1
|
McFarland FL, Kaeppler HF. History and current status of embryogenic culture-based tissue culture, transformation and gene editing of maize (Zea mays L.). THE PLANT GENOME 2025; 18:e20451. [PMID: 38600860 PMCID: PMC11733668 DOI: 10.1002/tpg2.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The production of embryogenic callus and somatic embryos is integral to the genetic improvement of crops via genetic transformation and gene editing. Regenerable embryogenic cultures also form the backbone of many micro-propagation processes for crop species. In many species, including maize, the ability to produce embryogenic cultures is highly genotype dependent. While some modern transformation and genome editing methods reduce genotype dependence, these efforts ultimately fall short of producing truly genotype-independent tissue culture methods. Recalcitrant genotypes are still identified in these genotype-flexible processes, and their presence is magnified by the stark contrast with more amenable lines, which may respond more efficiently by orders of magnitude. This review aims to describe the history of research into somatic embryogenesis, embryogenic tissue cultures, and plant transformation, with particular attention paid to maize. Contemporary research into genotype-flexible morphogenic gene-based transformation and genome engineering is also covered in this review. The rapid evolution of plant biotechnology from nascent technologies in the latter half of the 20th century to well-established, work-horse production processes has, and will continue to, fundamentally changed agriculture and plant genetics research.
Collapse
Affiliation(s)
- Frank L. McFarland
- Department of Plant and Agroecosystem SciencesUniversity of WisconsinMadisonWisconsinUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWisconsinUSA
| | - Heidi F. Kaeppler
- Department of Plant and Agroecosystem SciencesUniversity of WisconsinMadisonWisconsinUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWisconsinUSA
| |
Collapse
|
2
|
Koska S, Leljak-Levanić D, Malenica N, Bigović Villi K, Futo M, Čorak N, Jagić M, Ivanić A, Tušar A, Kasalo N, Domazet-Lošo M, Vlahoviček K, Domazet-Lošo T. Developmental phylotranscriptomics in grapevine suggests an ancestral role of somatic embryogenesis. Commun Biol 2025; 8:265. [PMID: 39972184 PMCID: PMC11839975 DOI: 10.1038/s42003-025-07712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
The zygotic embryogenesis of Arabidopsis, which is initiated by gamete fusion, shows hourglass-shaped ontogeny-phylogeny correlations at the transcriptome level. However, many plants are capable of yielding a fully viable next generation by somatic embryogenesis-a comparable developmental process that usually starts with the embryogenic induction of a diploid somatic cell. To explore the correspondence between ontogeny and phylogeny in this alternative developmental route in plants, here we develop a highly efficient model of somatic embryogenesis in grapevine (Vitis vinifera) and sequence its developmental transcriptomes. By combining the evolutionary properties of grapevine genes with their expression values, recovered from early induction to the formation of juvenile plants, we find a strongly supported hourglass-shaped developmental trajectory. However, in contrast to zygotic embryogenesis in Arabidopsis, where the torpedo stage is the most evolutionarily inert, in the somatic embryogenesis of grapevine, the heart stage expresses the most evolutionarily conserved transcriptome. This represents a surprising finding because it suggests a better evolutionary system-level analogy between animal development and plant somatic embryogenesis than zygotic embryogenesis. We conclude that macroevolutionary logic is deeply hardwired in plant ontogeny and that somatic embryogenesis is likely a primordial embryogenic program in plants.
Collapse
Affiliation(s)
- Sara Koska
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dunja Leljak-Levanić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Nenad Malenica
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Kian Bigović Villi
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Momir Futo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Nina Čorak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mateja Jagić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ariana Ivanić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anja Tušar
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Niko Kasalo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mirjana Domazet-Lošo
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Kristian Vlahoviček
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia.
| |
Collapse
|
3
|
Ge X, Yu X, Liu Z, Yuan J, Qin A, Wang Y, Chen Y, Qin W, Liu Y, Liu X, Zhou Y, Wang P, Yang J, Liu H, Zhao Z, Hu M, Zhang Y, Sun S, Herrera-Estrella L, Tran LSP, Sun X, Li F. Spatiotemporal transcriptome and metabolome landscapes of cotton somatic embryos. Nat Commun 2025; 16:859. [PMID: 39833155 PMCID: PMC11747644 DOI: 10.1038/s41467-025-55870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Somatic embryogenesis (SE) is a developmental process related to the regeneration of tissue-cultured plants, which serves as a useful technique for crop breeding and improvement. However, SE in cotton is difficult and elusive due to the lack of precise cellular level information on the reprogramming of gene expression patterns involved in somatic embryogenesis. Here, we investigate the spatial and single-cell expression profiles of key genes and the metabolic patterns of key metabolites by integrated single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics (ST), and spatial metabolomics (SM). To evaluate the results of these analyses, we functionally characterized the potential roles of two representative marker genes, AATP1 and DOX2, in the regulation of cotton somatic embryo development. A publicly available web-based resource database ( https://cotton.cricaas.com.cn/somaticembryo/ ) in this study provides convenience for future studies of the expression patterns of marker genes at specific developmental stages during the process of SE in cotton.
Collapse
Affiliation(s)
- Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaole Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Aizhi Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Ye Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanli Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yumeng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xingxing Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Peng Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jincheng Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zihao Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Mengke Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Susu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
4
|
Quiroz LF, Khan M, Gondalia N, Lai L, McKeown PC, Brychkova G, Spillane C. Tissue culture-independent approaches to revolutionizing plant transformation and gene editing. HORTICULTURE RESEARCH 2025; 12:uhae292. [PMID: 39906168 PMCID: PMC11789523 DOI: 10.1093/hr/uhae292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Despite the transformative power of gene editing for crop improvement, its widespread application across species and varieties is limited by the transformation bottleneck that exists for many crops. The genetic transformation of plants is hindered by a general reliance on in vitro regeneration through plant tissue culture. Tissue culture requires empirically determined conditions and aseptic techniques, and cannot easily be translated to recalcitrant species and genotypes. Both Agrobacterium-mediated and alternative transformation protocols are limited by a dependency on in vitro regeneration, which also limits their use by non-experts and hinders research into non-model species such as those of possible novel biopharmaceutical or nutraceutical use, as well as novel ornamental varieties. Hence, there is significant interest in developing tissue culture-independent plant transformation and gene editing approaches that can circumvent the bottlenecks associated with in vitro plant regeneration recalcitrance. Compared to tissue culture-based transformations, tissue culture-independent approaches offer advantages such as avoidance of somaclonal variation effects, with more streamlined and expeditious methodological processes. The ease of use, dependability, and accessibility of tissue culture-independent procedures can make them attractive to non-experts, outperforming classic tissue culture-dependent systems. This review explores the diversity of tissue culture-independent transformation approaches and compares them to traditional tissue culture-dependent transformation strategies. We highlight their simplicity and provide examples of recent successful transformations accomplished using these systems. Our review also addresses current limitations and explores future perspectives, highlighting the significance of these techniques for advancing plant research and crop improvement.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| |
Collapse
|
5
|
Youngstrom C, Wang K, Lee K. Unlocking regeneration potential: harnessing morphogenic regulators and small peptides for enhanced plant engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17193. [PMID: 39658544 PMCID: PMC11771577 DOI: 10.1111/tpj.17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Plant genetic transformation is essential for understanding gene functions and developing improved crop varieties. Traditional methods, often genotype-dependent, are limited by plants' recalcitrance to gene delivery and low regeneration capacity. To overcome these limitations, new approaches have emerged that greatly improve efficiency and genotype flexibility. This review summarizes key strategies recently developed for plant transformation, focusing on groundbreaking technologies enhancing explant- and genotype flexibility. It covers the use of morphogenic regulators (MRs), stem cell-based methods, and in planta transformation methods. MRs, such as maize Babyboom (BBM) with Wuschel2 (WUS2), and GROWTH-REGULATING FACTORs (GRFs) with their cofactors GRF-interacting factors (GIFs), offer great potential for transforming many monocot species, including major cereal crops. Optimizing BBM/WUS2 expression cassettes has further enabled successful transformation and gene editing using seedling leaves as starting material. This technology lowers the barriers for academic laboratories to adopt monocot transformation systems. For dicot plants, tissue culture-free or in planta transformation methods, with or without the use of MRs, are emerging as more genotype-flexible alternatives to traditional tissue culture-based transformation systems. Additionally, the discovery of the local wound signal peptide Regeneration Factor 1 (REF1) has been shown to enhance transformation efficiency by activating wound-induced regeneration pathways in both monocot and dicot plants. Future research may combine these advances to develop truly genotype-independent transformation methods.
Collapse
Affiliation(s)
- Christopher Youngstrom
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Kan Wang
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Keunsub Lee
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| |
Collapse
|
6
|
Bennur PL, O’Brien M, Fernando SC, Doblin MS. Improving transformation and regeneration efficiency in medicinal plants: insights from other recalcitrant species. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:52-75. [PMID: 38652155 PMCID: PMC11659184 DOI: 10.1093/jxb/erae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Medicinal plants are integral to traditional medicine systems worldwide, being pivotal for human health. Harvesting plant material from natural environments, however, has led to species scarcity, prompting action to develop cultivation solutions that also aid conservation efforts. Biotechnological tools, specifically plant tissue culture and genetic transformation, offer solutions for sustainable, large-scale production and enhanced yield of valuable biomolecules. While these techniques are instrumental to the development of the medicinal plant industry, the challenge of inherent regeneration recalcitrance in some species to in vitro cultivation hampers these efforts. This review examines the strategies for overcoming recalcitrance in medicinal plants using a holistic approach, emphasizing the meticulous choice of explants (e.g. embryonic/meristematic tissues), plant growth regulators (e.g. synthetic cytokinins), and use of novel regeneration-enabling methods to deliver morphogenic genes (e.g. GRF/GIF chimeras and nanoparticles), which have been shown to contribute to overcoming recalcitrance barriers in agriculture crops. Furthermore, it highlights the benefit of cost-effective genomic technologies that enable precise genome editing and the value of integrating data-driven models to address genotype-specific challenges in medicinal plant research. These advances mark a progressive step towards a future where medicinal plant cultivation is not only more efficient and predictable but also inherently sustainable, ensuring the continued availability and exploitation of these important plants for current and future generations.
Collapse
Affiliation(s)
- Praveen Lakshman Bennur
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Martin O’Brien
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Shyama C Fernando
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Monika S Doblin
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
7
|
Puzanskiy RK, Kirpichnikova AA, Bogdanova EM, Prokopiev IA, Shavarda AL, Romanyuk DA, Vanisov SA, Yemelyanov VV, Shishova MF. From Division to Death: Metabolomic Analysis of Nicotiana tabacum BY-2 Cells Reveals the Complexity of Life in Batch Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3426. [PMID: 39683219 DOI: 10.3390/plants13233426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Tobacco BY-2 cell culture is one of the most widely used models in plant biology. The main advantage of BY-2 suspension cultures is the synchronization of cell development and the appearance of polar elongation. In batch culture, BY-2 cells passed through the lag, proliferation, elongation, and stationary phases. During this process, the composition of the growth medium changed dramatically. Sucrose was rapidly eliminated; hexose first accumulated and then depleted. The medium's pH initially decreased and then rose with aging. As a result of the crosstalk between the internal and external stimuli, cells pass through complicated systemic rearrangements, which cause metabolomic alterations. The early stages were characterized by high levels of amino acids and sterols, which could be interpreted as the result of synthetic activity. The most intense rearrangements occurred between the proliferation and active elongation stages, including repression of amino acid accumulation and up-regulation of sugar metabolism. Later stages were distinguished by higher levels of secondary metabolites, which may be a non-specific response to deteriorating conditions. Senescence was followed by some increase in fatty acids and sterols as well as amino acids, and probably led to self-destructive processes. A correlation analysis revealed relationships between metabolites' covariation, their biochemical ratio, and the growth phase.
Collapse
Affiliation(s)
- Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | | | - Ekaterina M Bogdanova
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ilya A Prokopiev
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Alexey L Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Center for Molecular and Cell Technologies, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Daria A Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Sergey A Vanisov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | | | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
8
|
Pan H, Liao R, Zhang Y, Arif M, Zhang Y, Zhang S, Wang Y, Zhao P, Wang Z, Han B, Song C. Establishment of callus induction and plantlet regeneration systems of Peucedanum Praeruptorum dunn based on the tissue culture method. PLANT METHODS 2024; 20:174. [PMID: 39548586 PMCID: PMC11568572 DOI: 10.1186/s13007-024-01300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Peucedanum praeruptorum Dunn has typical stacked umbels and medicinal value; however, the lack of an effective tissue culture system for P. praeruptorum has limited the large-scale propagation of its seedlings. RESULTS We systematically established an in vitro regeneration system for P. praeruptorum using young leaves and stems as explants. Tissue culture plantlets were successfully obtained within 123 and 90 d of somatic embryogenesis and organogenesis, respectively. Combined plant growth regulators (PGRs) were optimized to promote efficient plant regeneration at each stage of the culture process. Specifically, embryogenic callus induction was superior in Murashige and Skoog (MS) medium supplemented with 0.5 mg/L 6-benzyladenine (BA) and 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D). For somatic embryonic development, the highest differentiation rates were achieved using BA, 2,4-D, and 6-furfuryl aminopurine (6-KT). Induction of organogenesis resulted in the highest differentiation rates and proliferation coefficients of buds in MS medium supplemented with BA and α-naphthaleneacetic acid (NAA). Moreover, regeneration of P. praeruptorum seedlings was achieved by adjusting the BA and indole-3-butyric acid (IBA) concentrations in 1/2 MS medium. CONCLUSION Our results provide a technical system for the rapid propagation of P. praeruptorum, which can facilitate germplasm improvement, resource conservation, and further genetic transformation of Peucedanum species.
Collapse
Affiliation(s)
- Haoyu Pan
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Ranran Liao
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yingyu Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Muhammad Arif
- Department of Plant Protection, Faculty of agriculture, Sakarya University of Applied Sciences, Arifiye, 54580, Sakarya, Türkiye
| | - Yuxin Zhang
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Shuai Zhang
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Yuanyuan Wang
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Pengcheng Zhao
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Zaigui Wang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
| | - Bangxing Han
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China.
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Cheng Song
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China.
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Kim E, Choi S, Kim SY, Jang SJ, Lee S, Kim H, Jang JH, Seo HH, Lee JH, Choi SS, Moh SH. Wound healing effect of polydeoxyribonucleotide derived from Hibiscus sabdariffa callus via Nrf2 signaling in human keratinocytes. Biochem Biophys Res Commun 2024; 728:150335. [PMID: 38996695 DOI: 10.1016/j.bbrc.2024.150335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
There has been a growing interest in skin recovery in both the medical and cosmetics fields, leading to an increasing number of studies reporting diverse materials being utilized for this purpose. Among them, polydeoxyribonucleotide (PDRN) is known for its efficacy in skin repair processes, while Hibiscus sabdariffa (HS) is recognized for its antioxidant, hypolipidemic, and wound healing properties, including its positive impact on mammalian skin and cells. We hypothesized that these characteristics may have a germane relationship during the healing process. Consequently, we induced calli from HS and then extracted PDRN for use in treating human keratinocytes. PDRN (5 μg/mL) had considerable wound healing effects and wrinkle improvement effects. To confirm its function at the molecular level, we performed real-time polymerase chain reaction, western blotting, and immunocytochemistry. Furthermore, genes related to wound healing (MMP9, Nrf2, KGF, VEGF, SOD2, and AQP3) were significantly upregulated. Additionally, the protein expression of MMP9, AQP3, and CAT, which are closely related to wound healing and antioxidant cascades, was considerably enhanced. Based on cellular morphology and molecular-level evidence, we propose that PDRN from calli of HS can improve wound healing in human keratinocytes. Furthermore, its potential to serve as a novel material in cosmetic products is demonstrated.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sunmee Choi
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Soo-Yun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Joo Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sak Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyein Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Ji Hyeon Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyo Hyun Seo
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Jeong Hun Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, Seoul, 04513, Republic of Korea.
| | - Sang Hyun Moh
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| |
Collapse
|
10
|
Huang Y, Yue E, Lian G, Lu J, Ran L, Ma S, Wang K, Bai Y, Han N, Bian H, Guo F. Novel mechanism of MicroRNA408 in callus formation from rice mature embryo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:769-787. [PMID: 39265046 DOI: 10.1111/tpj.17019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Mature embryos are the main explants of tissue culture used in rice transgenic technology. However, the mechanism of mature embryo callus formation remains unclear. In this study, a microRNA-mediated gene regulatory network of rice calli was established using degradome sequencing. We identified a microRNA, OsmiR408, that regulates the formation of the callus derived from the mature rice embryo. OsUCLACYANIN 30 (OsUCL 30), a target gene of OsmiR408, was the most abundant cleavage mRNA in rice callus. OsUCL17 was verified as a target gene of OsmiR408 using RNA ligase-mediated 5'-RACE. In analysis of the OsmiR408 promoter reporter line and pri-miR408 transcript level, the promoter activity and transcript level of MIR408 were increased dramatically during callus formation. In phenotypic observations, OsmiR408 knockout caused severe defects in mature embryo callus formation, whereas OsmiR408 overexpression promoted callus formation. Transcriptome analysis demonstrated that OsUCLs and certain genes related to the plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway had different differential expression patterns between OsmiR408 knockout and overexpression calli. Thus, OsmiR408 may regulate callus formation mainly by affecting plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway. Our findings provide insight into OsmiR408/UCLs module function in callus formation.
Collapse
Affiliation(s)
- Yizi Huang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Erkui Yue
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Guiwei Lian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinhan Lu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Le Ran
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Shengyun Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaiqiang Wang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Yu Bai
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu Guo
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Seed Industry Laboratory, Yazhou Bay Science and Technology City, Sanya, 572025, China
| |
Collapse
|
11
|
Wei H, Xu T, Luo C, Ma D, Yang F, Yang P, Zhou X, Liu G, Lian B, Zhong F, Zhang J. Salix matsudana fatty acid desaturases: Identification, classification, evolution, and expression profiles for development and stress tolerances. Int J Biol Macromol 2024; 278:134574. [PMID: 39122077 DOI: 10.1016/j.ijbiomac.2024.134574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Fatty acid desaturases (FADs) are enzymes that transform carbon‑carbon single bonds into carbon‑carbon double bonds within acyl chains, resulting in the production of unsaturated FAs (UFAs). They are crucial for plant growth, development, and adaptation to environmental stress. In our research, we identified 40 FAD candidates in the Salix matsudana genome, grouping them into seven categories. Exon-intron structures and conserved motifs of SmFADs within the same group showed significant conservation. Cis-element analysis revealed SmFADs are responsive to hormones and stress. Additionally, GO and KEGG analyses linked SmFADs closely with lipid biosynthesis and UFA biosynthesis, which were crucial for the plant's response to environmental stresses. Notably, the SmFAB2.4, SmADS1, SmFAD7.5, and SmFAD8.2 were predicted to participate in submergence tolerance, whereas SmFAD8.1 and SmFAD7.1 played an essential role in salt stress response. The diverse expression profiles of SmFADs across willow varieties, in various tissues, and throughout the willow bud development stages revealed a spectrum of functional diversity for these genes. Moreover, specific SmFADs might play a crucial role in callus development and the response to culturing conditions in various willow cultivars. This research underscored the importance of SmFAD profiles and functions and identified potential genes for enhancing forest resilience.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Tiantian Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Chunying Luo
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Duojin Ma
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Fan Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Peijian Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Xiaoxi Zhou
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| |
Collapse
|
12
|
Pinheiro LZ, Ramos CC, Oliveira DBD, Nunes CDR, Bernardes NR, Glória LL, Lemos CDO, Santa-Catarina C, Pereira SMDF. In vitro micropropagation and tiliroside production in Paratecoma peroba (Record) Kuhlm, an endemic and endangered Brazilian tree. Nat Prod Res 2024; 38:3588-3596. [PMID: 37712397 DOI: 10.1080/14786419.2023.2256450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
In vitro tissue culture can be an alternative method for endangered species propagation, biodiversity conservation and secondary metabolite studies. Paratecoma peroba (Record) Kuhlm. (Bignoniaceae) is an endemic and endangered Brazilian species. This work aimed to establish in vitro morphogenesis and callus induction and to perform a phytochemical analysis of P. peroba callus extract. Higher seed germination (43%) was obtained in Wood Plant Medium culture without activated charcoal (AC). Combination of 5 µM benzyladenine + 10 µM gibberellic acid, without AC, resulted in a higher number of shoots (2 shoots/explant). A callus culture was stabilised from zygotic embryos using 2,4-dichlorophenoxyacetic acid. A callus methanolic extract was used for phytochemical analysis. The isolated substance was identified as tiliroside (kaempferol 3-O-β-D-(6''-O-E-p-coumaroyl)-glucopyranoside) by NMR and quantified in callus and leaf extracts by HPLC. This study adds to the chemical knowledge of this species and it is the first report of a flavonol in Paratecoma.
Collapse
Affiliation(s)
- Larissa Zambe Pinheiro
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Carolina Chaves Ramos
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Daniela Barros de Oliveira
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Clara Dos Reis Nunes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Natalia Ribeiro Bernardes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Lorena Lima Glória
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Carolina de Oliveira Lemos
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Silvia Menezes de Faria Pereira
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| |
Collapse
|
13
|
Tomasiak A, Piński A, Milewska-Hendel A, Andreu Godall I, Borowska-Żuchowska N, Morończyk J, Moreno-Romero J, Betekhtin A. H3K4me3 changes occur in cell wall genes during the development of Fagopyrum tataricum morphogenic and non-morphogenic calli. FRONTIERS IN PLANT SCIENCE 2024; 15:1465514. [PMID: 39385990 PMCID: PMC11461221 DOI: 10.3389/fpls.2024.1465514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Epigenetic changes accompany the dynamic changes in the cell wall composition during the development of callus cells. H3K4me3 is responsible for active gene expression and reaction to environmental cues. Chromatin immunoprecipitation (ChIP) is a powerful technique for studying the interplay between epigenetic modifications and the DNA regions of interest. In combination with sequencing, it can provide the genome-wide enrichment of the specific epigenetic mark, providing vital information on its involvement in the plethora of cellular processes. Here, we describe the genome-wide distribution of H3K4me3 in morphogenic and non-morphogenic callus of Fagopyrum tataricum. Levels of H3K4me3 were higher around the transcription start site, in agreement with the role of this mark in transcriptional activation. The global levels of methylation were higher in the non-morphogenic callus, which indicated increased gene activation compared to the morphogenic callus. We also employed ChIP to analyse the changes in the enrichment of this epigenetic mark on the cell wall-related genes in both calli types during the course of the passage. Enrichment of H3K4me3 on cell wall genes was specific for callus type, suggesting that the role of this mark in cell-wall remodelling is complex and involved in many processes related to dedifferentiation and redifferentiation. This intricacy of the cell wall composition was supported by the immunohistochemical analysis of the cell wall epitopes' distribution of pectins and extensins. Together, these data give a novel insight into the involvement of H3K4me3 in the regeneration processes in F. tataricum in vitro callus tissue culture.
Collapse
Affiliation(s)
- Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ignasi Andreu Godall
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Natalia Borowska-Żuchowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
14
|
Apio HB, Elegba W, Nunekpeku W, Otu SA, Baguma JK, Alicai T, Danso KE, Bimpong IK, Ogwok E. Effect of gamma irradiation on proliferation and growth of friable embryogenic callus and in vitro nodal cuttings of ugandan cassava genotypes. FRONTIERS IN PLANT SCIENCE 2024; 15:1414128. [PMID: 39351022 PMCID: PMC11439714 DOI: 10.3389/fpls.2024.1414128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Cassava (Manihot esculenta Crantz) production and productivity in Africa is affected by two viral diseases; cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Induced mutagenesis of totipotent/embryogenic tissues or in vitro plant material can lead to the generation of CMD and/or CBSD tolerant mutants. To massively produce non-chimeric plants timely and with less labor, totipotent cells or tissues are a pre-requisite. This study aimed to determine the effect of gamma radiation on the proliferation and growth of friable embryogenic callus (FEC) and in vitro nodal cuttings respectively. To obtain FEC, 2-6 mm sized leaf lobes of nine cassava genotypes were plated on Murashige and Skoog (MS) basal media supplemented with varying levels (37, 50, 70, 100) μM of picloram for production of organized embryogenic structures (OES). The OES of five cassava genotypes (Alado, CV-60444, NASE 3, NASE 13 and TME 204) were crushed and plated in Gresshoff and Doy (GD) basal media in combination with the amino acid tyrosine in varying concentrations for FEC production. FEC from five cassava genotypes and in vitro nodal cuttings of nine genotypes were irradiated using five different gamma doses (0, 5, 10, 15, 20 and 25 Gy) at a dose rate of 81Gy/hr. The lethal dose (LD)50 was determined using the number of roots produced and flow cytometry was done to determine the ploidy status of plants. The highest production of OES was noted in Alado across varying picloram concentrations, while TME 204 obtained the highest amount of FEC. The irradiated FEC gradually died and by 28 days post irradiation, FEC from all five cassava genotypes were lost. Conversely, the irradiated in vitro nodal cuttings survived and some produced roots, while others produced callus. The LD50 based on number of roots varied from genotype to genotype, but plants remained diploid post-irradiation. Accordingly, the effect of gamma irradiation on Ugandan cassava genotypes (UCGs) was genotype-dependent. This information is foundational for the use of in vitro tissues as target material for cassava mutation breeding.
Collapse
Affiliation(s)
- Hellen B. Apio
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Wilfred Elegba
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Wonder Nunekpeku
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Solomon Ayeboafo Otu
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Julius Karubanga Baguma
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Titus Alicai
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Kenneth Ellis Danso
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
- School of Nuclear and Allied Sciences, University of Ghana, Accra, Ghana
| | - Isaac Kofi Bimpong
- Plant Breeding and Genetics Section, Joint Food and Agricultural Organisation (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Emmanuel Ogwok
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
- Department of Science and Vocational Education, Faculty of Science, Lira University, Lira, Uganda
| |
Collapse
|
15
|
Martínez M, Corredoira E. Recent Advances in Plant Somatic Embryogenesis: Where We Stand and Where to Go? Int J Mol Sci 2024; 25:8912. [PMID: 39201598 PMCID: PMC11354837 DOI: 10.3390/ijms25168912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Somatic embryogenesis (SE) is a fascinating example of the plant cellular totipotency concept [...].
Collapse
Affiliation(s)
| | - Elena Corredoira
- Misión Biológica de Galicia, Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Avda Vigo s/n, 15705 Santiago de Compostela, Spain;
| |
Collapse
|
16
|
Kamolsukyeunyong W, Dabbhadatta Y, Jaiprasert A, Thunnom B, Poncheewin W, Wanchana S, Ruanjaichon V, Toojinda T, Burns P. Genome-Wide Association Analysis Identifies Candidate Loci for Callus Induction in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2112. [PMID: 39124230 PMCID: PMC11314294 DOI: 10.3390/plants13152112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Callus induction (CI) is a critical trait for transforming desirable genes in plants. A genome-wide association study (GWAS) analysis was conducted on the rice germplasms of 110 Indica rice accessions, in which three tissue culture media, B5, MS, and N6, were used for the CI of those rice panels' mature seeds. Seven quantitative trait loci (QTLs) on rice chromosomes 2, 6, 7, and 11 affected the CI percentage in the three media. For the B5 medium, one QTL (qCI-B5-Chr6) was identified on rice chromosome 6; for the MS medium, two QTLs were identified on rice chromosomes 2 and 6 (qCI-MS-Chr2 and qCI-MS-Chr6, respectively); for the N6 medium, four QTLs were identified on rice chromosomes 6, 7, and 11 (qCI-N6-Chr6.1 and qCI-N6-Chr6.2, qCI-N6-Chr7, and qCI-N6-Chr11, respectively). Fifty-five genes were identified within the haplotype blocks corresponding to these QTLs, thirty-one of which showed haplotypes associated with different CI percentages in those media. qCI-B5-Chr6 was located in the same region as qCI-N6-Chr6.2, and the Caleosin-related family protein was also identified in this region. Analysis of the gene-based haplotype revealed the association of this gene with different CI percentages in both B5 and N6 media, suggesting that the gene may play a critical role in the CI mechanism. Moreover, several genes, including those that encode the beta-tubulin protein, zinc finger protein, RNP-1 domain-containing protein, and lysophosphatidic acid acyltransferase, were associated with different CI percentages in the N6 medium. The results of this study provide insights into the potential QTLs and candidate genes for callus induction in rice that contribute to our understanding of the physiological and biochemical processes involved in callus formation, which is an essential tool in the molecular breeding of rice.
Collapse
Affiliation(s)
- Wintai Kamolsukyeunyong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (Y.D.); (A.J.); (B.T.); (W.P.); (S.W.); (V.R.); (T.T.)
| | | | | | | | | | | | | | | | - Parichart Burns
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (Y.D.); (A.J.); (B.T.); (W.P.); (S.W.); (V.R.); (T.T.)
| |
Collapse
|
17
|
Kim E, Tollenaere MD, Sennelier B, Lambert C, Durduret A, Kim SY, Seo HH, Lee JH, Scandolera A, Reynaud R, Moh SH. Analysis of Active Components and Transcriptome of Freesia refracta Callus Extract and Its Effects against Oxidative Stress and Wrinkles in Skin. Int J Mol Sci 2024; 25:8150. [PMID: 39125720 PMCID: PMC11311438 DOI: 10.3390/ijms25158150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Freesia refracta (FR), a perennial flower of the Iris family (Iridaceae), is widely used in cosmetics despite limited scientific evidence of its skin benefits and chemical composition, particularly of FR callus extract (FCE). This study identified biologically active compounds in FCE and assessed their skin benefits, focusing on anti-aging. FR calli were cultured, extracted with water at 40 °C, and analyzed using Centrifugal Partition Chromatography (CPC), Nuclear Magnetic Resonance (NMR), and HCA, revealing key compounds, namely nicotinamide and pyroglutamic acid. FCE significantly increased collagen I production by 52% in normal and aged fibroblasts and enhanced fibroblast-collagen interaction by 37%. An in vivo study of 43 female volunteers demonstrated an 11.1% reduction in skin roughness and a 2.3-fold increase in collagen density after 28 days of cream application containing 3% FCE. Additionally, the preservation tests of cosmetics containing FCE confirmed their stability over 12 weeks. These results suggest that FCE offers substantial anti-aging benefits by enhancing collagen production and fibroblast-collagen interactions. These findings highlighted the potential of FCE in cosmetic applications, providing significant improvements in skin smoothness and overall appearance. This study fills a gap in the scientific literature regarding the skin benefits and chemical composition of FR callus extract, supporting its use in the development of effective cosmeceuticals.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| | - Morgane De Tollenaere
- Givaudan France SAS, Route de Bazancourt, 51110 Pomacle, France; (M.D.T.); (A.D.); (A.S.)
| | - Benedicte Sennelier
- Givaudan France Naturals, 250 rue Pierre Bayle, BP 81218, 84911 Avignon, France;
| | - Carole Lambert
- Givaudan France SAS, Bâtiment Canal Biotech 1, 3, Rue des Satellites, 31400 Toulouse, France (R.R.)
| | - Anais Durduret
- Givaudan France SAS, Route de Bazancourt, 51110 Pomacle, France; (M.D.T.); (A.D.); (A.S.)
| | - Soo-Yun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| | - Hyo-Hyun Seo
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| | - Jung-Hun Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| | - Amandine Scandolera
- Givaudan France SAS, Route de Bazancourt, 51110 Pomacle, France; (M.D.T.); (A.D.); (A.S.)
| | - Romain Reynaud
- Givaudan France SAS, Bâtiment Canal Biotech 1, 3, Rue des Satellites, 31400 Toulouse, France (R.R.)
| | - Sang-Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| |
Collapse
|
18
|
Wittmer J, Heidstra R. Appreciating animal induced pluripotent stem cells to shape plant cell reprogramming strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4373-4393. [PMID: 38869461 PMCID: PMC11263491 DOI: 10.1093/jxb/erae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Animals and plants have developed resilience mechanisms to effectively endure and overcome physical damage and environmental challenges throughout their life span. To sustain their vitality, both animals and plants employ mechanisms to replenish damaged cells, either directly, involving the activity of adult stem cells, or indirectly, via dedifferentiation of somatic cells that are induced to revert to a stem cell state and subsequently redifferentiate. Stem cell research has been a rapidly advancing field in animal studies for many years, driven by its promising potential in human therapeutics, including tissue regeneration and drug development. A major breakthrough was the discovery of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells by expressing a limited set of transcription factors. This discovery enabled the generation of an unlimited supply of cells that can be differentiated into specific cell types and tissues. Equally, a keen interest in the connection between plant stem cells and regeneration has been developed in the last decade, driven by the demand to enhance plant traits such as yield, resistance to pathogens, and the opportunities provided by CRISPR/Cas-mediated gene editing. Here we discuss how knowledge of stem cell biology benefits regeneration technology, and we speculate on the creation of a universal genotype-independent iPSC system for plants to overcome regenerative recalcitrance.
Collapse
Affiliation(s)
- Jana Wittmer
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
19
|
Prashant SP, Bhawana M. An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14400. [PMID: 38945697 DOI: 10.1111/ppl.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Since prehistoric times, medicinal and aromatic plants (MAPs) have been employed for various therapeutic purposes due to their varied array of pharmaceutically relevant bioactive compounds, i.e. secondary metabolites. However, when secondary metabolites are isolated directly from MAPs, there is occasionally very poor yield and limited synthesis of secondary metabolites from particular tissues and certain developmental stages. Moreover, many MAPs species are in danger of extinction, especially those used in pharmaceuticals, as their natural populations are under pressure from overharvesting due to the excess demand for plant-based herbal remedies. The extensive use of these metabolites in a number of industrial and pharmaceutical industries has prompted a call for more research into increasing the output via optimization of large-scale production using plant tissue culture techniques. The potential of plant cells as sources of secondary metabolites can be exploited through a combination of product recovery technology research, targeted metabolite production, and in vitro culture establishment. The plant tissue culture approach provides low-cost, sustainable, continuous, and viable secondary metabolite production that is not affected by geographic or climatic factors. This study covers recent advancements in the induction of medicinally relevant metabolites, as well as the conservation and propagation of plants by advanced tissue culture technologies.
Collapse
Affiliation(s)
- Shera Pandit Prashant
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| | - Mishra Bhawana
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| |
Collapse
|
20
|
Wang S, Yi X, Zhang L, Ali MM, Ke M, Lu Y, Zheng Y, Cai X, Fang S, Wu J, Lin Z, Chen F. Characterisation and Expression Analysis of LdSERK1, a Somatic Embryogenesis Gene in Lilium davidii var. unicolor. PLANTS (BASEL, SWITZERLAND) 2024; 13:1495. [PMID: 38891306 PMCID: PMC11174594 DOI: 10.3390/plants13111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The Lanzhou lily (Lilium davidii var. unicolor) is a variant of the Sichuan lily of the lily family and is a unique Chinese 'medicinal and food' sweet lily. Somatic cell embryogenesis of Lilium has played an important role in providing technical support for germplasm conservation, bulb propagation and improvement of genetic traits. Somatic embryogenesis receptor-like kinases (SERKs) are widely distributed in plants and have been shown to play multiple roles in plant life, including growth and development, somatic embryogenesis and hormone induction. Integrating the results of KEGG enrichment, GO annotation and gene expression analysis, a lily LdSERK1 gene was cloned. The full-length open reading frame of LdSERK1 was 1875 bp, encoding 624 amino acids. The results of the phylogenetic tree analysis showed that LdSERK1 was highly similar to rice, maize and other plant SERKs. The results of the subcellular localisation in the onion epidermis suggested that the LdSERK1 protein was localised at the cell membrane. Secondly, we established the virus-induced gene-silencing (VIGS) system in lily scales, and the results of LdSERK1 silencing by Tobacco rattle virus (TRV) showed that, with the down-regulation of LdSERK1 expression, the occurrence of somatic embryogenesis and callus tissue induction in scales was significantly reduced. Finally, molecular assays from overexpression of the LdSERK1 gene in Arabidopsis showed that LdSERK1 expression was significantly enhanced in the three transgenic lines compared to the wild type, and that the probability of inducing callus tissue in seed was significantly higher than that of the wild type at a concentration of 2 mg/L 2,4-D, which was manifested by an increase in the granularity of the callus tissue.
Collapse
Affiliation(s)
- Shaojuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Xiaoyan Yi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Lijuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Mingli Ke
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Yuxian Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Yiping Zheng
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (Y.Z.); (X.C.); (S.F.)
| | - Xuanmei Cai
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (Y.Z.); (X.C.); (S.F.)
| | - Shaozhong Fang
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (Y.Z.); (X.C.); (S.F.)
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China;
| | - Zhimin Lin
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (Y.Z.); (X.C.); (S.F.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| |
Collapse
|
21
|
Guo H, Guo H, Zhang L, Tian X, Wu J, Fan Y, Li T, Gou Z, Sun Y, Gao F, Wang J, Shan G, Zeng F. Organelle Ca 2+/CAM1-SELTP confers somatic cell embryogenic competence acquisition and transformation in plant regeneration. THE NEW PHYTOLOGIST 2024; 242:1172-1188. [PMID: 38501463 DOI: 10.1111/nph.19679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Somatic cell totipotency in plant regeneration represents the forefront of the compelling scientific puzzles and one of the most challenging problems in biology. How somatic embryogenic competence is achieved in regeneration remains elusive. Here, we discover uncharacterized organelle-based embryogenic differentiation processes of intracellular acquisition and intercellular transformation, and demonstrate the underlying regulatory system of somatic embryogenesis-associated lipid transfer protein (SELTP) and its interactor calmodulin1 (CAM1) in cotton as the pioneer crop for biotechnology application. The synergistic CAM1 and SELTP exhibit consistent dynamical amyloplast-plasmodesmata (PD) localization patterns but show opposite functional effects. CAM1 inhibits the effect of SELTP to regulate embryogenic differentiation for plant regeneration. It is noteworthy that callus grafting assay reflects intercellular trafficking of CAM1 through PD for embryogenic transformation. This work originally provides insight into the mechanisms responsible for embryogenic competence acquisition and transformation mediated by the Ca2+/CAM1-SELTP regulatory pathway, suggesting a principle for plant regeneration and cell/genetic engineering.
Collapse
Affiliation(s)
- Huihui Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xindi Tian
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianfei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhongyuan Gou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuxiao Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fan Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianjun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Guangyao Shan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
22
|
Castro-Camba R, Vielba JM, Rico S, Covelo P, Cernadas MJ, Vidal N, Sánchez C. Wounding-Related Signaling Is Integrated within the Auxin-Response Framework to Induce Adventitious Rooting in Chestnut. Genes (Basel) 2024; 15:388. [PMID: 38540447 PMCID: PMC10970416 DOI: 10.3390/genes15030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 06/14/2024] Open
Abstract
Wounding and exogenous auxin are needed to induce adventitious roots in chestnut microshoots. However, the specific inductive role of wounding has not been characterized in this species. In the present work, two main goals were established: First, we prompted to optimize exogenous auxin treatments to improve the overall health status of the shoots at the end of the rooting cycle. Second, we developed a time-series transcriptomic analysis to compare gene expression in response to wounding alone and wounding plus auxin, focusing on the early events within the first days after treatments. Results suggest that the expression of many genes involved in the rooting process is under direct or indirect control of both stimuli. However, specific levels of expression of relevant genes are only attained when both treatments are applied simultaneously, leading to the successful development of roots. In this sense, we have identified four transcription factors upregulated by auxin (CsLBD16, CsERF113, Cs22D and CsIAA6), with some of them also being induced by wounding. The highest expression levels of these genes occurred when wounding and auxin treatments were applied simultaneously, correlating with the rooting response of the shoots. The results of this work clarify the genetic nature of the wounding response in chestnut, its relation to adventitious rooting, and might be helpful in the development of more specific protocols for the vegetative propagation of this species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Conchi Sánchez
- Department of Plant Production, Misión Biológica de Galicia (CSIC), Avda de Vigo s/n, 15705 Santiago de Compostela, Spain; (R.C.-C.); (J.M.V.); (S.R.); (P.C.); (M.J.C.); (N.V.)
| |
Collapse
|
23
|
Chai LC, Alderson PG, Chin CF. Exogenous Cytokinin Induces Callus and Protocorm-Like-Bodies Formation in In Vitro Root Tips of Vanilla planifolia Andrews. Trop Life Sci Res 2024; 35:235-258. [PMID: 39262862 PMCID: PMC11383634 DOI: 10.21315/tlsr2024.35.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/01/2023] [Indexed: 09/13/2024] Open
Abstract
Vanilla is a popular flavouring essence derived from the pods of vanilla orchid plants. Due to the high demand for vanilla flavour, high yielding vanilla plantlets are necessary for establishing vanilla plantations. Clonal micropropagation is a viable technique for the mass production of high yielding vanilla plantlets. This study reports an efficient regeneration protocol by using cytokinin as the sole plant growth regulator to regenerate plantlets from the root tips of a commercial vanilla orchid species, Vanilla planifolia. Most studies to date have reported using seeds and nodes as starting explants for in vitro micropropagation of vanilla orchids. So far, regeneration from roots has not been very successful. Previous studies favoured the use of auxins only or high auxin to cytokinin ratios to induce callus, and sole cytokinins were used for direct shoot regeneration. However, it was sporadically observed in plantlets regeneration of V. planifolia that multiple shoots were regenerated from the tips of intact aerial roots submerged in media. This study therefore investigated the regeneration of excised vanilla root tips through the application of most commonly used auxins (1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid) and cytokinins (6-benzylaminopurine and thidiazuron). High auxin presence is known to promote callusing in in vitro plants. However, in this study, auxin treatment inhibits callusing in root tips. While cytokinin treatments, even at low levels, has promoted high rate of callusing. These callus cells regenerate into protocorm-like-body (PLB) shoots when cytokinin levels are increased to 0.5 mg/mL 6-benzylaminopurine (BAP) under light conditions. The findings of the study have the potential of providing large quantity of high yielding vanilla plantlets through clonal micropropagation.
Collapse
Affiliation(s)
- Li Chin Chai
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Peter G Alderson
- School of Biosciences, The University of Nottingham Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Chiew Foan Chin
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| |
Collapse
|
24
|
Li T, Shen T, Shi K, Zhang Y. Transcriptome analysis reveals the effect of propyl gallate on kiwifruit callus formation. PLANT CELL REPORTS 2024; 43:60. [PMID: 38334781 DOI: 10.1007/s00299-024-03140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024]
Abstract
KEY MESSAGE Exploring the potential action mechanisms of reactive oxygen species during the callus inducing, they can activate specific metabolic pathways in explants to regulate callus development. Reactive oxygen species (ROS) play an important role in the regulation of plant growth and development, but the mechanism of their action on plant callus formation remains to be elucidated. To address this question, kiwifruit was selected as the explant for callus induction, and the influence of ROS on callus formation was investigated by introducing propyl gallate (PG) as an antioxidant into the medium used for inducing callus. The results have unveiled that the inclusion of PG in the medium has disturbed the equilibrium of ROS during the formation of the kiwifruit callus. We selected the callus that was induced by the addition of 0.05 mmol/L PG to the MS medium. The callus exhibited a significant difference in the amount compared to the control medium without PG. The callus induced by the MS medium without PG was used as the control for comparison. KEGG enrichment indicated that PG exposure resulted in significant differences in gene expression in related pathways, such as phytohormone signaling and glutathione in kiwifruit callus. Weighted gene co-expression analysis indicated that the pertinent regulatory networks of both ROS and phytohormone signaling were critical for the establishment of callus in kiwifruit leaves. In addition, during the process of callus establishment, the ROS level of the explants was also closely related to the genes for transmembrane transport of substances, cell wall formation, and plant organ establishment. This investigation expands the theory of ROS-regulated callus formation and presents a new concept for the expeditious propagation of callus in kiwifruit.
Collapse
Affiliation(s)
- Tianyuan Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Tin Shen
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Kai Shi
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yunfeng Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China.
| |
Collapse
|
25
|
Liu J, Ke M, Sun Y, Niu S, Zhang W, Li Y. Epigenetic regulation and epigenetic memory resetting during plant rejuvenation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:733-745. [PMID: 37930766 DOI: 10.1093/jxb/erad435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Reversal of plant developmental status from the mature to the juvenile phase, thus leading to the restoration of the developmental potential, is referred to as plant rejuvenation. It involves multilayer regulation, including resetting gene expression patterns, chromatin remodeling, and histone modifications, eventually resulting in the restoration of juvenile characteristics. Although plants can be successfully rejuvenated using some forestry practices to restore juvenile morphology, physiology, and reproductive capabilities, studies on the epigenetic mechanisms underlying this process are in the nascent stage. This review provides an overview of the plant rejuvenation process and discusses the key epigenetic mechanisms involved in DNA methylation, histone modification, and chromatin remodeling in the process of rejuvenation, as well as the roles of small RNAs in this process. Additionally, we present new inquiries regarding the epigenetic regulation of plant rejuvenation, aiming to advance our understanding of rejuvenation in sexually and asexually propagated plants. Overall, we highlight the importance of epigenetic mechanisms in the regulation of plant rejuvenation, providing valuable insights into the complexity of this process.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Meng Ke
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
26
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Yemelyanov VV, Shishova MF. Plant Heterotrophic Cultures: No Food, No Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:277. [PMID: 38256830 PMCID: PMC10821431 DOI: 10.3390/plants13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are capable of uptaking exogenous organic substances. This inherited trait allows the development of heterotrophic cell cultures in various plants. The most common of them are Nicotiana tabacum and Arabidopsis thaliana. Plant cells are widely used in academic studies and as factories for valuable substance production. The repertoire of compounds supporting the heterotrophic growth of plant cells is limited. The best growth of cultures is ensured by oligosaccharides and their cleavage products. Primarily, these are sucrose, raffinose, glucose and fructose. Other molecules such as glycerol, carbonic acids, starch, and mannitol have the ability to support growth occasionally, or in combination with another substrate. Culture growth is accompanied by processes of specialization, such as elongation growth. This determines the pattern of the carbon budget. Culture ageing is closely linked to substrate depletion, changes in medium composition, and cell physiological rearrangements. A lack of substrate leads to starvation, which results in a decrease in physiological activity and the mobilization of resources, and finally in the loss of viability. The cause of the instability of cultivated cells may be the non-optimal metabolism under cultural conditions or the insufficiency of internal regulation.
Collapse
Affiliation(s)
- Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia;
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | | | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| |
Collapse
|
27
|
Pérez J, Hernández-Soto A, Abdelnour-Esquivel A, Vargas-Segura W, Watson-Guido W, Gatica-Arias A. In Vitro Gamma Mutagenesis Techniques in Rice (Oryza sativa L. var. Lazarroz FL). Methods Mol Biol 2024; 2788:243-255. [PMID: 38656518 DOI: 10.1007/978-1-0716-3782-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Gamma radiation (60Co)-induced mutagenesis offers an alternative to develop rice lines by accelerating the spontaneous mutation process and increasing the pool of allelic variants available for breeding. Ionizing radiation works by direct or indirect damage to DNA and subsequent mutations. The technique can take advantage of in vitro protocols to optimize resources and accelerate the development of traits. This is achieved by exposing mutants to a selection agent of interest in controlled conditions and evaluating large numbers of plants in reduced areas. This chapter describes the protocol for establishing gamma radiation dosimetry and in vitro protocols for optimization at the laboratory level using seeds as the starting material, followed by embryogenic cell cultures, somatic embryogenesis, and regeneration. The final product of the protocol is a genetically homogeneous population of Oryza sativa that can be evaluated for breeding against abiotic and biotic stresses.
Collapse
Affiliation(s)
- Jason Pérez
- Biotechnology Research Center, Biology School, Costa Rica Institute of Technology, Costa Rica, Cartago, Costa Rica.
| | - Alejandro Hernández-Soto
- Biotechnology Research Center, Biology School, Costa Rica Institute of Technology, Costa Rica, Cartago, Costa Rica
| | - Ana Abdelnour-Esquivel
- Biotechnology Research Center, Biology School, Costa Rica Institute of Technology, Costa Rica, Cartago, Costa Rica
| | - Walter Vargas-Segura
- Gamma Irradiation Laboratory, School of Physics, Costa Rica Institute of Technology, Costa Rica, Cartago, Costa Rica
| | - William Watson-Guido
- Biotechnology Research Center, Biology School, Costa Rica Institute of Technology, Costa Rica, Cartago, Costa Rica
| | - Andrés Gatica-Arias
- Laboratorio Biotecnología de Plantas, Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
28
|
Strieth D, Kollmen J, Stiefelmaier J, Mehring A, Ulber R. Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:83-117. [PMID: 38286901 DOI: 10.1007/10_2023_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.
Collapse
Affiliation(s)
- D Strieth
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - J Kollmen
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - J Stiefelmaier
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - A Mehring
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - R Ulber
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
29
|
Maschke RW, Seidel S, Rossi L, Eibl D, Eibl R. Disposable Bioreactors Used in Process Development and Production Processes with Plant Cell and Tissue Cultures. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:119-144. [PMID: 38538838 DOI: 10.1007/10_2024_249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The bioreactor is the centerpiece of the upstream processing in any biotechnological production process. Its design, the cultivation parameters, the production cell line, and the culture medium all have a major influence on the efficiency of the process and the result of the cultivation. Disposable bioreactors have been used for the past 20 years, playing a major role in process development and commercial production of high-value substances at medium scales.Our review deals with scalable, disposable bioreactors that have proven to be useful for the cultivation of plant cell and tissue cultures. Based on the definitions of terms and a categorization approach, the most commonly used, commercially available, disposable bioreactor types are presented below. The focus is on wave-mixed, stirred, and orbitally shaken bioreactors. In addition to their instrumentation and bioengineering characteristics, cultivation results are discussed, and emerging trends for the development of disposable bioreactors for plant cell and tissue cultures are also addressed.
Collapse
Affiliation(s)
- Rüdiger W Maschke
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Stefan Seidel
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland.
| | - Lia Rossi
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Dieter Eibl
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Regine Eibl
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| |
Collapse
|
30
|
Sale S, Subramaniam S, Mad’ Atari MF. Trends in the Tissue Culture Techniques and the Synthesis of Bioactive Compounds in Eurycoma longifolia Jack-Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 13:107. [PMID: 38202415 PMCID: PMC10780575 DOI: 10.3390/plants13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Over the last two decades, there has been a concerted effort by researchers to mass propagate Eurycoma longifolia and improve the yield of its very important and sought-after anti-cancer and aphrodisiac bioactive compounds. To achieve this, various techniques have been used to mass propagate and improve the yield of these bioactive compounds in tissue cultures. These techniques include the optimization of media conditions and application of various types and combinations of plant growth regulators (PGRs). In addition, some elicitation techniques have been used to improve the synthesis of these bioactive compounds. However, in comparison with other herbal species with similar economic importance, many techniques have not been applied to E. longifolia. Adopting the most recent methodologies would ensure efficiency and sustainability in the in vitro production of bioactive compounds in E. longifolia. Therefore, in this review, we present an up-to-date record on the success stories in the tissue culture techniques and synthesis of bioactive compounds. In addition, we attempted to identify some of the missing links on the road to the effective and sustainable biotechnological utilization of this super important biological resource.
Collapse
Affiliation(s)
- Sani Sale
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Department of Botany, Gombe State University, P.M.B 127, Gombe 760214, Nigeria
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas 11900, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology Universitas Airlangga, Surabaya 60115, Indonesia
| | | |
Collapse
|
31
|
Mok B, Jang YS, Moon JH, Moon S, Jang YK, Kim SY, Jang SJ, Moh SH, Kim DH, Shin JU. The Potential of Campanula takesimana Callus Extract to Enhance Skin Barrier Function. Int J Mol Sci 2023; 24:17333. [PMID: 38139162 PMCID: PMC10743976 DOI: 10.3390/ijms242417333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disease characterized by epidermal barrier dysfunction and Th2-skewed inflammation. Campanula takesimana (C. takesimana), a Korean endemic plant grown on Ulleng Island, has long been associated with a traditional alternative medicine for asthma, tonsillitis, and sore throat. In this study, we reported the effect of C. takesimana callus extract on upregulating epidermal barrier-related proteins dysregulated by Th2 cytokines. C. takesimana callus extract induced the expression of skin barrier proteins, such as filaggrin, claudin-1, and zonula occludens-1, in both human primary keratinocytes and Th2-induced AD-like skin-equivalent models. Additionally, RNA sequencing analysis demonstrated that C. takesimana callus extract partially restored Th2 cytokine-induced dysregulation of the epidermal development and lipid metabolic pathways. Considering the advantages of callus as a sustainable eco-friendly source of bioactive substances, and its effect on skin barrier proteins and lipid metabolic pathways, C. takesimana callus extracts can possibly be utilized to improve the integrity of the skin barrier.
Collapse
Affiliation(s)
- Boram Mok
- Department of Biomedical Science, CHA University School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Young Su Jang
- Department of Biomedical Science, CHA University School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Ji Hwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sujin Moon
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Yun Kyung Jang
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Soo Yun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sung Joo Jang
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Dong Hyun Kim
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Jung U Shin
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|
32
|
Ramakrishnan M, Zhou M, Ceasar SA, Ali DJ, Maharajan T, Vinod KK, Sharma A, Ahmad Z, Wei Q. Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos. PLANT CELL REPORTS 2023; 42:1845-1873. [PMID: 37792027 DOI: 10.1007/s00299-023-03071-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE This review discusses the epigenetic changes during somatic embryo (SE) development, highlights the genes and miRNAs involved in the transition of somatic cells into SEs as a result of epigenetic changes, and draws insights on biotechnological opportunities to study SE development. Somatic embryogenesis from somatic cells occurs in a series of steps. The transition of somatic cells into somatic embryos (SEs) is the most critical step under genetic and epigenetic regulations. Major regulatory genes such as SERK, WUS, BBM, FUS3/FUSA3, AGL15, and PKL, control SE steps and development by turning on and off other regulatory genes. Gene transcription profiles of somatic cells during SE development is the result of epigenetic changes, such as DNA and histone protein modifications, that control and decide the fate of SE formation. Depending on the type of somatic cells and the treatment with plant growth regulators, epigenetic changes take place dynamically. Either hypermethylation or hypomethylation of SE-related genes promotes the transition of somatic cells. For example, the reduced levels of DNA methylation of SERK and WUS promotes SE initiation. Histone modifications also promote SE induction by regulating SE-related genes in somatic cells. In addition, miRNAs contribute to the various stages of SE by regulating the expression of auxin signaling pathway genes (TIR1, AFB2, ARF6, and ARF8), transcription factors (CUC1 and CUC2), and growth-regulating factors (GRFs) involved in SE formation. These epigenetic and miRNA functions are unique and have the potential to regenerate bipolar structures from somatic cells when a pluripotent state is induced. However, an integrated overview of the key regulators involved in SE development and downstream processes is lacking. Therefore, this review discusses epigenetic modifications involved in SE development, SE-related genes and miRNAs associated with epigenetics, and common cis-regulatory elements in the promoters of SE-related genes. Finally, we highlight future biotechnological opportunities to alter epigenetic pathways using the genome editing tool and to study the transition mechanism of somatic cells.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
33
|
Islam MK, Mummadi ST, Liu S, Wei H. Regulation of regeneration in Arabidopsis thaliana. ABIOTECH 2023; 4:332-351. [PMID: 38106435 PMCID: PMC10721781 DOI: 10.1007/s42994-023-00121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023]
Abstract
We employed several algorithms with high efficacy to analyze the public transcriptomic data, aiming to identify key transcription factors (TFs) that regulate regeneration in Arabidopsis thaliana. Initially, we utilized CollaborativeNet, also known as TF-Cluster, to construct a collaborative network of all TFs, which was subsequently decomposed into many subnetworks using the Triple-Link and Compound Spring Embedder (CoSE) algorithms. Functional analysis of these subnetworks led to the identification of nine subnetworks closely associated with regeneration. We further applied principal component analysis and gene ontology (GO) enrichment analysis to reduce the subnetworks from nine to three, namely subnetworks 1, 12, and 17. Searching for TF-binding sites in the promoters of the co-expressed and co-regulated (CCGs) genes of all TFs in these three subnetworks and Triple-Gene Mutual Interaction analysis of TFs in these three subnetworks with the CCGs involved in regeneration enabled us to rank the TFs in each subnetwork. Finally, six potential candidate TFs-WOX9A, LEC2, PGA37, WIP5, PEI1, and AIL1 from subnetwork 1-were identified, and their roles in somatic embryogenesis (GO:0010262) and regeneration (GO:0031099) were discussed, so were the TFs in Subnetwork 12 and 17 associated with regeneration. The TFs identified were also assessed using the CIS-BP database and Expression Atlas. Our analyses suggest some novel TFs that may have regulatory roles in regeneration and embryogenesis and provide valuable data and insights into the regulatory mechanisms related to regeneration. The tools and the procedures used here are instrumental for analyzing high-throughput transcriptomic data and advancing our understanding of the regulation of various biological processes of interest. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00121-9.
Collapse
Affiliation(s)
- Md Khairul Islam
- Computational Science and Engineering Program, Michigan Technological University, Houghton, MI 49931 USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 USA
| | - Sai Teja Mummadi
- Computer Science, Michigan Technological University, Houghton, MI 49931 USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 USA
| | - Hairong Wei
- Computational Science and Engineering Program, Michigan Technological University, Houghton, MI 49931 USA
- Computer Science, Michigan Technological University, Houghton, MI 49931 USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 USA
| |
Collapse
|
34
|
Xavier LR, Corrêa CCG, da Paschoa RP, Vieira KDS, Pacheco DDR, Gomes LDES, Duncan BC, da Conceição LDS, Pinto VB, Santa-Catarina C, Silveira V. Time-Dependent Proteomic Signatures Associated with Embryogenic Callus Induction in Carica papaya L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3891. [PMID: 38005788 PMCID: PMC10675192 DOI: 10.3390/plants12223891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Sex segregation increases the cost of Carica papaya production through seed-based propagation. Therefore, in vitro techniques are an attractive option for clonal propagation, especially of hermaphroditic plants. Here, we performed a temporal analysis of the proteome of C. papaya calli aiming to identify the key players involved in embryogenic callus formation. Mature zygotic embryos used as explants were treated with 20 μM 2,4-dichlorophenoxyacetic acid to induce embryogenic callus. Total proteins were extracted from explants at 0 (zygotic embryo) and after 7, 14, and 21 days of induction. A total of 1407 proteins were identified using a bottom-up proteomic approach. The clustering analysis revealed four distinct patterns of protein accumulation throughout callus induction. Proteins related to seed maturation and storage are abundant in the explant before induction, decreasing as callus formation progresses. Carbohydrate and amino acid metabolisms, aerobic respiration, and protein catabolic processes were enriched throughout days of callus induction. Protein kinases associated with auxin responses, such as SKP1-like proteins 1B, accumulated in response to callus induction. Additionally, regulatory proteins, including histone deacetylase (HD2C) and argonaute 1 (AGO1), were more abundant at 7 days, suggesting their role in the acquisition of embryogenic competence. Predicted protein-protein networks revealed the regulatory role of proteins 14-3-3 accumulated during callus induction and the association of proteins involved in oxidative phosphorylation and hormone response. Our findings emphasize the modulation of the proteome during embryogenic callus initiation and identify regulatory proteins that might be involved in the activation of this process.
Collapse
Affiliation(s)
- Lucas Rodrigues Xavier
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Caio Cezar Guedes Corrêa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Roberta Pena da Paschoa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Karina da Silva Vieira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Daniel Dastan Rezabala Pacheco
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Lucas do Espirito Santo Gomes
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Bárbara Cardoso Duncan
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Laís dos Santos da Conceição
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| |
Collapse
|
35
|
Khan S, Khan T, Karim S, Zahoor M, Jan T, Khan MA, Nadhman A. Efficient regeneration of shoots and roots in graphene oxide and carbon nanotubes mediated callus cultures: A qualitative and quantitative study. INDUSTRIAL CROPS AND PRODUCTS 2023; 204:117262. [DOI: 10.1016/j.indcrop.2023.117262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
36
|
Li L, Sun X, Yu W, Gui M, Qiu Y, Tang M, Tian H, Liang G. Comparative transcriptome analysis of high- and low-embryogenic Hevea brasiliensis genotypes reveals involvement of phytohormones in somatic embryogenesis. BMC PLANT BIOLOGY 2023; 23:489. [PMID: 37828441 PMCID: PMC10571474 DOI: 10.1186/s12870-023-04432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Rubber plant (Hevea brasiliensis) is one of the major sources of latex. Somatic embryogenesis (SE) is a promising alterative to its propagation by grafting and seed. Phytohormones have been shown to influence SE in different plant species. However, limited knowledge is available on the role of phytohormones in SE in Hevea. The anther cultures of two Hevea genotypes (Yunyan 73477-YT and Reken 628-RT) with contrasting SE rate were established and four stages i.e., anthers (h), anther induced callus (y), callus differentiation state (f), and somatic embryos (p) were studied. UPLC-ESI-MS/MS and transcriptome analyses were used to study phytohormone accumulation and related expression changes in biosynthesis and signaling genes. RESULTS YT showed higher callus induction rate than RT. Of the two genotypes, only YT exhibited successful SE. Auxins, cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), gibberellins (GAs), and ethylene (ETH) were detected in the two genotypes. Indole-3-acetic acid (IAA), CKs, ABA, and ETH had notable differences in the studied stages of the two genotypes. The differentially expressed genes identified in treatment comparisons were majorly enriched in MAPK and phytohormone signaling, biosynthesis of secondary metabolites, and metabolic pathways. The expression changes in IAA, CK, ABA, and ETH biosynthesis and signaling genes confirmed the differential accumulation of respective phytohormones in the two genotypes. CONCLUSION These results suggest potential roles of phytohormones in SE in Hevea.
Collapse
Affiliation(s)
- Ling Li
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Xiaolong Sun
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Wencai Yu
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Mingchun Gui
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Yanfen Qiu
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Min Tang
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Hai Tian
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Guoping Liang
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China.
| |
Collapse
|
37
|
Hesami M, Pepe M, de Ronne M, Yoosefzadeh-Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Transcriptomic Profiling of Embryogenic and Non-Embryogenic Callus Provides New Insight into the Nature of Recalcitrance in Cannabis. Int J Mol Sci 2023; 24:14625. [PMID: 37834075 PMCID: PMC10572465 DOI: 10.3390/ijms241914625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop. A total of 6118 genes displayed significant differential expression, with 1850 genes downregulated and 1873 genes upregulated in embryogenic callus compared to non-embryogenic callus. Notably, 196 phytohormone-related genes exhibited distinctly different expression patterns in the calli types, highlighting the crucial role of plant growth regulator (PGRs) signaling in callus development. Furthermore, 42 classes of transcription factors demonstrated differential expressions among the callus types, suggesting their involvement in the regulation of callus development. The evaluation of epigenetic-related genes revealed the differential expression of 247 genes in all callus types. Notably, histone deacetylases, chromatin remodeling factors, and EMBRYONIC FLOWER 2 emerged as key epigenetic-related genes, displaying upregulation in embryogenic calli compared to non-embryogenic calli. Their upregulation correlated with the repression of embryogenesis-related genes, including LEC2, AGL15, and BBM, presumably inhibiting the transition from embryogenic callus to somatic embryogenesis. These findings underscore the significance of epigenetic regulation in determining the developmental fate of cannabis callus. Generally, our results provide comprehensive insights into gene expression dynamics and molecular mechanisms underlying the development of diverse cannabis calli. The observed repression of auxin-dependent pathway-related genes may contribute to the recalcitrant nature of cannabis, shedding light on the challenges associated with efficient cannabis tissue culture and regeneration protocols.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
| | | | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec, QC G1V 0A6, Canada
| | | |
Collapse
|
38
|
Li HZ, Wu H, Song KK, Zhao HH, Tang XY, Zhang XH, Wang D, Dong SL, Liu F, Wang J, Li ZC, Yang L, Xiang QZ. Transcriptome analysis revealed enrichment pathways and regulation of gene expression associated with somatic embryogenesis in Camellia sinensis. Sci Rep 2023; 13:15946. [PMID: 37743377 PMCID: PMC10518320 DOI: 10.1038/s41598-023-43355-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
The high frequency, stable somatic embryo system of tea has still not been established due to the limitations of its own characteristics and therefore severely restricts the genetic research and breeding process of tea plants. In this study, the transcriptome was used to illustrate the mechanisms of gene expression regulation in the somatic embryogenesis of tea plants. The number of DEGs for the (IS intermediate stage)_PS (preliminary stage), ES (embryoid stage)_IS and ES_PS stages were 109, 2848 and 1697, respectively. The enrichment analysis showed that carbohydrate metabolic processes were considerably enriched at the ES_IS stage and performed a key role in somatic embryogenesis, while enhanced light capture in photosystem I could provide the material basis for carbohydrates. The pathway analysis showed that the enriched pathways in IS_PS process were far less than those in ES_IS or ES_PS, and the photosynthesis and photosynthetic antenna protein pathway of DEGs in ES_IS or ES_PS stage were notably enriched and up-regulated. The key photosynthesis and photosynthesis antenna protein pathways and the Lhcb1 gene were discovered in tea plants somatic embryogenesis. These results were of great significance to clarify the mechanism of somatic embryogenesis and the breeding research of tea plants.
Collapse
Affiliation(s)
- Hao-Zhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui Wu
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, 5030, Gembloux 2, Belgium
| | - Kang-Kang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui-Hui Zhao
- Ri Zhao Cha Cang Tea Co. Ltd, Ri'zhao, 276800, China
| | - Xiao-Yan Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, He'fei, 230036, China
| | - Xiao-Hua Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Di Wang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Shao-Lin Dong
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Feng Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhong-Cong Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
39
|
Yan T, Hou Q, Wei X, Qi Y, Pu A, Wu S, An X, Wan X. Promoting genotype-independent plant transformation by manipulating developmental regulatory genes and/or using nanoparticles. PLANT CELL REPORTS 2023; 42:1395-1417. [PMID: 37311877 PMCID: PMC10447291 DOI: 10.1007/s00299-023-03037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.
Collapse
Affiliation(s)
- Tingwei Yan
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Quancan Hou
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Yuchen Qi
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Suowei Wu
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xueli An
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
40
|
Méndez-Hernández HA, Galaz-Ávalos RM, Quintana-Escobar AO, Pech-Hoil R, Collí-Rodríguez AM, Salas-Peraza IQ, Loyola-Vargas VM. In Vitro Conversion of Coffea spp. Somatic Embryos in SETIS™ Bioreactor System. PLANTS (BASEL, SWITZERLAND) 2023; 12:3055. [PMID: 37687302 PMCID: PMC10490467 DOI: 10.3390/plants12173055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Somatic embryogenesis (SE) is an excellent example of mass plant propagation. Due to its genetic variability and low somaclonal variation, coffee SE has become a model for in vitro propagation of woody species, as well as for large-scale production of vigorous plants that are advantageous to modern agriculture. The success of the large-scale propagation of an embryogenic system is dependent on the development, optimization, and transfer of complementary system technologies. In this study, two successful SE systems were combined with a SETIS™ bioreactor immersion system to develop an efficient and cost-effective approach for the in vitro development of somatic embryos of Coffea spp. This study used an efficient protocol for obtaining somatic embryos, utilizing direct and indirect SE for both C. canephora and C. arabica. Embryos in the cotyledonary stage were deposited in a bioreactor to complete their stage of development from embryo to plant with minimal manipulation. Following ten weeks of cultivation in the bioreactor, complete and vigorous plants were obtained. Different parameters such as fresh weight, length, number of leaves, and root length, as well as stomatal index and relative water content, were recorded. In addition, the survival rate and ex vitro development of plantlets during acclimatization was assessed. The best substrate combination was garden soil (GS), peat moss (PM), and agrolite (A) in a 1:1:0.5 ratio, in which the bioreactor-regenerated plants showed an acclimatization rate greater than 90%. This is the first report on the use of SETIS™ bioreactors for the in vitro development of somatic embryos in Coffea spp., providing a technology that could be utilized for the commercial in vitro propagation of coffee plants. A link between research and innovation is necessary to establish means of communication that facilitate technology transfer. This protocol can serve as a basis for the generation and scaling of different species of agroeconomic importance. However, other bottlenecks in the production chains and the field must be addressed.
Collapse
Affiliation(s)
- Hugo A. Méndez-Hernández
- Plant Biochemistry and Molecular Biology Unit, Yucatan Scientific Research Center, Street 43, No.130 x 32 y 34, Mérida 97205, Yucatán, Mexico; (H.A.M.-H.); (R.M.G.-Á.); (A.O.Q.-E.); (R.P.-H.)
| | - Rosa M. Galaz-Ávalos
- Plant Biochemistry and Molecular Biology Unit, Yucatan Scientific Research Center, Street 43, No.130 x 32 y 34, Mérida 97205, Yucatán, Mexico; (H.A.M.-H.); (R.M.G.-Á.); (A.O.Q.-E.); (R.P.-H.)
| | - Ana O. Quintana-Escobar
- Plant Biochemistry and Molecular Biology Unit, Yucatan Scientific Research Center, Street 43, No.130 x 32 y 34, Mérida 97205, Yucatán, Mexico; (H.A.M.-H.); (R.M.G.-Á.); (A.O.Q.-E.); (R.P.-H.)
| | - Rodolfo Pech-Hoil
- Plant Biochemistry and Molecular Biology Unit, Yucatan Scientific Research Center, Street 43, No.130 x 32 y 34, Mérida 97205, Yucatán, Mexico; (H.A.M.-H.); (R.M.G.-Á.); (A.O.Q.-E.); (R.P.-H.)
| | - Ana M. Collí-Rodríguez
- Yucatan Science and Technology Park, Carretera Sierra Papacal—Chuburna Puerto, Km. 5.5, Sierra Papacal 97302, Yucatán, Mexico; (A.M.C.-R.); (I.Q.S.-P.)
| | - Itzamná Q. Salas-Peraza
- Yucatan Science and Technology Park, Carretera Sierra Papacal—Chuburna Puerto, Km. 5.5, Sierra Papacal 97302, Yucatán, Mexico; (A.M.C.-R.); (I.Q.S.-P.)
| | - Víctor M. Loyola-Vargas
- Plant Biochemistry and Molecular Biology Unit, Yucatan Scientific Research Center, Street 43, No.130 x 32 y 34, Mérida 97205, Yucatán, Mexico; (H.A.M.-H.); (R.M.G.-Á.); (A.O.Q.-E.); (R.P.-H.)
| |
Collapse
|
41
|
Fehér A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli. Int J Mol Sci 2023; 24:13122. [PMID: 37685925 PMCID: PMC10488067 DOI: 10.3390/ijms241713122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In response to different degrees of mechanical injury, certain plant cells re-enter the division cycle to provide cells for tissue replenishment, tissue rejoining, de novo organ formation, and/or wound healing. The intermediate tissue formed by the dividing cells is called a callus. Callus formation can also be induced artificially in vitro by wounding and/or hormone (auxin and cytokinin) treatments. The callus tissue can be maintained in culture, providing starting material for de novo organ or embryo regeneration and thus serving as the basis for many plant biotechnology applications. Due to the biotechnological importance of callus cultures and the scientific interest in the developmental flexibility of somatic plant cells, the initial molecular steps of callus formation have been studied in detail. It was revealed that callus initiation can follow various ways, depending on the organ from which it develops and the inducer, but they converge on a seemingly identical tissue. It is not known, however, if callus is indeed a special tissue with a defined gene expression signature, whether it is a malformed meristem, or a mass of so-called "undifferentiated" cells, as is mostly believed. In this paper, I review the various mechanisms of plant regeneration that may converge on callus initiation. I discuss the role of plant hormones in the detour of callus formation from normal development. Finally, I compare various Arabidopsis gene expression datasets obtained a few days, two weeks, or several years after callus induction and identify 21 genes, including genes of key transcription factors controlling cell division and differentiation in meristematic regions, which were upregulated in all investigated callus samples. I summarize the information available on all 21 genes that point to the pre-meristematic nature of callus tissues underlying their wide regeneration potential.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, 62 Temesvári Körút, 6726 Szeged, Hungary; or
- Department of Plant Biology, University of Szeged, 52 Közép Fasor, 6726 Szeged, Hungary
| |
Collapse
|
42
|
Zaranek M, Pérez-Pérez R, Milewska-Hendel A, Betekhtin A, Grzebelus E. Promotive effect of phytosulfokine - peptide growth factor - on protoplast cultures development in Fagopyrum tataricum (L.) Gaertn. BMC PLANT BIOLOGY 2023; 23:385. [PMID: 37563739 PMCID: PMC10413615 DOI: 10.1186/s12870-023-04402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Fagopyrum tataricum (Tartary buckwheat) is a valuable crop of great nutritional importance due to its high level of bioactive compounds. Excellent opportunities to obtain plants with the high level or the desired profile of valuable metabolites may be provided by in vitro cultures. Among known in vitro techniques, protoplast technology is an exciting tool for genetic manipulation to improve crop traits. In that context, protoplast fusion may be applied to generate hybrid cells between different species of Fagopyrum. To apply protoplast cultures to the aforementioned approaches in this research, we established the protoplast-to-plant system in Tartary buckwheat. RESULTS In this work, cellulase and pectinase activity enabled protoplast isolation from non-morphogenic and morphogenic callus (MC), reaching, on average, 2.3 × 106 protoplasts per g of fresh weight. However, to release protoplasts from hypocotyls, the key step was the application of driselase in the enzyme mixture. We showed that colony formation could be induced after protoplast embedding in agarose compared to the alginate matrix. Protoplasts cultured in a medium based on Kao and Michayluk supplemented with phytosulfokine (PSK) rebuilt cell walls, underwent repeated mitotic division, formed aggregates, which consequently led to callus formation. Plating efficiency, expressing the number of cell aggregate formed, in 10-day-old protoplast cultures varied from 14% for morphogenic callus to 30% for hypocotyls used as a protoplast source. However plant regeneration via somatic embryogenesis and organogenesis occurred only during the cultivation of MC-derived protoplasts. CONCLUSIONS This study demonstrated that the applied protoplast isolation approach facilitated the recovery of viable protoplasts. Moreover, the embedding of protoplasts in an agarose matrix and supplementation of a culture medium with PSK effectively stimulated cell division and further development of Tartary buckwheat protoplast cultures along with the plant regeneration. Together, these results provide the first evidence of developing a protoplast-to-plant system from the MC of Fagopyrum tataricum used as source material. These findings suggest that Tartary buckwheat's protoplast cultures have potential implications for the species' somatic hybridization and genetic improvement.
Collapse
Affiliation(s)
- Magdalena Zaranek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Reneé Pérez-Pérez
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland.
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, 31-120, Poland.
| |
Collapse
|
43
|
Park JS, Choi Y, Jeong MG, Jeong YI, Han JH, Choi HK. Uncovering transcriptional reprogramming during callus development in soybean: insights and implications. FRONTIERS IN PLANT SCIENCE 2023; 14:1239917. [PMID: 37600197 PMCID: PMC10436568 DOI: 10.3389/fpls.2023.1239917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
Callus, a valuable tool in plant genetic engineering, originates from dedifferentiated cells. While transcriptional reprogramming during callus formation has been extensively studied in Arabidopsis thaliana, our knowledge of this process in other species, such as Glycine max, remains limited. To bridge this gap, our study focused on conducting a time-series transcriptome analysis of soybean callus cultured for various durations (0, 1, 7, 14, 28, and 42 days) on a callus induction medium following wounding with the attempt of identifying genes that play key roles during callus formation. As the result, we detected a total of 27,639 alterations in gene expression during callus formation, which could be categorized into eight distinct clusters. Gene ontology analysis revealed that genes associated with hormones, cell wall modification, and cell cycle underwent transcriptional reprogramming throughout callus formation. Furthermore, by scrutinizing the expression patterns of genes related to hormones, cell cycle, cell wall, and transcription factors, we discovered that auxin, cytokinin, and brassinosteroid signaling pathways activate genes involved in both root and shoot meristem development during callus formation. In summary, our transcriptome analysis provides significant insights into the molecular mechanisms governing callus formation in soybean. The information obtained from this study contributes to a deeper understanding of this intricate process and paves the way for further investigation in the field.
Collapse
Affiliation(s)
- Joo-Seok Park
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Yoram Choi
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Min-Gyun Jeong
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Yeong-Il Jeong
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Ji-Hyun Han
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Hong-Kyu Choi
- Department of Molecular Genetics, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
44
|
Galuszynski NC, Forbes RE, Rishworth GM, Potts AJ. Restoring South African subtropical succulent thicket using Portulacaria afra: exploring the rooting window hypothesis. PeerJ 2023; 11:e15538. [PMID: 37601260 PMCID: PMC10437031 DOI: 10.7717/peerj.15538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/21/2023] [Indexed: 08/22/2023] Open
Abstract
Drought prone, arid and semi-arid ecosystems are challenging to restore once degraded due to low levels of natural recruitment and survival of reintroduced plants. This is evident in the restoration of degraded succulent thicket habitats in the Albany Subtropical Thicket Biome located in South Africa. The current restoration practice for this ecosystem focuses predominantly on reintroducing Portulacaria afra L. Jacq., which is naturally dominant in terms of cover and biomass, but largely absent in regions degraded by domestic livestock. This has been achieved by planting unrooted cuttings with limited consideration of soil water availability in a drought-prone ecosystem. This study tests the effects of the timing of water availability after planting on the root development of P. afra cuttings. Cuttings were harvested from seven individual plants and grown in a glasshouse setting. Eighty four cuttings were taken from each individual, twelve for each of the seven watering treatments per individual plant. The treatments represented a time-staggered initial watering after planting, including: on the day of planting, 4 days, 7 days, 14 days, 21 days, and 28 days after planting. After 32 days, all treatments were watered on a bi-weekly basis for two weeks; a control treatment with no watering throughout the experiment was included. The proportion of rooted cuttings per treatment and dry root mass were determined at the end of the experimental period (day 42). The early onset of watering was associated with a higher percentage of rooting (X2(5) = 11.352, p = 0.045) and had a weak, but non-significant, impact on the final dry root mass (F5,36 = 2.109, p = 0.0631). Importantly, no clear rooting window within 28 days was detected as the majority of cuttings exhibited root development (greater than 50% of cuttings rooted for each individual parent-plant); this suggests that watering at the time of planting P. afra cuttings in-field for restoration may not be necessary. An unexpected, but important, result was that parent-plant identity had a strong interaction with the accumulation of root mass (F36,460 = 5.026, p < 0.001; LR7 = 122.99, p < 0.001). The control treatment, which had no water throughout the experiment, had no root development. These findings suggest that water availability is required for the onset of rooting in P. afra cutting. However, the duration of the experiment was insufficient to detect the point at which P. afra cuttings could no longer initiate rooting once exposed to soil moisture, and thus no rooting window could be defined. Despite harvesting material from the same source population, parent-plant identity strongly impacted root development. Further work is required to characterise the rooting window, and to explore the effect of parent-plant condition on in-field and experimental restoration results; we urge that experiments using P. afra closely track the parent-source at the individual level as this may be a factor that may have a major impact on results.
Collapse
Affiliation(s)
- Nicholas C. Galuszynski
- Spekboom Restoration Research Group, Nelson Mandela University, Gqeberha, South Africa
- Botany Department, Nelson Mandela University, Gqeberha, South Africa
| | - Ryan E. Forbes
- Centre for African Conservation Ecology, Zoology Department, Nelson Mandela University, Gqeberha, South Africa
| | - Gavin M. Rishworth
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
- Zoology Department, Nelson Mandela University, Gqeberha, South Africa
| | - Alastair J. Potts
- Spekboom Restoration Research Group, Nelson Mandela University, Gqeberha, South Africa
- Botany Department, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
45
|
Cho WK, Kim SY, Jang SJ, Lee S, Kim HI, Kim E, Lee JH, Choi SS, Moh SH. Comparative Analysis of Water Extracts from Roselle ( Hibiscus sabdariffa L.) Plants and Callus Cells: Constituents, Effects on Human Skin Cells, and Transcriptome Profiles. Int J Mol Sci 2023; 24:10853. [PMID: 37446030 DOI: 10.3390/ijms241310853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Roselle (Hibiscus sabdariffa L.) is a plant that has traditionally been used in various food and beverage products. Here, we investigated the potential of water extracts derived from Roselle leaves and callus cells for cosmetic and pharmaceutical purposes. We generated calluses from Roselle leaves and produced two different water extracts through heat extraction, which we named Hibiscus sabdariffa plant extract (HSPE) and Hibiscus sabdariffa callus extract (HSCE). HPLC analysis showed that the two extracts have different components, with nucleic acids and metabolites such as phenylalanine and tryptophan being the most common components in both extracts. In vitro assays demonstrated that HSCE has strong anti-melanogenic effects and functions for skin barrier and antioxidant activity. Transcriptome profiling of human skin cells treated with HSPE and HSCE showed significant differences, with HSPE having more effects on human skin cells. Up-regulated genes by HSPE function in angiogenesis, the oxidation-reduction process, and glycolysis, while up-regulated genes by HSCE encode ribosome proteins and IFI6, functioning in the healing of radiation-injured skin cells. Therefore, we suggest that the two extracts from Roselle should be applied differently for cosmetics and pharmaceutical purposes. Our findings demonstrate the potential of Roselle extracts as a natural source for skincare products.
Collapse
Affiliation(s)
- Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soo-Yun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sung Joo Jang
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sak Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Hye-In Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Euihyun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Jeong Hun Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, Seoul 04513, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| |
Collapse
|
46
|
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1132555. [PMID: 37457343 PMCID: PMC10339834 DOI: 10.3389/fpls.2023.1132555] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.
Collapse
Affiliation(s)
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Science, Sakarya, Türkiye
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
- Biology Program, Institute of Pure and Applied Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Bestenur Yalcin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Türkiye
| | - Aysegul Erdogan
- Application and Research Centre for Testing and Analysis, EGE MATAL, Chromatography and Spectroscopy Laboratory, Ege University, Izmir, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
47
|
Godel-Jędrychowska K, Milewska-Hendel A, Sala K, Barański R, Kurczyńska E. The Impact of Gold Nanoparticles on Somatic Embryogenesis Using the Example of Arabidopsis thaliana. Int J Mol Sci 2023; 24:10356. [PMID: 37373504 DOI: 10.3390/ijms241210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Although the influence of nanoparticles (NPs) on developmental processes is better understood, little is known about their impact on somatic embryogenesis (SE). This process involves changes in the direction of cell differentiation. Thus, studying the effect of NPs on SE is essential to reveal their impact on cell fate. This study aimed to examine the influence of gold nanoparticles (Au NPs) with different surface charges on the SE of 35S:BBM Arabidopsis thaliana, with particular emphasis on the spatiotemporal localization of pectic arabinogalactan proteins (AGPs) and extensin epitopes in cells changing the direction of their differentiation. The results show that under the influence of nanoparticles, the explant cells of 35S:BBM Arabidopsis thaliana seedling origin did not enter the path of SE. Bulges and the formation of organ-like structures were observed in these explants, in contrast to the control, where somatic embryos developed. Additionally, spatiotemporal changes in the chemical composition of the cell walls during the culture were observed. Under the influence of Au NPs, the following effects were observed: (1) explant cells did not enter the SE pathway, (2) the impacts of Au NPs with different surface charges on the explants were variable, and (3) the compositions of the analyzed pectic AGPs and extensin epitopes were diverse in the cells with different developmental programs: SE (control) and non-SE (treated with Au NPs).
Collapse
Affiliation(s)
- Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Katarzyna Sala
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Rafał Barański
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-130 Kraków, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
48
|
Capriotti L, Ricci A, Molesini B, Mezzetti B, Pandolfini T, Piunti I, Sabbadini S. Efficient protocol of de novo shoot organogenesis from somatic embryos for grapevine genetic transformation. FRONTIERS IN PLANT SCIENCE 2023; 14:1172758. [PMID: 37324663 PMCID: PMC10264588 DOI: 10.3389/fpls.2023.1172758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Plant genetic transformation is a powerful tool that can facilitate breeding programs for disease tolerance, abiotic stress, fruit production, and quality by preserving the characteristics of fruit tree elite genotypes. However, most grapevine cultivars worldwide are considered recalcitrant, and most available genetic transformation protocols involve regeneration by somatic embryogenesis, which often requires the continuous production of new embryogenic calli. Cotyledons and hypocotyls derived from flower-induced somatic embryos of the Vitis vinifera cultivars Ancellotta and Lambrusco Salamino, in comparison with the model cultivar Thompson Seedless, are here validated for the first time as starting explants for in vitro regeneration and transformation trials. Explants were cultured on two different MS-based culture media, one having a combination of 4.4 µM BAP and 0.49 µM IBA (M1), and the other only supplemented with 13.2 µM BAP (M2). The competence to regenerate adventitious shoots was higher in cotyledons than in hypocotyls on both M1 and M2. M2 medium increased significantly the average number of shoots only in Thompson Seedless somatic embryo-derived explants. This efficient regeneration strategy, that proposes a combination of somatic embryogenesis and organogenesis, has been successfully exploited in genetic engineering experiments. Ancellotta and Lambrusco Salamino cotyledons and hypocotyls produced the highest number of calli expressing eGFP when cultured on M2 medium, while for Thompson Seedless both media tested were highly efficient. The regeneration of independent transgenic lines of Thompson Seedless was observed from cotyledons cultured on both M1 and M2 with a transformation efficiency of 12 and 14%, respectively, and from hypocotyls on M1 and M2 with a transformation efficiency of 6 and 12%, respectively. A single eGFP fluorescent adventitious shoot derived from cotyledons cultured on M2 was obtained for Ancellotta, while Lambrusco Salamino showed no regeneration of transformed shoots. In a second set of experiments, using Thompson Seedless as the model cultivar, we observed that the highest number of transformed shoots was obtained from cotyledons explants, followed by hypocotyls and meristematic bulk slices, confirming the high regeneration/transformation competences of somatic embryo-derived cotyledons. The independent transformed shoots obtained from the cultivars Thompson Seedless and Ancellotta were successfully acclimatized in the greenhouse and showed a true-to-type phenotype. The novel in vitro regeneration and genetic transformation protocols optimized in this study will be useful for the application of new and emerging modern biotechnologies also to other recalcitrant grapevine genotypes.
Collapse
Affiliation(s)
- Luca Capriotti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Angela Ricci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Barbara Molesini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - Irene Piunti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
49
|
Kurczynska E, Godel-Jędrychowska K. Apoplastic and Symplasmic Markers of Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1951. [PMID: 37653868 PMCID: PMC10224393 DOI: 10.3390/plants12101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Somatic embryogenesis (SE) is a process that scientists have been trying to understand for many years because, on the one hand, it is a manifestation of the totipotency of plant cells, so it enables the study of the mechanisms regulating this process, and, on the other hand, it is an important method of plant propagation. Using SE in basic research and in practice is invaluable. This article describes the latest, but also historical, information on changes in the chemical composition of the cell wall during the transition of cells from the somatic to embryogenic state, and the importance of symplasmic communication during SE. Among wall chemical components, different pectic, AGP, extensin epitopes, and lipid transfer proteins have been discussed as potential apoplastic markers of explant cells during the acquisition of embryogenic competence. The role of symplasmic communication/isolation during SE has also been discussed, paying particular attention to the formation of symplasmic domains within and between cells that carry out different developmental processes. Information about the number and functionality of plasmodesmata (PD) and callose deposition as the main player in symplasmic isolation has also been presented.
Collapse
Affiliation(s)
- Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
50
|
Liang T, Hu Y, Xi N, Zhang M, Zou C, Ge F, Yuan G, Gao S, Zhang S, Pan G, Ma L, Lübberstedt T, Shen Y. GWAS across multiple environments and WGCNA suggest the involvement of ZmARF23 in embryonic callus induction from immature maize embryos. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:93. [PMID: 37010631 DOI: 10.1007/s00122-023-04341-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Combined GWAS, WGCNA, and gene-based association studies identified the co-expression network and hub genes for maize EC induction. ZmARF23 bound to ZmSAUR15 promoter and regulated its expression, affecting EC induction. Embryonic callus (EC) induction in immature maize embryos shows high genotype dependence, which limits the application of genetic transformation in transgenic breeding and gene function elucidation in maize. Herein, we conducted a genome-wide association mapping (GWAS) for four EC induction-related traits, namely rate of embryonic callus induction (REC), increased callus diameter (ICD), ratio of shoot formation (RSF), and length of shoot (LS) across different environments. A total of 77 SNPs were significantly associated these traits under three environments and using the averages (across environments). Among these significant SNPs, five were simultaneously detected under multiple environments and 11 had respective phenotypic variation explained > 10%. A total of 257 genes were located in the linkage disequilibrium decay of these REC- and ICD-associated SNPs, of which 178 were responsive to EC induction. According to the expression values of the 178 genes, we performed a weighted gene co-expression network analysis (WGCNA) and revealed an EC induction-associated module and five hub genes. Hub gene-based association studies uncovered that the intragenic variations in GRMZM2G105473 and ZmARF23 influenced EC induction efficiency among different maize lines. Dual-luciferase reporter assay indicated that ZmARF23 bound to the promoter of a known causal gene (ZmSAUR15) for EC induction and positively regulated its expression on the transcription level. Our study will deepen the understanding of genetic and molecular mechanisms underlying EC induction and contribute to the use of genetic transformation in maize.
Collapse
Affiliation(s)
- Tianhu Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Yibin Academy of Agricultural Sciences, Yibin, 644600, China
| | - Na Xi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Ge
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suzhi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|