1
|
Wu L, Chen X, Lin J, Lin H, Liao N, Li C, Hu Y, Sun Y. Study on dynamic alterations of volatile organic compounds reveals aroma development over enzymatic-catalyzed process of Tieguanyin oolong tea production. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100227. [PMID: 39497732 PMCID: PMC11533622 DOI: 10.1016/j.fochms.2024.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024]
Abstract
To elucidate the formation of characteristic aroma over enzymatic-catalyzed processes (ECP), GC-MS-based volatile-metabolomic combined with desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) were employed to analyze the changes of volatile organic compounds (VOCs) in Tieguanyin tea. A total of 579 VOCs were obtained, from which 24 components involved in five pathways were identified as biomarkers. Among these, four VOCs including 2-furancarboxylic acid, 4-methylbenzaldehyde, N-benzylformamide, cuminaldehyde, were detected in both DESI-MSI and GC-MS analysis, exhibiting dynamic changes along processing steps. RNA-sequencing analysis indicated the genes referring to stress response were activated during tea processing, facilitating the accumulation of flora-fruity aroma in tea leaf. Metabolic pathways analysis revealed that the increase in floral-fruity related components such as volatile terpenoids, phenylpropanoids/benzenoids, indole, alongside a decrease in green leaf volatiles including (E)-2-Hexenal, (Z)-3-Hexenol, played a crucial role in development of characteristic aroma, which could be a feasible index for evaluating processing techniques or quality of oolong tea.
Collapse
Affiliation(s)
- Liangyu Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Xiaolan Chen
- Anxi Tiekuanyin Group, 1 Wulipo, Guanqiao Town, Anxi County 362441, PR China
| | - Jiaqi Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Hongzheng Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Ningkai Liao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Chenxue Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Yunfei Hu
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, 788 East Second Ring Road, Anxi 362300, PR China
| | - Yun Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| |
Collapse
|
2
|
Shen L, Zhang L, Jin J, Jin Z, Li Z, Wu L, Cheng K, Xu D, Liu H. The phototoxicity of sulfamethoxazole stress on pakchoi cabbage (Brassica rapa var. chinensis) seedlings: From the perspective of photoreaction and omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175391. [PMID: 39122040 DOI: 10.1016/j.scitotenv.2024.175391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The increasing use of antibiotics has attracted widespread attention to their environmental risks. However, the phototoxicity of sulfonamide antibiotics to plants remain unclear. In this study, the mechanism of the effect of sulfamethoxazole on photosynthesis of pakchoi cabbage (Brassica rapa var. chinensis) was investigated. The results showed that sulfamethoxazole inhibited the growth of pakchoi cabbage and produced photosynthetic toxicity. The growth inhibition rates increased with concentration, the root and shoot weight were 76.02 % and 47.04 % of the control, respectively, with stay-greens phenomenon in 4 mg·L-1 sulfamethoxazole treatment. Chlorophyll precursors (protoporphyrin IX (Proto IX), Mg-proto IX, and protochlorophyllide (Pchlide), 5-aminolevulinic acid (ALA), and porphobilinogen (PBG)) were 1.38-, 1.26-, 1.12-, 1.71-, and 0.96-fold of the control, respectively; photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoids) were 1.26-, 1.39-, and 1.03-fold of the control, respectively. Respiration rate was 271.42 % of the control, whereas the net photosynthetic rate was 50.50 % of the control. The maximum photochemical quantum yield of PSII (Fv/Fm), the actual photosynthetic efficiency (Y(II)), the quantum yield of non-regulated energy dissipation (Y(NO)), the apparent electron transfer efficiency of PSII (ETR) under actual light intensity were affected, and chloroplast swelling was observed. Proteomic analysis showed that photosynthesis-related pathways were significantly up-regulated, biological processes such as light response, carbohydrates, and reactive oxygen species were activated. Metabolomic analysis revealed that the tricarboxylic acid cycle (TCA cycle) and carbohydrate catabolism were stimulated significantly (p < 0.05), sugars and amino acids were increased to regulate and enhance the resilience of photosynthesis. While folate biosynthesis and ribosomal pathways were significantly down-regulated, the synthesis and translation processes of amino acids and nucleotides were inhibited.
Collapse
Affiliation(s)
- Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Liangyu Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Jiaojun Jin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ziting Jin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Lidan Wu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Kaiming Cheng
- School of Statistics and Mathematics, Collaborative Innovation Center of Statistical Data Engineering, Technology & Application, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
3
|
Aubert M, Clouet V, Guilbaud F, Berardocco S, Marnet N, Bouchereau A, Dellero Y. Sink-source driven metabolic acclimation of winter oilseed rape leaves (Brassica napus L.) to drought. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154377. [PMID: 39522458 DOI: 10.1016/j.jplph.2024.154377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The crop cycle of winter oilseed rape (WOSR) incorporates source-to-sink remobilisation during the vegetative stage as a principal factor influencing the ultimate seed yield. These processes are supported by the coordinated activity of the plant's central metabolism. However, climate change-induced drought will affect the metabolic acclimation of WOSR sink/source relationships at this vegetative stage, with consequences that remain to be determined. In this study, we subjected WOSR to severe soil dehydration for 18 days and analysed the physiological and metabolic acclimation of sink and source leaves along the kinetics in combination with measurements of enzymatic activities and transcript levels. Overall, the acclimation of WOSR to drought led to subtle regulations of central metabolism in relation to leaf growth and Pro-induced osmotic adjustment. Notably, sink leaves drastically reduced their growth and transiently accumulated starch. Subsequent starch degradation correlated with the induction of beta-amylases, sucrose transporters, pyrroline-5-carboxylate synthases and proline accumulation. The functioning of the tricarboxylic acid cycle was also altered in sink leaves, as evidenced by variations in citrate, malate and associated enzymatic activities. The metabolic origin of Pro in sink leaves is discussed in relation to Pro accumulation in source leaves and the up-regulation of amino acid permease 1 and glutamine synthetase genes.
Collapse
Affiliation(s)
- Mathieu Aubert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France.
| | - Vanessa Clouet
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France.
| | - Florian Guilbaud
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France.
| | - Solenne Berardocco
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, France.
| | - Nathalie Marnet
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, France.
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France; Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, France.
| | - Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France; Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, France.
| |
Collapse
|
4
|
Rodrigues BJS, de Moura Silva IA, Dos Santos Silva M, Posso DA, Hüther CM, do Amarante L, Bacarin MA, Borella J. Clomazone exposure-driven photosynthetic responses plasticity of Pontederia crassipes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61220-61235. [PMID: 39412716 DOI: 10.1007/s11356-024-35319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Clomazone is known to contaminate aquatic environments and have a negative impact on macrophytes. However, recent reports suggests that Pontederia crassipes Mart. can withstand clomazone exposure while maintaining growth rates. We hypothesized that this maintenance of growth is supported by photosynthetic plasticity of old leaves (developed before herbicide application), while new leaves (developed after application) exhibit phytotoxic symptoms. To investigate, two experiments were conducted with doses ranging from 0.1 mg L-1 to 0.5 mg L-1 plus untreated controls. Various parameters were measured in old and new leaves over 7, 12, and 15 d post-application, including visual symptoms, chlorophyll index, photosynthetic pigments, chlorophyll fluorescence, gas exchange, glycolate oxidase activity, carbohydrate content, leaf epidermis anatomy, and growth parameters. Clomazone exposure induced chlorosis, particularly in new leaves across all doses. These visual symptoms were accompanied by stomatal closure, restricting gas exchange and CO2 fixation, leading to reduced photosynthetic rates and carbohydrate synthesis. However, clomazone did not affect old leaves, which maintained photosynthetic activity, sustaining essential metabolic processes of the plant, including reproductive functions. By ensuring high reproductive rates and metabolic continuity, old leaves supported the species' persistence despite clomazone presence.
Collapse
Affiliation(s)
| | - Igor Alexander de Moura Silva
- Institute of Biological Sciences, Federal University of Rio Grande (FURG), C.P. 474, Rio Grande, RS, 96203-900, Brazil
| | - Marcelo Dos Santos Silva
- Department of Botany, Federal University of Pelotas (UFPel), C.P. 354, Pelotas, RS, 96160-000, Brazil
| | - Douglas Antonio Posso
- Department of Botany, Federal University of Pelotas (UFPel), C.P. 354, Pelotas, RS, 96160-000, Brazil
| | - Cristina Moll Hüther
- Department of Agricultural and Environmental Engineering, Federal Fluminense University (UFF), C.P. 156, Niterói, RJ, 24210-240, Brazil
| | - Luciano do Amarante
- Department of Botany, Federal University of Pelotas (UFPel), C.P. 354, Pelotas, RS, 96160-000, Brazil
| | - Marcos Antonio Bacarin
- Department of Botany, Federal University of Pelotas (UFPel), C.P. 354, Pelotas, RS, 96160-000, Brazil
| | - Junior Borella
- Department of Botany, Federal University of Pelotas (UFPel), C.P. 354, Pelotas, RS, 96160-000, Brazil.
- Institute of Biological Sciences, Federal University of Rio Grande (FURG), C.P. 474, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
5
|
Su Y, Chen YL, Wu YL, Fan XW, Li YZ. Three cassava A20/AN1 family genes, Metip3 (5, and 7), can bestow on tolerance of plants to multiple abiotic stresses but show functional convergence and divergence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112163. [PMID: 38880339 DOI: 10.1016/j.plantsci.2024.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
A20/AN1 zinc-finger domain-containing genes are very promising candidates in improving plant tolerance to abiotic stresses, but considerably less is known about functions and mechanisms for many of them. In this study, Metip3 (5, and 7), cassava (Manihot esculenta) A20/AN1 genes carrying one A20 domain and one AN1 domain, were functionally characterized at different layers. Metip3 (5, and 7) proteins were all located in the nucleus. No interactions were found between these three proteins. Metip3 (5, and 7)-expressing Arabidopsis was more tolerant to multiple abiotic stresses by Na, Cd, Mn, Al, drought, high temperature, and low temperature. Metip3- and Metip5-expressing Arabidopsis was sensitive to Cu stress, while Metip7-expressing Arabidopsis was insensitive. The H2O2 production significantly decreased in all transgenic Arabidopsis, however, O2·- production significantly decreased in Metip3- and Metip5-expressing Arabidopsis but did not significantly changed in Metip7-expressing Arabidopsis under drought. Metip3 (5, and 7) expression-silenced cassava showed the decreased tolerance to drought and NaCl, presented significant decreases in superoxide dismutase and catalase activities and proline content, and displayed a significant increase in malondialdehyde content under drought. Taken together with transcriptome sequencing analysis, it is suggested that Metip5 gene can not only affect signal transduction related to plant hormone, mitogen activated protein kinases, and starch and sucrose metabolism, DRE-binding transcription factors, and antioxidants, conferring the drought tolerance, but also might deliver the signals from DREB2A INTERACTING PROTEIN1, E3 ubiquitin-protein ligases to proteasome, leading to the drought intolerance. The results are informative not only for further study on evolution of A20/AN1 genes but also for development of climate resilient crops.
Collapse
Affiliation(s)
- Ying Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yu-Lan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan-Liu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
6
|
Berndsen CE, Storm AR, Sardelli AM, Hossain SR, Clermont KR, McFather LM, Connor MA, Monroe JD. The pseudoenzyme β-amylase9 from Arabidopsis binds to and enhances the activity of α-amylase3: A possible mechanism to promote stress-induced starch degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607052. [PMID: 39149391 PMCID: PMC11326238 DOI: 10.1101/2024.08.07.607052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Starch accumulation in plant tissues provides an important carbon source at night and for regrowth after periods of dormancy and in times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents an interesting series of questions on how starch degradation is regulated. Plants lacking one of these catalytically inactive β-amylases, BAM9, were shown to have enhanced starch accumulation when combined with mutations in BAM1 and BAM3, the primary starch degrading BAMs in response to stress and at night, respectively. Importantly, BAM9 has been reported to be transcriptionally induced by stress through activation of SnRK1. Using yeast two-hybrid experiments, we identified the plastid-localized AMY3 as a potential interaction partner for BAM9. We found that BAM9 interacted with AMY3 in vitro and that BAM9 enhances AMY3 activity 3-fold. Modeling of the AMY3-BAM9 complex revealed a previously undescribed N-terminal structural feature in AMY3 that we call the alpha-alpha hairpin that could serve as a potential interaction site. Additionally, AMY3 lacking the alpha-alpha hairpin is unaffected by BAM9. Structural analysis of AMY3 showed that it can form a homodimer in solution and that BAM9 appears to replace one of the AMY3 monomers to form a heterodimer. Collectively these data suggest that BAM9 is a pseudoamylase that activates AMY3 in response to cellular stress, possibly facilitating starch degradation to provide an additional energy source for stress recovery.
Collapse
Affiliation(s)
| | - Amanda R. Storm
- Department of Biology, Western Carolina University, Cullowhee, NC 28723
| | - Angelina M. Sardelli
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807
| | - Sheikh R. Hossain
- Department of Biology, James Madison University, Harrisonburg, VA 22807
| | | | - Luke M. McFather
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807
| | - Mafe A. Connor
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807
| | - Jonathan D. Monroe
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807
- Department of Biology, James Madison University, Harrisonburg, VA 22807
| |
Collapse
|
7
|
Zou W, Yu Q, Ma Y, Sun G, Feng X, Ge L. Pivotal role of heterotrimeric G protein in the crosstalk between sugar signaling and abiotic stress response in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108567. [PMID: 38554538 DOI: 10.1016/j.plaphy.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Heterotrimeric G-proteins are key modulators of multiple signaling and developmental pathways in plants, in which they act as molecular switches to engage in transmitting various stimuli signals from outside into the cells. Substantial studies have identified G proteins as essential components of the organismal response to abiotic stress, leading to adaptation and survival in plants. Meanwhile, sugars are also well acknowledged key players in stress perception, signaling, and gene expression regulation. Connections between the two significant signaling pathways in stress response are of interest to a general audience in plant biology. In this article, advances unraveling a pivotal role of G proteins in the process of sugar signals outside the cells being translated into the operation of autophagy in cells during stress are reviewed. In addition, we have presented recent findings on G proteins regulating the response to drought, salt, alkali, cold, heat and other abiotic stresses. Perspectives on G-protein research are also provided in the end. Since G protein signaling regulates many agronomic traits, elucidation of detailed mechanism of the related pathways would provide useful insights for the breeding of abiotic stress resistant and high-yield crops.
Collapse
Affiliation(s)
- Wenjiao Zou
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qian Yu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guoning Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Ge
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, 257300, China.
| |
Collapse
|
8
|
Zhao Y, Wang Z, Yan Z, Moon M, Yang D, Meng L, Bucher SF, Wang J, Song G, Guo Z, Su Y, Wu J. Exploring the role of biotic factors in regulating the spatial variability in land surface phenology across four temperate forest sites. THE NEW PHYTOLOGIST 2024. [PMID: 38572888 DOI: 10.1111/nph.19684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Land surface phenology (LSP), the characterization of plant phenology with satellite data, is essential for understanding the effects of climate change on ecosystem functions. Considerable LSP variation is observed within local landscapes, and the role of biotic factors in regulating such variation remains underexplored. In this study, we selected four National Ecological Observatory Network terrestrial sites with minor topographic relief to investigate how biotic factors regulate intra-site LSP variability. We utilized plant functional type (PFT) maps, functional traits, and LSP data to assess the explanatory power of biotic factors for the start and end of season (SOS and EOS) variability. Our results indicate that PFTs alone explain only 0.8-23.4% of intra-site SOS and EOS variation, whereas including functional traits significantly improves explanatory power, with cross-validation correlations ranging from 0.50 to 0.85. While functional traits exhibited diverse effects on SOS and EOS across different sites, traits related to competitive ability and productivity were important for explaining both SOS and EOS variation at these sites. These findings reveal that plants exhibit diverse phenological responses to comparable environmental conditions, and functional traits significantly contribute to intra-site LSP variability, highlighting the importance of intrinsic biotic properties in regulating plant phenology.
Collapse
Affiliation(s)
- Yingyi Zhao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhihui Wang
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zhengbing Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Minkyu Moon
- Department of Earth and Environment, Boston University, Boston, MA, 02215, USA
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Dedi Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Lin Meng
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Solveig Franziska Bucher
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Department of Plant Biodiversity, Friedrich Schiller University Jena, Jena, D-07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, D-04103, Germany
| | - Jing Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 510006, Guangdong, China
| | - Guangqin Song
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhengfei Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yanjun Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
9
|
Tuomainen TV, Toljamo A, Kokko H, Nissi MJ. Non-invasive assessment and visualization of Phytophthora cactorum infection in strawberry crowns using quantitative magnetic resonance imaging. Sci Rep 2024; 14:2129. [PMID: 38267614 PMCID: PMC10808117 DOI: 10.1038/s41598-024-52520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Phytophthora cactorum is an oomycete species that causes enormous losses on horticultural crops, including strawberries. The purpose of this work was to investigate the alterations caused by P. cactorum inoculation in hydroponically grown strawberry plantlets (Fragaria × ananassa Duch.) using quantitative magnetic resonance imaging (qMRI). It was observed that with MRI, spatial and temporal progression of the infection could be observed in the crown using quantitative MR parameters, namely relaxation time maps. Relaxation times are numeric subject-specific properties that describe the MR signal behavior in an examined anatomical region. Elevated [Formula: see text] relaxation time values were observed inside the infected plant crowns with respect to the healthy references. The [Formula: see text] and [Formula: see text] values of healthy plants were small in the crown region and further diminished during the development of the plant. Furthermore, elevated [Formula: see text] relaxation time values were seen in regions where P. cactorum progression was observed in corresponding plant dissection photographs. Quantitative susceptibility maps (QSM) were calculated to estimate the local magnetic field inhomogeneities. The QSM suggests magnetic susceptibility differences near the center of the pith. This study provides novel non-invasive information on the structure and development of strawberry plants and the effects caused by the P. cactorum infection.
Collapse
Affiliation(s)
- Teemu Valtteri Tuomainen
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 8, 70210, Kuopio, Finland
| | - Anna Toljamo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 8, 70210, Kuopio, Finland
| | - Harri Kokko
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 8, 70210, Kuopio, Finland
| | - Mikko Johannes Nissi
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 8, 70210, Kuopio, Finland.
| |
Collapse
|
10
|
Gollan PJ, Grebe S, Roling L, Grimm B, Spetea C, Aro E. Photosynthetic and transcriptome responses to fluctuating light in Arabidopsis thylakoid ion transport triple mutant. PLANT DIRECT 2023; 7:e534. [PMID: 37886682 PMCID: PMC10598627 DOI: 10.1002/pld3.534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Fluctuating light intensity challenges fluent photosynthetic electron transport in plants, inducing photoprotection while diminishing carbon assimilation and growth, and also influencing photosynthetic signaling for regulation of gene expression. Here, we employed in vivo chlorophyll-a fluorescence and P700 difference absorption measurements to demonstrate the enhancement of photoprotective energy dissipation of both photosystems in wild-type Arabidopsis thaliana after 6 h exposure to fluctuating light as compared with constant light conditions. This acclimation response to fluctuating light was hampered in a triple mutant lacking the thylakoid ion transport proteins KEA3, VCCN1, and CLCe, leading to photoinhibition of photosystem I. Transcriptome analysis revealed upregulation of genes involved in biotic stress and defense responses in both genotypes after exposure to fluctuating as compared with constant light, yet these responses were demonstrated to be largely upregulated in triple mutant already under constant light conditions compared with wild type. The current study illustrates the rapid acclimation of plants to fluctuating light, including photosynthetic, transcriptomic, and metabolic adjustments, and highlights the connection among thylakoid ion transport, photosynthetic energy balance, and cell signaling.
Collapse
Affiliation(s)
- Peter J. Gollan
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Steffen Grebe
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS)University of HelsinkiHelsinkiFinland
| | - Lena Roling
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Cornelia Spetea
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Eva‐Mari Aro
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
11
|
de Sousa GF, Silva MA, de Carvalho MR, de Morais EG, Benevenute PAN, Van Opbergen GAZ, Van Opbergen GGAZ, Guilherme LRG. Foliar Selenium Application to Reduce the Induced-Drought Stress Effects in Coffee Seedlings: Induced Priming or Alleviation Effect? PLANTS (BASEL, SWITZERLAND) 2023; 12:3026. [PMID: 37687273 PMCID: PMC10490047 DOI: 10.3390/plants12173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
This study aimed to investigate the role of Se supply in improving osmotic stress tolerance in coffee seedlings while also evaluating the best timing for Se application. Five times of Se foliar application were assessed during induced osmotic stress with PEG-6000 using the day of imposing stress as a default, plus two control treatments: with osmotic stress and without Se, and without osmotic stress and Se. Results demonstrated that osmotic stress (OS) promoted mild stress in the coffee plants (ψw from -1.5MPa to -2.5 MPa). Control plants under stress showed seven and five times lower activity of the enzymes GR and SOD compared with the non-stressed ones, and OS was found to further induce starch degradation, which was potentialized by the Se foliar supply. The seedlings that received foliar Se application 8 days before the stress exhibited higher CAT, APX, and SOD than the absolute control (-OS-Se)-771.1%, 356.3%, and 266.5% higher, respectively. In conclusion, previous Se foliar spray is more effective than the Se supply after OS to overcome the adverse condition. On the other hand, the post-stress application seems to impose extra stress on the plants, leading them to reduce their water potential.
Collapse
Affiliation(s)
- Gustavo Ferreira de Sousa
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | - Maila Adriely Silva
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | | | - Everton Geraldo de Morais
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | - Pedro Antônio Namorato Benevenute
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | - Gustavo Avelar Zorgdrager Van Opbergen
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | | | - Luiz Roberto Guimarães Guilherme
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| |
Collapse
|
12
|
Eom SH, Lim HB, Hyun TK. Overexpression of the Brassica rapa bZIP Transcription Factor, BrbZIP-S, Increases the Stress Tolerance in Nicotiana benthamiana. BIOLOGY 2023; 12:biology12040517. [PMID: 37106717 PMCID: PMC10136179 DOI: 10.3390/biology12040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
In higher plants, S1-basic region-leucine zipper (S1-bZIP) transcription factors fulfill crucial roles in the physiological homeostasis of carbon and amino acid metabolisms and stress responses. However, very little is known about the physiological role of S1-bZIP in cruciferous vegetables. Here, we analyzed the physiological function of S1-bZIP from Brassica rapa (BrbZIP-S) in modulating proline and sugar metabolism. Overexpression of BrbZIP-S in Nicotiana benthamiana resulted in delayed chlorophyll degradation during the response to dark conditions. Under heat stress or recovery conditions, the transgenic lines exhibited a lower accumulation of H2O2, malondialdehyde, and protein carbonyls compared to the levels in transgenic control plants. These results strongly indicate that BrbZIP-S regulates plant tolerance against dark and heat stress. We propose that BrbZIP-S is a modulator of proline and sugar metabolism, which are required for energy homeostasis in response to environmental stress conditions.
Collapse
|
13
|
Beihammer G, Romero-Pérez A, Maresch D, Figl R, Mócsai R, Grünwald-Gruber C, Altmann F, Van Damme EJM, Strasser R. Pseudomonas syringae DC3000 infection increases glucosylated N-glycans in Arabidopsis thaliana. Glycoconj J 2023; 40:97-108. [PMID: 36269466 PMCID: PMC9925501 DOI: 10.1007/s10719-022-10084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
Abstract
Studying the interaction between the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 and Arabidopsis thaliana has shed light onto the various forms of mechanisms plants use to defend themselves against pathogen attack. While a lot of emphasis has been put on investigating changes in protein expression in infected plants, only little information is available on the effect infection plays on the plants N-glycan composition. To close this gap in knowledge, total N-glycans were enriched from P. syringae DC3000-infected and mock treated Arabidopsis seedlings and analyzed via MALDI-TOF-MS. Additionally, fluorescently labelled N-glycans were quantified via HPLC-FLD. N-glycans from infected plants were overall less processed and displayed increased amounts of oligomannosidic N-glycans. As multiple peaks for certain oligomannosidic glycoforms were detected upon separation via liquid chromatography, a porous graphitic carbon (PGC)-analysis was conducted to separate individual N-glycan isomers. Indeed, multiple different N-glycan isomers with masses of two N-acetylhexosamine residues plus 8, 9 or 10 hexoses were detected in the infected plants which were absent in the mock controls. Treatment with jack bean α-mannosidase resulted in incomplete removal of hexoses from these N-glycans, indicating the presence of glucose residues. This hints at the accumulation of misfolded glycoproteins in the infected plants, likely because of endoplasmic reticulum (ER) stress. In addition, poly-hexose structures susceptible to α-amylase treatment were found in the DC3000-infected plants, indicating alterations in starch metabolism due to the infection process.
Collapse
Affiliation(s)
- Gernot Beihammer
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrea Romero-Pérez
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Daniel Maresch
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rudolf Figl
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Réka Mócsai
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
14
|
Tang W, Arisha MH, Zhang Z, Yan H, Kou M, Song W, Li C, Gao R, Ma M, Wang X, Zhang Y, Li Z, Li Q. Comparative transcriptomic and proteomic analysis reveals common molecular factors responsive to heat and drought stresses in sweetpotaoto ( Ipomoea batatas). FRONTIERS IN PLANT SCIENCE 2023; 13:1081948. [PMID: 36743565 PMCID: PMC9892860 DOI: 10.3389/fpls.2022.1081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Introduction Crops are affected by various abiotic stresses, among which heat (HT) and drought (DR) stresses are the most common in summer. Many studies have been conducted on HT and DR, but relatively little is known about how drought and heat combination (DH) affects plants at molecular level. Methods Here, we investigated the responses of sweetpotato to HT, DR, and DH stresses by RNA-seq and data-independent acquisition (DIA) technologies, using controlled experiments and the quantification of both gene and protein levels in paired samples. Results Twelve cDNA libraries were created under HT, DR, and DH conditions and controls. We identified 536, 389, and 907 DEGs in response to HT, DR, and DH stresses, respectively. Of these, 147 genes were common and 447 were specifically associated with DH stress. Proteomic analysis identified 1609, 1168, and 1535 DEPs under HT, DR, and DH treatments, respectively, compared with the control, of which 656 were common and 358 were exclusive to DH stress. Further analysis revealed the DEGs/DEPs were associated with heat shock proteins, carbon metabolism, phenylalanine metabolism, starch and cellulose metabolism, and plant defense, amongst others. Correlation analysis identified 6465, 6607, and 6435 co-expressed genes and proteins under HT, DR, and DH stresses respectively. In addition, a combined analysis of the transcriptomic and proteomic data identified 59, 35, and 86 significantly co-expressed DEGs and DEPs under HT, DR, and DH stresses, respectively. Especially, top 5 up-regulated co-expressed DEGs and DEPs (At5g58770, C24B11.05, Os04g0679100, BACOVA_02659 and HSP70-5) and down-regulated co-expressed DEGs and DEPs (AN3, PMT2, TUBB5, FL and CYP98A3) were identified under DH stress. Discussion This is the first study of differential genes and proteins in sweetpotato under DH stress, and it is hoped that the findings will assist in clarifying the molecular mechanisms involved in sweetpotato resistance to heat and drought stress.
Collapse
Affiliation(s)
- Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mohamed Hamed Arisha
- Department of Horticulture, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
| | - Zhenyi Zhang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Meng Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| |
Collapse
|
15
|
Orzechowski S, Compart J, Zdunek-Zastocka E, Fettke J. Starch parameters and short-term temperature fluctuations - Important but not yet in focus? JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153902. [PMID: 36565529 DOI: 10.1016/j.jplph.2022.153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Plants are regularly challenged by unfavorable environmental conditions. As climate change continues, adverse situations such as drought, heat, and cold are expected to increase and become more severe. Most starchy crops are affected by such stresses. In recent years, researchers have made many new discoveries about starch metabolism in general and also on granule structure, including effects on starch following longer-term temperature stresses. However, in this study, we focus on short-term temperature stress on storage starch granule properties. Here our knowledge is less and it is likely that also short-term temperature stresses can affect various starch parameters. Therefore, we see a need for this type of analysis and discuss the matter in more detail and we conclude that a deeper knowledge particularly of starch granule parameters could allow targeted breeding of cultivars that exhibit different starch characteristics as a result of short-term stress. For these reasons, we are convinced that more comprehensive research on the effects of short-term temperature stress on starch granule characteristics is important, necessary, and timely.
Collapse
Affiliation(s)
- Sławomir Orzechowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Edyta Zdunek-Zastocka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany.
| |
Collapse
|
16
|
Yu J, Tseng Y, Pham K, Liu M, Beckles DM. Starch and sugars as determinants of postharvest shelf life and quality: some new and surprising roles. Curr Opin Biotechnol 2022; 78:102844. [PMID: 36410153 DOI: 10.1016/j.copbio.2022.102844] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022]
Abstract
Starch and sugars account for most of the dry weight of horticultural crops and in many species, are known determinants of quality. However, we posit that these carbohydrates often have less-obvious roles in plant tissues with direct implications for the postharvest quality and produce shelf life. The latter has not been given as much attention, but with the recent interest in reducing the scale of postharvest waste and loss, we highlight how dynamic changes in the spatial-temporal accumulation of carbohydrates, can influence myriads of biological processes affecting postharvest attributes. Versatile roles, some surprising, that carbohydrates play in determining produce of high value to consumers, are highlighted, and gene targets for biotechnological improvement are specified.
Collapse
Affiliation(s)
- Jingwei Yu
- SUSTech-PKU Joint Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yute Tseng
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA; Graduate Group of Horticulture & Agronomy, University of California Davis, One Shields Avenue, CA 95616, USA
| | - Kien Pham
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA; Graduate Group of Horticulture & Agronomy, University of California Davis, One Shields Avenue, CA 95616, USA
| | - Margaret Liu
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA; Graduate Group of Horticulture & Agronomy, University of California Davis, One Shields Avenue, CA 95616, USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA.
| |
Collapse
|
17
|
Iwaniuk P, Kaczyński P, Pietkun M, Łozowicka B. Evaluation of titanium and silicon role in mitigation of fungicides toxicity in wheat expressed at the level of biochemical and antioxidant profile. CHEMOSPHERE 2022; 308:136284. [PMID: 36057351 DOI: 10.1016/j.chemosphere.2022.136284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Biostimulators are compounds that are gaining attention due to their potential to support plant growth, however, less in known about their impact on plant biochemistry. Therefore, the main goal of this comprehensive study was to evaluate the effect of two inorganic biostimulators (titanium, Ti and silicon, Si) and five fungicides (propiconazole, cyproconazole, spiroxamine, tebuconazole, triadimenol) on biochemical and antioxidant status as well as mycotoxin profile in wheat (Triticum aestivum). Moreover, the half-life of fungicides under the influence of biostimulators was evaluated. Titanium caused most efficient mitigation of fungicide-induced toxicity reflected by greater increase of protein (104.80 mg g-1), carbohydrates (43.70 mg g-1), phenolic compounds (1023.18 μg g-1), and peroxidase activity (0.151 U mg-1) compared to treatment with silicon. The application of spiroketalamine and triazole fungicides with silicon decreased the activity of acid phosphatases (35.70 μM h-1 g-1) while inducing amino acid (861.40 μg kg-1) and catalase activity (1.056 U mg-1). Moreover, silicon was most effective in the reduction of mycotoxin contamination in wheat grain (61.17 μg g-1). This study indicated a shortened dissipation of propiconazole, spiroxamine, tebuconazole and triadimenol under the influence of titanium or silicon (DT50 = 1.85-4.82), which can therefore affect the grace period of wheat. The results of this comprehensive investigation demonstrated that titanium and silicon have a beneficial influence on wheat biochemistry and mitigate fungicide toxicity, which makes them widely suitable for optimizing plant health.
Collapse
Affiliation(s)
- Piotr Iwaniuk
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 Street, 15-195, Białystok, Poland.
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 Street, 15-195, Białystok, Poland
| | - Marcin Pietkun
- Hydratec, Radziwonika 12 Street, 15-166, Białystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 Street, 15-195, Białystok, Poland
| |
Collapse
|
18
|
Transcriptome Analysis Reveals a Comprehensive Virus Resistance Response Mechanism in Pecan Infected by a Novel Badnavirus Pecan Virus. Int J Mol Sci 2022; 23:ijms232113576. [PMID: 36362365 PMCID: PMC9655656 DOI: 10.3390/ijms232113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Pecan leaf-variegated plant, which was infected with a novel badnavirus named pecan mosaic virus (PMV) detected by small RNA deep sequencing, is a vital model plant for studying the molecular mechanism of retaining green or chlorosis of virus-infected leaves. In this report, PMV infection in pecan leaves induced PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). PMV infection suppressed the expressions of key genes of fatty acid, oleic acid (C18:1), and very-long-chain fatty acids (VLCFA) biosynthesis, indicating that fatty acids-derived signaling was one of the important defense pathways in response to PMV infection in pecan. PMV infection in pecans enhanced the expressions of pathogenesis-related protein 1 (PR1). However, the transcripts of phenylalanine ammonia-lyase (PAL) and isochorismate synthase (ICS) were downregulated, indicating that salicylic acid (SA) biosynthesis was blocked in pecan infected with PMV. Meanwhile, disruption of auxin signaling affected the activation of the jasmonic acid (JA) pathway. Thus, C18:1 and JA signals are involved in response to PMV infection in pecan. In PMV-infected yellow leaves, damaged chloroplast structure and activation of mitogen-activated protein kinase 3 (MPK3) inhibited photosynthesis. Cytokinin and SA biosynthesis was blocked, leading to plants losing immune responses and systemic acquired resistance (SAR). The repression of photosynthesis and the induction of sink metabolism in the infected tissue led to dramatic changes in carbohydrate partitioning. On the contrary, the green leaves of PMV infection in pecan plants had whole cell tissue structure and chloroplast clustering, establishing a strong antiviral immunity system. Cytokinin biosynthesis and signaling transductions were remarkably strengthened, activating plant immune responses. Meanwhile, cytokinin accumulation in green leaves induced partial SA biosynthesis and gained comparatively higher SAR compared to that of yellow leaves. Disturbance of the ribosome biogenesis might enhance the resistance to PMV infection in pecan and lead to leaves staying green.
Collapse
|
19
|
Hong J, Geem KR, Kim J, Jo IH, Yang TJ, Shim D, Ryu H. Prolonged Exposure to High Temperature Inhibits Shoot Primary and Root Secondary Growth in Panax ginseng. Int J Mol Sci 2022; 23:11647. [PMID: 36232949 PMCID: PMC9569605 DOI: 10.3390/ijms231911647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
High temperature is one of the most significant abiotic stresses reducing crop yield and quality by inhibiting plant growth and development. Global warming has recently increased the frequency of heat waves, which negatively impacts agricultural fields. Despite numerous studies on heat stress responses and signal transduction in model plant species, the molecular mechanism underlying thermomorphogenesis in Panax ginseng remains largely unknown. Here, we investigated the high temperature response of ginseng at the phenotypic and molecular levels. Both the primary shoot growth and secondary root growth of ginseng plants were significantly reduced at high temperature. Histological analysis revealed that these decreases in shoot and root growth were caused by decreases in cell elongation and cambium stem cell activity, respectively. Analysis of P. ginseng RNA-seq data revealed that heat-stress-repressed stem and root growth is closely related to changes in photosynthesis, cell wall organization, cell wall loosening, and abscisic acid (ABA) and jasmonic acid (JA) signaling. Reduction in both the light and dark reactions of photosynthesis resulted in defects in starch granule development in the storage parenchymal cells of the main tap root. Thus, by combining bioinformatics and histological analyses, we show that high temperature signaling pathways are integrated with crucial biological processes that repress stem and root growth in ginseng, providing novel insight into the heat stress response mechanism of P. ginseng.
Collapse
Affiliation(s)
- Jeongeui Hong
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| | - Kyoung Rok Geem
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
20
|
de Sousa GF, Silva MA, de Morais EG, Van Opbergen GAZ, Van Opbergen GGAZ, de Oliveira RR, Amaral D, Brown P, Chalfun-Junior A, Guilherme LRG. Selenium enhances chilling stress tolerance in coffee species by modulating nutrient, carbohydrates, and amino acids content. FRONTIERS IN PLANT SCIENCE 2022; 13:1000430. [PMID: 36172560 PMCID: PMC9511033 DOI: 10.3389/fpls.2022.1000430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 05/03/2023]
Abstract
The effects of selenium (Se) on plant metabolism have been reported in several studies triggering plant tolerance to abiotic stresses, yet, the effects of Se on coffee plants under chilling stress are unclear. This study aimed to evaluate the effects of foliar Se application on coffee seedlings submitted to chilling stress and subsequent plant recovery. Two Coffea species, Coffea arabica cv. Arara, and Coffea canephora clone 31, were submitted to foliar application of sodium selenate solution (0.4 mg plant-1) or a control foliar solution, then on day 2 plants were submitted to low temperature (10°C day/4°C night) for 2 days. After that, the temperature was restored to optimal (25°C day/20°C night) for 2 days. Leaf samples were collected three times (before, during, and after the chilling stress) to perform analyses. After the chilling stress, visual leaf injury was observed in both species; however, the damage was twofold higher in C. canephora. The lower effect of cold on C. arabica was correlated to the increase in ascorbate peroxidase and higher content of starch, sucrose, and total soluble sugars compared with C. canephora, as well as a reduction in reducing sugars and proline content during the stress and rewarming. Se increased the nitrogen and sulfur content before stress but reduced their content during low temperature. The reduced content of nitrogen and sulfur during stress indicates that they were remobilized to stem and roots. Se supply reduced the damage in C. canephora leaves by 24% compared with the control. However, there was no evidence of the Se effects on antioxidant enzymatic pathways or ROS activity during stress as previously reported in the literature. Se increased the content of catalase during the rewarming. Se foliar supply also increased starch, amino acids, and proline, which may have reduced symptom expression in C. canephora in response to low temperature. In conclusion, Se foliar application can be used as a strategy to improve coffee tolerance under low-temperature changing nutrient remobilization, carbohydrate metabolism, and catalase activity in response to rewarming stress, but C. arabica and C. canephora respond differently to chilling stress and Se supply.
Collapse
Affiliation(s)
| | | | | | | | | | - Raphael R. de Oliveira
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Douglas Amaral
- Agriculture and Natural Resources, University of California, Hanford, Hanford, CA, United States
| | - Patrick Brown
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Antonio Chalfun-Junior
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | | |
Collapse
|