is an ancient agricultural practice widely employed in crops such as woody fruit trees, grapes, and vegetables, in order to improve plant performance. Successful grafting requires the interaction of compatible scion and rootstock genotypes. This involves an intricate network of molecular mechanisms operating at the graft junction and associated with the development and the physiology of the scion, ultimately leading to improved agricultural characteristics such as fruit quality and increased tolerance/resistance to abiotic and biotic factors. Bidirectional transfer of molecular signals such as hormones, nutrients, proteins, and nucleic acids from the rootstock to the scion and vice versa have been well documented. In recent years, studies on rootstock-scion interactions have proposed the existence of an epigenetic component in grafting reactions. Epigenetic changes such as DNA methylation, histone modification, and the action of small RNA molecules are known to modulate chromatin architecture, leading to gene expression changes and impacting cellular function. Mobile small RNAs (siRNAs) migrating across the graft union from the rootstock to the scion and vice versa mediate modifications in the DNA methylation pattern of the recipient partner, leading to altered chromatin structure and transcriptional reprogramming. Moreover, graft-induced DNA methylation changes and gene expression shifts in the scion have been associated with variations in graft performance. If these changes are heritable they can lead to stably altered phenotypes and affect important agricultural traits, making grafting an alternative to breeding for the production of superior plants with improved traits. However, most reviews on the molecular mechanisms underlying this process comprise studies related to vegetable grafting. In this review we will provide a comprehensive presentation of the current knowledge on the epigenetic changes and transcriptional reprogramming associated with the rootstock-scion interaction focusing on woody plant species, including the recent findings arising from the employment of advanced-omics technologies as well as transgrafting methodologies and their potential exploitation for generating superior quality grafts in woody species. Furthermore, will discuss graft-induced heritable epigenetic changes leading to novel plant phenotypes and their implication to woody crop improvement for yield, quality, and stress resilience, within the context of climate change.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Demeter (HAO-Demeter), Athens, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Athens, Hellenic Agricultural Organization-Demeter (HAO-Demeter), Athens, Greece
| | - Eleni M. Abraham
- Laboratory of Range Science, Faculty of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Stamatia Megariti
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Georgios Doupis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Sub-Tropical Crops and Viticulture, Hellenic Agricultural Organization-Demeter (HAO-Demeter) (fr. NAGREF), Heraklion, Greece
| | - Andreas G. Doulis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Sub-Tropical Crops and Viticulture, Hellenic Agricultural Organization-Demeter (HAO-Demeter) (fr. NAGREF), Heraklion, Greece
| |
Collapse
|
21
|
García-Gómez BE, Salazar JA, Nicolás-Almansa M, Razi M, Rubio M, Ruiz D, Martínez-Gómez P. Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective. Int J Mol Sci 2020; 22:E333. [PMID: 33396946 PMCID: PMC7794732 DOI: 10.3390/ijms22010333] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
In plants, fruit ripening is a coordinated developmental process that requires the change in expression of hundreds to thousands of genes to modify many biochemical and physiological signal cascades such as carbohydrate and organic acid metabolism, cell wall restructuring, ethylene production, stress response, and organoleptic compound formation. In Prunus species (including peaches, apricots, plums, and cherries), fruit ripening leads to the breakdown of complex carbohydrates into sugars, fruit firmness reductions (softening by cell wall degradation and cuticle properties alteration), color changes (loss of green color by chlorophylls degradation and increase in non-photosynthetic pigments like anthocyanins and carotenoids), acidity decreases, and aroma increases (the production and release of organic volatile compounds). Actually, the level of information of molecular events at the transcriptional, biochemical, hormonal, and metabolite levels underlying ripening in Prunus fruits has increased considerably. However, we still poorly understand the molecular switch that occurs during the transition from unripe to ripe fruits. The objective of this review was to analyze of the molecular bases of fruit quality in Prunus species through an integrated metabolic, genomic, transcriptomic, and epigenetic approach to better understand the molecular switch involved in the ripening process with important consequences from a breeding point of view.
Collapse
Affiliation(s)
- Beatriz E. García-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Juan A. Salazar
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - María Nicolás-Almansa
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Mitra Razi
- Department of Horticulture, Faculty of Agriculture, University of Zajan, Zanjan 45371-38791, Iran;
| | - Manuel Rubio
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - David Ruiz
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| |
Collapse
|
22
|
Zhou H, Huang W, Luo S, Hu H, Zhang Y, Zhang L, Li P. Genome-Wide Identification of the Vacuolar H +-ATPase Gene Family in Five Rosaceae Species and Expression Analysis in Pear ( Pyrus bretschneideri). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121661. [PMID: 33261053 PMCID: PMC7761284 DOI: 10.3390/plants9121661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Vacuolar H+-ATPases (V-ATPase) are multi-subunit complexes that function as ATP hydrolysis-driven proton pumps. They play pivotal roles in physiological processes, such as development, metabolism, stress, and growth. However, there have been very few studies on the characterisation of V-ATPase (VHA) genes in Rosaceae species. Therefore, in the present study, we performed a genome-wide analysis and identified VHA gene family members in five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume). A total of 159 VHA genes were identified, and were classified into 13 subfamilies according to the phylogenetic analysis. The structure of VHA proteins revealed high similarity among different VHA genes within the same subgroup. Gene duplication event analysis revealed that whole-genome duplications represented the major pathway for expansion of the Pyrus bretschneideri VHA genes (PbrVHA genes). The tissue-specific expression analysis of the pear showed that 36 PbrVHA genes were expressed in major tissues. Seven PbrVHA genes were significantly downregulated when the pollen tube growth stopped. Moreover, many PbrVHA genes were differentially expressed during fruit development and storage, suggesting that VHA genes play specific roles in development and senescence. The present study provides fundamental information for further elucidating the potential roles of VHA genes during development and senescence.
Collapse
Affiliation(s)
- Hongsheng Zhou
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Wen Huang
- Nanjing Institute of Vegetable Science, Nanjing 210042, China;
| | - Shufen Luo
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
| | - Huali Hu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
| | - Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
| | - Leigang Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengxia Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
23
|
Hewitt S, Dhingra A. Beyond Ethylene: New Insights Regarding the Role of Alternative Oxidase in the Respiratory Climacteric. FRONTIERS IN PLANT SCIENCE 2020; 11:543958. [PMID: 33193478 PMCID: PMC7652990 DOI: 10.3389/fpls.2020.543958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Climacteric fruits are characterized by a dramatic increase in autocatalytic ethylene production that is accompanied by a spike in respiration at the onset of ripening. The change in the mode of ethylene production from autoinhibitory to autostimulatory is known as the System 1 (S1) to System 2 (S2) transition. Existing physiological models explain the basic and overarching genetic, hormonal, and transcriptional regulatory mechanisms governing the S1 to S2 transition of climacteric fruit. However, the links between ethylene and respiration, the two main factors that characterize the respiratory climacteric, have not been examined in detail at the molecular level. Results of recent studies indicate that the alternative oxidase (AOX) respiratory pathway may play an essential role in mediating cross-talk between ethylene response, carbon metabolism, ATP production, and ROS signaling during climacteric ripening. New genomic, metabolic, and epigenetic information sheds light on the interconnectedness of ripening metabolic pathways, necessitating an expansion of the current, ethylene-centric physiological models. Understanding points at which ripening responses can be manipulated may reveal key, species- and cultivar-specific targets for regulation of ripening, enabling superior strategies for reducing postharvest wastage.
Collapse
Affiliation(s)
- Seanna Hewitt
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Amit Dhingra
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
24
|
Lara MV, Bonghi C, Famiani F, Vizzotto G, Walker RP, Drincovich MF. Stone Fruit as Biofactories of Phytochemicals With Potential Roles in Human Nutrition and Health. FRONTIERS IN PLANT SCIENCE 2020; 11:562252. [PMID: 32983215 PMCID: PMC7492728 DOI: 10.3389/fpls.2020.562252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Phytochemicals or secondary metabolites present in fruit are key components contributing to sensory attributes like aroma, taste, and color. In addition, these compounds improve human nutrition and health. Stone fruits are an important source of an array of secondary metabolites that may reduce the risk of different diseases. The first part of this review is dedicated to the description of the main secondary organic compounds found in plants which include (a) phenolic compounds, (b) terpenoids/isoprenoids, and (c) nitrogen or sulfur containing compounds, and their principal biosynthetic pathways and their regulation in stone fruit. Then, the type and levels of bioactive compounds in different stone fruits of the Rosaceae family such as peach (Prunus persica), plum (P. domestica, P. salicina and P. cerasifera), sweet cherries (P. avium), almond kernels (P. dulcis, syn. P. amygdalus), and apricot (P. armeniaca) are presented. The last part of this review encompasses pre- and postharvest treatments affecting the phytochemical composition in stone fruit. Appropriate management of these factors during pre- and postharvest handling, along with further characterization of phytochemicals and the regulation of their synthesis in different cultivars, could help to increase the levels of these compounds, leading to the future improvement of stone fruit not only to enhance organoleptic characteristics but also to benefit human health.
Collapse
Affiliation(s)
- María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
25
|
Omony J, Nussbaumer T, Gutzat R. DNA methylation analysis in plants: review of computational tools and future perspectives. Brief Bioinform 2020; 21:906-918. [PMID: 31220217 DOI: 10.1093/bib/bbz039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA methylation studies have quickly expanded due to advances in next-generation sequencing techniques along with a wealth of computational tools to analyze the data. Most of our knowledge about DNA methylation profiles, epigenetic heritability and the function of DNA methylation in plants derives from the model species Arabidopsis thaliana. There are increasingly many studies on DNA methylation in plants-uncovering methylation profiles and explaining variations in different plant tissues. Additionally, DNA methylation comparisons of different plant tissue types and dynamics during development processes are only slowly emerging but are crucial for understanding developmental and regulatory decisions. Translating this knowledge from plant model species to commercial crops could allow the establishment of new varieties with increased stress resilience and improved yield. In this review, we provide an overview of the most commonly applied bioinformatics tools for the analysis of DNA methylation data (particularly bisulfite sequencing data). The performances of a selection of the tools are analyzed for computational time and agreement in predicted methylated sites for A. thaliana, which has a smaller genome compared to the hexaploid bread wheat. The performance of the tools was benchmarked on five plant genomes. We give examples of applications of DNA methylation data analysis in crops (with a focus on cereals) and an outlook for future developments for DNA methylation status manipulations and data integration.
Collapse
Affiliation(s)
- Jimmy Omony
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology, Department of Environmental Science, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Augsburg, Germany; CK CARE Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
26
|
Sánchez-Pérez R, Pavan S, Mazzeo R, Moldovan C, Aiese Cigliano R, Del Cueto J, Ricciardi F, Lotti C, Ricciardi L, Dicenta F, López-Marqués RL, Møller BL. Mutation of a bHLH transcription factor allowed almond domestication. Science 2020; 364:1095-1098. [PMID: 31197015 DOI: 10.1126/science.aav8197] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/23/2019] [Indexed: 11/02/2022]
Abstract
Wild almond species accumulate the bitter and toxic cyanogenic diglucoside amygdalin. Almond domestication was enabled by the selection of genotypes harboring sweet kernels. We report the completion of the almond reference genome. Map-based cloning using an F1 population segregating for kernel taste led to the identification of a 46-kilobase gene cluster encoding five basic helix-loop-helix transcription factors, bHLH1 to bHLH5. Functional characterization demonstrated that bHLH2 controls transcription of the P450 monooxygenase-encoding genes PdCYP79D16 and PdCYP71AN24, which are involved in the amygdalin biosynthetic pathway. A nonsynonymous point mutation (Leu to Phe) in the dimerization domain of bHLH2 prevents transcription of the two cytochrome P450 genes, resulting in the sweet kernel trait.
Collapse
Affiliation(s)
- R Sánchez-Pérez
- Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Spain. .,Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - S Pavan
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro," 70126 Bari, Italy. .,Institute of Biomedical Technologies, National Research Council (CNR), 70126 Bari, Italy
| | - R Mazzeo
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,Department of Soil, Plant and Food Science, University of Bari "Aldo Moro," 70126 Bari, Italy
| | - C Moldovan
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - R Aiese Cigliano
- Sequentia Biotech SL, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - J Del Cueto
- Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Spain.,Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,Arboriculture Research Group, Agroscope, Conthey, Switzerland
| | - F Ricciardi
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71100 Foggia, Italy
| | - C Lotti
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71100 Foggia, Italy
| | - L Ricciardi
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro," 70126 Bari, Italy
| | - F Dicenta
- Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Spain
| | - R L López-Marqués
- Transport Biology Section, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - B Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.,VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
27
|
Pei MS, Cao SH, Wu L, Wang GM, Xie ZH, Gu C, Zhang SL. Comparative transcriptome analyses of fruit development among pears, peaches, and strawberries provide new insights into single sigmoid patterns. BMC PLANT BIOLOGY 2020; 20:108. [PMID: 32143560 PMCID: PMC7060524 DOI: 10.1186/s12870-020-2317-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Pear fruit exhibit a single sigmoid pattern during development, while peach and strawberry fruits exhibit a double sigmoid pattern. However, little is known about the differences between these two patterns. RESULTS In this study, fruit weights were measured and paraffin sections were made from fruitlet to maturated pear, peach, and strawberry samples. Results revealed that both single and double sigmoid patterns resulted from cell expansion, but not cell division. Comparative transcriptome analyses were conducted among pear, peach, and strawberry fruits at five fruit enlargement stages. Comparing the genes involved in these intervals among peaches and strawberries, 836 genes were found to be associated with all three fruit enlargement stages in pears (Model I). Of these genes, 25 were located within the quantitative trait locus (QTL) regions related to fruit weight and 90 were involved in cell development. Moreover, 649 genes were associated with the middle enlargement stage, but not early or late enlargement in pears (Model II). Additionally, 22 genes were located within the QTL regions related to fruit weight and 63 were involved in cell development. Lastly, dual-luciferase assays revealed that the screened bHLH transcription factors induced the expression of cell expansion-related genes, suggesting that the two models explain the single sigmoid pattern. CONCLUSIONS Single sigmoid patterns are coordinately mediated by Models I and II, thus, a potential gene regulation network for the single sigmoid pattern was proposed. These results enhance our understanding of the molecular regulation of fruit size in Rosaceae.
Collapse
Affiliation(s)
- Mao-Song Pei
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Su-Hao Cao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Guo-Ming Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhi-Hua Xie
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shao-Ling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
28
|
Gismondi M, Daurelio LD, Maiorano C, Monti LL, Lara MV, Drincovich MF, Bustamante CA. Generation of fruit postharvest gene datasets and a novel motif analysis tool for functional studies: uncovering links between peach fruit heat treatment and cold storage responses. PLANTA 2020; 251:53. [PMID: 31950388 DOI: 10.1007/s00425-020-03340-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
A survey of developed fruit gene-specific datasets and the implementation of a novel cis-element analysis tool indicate specific transcription factors as novel regulatory actors under HT response and CI protection. Heat treatment (HT) prior to cold storage (CS) has been successfully applied to ameliorate fruit chilling injury (CI) disorders. Molecular studies have identified several HT-driven benefits and putative CI-protective molecules and mechanisms. However, bioinformatic tools and analyses able to integrate fruit-specific information are necessary to begin functional studies and breeding projects. In this work, a HT-responsive gene dataset (HTds) and four fruit expression datasets (FEds), containing gene-specific information from several species and postharvest conditions, were developed and characterized. FEds provided information about HT-responsive genes, not only validating their sensitivity to HT in different systems but also revealing most of them as CS-responsive. A special focus was given to peach heat treatment-sensitive transcriptional regulation by the development of a novel Perl motif analysis software (cisAnalyzer) and a curated plant cis-elements dataset (PASPds). cisAnalyzer is able to assess sequence motifs presence, localization, enrichment and discovery on biological sequences. Its implementation for the enrichment analysis of PASPds motifs on the promoters of HTds genes rendered particular cis-elements that indicate certain transcription factor (TF) families as responsible of fruit HT-sensitive transcription regulation. Phylogenetic and postharvest expression data of these TFs showed a functional diversity of TF families, with members able to fulfil roles under HT, CS and/or both treatments. All integrated datasets and cisAnalyzer tool were deposited in FruitGeneDB (https://www.cefobi-conicet.gov.ar/FruitGeneDB/search1.php), a new available database with a great potential for fruit gene functional studies, including the markers of HT and CS responses whose study will contribute to unravel HT-driven CI-protection and select tolerant cultivars.
Collapse
Affiliation(s)
- Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Lucas D Daurelio
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2808 (S3080HOF), Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Claudia Maiorano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Laura L Monti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Maria V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Maria F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Claudia A Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| |
Collapse
|
29
|
Liang W, Ling L, Wang M, Du B, Duan Y, Song P, Zhang L, Li P, Ma J, Wu L, Guo C. Genome-wide identification and expression analysis of the AAAP family in Fragaria vesca. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1806107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Wenwei Liang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
- Berry Resources Laboratory, Rural Revitalization Science and Technology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Lei Ling
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Mingjie Wang
- Berry Resources Laboratory, Rural Revitalization Science and Technology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Binghao Du
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Yadong Duan
- Berry Resources Laboratory, Rural Revitalization Science and Technology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Penghui Song
- Berry Resources Laboratory, Rural Revitalization Science and Technology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Lili Zhang
- Berry Resources Laboratory, Rural Revitalization Science and Technology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Pengju Li
- Berry Resources Laboratory, Rural Revitalization Science and Technology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Jun Ma
- Sunflower Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Liren Wu
- Sunflower Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| |
Collapse
|
30
|
Ludeña-Huaman MA, Ramos-Inquiltupa DA. Determination of the content of ursolic and oleanolic acid in the cuticular wax of fruits of different species of Rosaceae. REVISTA COLOMBIANA DE QUÍMICA 2019. [DOI: 10.15446/rev.colomb.quim.v48n2.77046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ursolic acid (UA) and oleanolic acid (OA) are two widely distributed triterpenes in fruits, especially those belonging to Rosaceae family. These triterpene isomers are of great pharmacological interest due to their multiple bioactive properties. For this reason, the objective of this study was to determine the content of UA and OA extracted from the cuticular wax of five highly edible fruits (quince, loquat, pear, peach and apple) all belonging to the Rosaceae family. The acids were analyzed by high performance liquid chromatography. Both UA and OA are present in all these fruits, however, UA is in greater quantities.
Collapse
|
31
|
Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott AG, Arús P. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. HORTICULTURE RESEARCH 2019; 6:58. [PMID: 30962943 PMCID: PMC6450939 DOI: 10.1038/s41438-019-0140-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/04/2023]
Abstract
Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and ongoing work on the sequence structure and diversity of the genomes; (3) the analyses of Prunus genome evolution driven by natural and man-made selection; and (4) provide insight into haploblocking genomes as a means to define genome-scale patterns of evolution that can be leveraged for trait selection in pedigree-based Prunus tree breeding programs worldwide. Functionally, we summarize recent and ongoing work that leverages whole-genome sequences to identify and characterize genes controlling 22 agronomically important Prunus traits. These include phenology, fruit quality, allergens, disease resistance, tree architecture, and self-incompatibility. Translationally, we explore the application of sequence-based marker-assisted breeding technologies and other sequence-guided biotechnological approaches for Prunus crop improvement. Finally, we present the current status of publically available Prunus genomics and genetics data housed mainly in the Genome Database for Rosaceae (GDR) and its updated functionalities for future bioinformatics-based Prunus genetics and genomics inquiry.
Collapse
Affiliation(s)
- Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Véronique Decroocq
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Elisabeth Dirlewanger
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Iban Eduardo
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Zhong Shan Gao
- Allergy Research Center, Zhejiang University, 310058 Hangzhou, China
| | | | - Amy Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1325 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, 11610 La Pintana, Santiago Chile
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) – Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Rome, Italy
| | - Albert G. Abbott
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY 40546-0073 USA
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
32
|
Callahan AM, Dardick CD, Scorza R. Multilocation comparison of fruit composition for 'HoneySweet', an RNAi based plum pox virus resistant plum. PLoS One 2019; 14:e0213993. [PMID: 30901368 PMCID: PMC6430400 DOI: 10.1371/journal.pone.0213993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
'HoneySweet', a transgenic plum (Prunus domestica) resistant to plum pox virus through RNAi, was deregulated in the U.S. in 2011. The compositional study of 'HoneySweet' fruit was expanded to include locations outside of the US as well as utilizing a wide variety of comparators and different collection years to see the variability possible. The results revealed that plums have a wide variation in composition and that variation among locations was greater than variation among cultivars. This was also the case for different years at one location. The results supported the supposition that the transgene and insertion event had no significant effect on the composition of 'HoneySweet' fruit even under virus pressure, and that it fell in the normal range of composition of commercially grown plums. It also suggested that the effect of environment is as great as that of genetics on the fruit composition of plums.
Collapse
Affiliation(s)
- Ann M. Callahan
- United States Department of Agriculture, Agriculture Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
| | - Chris D. Dardick
- United States Department of Agriculture, Agriculture Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
| | - Ralph Scorza
- United States Department of Agriculture, Agriculture Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
| |
Collapse
|
33
|
Forgione I, Wołoszyńska M, Pacenza M, Chiappetta A, Greco M, Araniti F, Abenavoli MR, Van Lijsebettens M, Bitonti MB, Bruno L. Hypomethylated drm1 drm2 cmt3 mutant phenotype of Arabidopsis thaliana is related to auxin pathway impairment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:383-396. [PMID: 30824017 DOI: 10.1016/j.plantsci.2018.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/27/2018] [Accepted: 12/29/2018] [Indexed: 05/28/2023]
Abstract
DNA methylation carried out by different methyltransferase classes is a relevant epigenetic modification of DNA which plays a relevant role in the development of eukaryotic organisms. Accordingly, in Arabidopsis thaliana loss of DNA methylation due to combined mutations in genes encoding for DNA methyltransferases causes several developmental abnormalities. The present study describes novel growth disorders in the drm1 drm2 cmt3 triple mutant of Arabidopsis thaliana, defective both in maintenance and de novo DNA methylation, and highlights the correlation between DNA methylation and the auxin hormone pathway. By using an auxin responsive reporter gene, we discovered that auxin accumulation and distribution were affected in the mutant compared to the wild type, from embryo to adult plant stage. In addition, we demonstrated that the defective methylation status also affected the expression of genes that regulate auxin hormone pathways from synthesis to transport and signalling and a direct relationship between differentially expressed auxin-related genes and altered auxin accumulation and distribution in embryo, leaf and root was observed. Finally, we provided evidence of the direct and organ-specific modulation of auxin-related genes through the DNA methylation process.
Collapse
Affiliation(s)
- Ivano Forgione
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Magdalena Wołoszyńska
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marianna Pacenza
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy
| | - Maria Greco
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy; The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Fabrizio Araniti
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Maria Rosa Abenavoli
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Maria Beatrice Bitonti
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy
| | - Leonardo Bruno
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
34
|
Liu ZY, Xing JF, Chen W, Luan MW, Xie R, Huang J, Xie SQ, Xiao CL. MDR: an integrative DNA N6-methyladenine and N4-methylcytosine modification database for Rosaceae. HORTICULTURE RESEARCH 2019; 6:78. [PMID: 31240103 PMCID: PMC6572862 DOI: 10.1038/s41438-019-0160-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 05/07/2023]
Abstract
Eukaryotic DNA methylation has been receiving increasing attention for its crucial epigenetic regulatory function. The recently developed single-molecule real-time (SMRT) sequencing technology provides an efficient way to detect DNA N6-methyladenine (6mA) and N4-methylcytosine (4mC) modifications at a single-nucleotide resolution. The family Rosaceae contains horticultural plants with a wide range of economic importance. However, little is currently known regarding the genome-wide distribution patterns and functions of 6mA and 4mC modifications in the Rosaceae. In this study, we present an integrated DNA 6mA and 4mC modification database for the Rosaceae (MDR, http://mdr.xieslab.org). MDR, the first repository for displaying and storing DNA 6mA and 4mC methylomes from SMRT sequencing data sets for Rosaceae, includes meta and statistical information, methylation densities, Gene Ontology enrichment analyses, and genome search and browse for methylated sites in NCBI. MDR provides important information regarding DNA 6mA and 4mC methylation and may help users better understand epigenetic modifications in the family Rosaceae.
Collapse
Affiliation(s)
- Zhao-Yu Liu
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Jian-Feng Xing
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Wei Chen
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Mei-Wei Luan
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010031 Huhhot, China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Shang-Qian Xie
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| |
Collapse
|
35
|
Pétriacq P, López A, Luna E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? PLANTS (BASEL, SWITZERLAND) 2018; 7:E77. [PMID: 30248893 PMCID: PMC6314081 DOI: 10.3390/plants7040077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022]
Abstract
Humanity faces the challenge of having to increase food production to feed an exponentially growing world population, while crop diseases reduce yields to levels that we can no longer afford. Besides, a significant amount of waste is produced after fruit harvest. Fruit decay due to diseases at a post-harvest level can claim up to 50% of the total production worldwide. Currently, the most effective means of disease control is the use of pesticides. However, their use post-harvest is extremely limited due to toxicity. The last few decades have witnessed the development of safer methods of disease control post-harvest. They have all been included in programs with the aim of achieving integrated pest (and disease) management (IPM) to reduce pesticide use to a minimum. Unfortunately, these approaches have failed to provide robust solutions. Therefore, it is necessary to develop alternative strategies that would result in effective control. Exploiting the immune capacity of plants has been described as a plausible route to prevent diseases post-harvest. Post-harvest-induced resistance (IR) through the use of safer chemicals from biological origin, biocontrol, and physical means has also been reported. In this review, we summarize the successful activity of these different strategies and explore the mechanisms behind. We further explore the concept of priming, and how its long-lasting and broad-spectrum nature could contribute to fruit resistance.
Collapse
Affiliation(s)
- Pierre Pétriacq
- UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux et INRA de Bordeaux, F-33883 Villenave d'Ornon, France.
- Plateforme Métabolome Bordeaux-MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France.
| | - Ana López
- Department of Plant Molecular Genetics, Spanish National Centre for Biotechnology, 28049 Madrid, Spain.
| | - Estrella Luna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
36
|
Ethylene -dependent and -independent superficial scald resistance mechanisms in 'Granny Smith' apple fruit. Sci Rep 2018; 8:11436. [PMID: 30061655 PMCID: PMC6065312 DOI: 10.1038/s41598-018-29706-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Superficial scald is a major physiological disorder of apple fruit (Malus domestica Borkh.) characterized by skin browning following cold storage; however, knowledge regarding the downstream processes that modulate scald phenomenon is unclear. To gain insight into the mechanisms underlying scald resistance, ‘Granny Smith’ apples after harvest were treated with diphenylamine (DPA) or 1-methylcyclopropene (1-MCP), then cold stored (0 °C for 3 months) and subsequently were ripened at room temperature (20 °C for 8 days). Phenotypic and physiological data indicated that both chemical treatments induced scald resistance while 1-MCP inhibited the ethylene-dependent ripening. A combination of multi-omic analysis in apple skin tissue enabled characterization of potential genes, proteins and metabolites that were regulated by DPA and 1-MCP at pro-symptomatic and scald-symptomatic period. Specifically, we characterized strata of scald resistance responses, among which we focus on selected pathways including dehydroabietic acid biosynthesis and UDP-D-glucose regulation. Through this approach, we revealed scald-associated transcriptional, proteomic and metabolic signatures and identified pathways modulated by the common or distinct functions of DPA and 1-MCP. Also, evidence is presented supporting that cytosine methylation-based epigenetic regulation is involved in scald resistance. Results allow a greater comprehension of the ethylene–dependent and –independent metabolic events controlling scald resistance.
Collapse
|
37
|
Cao Y, Li S, Han Y, Meng D, Jiao C, Abdullah M, Li D, Jin Q, Lin Y, Cai Y. A new insight into the evolution and functional divergence of FRK genes in Pyrus bretschneideri. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171463. [PMID: 30109040 PMCID: PMC6083675 DOI: 10.1098/rsos.171463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/15/2018] [Indexed: 06/01/2023]
Abstract
In plants, plant fructokinases (FRKs) are considered to be the main gateway of fructose metabolism as they can phosphorylate fructose to fructose-6-phosphate. Chinese white pears (Pyrus bretschneideri) are one of the popular fruits in the world market; sugar content is an important factor affecting the quality of the fruit. We identified 49 FRKs from four Rosaceae species; 20 of these sequences were from Chinese white pear. Subsequently, phylogenic relationship, gene structure and micro-collinearity were analysed. Phylogenetic and exon-intron analysis classified these FRKs into 10 subfamilies, and it was aimed to further reveal the variation of the gene structure and the evolutionary relationship of this gene family. Remarkably, gene expression patterns in different tissues or different development stages of the pear fruit suggested functional redundancy for PbFRKs derived from segmental duplication or genome-wide duplication and sub-functionalization for some of them. Additionally, PbFRK11, PbFRK13 and PbFRK16 were found to play important roles in regulating the sugar content in the fruit. Overall, this study provided important insights into the evolution of the FRK gene family in four Rosaceae species, and highlighted its roles in both pear tissue and fruits. Results presented here provide the appropriate candidate of PbFRKs that might contribute to fructose efflux in the pear fruit.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Shumei Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Yahui Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Dandan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Chunyan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Dahui Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qing Jin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| |
Collapse
|
38
|
Jing L, Li J, Song Y, Zhang J, Chen Q, Han Q. Characterization of a Potential Ripening Regulator, SlNAC3, from Solanum Lycopersicum. Open Life Sci 2018; 13:518-526. [PMID: 33817122 PMCID: PMC7874718 DOI: 10.1515/biol-2018-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
NAC (for NAM, ATAF1-2, and CUC2) proteins are one of the largest transcription factor families in plants. They have various functions and are closely related to developmental processes of fruits. Tomato (Solanum lycopersicum) is a model plant for studies of fruit growth patterns. In this study, the functional characteristics and action mechanisms of a new NAC-type transcription factor, SlNAC3 (SGN-U568609), were examined to determine its role in tomato development and ripening. The SlNAC3 protein was produced by prokaryotic expression and used to immunize New Zealand white rabbits to obtain a specific polyclonal antibody against SlNAC3. By co-immunoprecipitation and MALDI-TOF-MS assays, we showed that there was an interaction between the SlNAC3 protein and Polygalacturonase-2 (PG-2), which is related to the ripening and softening of fruit. Chromatin immunoprecipitation assays revealed the genome of the highly stress-tolerant Solanum pennellii chromosome 10 (sequence ID, HG975449.1), further demonstrating that SlNAC3 is a negative regulator of drought and salinity stress resistance in tomato, consistent with previous reports. These results indicate that SlNAC3 is not only involved in abiotic stress, but also plays a necessary role in mediating tomato ripening.
Collapse
Affiliation(s)
- Le Jing
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Jie Li
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Qiang Chen
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| |
Collapse
|
39
|
Beshir WF, Mbong VBM, Hertog MLATM, Geeraerd AH, Van den Ende W, Nicolaï BM. Dynamic Labeling Reveals Temporal Changes in Carbon Re-Allocation within the Central Metabolism of Developing Apple Fruit. FRONTIERS IN PLANT SCIENCE 2017; 8:1785. [PMID: 29093725 PMCID: PMC5651688 DOI: 10.3389/fpls.2017.01785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/02/2017] [Indexed: 05/05/2023]
Abstract
In recent years, the application of isotopically labeled substrates has received extensive attention in plant physiology. Measuring the propagation of the label through metabolic networks may provide information on carbon allocation in sink fruit during fruit development. In this research, gas chromatography coupled to mass spectrometry based metabolite profiling was used to characterize the changing metabolic pool sizes in developing apple fruit at five growth stages (30, 58, 93, 121, and 149 days after full bloom) using 13C-isotope feeding experiments on hypanthium tissue discs. Following the feeding of [U-13C]glucose, the 13C-label was incorporated into the various metabolites to different degrees depending on incubation time, metabolic pathway activity, and growth stage. Evidence is presented that early in fruit development the utilization of the imported sugars was faster than in later developmental stages, likely to supply the energy and carbon skeletons required for cell division and fruit growth. The declined 13C-incorporation into various metabolites during growth and maturation can be associated with the reduced metabolic activity, as mirrored by the respiratory rate. Moreover, the concentration of fructose and sucrose increased during fruit development, whereas concentrations of most amino and organic acids and polyphenols declined. In general, this study showed that the imported compounds play a central role not only in carbohydrate metabolism, but also in the biosynthesis of amino acid and related protein synthesis and secondary metabolites at the early stage of fruit development.
Collapse
Affiliation(s)
- Wasiye F. Beshir
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Victor B. M. Mbong
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Maarten L. A. T. M. Hertog
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Annemie H. Geeraerd
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bart M. Nicolaï
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
- *Correspondence: Bart M. Nicolaï
| |
Collapse
|