1
|
Luppi AI, Singleton SP, Hansen JY, Jamison KW, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Contributions of network structure, chemoarchitecture and diagnostic categories to transitions between cognitive topographies. Nat Biomed Eng 2024; 8:1142-1161. [PMID: 39103509 PMCID: PMC11410673 DOI: 10.1038/s41551-024-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
The mechanisms linking the brain's network structure to cognitively relevant activation patterns remain largely unknown. Here, by leveraging principles of network control, we show how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic database. Specifically, we systematically integrated large-scale multimodal neuroimaging data from functional magnetic resonance imaging, diffusion tractography, cortical morphometry and positron emission tomography to simulate how anatomically guided transitions between cognitive states can be reshaped by neurotransmitter engagement or by changes in cortical thickness. Our model incorporates neurotransmitter-receptor density maps (18 receptors and transporters) and maps of cortical thickness pertaining to a wide range of mental health, neurodegenerative, psychiatric and neurodevelopmental diagnostic categories (17,000 patients and 22,000 controls). The results provide a comprehensive look-up table charting how brain network organization and chemoarchitecture interact to manifest different cognitive topographies, and establish a principled foundation for the systematic identification of ways to promote selective transitions between cognitive topographies.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Keith W Jamison
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- MILA, Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard F Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Taylor C, Breault MS, Dorman D, Greene P, Sacré P, Sampson A, Niebur E, Stuphorn V, González-Martínez J, Sarma S. An Exploratory Study of Large-Scale Brain Networks during Gambling Using SEEG. Brain Sci 2024; 14:773. [PMID: 39199467 PMCID: PMC11352602 DOI: 10.3390/brainsci14080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Decision-making is a cognitive process involving working memory, executive function, and attention. However, the connectivity of large-scale brain networks during decision-making is not well understood. This is because gaining access to large-scale brain networks in humans is still a novel process. Here, we used SEEG (stereoelectroencephalography) to record neural activity from the default mode network (DMN), dorsal attention network (DAN), and frontoparietal network (FN) in ten humans while they performed a gambling task in the form of the card game, "War". By observing these networks during a decision-making period, we related the activity of and connectivity between these networks. In particular, we found that gamma band activity was directly related to a participant's ability to bet logically, deciding what betting amount would result in the highest monetary gain or lowest monetary loss throughout a session of the game. We also found connectivity between the DAN and the relation to a participant's performance. Specifically, participants with higher connectivity between and within these networks had higher earnings. Our preliminary findings suggest that connectivity and activity between these networks are essential during decision-making.
Collapse
Affiliation(s)
- Christopher Taylor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (C.T.); (D.D.); (P.G.); (S.S.)
| | - Macauley Smith Breault
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Dorman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (C.T.); (D.D.); (P.G.); (S.S.)
| | - Patrick Greene
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (C.T.); (D.D.); (P.G.); (S.S.)
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, University of Liège, 4000 Liège, Belgium;
| | - Aaron Sampson
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA; (A.S.); (E.N.); (V.S.)
| | - Ernst Niebur
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA; (A.S.); (E.N.); (V.S.)
| | - Veit Stuphorn
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA; (A.S.); (E.N.); (V.S.)
| | | | - Sridevi Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (C.T.); (D.D.); (P.G.); (S.S.)
| |
Collapse
|
3
|
Chen Y, Youk S, Wang PT, Pinti P, Weber R. A calculus of probability or belief? Neural underpinnings of social decision-making in a card game. Neuropsychologia 2023; 188:108635. [PMID: 37423422 DOI: 10.1016/j.neuropsychologia.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
For decades, the prefrontal cortex (PFC) has been the focus of social neuroscience research, specifically regarding its role in competitive social decision-making. However, the distinct contributions of PFC subregions when making strategic decisions involving multiple types of information (social, non-social, and mixed information) remain unclear. This study investigates decision-making strategies (pure probability calculation vs. mentalizing) and their neural representations using functional near-infrared spectroscopy (fNIRS) data collected during a two-person card game. We observed individual differences in information processing strategy, indicating that some participants relied more on probability than others. Overall, the use of pure probability decreased over time in favor of other types of information (e.g., mixed information), with this effect being more pronounced within-round trials than across rounds. In the brain, (1) the lateral PFC activates when decisions are driven by probability calculations; (2) the right lateral PFC responds to trial difficulty; and (3) the anterior medial PFC is engaged when decision-making involves mentalizing. Furthermore, neural synchrony, which reflects the real-time interplay between individuals' cognitive processes, did not consistently contribute to correct decisions and fluctuated throughout the experiment, suggesting a hierarchical mentalizing mechanism at work.
Collapse
Affiliation(s)
- Yibei Chen
- University of California Santa Barbara, Department of Communication - Media Neuroscience Lab, USA
| | - Sungbin Youk
- University of California Santa Barbara, Department of Communication - Media Neuroscience Lab, USA
| | - Paula T Wang
- University of California Santa Barbara, Department of Communication - Media Neuroscience Lab, USA
| | - Paola Pinti
- Birkbeck, University of London, Center for Brain and Cognitive Development, USA
| | - René Weber
- University of California Santa Barbara, Department of Communication - Media Neuroscience Lab, USA; University of California Santa Barbara, Department of Psychological and Brain Sciences, USA; Ewha Womans University, School of Communication and Media, South Korea.
| |
Collapse
|
4
|
Jackson RL, Humphreys GF, Rice GE, Binney RJ, Lambon Ralph MA. A network-level test of the role of the co-activated default mode network in episodic recall and social cognition. Cortex 2023; 165:141-159. [PMID: 37285763 PMCID: PMC10284259 DOI: 10.1016/j.cortex.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 06/09/2023]
Abstract
Resting-state network research is extremely influential, yet the functions of many networks remain unknown. In part, this is due to typical (e.g., univariate) analyses independently testing the function of individual regions and not examining the full set of regions that form a network whilst co-activated. Connectivity is dynamic and the function of a region may change based on its current connections. Therefore, determining the function of a network requires assessment at this network-level. Yet popular theories implicating the default mode network (DMN) in episodic memory and social cognition, rest principally upon analyses performed at the level of individual brain regions. Here we use independent component analysis to formally test the role of the DMN in episodic and social processing at the network level. As well as an episodic retrieval task, two independent datasets were employed to assess DMN function across the breadth of social cognition; a person knowledge judgement and a theory of mind task. Each task dataset was separated into networks of co-activated regions. In each, the co-activated DMN, was identified through comparison to an a priori template and its relation to the task model assessed. This co-activated DMN did not show greater activity in episodic or social tasks than high-level baseline conditions. Thus, no evidence was found to support hypotheses that the co-activated DMN is involved in explicit episodic or social tasks at a network-level. The networks associated with these processes are described. Implications for prior univariate findings and the functional significance of the co-activated DMN are considered.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK; MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Grace E Rice
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
5
|
Morin TM, Moore KN, Isenburg K, Ma W, Stern CE. Functional reconfiguration of task-active frontoparietal control network facilitates abstract reasoning. Cereb Cortex 2023; 33:5761-5773. [PMID: 36420534 DOI: 10.1093/cercor/bhac457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
While the brain's functional network architecture is largely conserved between resting and task states, small but significant changes in functional connectivity support complex cognition. In this study, we used a modified Raven's Progressive Matrices Task to examine symbolic and perceptual reasoning in human participants undergoing fMRI scanning. Previously, studies have focused predominantly on discrete symbolic versions of matrix reasoning, even though the first few trials of the Raven's Advanced Progressive Matrices task consist of continuous perceptual stimuli. Our analysis examined the activation patterns and functional reconfiguration of brain networks associated with resting state and both symbolic and perceptual reasoning. We found that frontoparietal networks, including the cognitive control and dorsal attention networks, were significantly activated during abstract reasoning. We determined that these same task-active regions exhibited flexibly-reconfigured functional connectivity when transitioning from resting state to the abstract reasoning task. Conversely, we showed that a stable network core of regions in default and somatomotor networks was maintained across both resting and task states. We propose that these regionally-specific changes in the functional connectivity of frontoparietal networks puts the brain in a "task-ready" state, facilitating efficient task-based activation.
Collapse
Affiliation(s)
- Thomas M Morin
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie N Moore
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie Isenburg
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Weida Ma
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Chantal E Stern
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
- Department of Psychological and Brain Sciences, 64 Cummington Mall, Boston University, Boston, MA 02215, United States
| |
Collapse
|
6
|
Luppi AI, Singleton SP, Hansen JY, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532981. [PMID: 36993597 PMCID: PMC10055141 DOI: 10.1101/2023.03.16.532981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patterns of neural activity underlie human cognition. Transitions between these patterns are orchestrated by the brain's network architecture. What are the mechanisms linking network structure to cognitively relevant activation patterns? Here we implement principles of network control to investigate how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic engine. We also systematically incorporate neurotransmitter receptor density maps (18 receptors and transporters) and disease-related cortical abnormality maps (11 neurodegenerative, psychiatric and neurodevelopmental diseases; N = 17 000 patients, N = 22 000 controls). Integrating large-scale multimodal neuroimaging data from functional MRI, diffusion tractography, cortical morphometry, and positron emission tomography, we simulate how anatomically-guided transitions between cognitive states can be reshaped by pharmacological or pathological perturbation. Our results provide a comprehensive look-up table charting how brain network organisation and chemoarchitecture interact to manifest different cognitive topographies. This computational framework establishes a principled foundation for systematically identifying novel ways to promote selective transitions between desired cognitive topographies.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- MILA, Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, U.S.A
| | - Richard F. Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, U.S.A
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
8
|
Desai RH, Tadimeti U, Riccardi N. Proper and common names in the semantic system. Brain Struct Funct 2023; 228:239-254. [PMID: 36372812 PMCID: PMC10171918 DOI: 10.1007/s00429-022-02593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022]
Abstract
Proper names are an important part of language and communication. They are thought to have a special status due to their neuropsychological and psycholinguistic profile. To what extent proper names rely on the same semantic system as common names is not clear. In an fMRI study, we presented the same group of participants with both proper and common names to compare the associated activations. Both person and place names, as well as personally familiar and famous names were used, and compared with words representing concrete and abstract concepts. A whole-brain analysis was followed by a detailed analysis of subdivisions of four regions of interest known to play a central role in the semantic system: angular gyrus, anterior temporal lobe, posterior cingulate complex, and medial temporal lobe. We found that most subdivisions within these regions bilaterally were activated by both proper names and common names. The bilateral perirhinal and right entorhinal cortex showed a response specific to proper names, suggesting an item-specific role in retrieving person and place related information. While activation to person and place names overlapped greatly, place names were differentiated by activating areas associated with spatial memory and navigation. Person names showed greater right hemisphere involvement compared to places, suggesting a wider range of associations. Personally familiar names showed stronger activation bilaterally compared to famous names, indicating representations that are enhanced by autobiographic and episodic details. Both proper and common names are processed in the wider semantic system that contains associative, episodic, and spatial components. Processing of proper names is characterized by a somewhat stronger involvement these components, rather than by a fundamentally different system.
Collapse
Affiliation(s)
- Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA.
- Institute for Mind and Brain, University of South Carolina, Columbia, SC, 29201, USA.
| | - Usha Tadimeti
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA
| |
Collapse
|
9
|
Humphreys GF, Tibon R. Dual-axes of functional organisation across lateral parietal cortex: the angular gyrus forms part of a multi-modal buffering system. Brain Struct Funct 2023; 228:341-352. [PMID: 35670844 PMCID: PMC9813060 DOI: 10.1007/s00429-022-02510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/08/2022] [Indexed: 01/09/2023]
Abstract
Decades of neuropsychological and neuroimaging evidence have implicated the lateral parietal cortex (LPC) in a myriad of cognitive domains, generating numerous influential theoretical models. However, these theories fail to explain why distinct cognitive activities appear to implicate common neural regions. Here we discuss a unifying model in which the angular gyrus forms part of a wider LPC system with a core underlying neurocomputational function; the multi-sensory buffering of spatio-temporally extended representations. We review the principles derived from computational modelling with neuroimaging task data and functional and structural connectivity measures that underpin the unified neurocomputational framework. We propose that although a variety of cognitive activities might draw on shared underlying machinery, variations in task preference across angular gyrus, and wider LPC, arise from graded changes in the underlying structural connectivity of the region to different input/output information sources. More specifically, we propose two primary axes of organisation: a dorsal-ventral axis and an anterior-posterior axis, with variations in task preference arising from underlying connectivity to different core cognitive networks (e.g. the executive, language, visual, or episodic memory networks).
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
- School of Psychology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
10
|
Wen T, Egner T. Context-independent scaling of neural responses to task difficulty in the multiple-demand network. Cereb Cortex 2022; 33:6013-6027. [PMID: 36513365 PMCID: PMC10183747 DOI: 10.1093/cercor/bhac479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The multiple-demand (MD) network is sensitive to many aspects of cognitive demand, showing increased activation with more difficult tasks. However, it is currently unknown whether the MD network is modulated by the context in which task difficulty is experienced. Using functional magnetic resonance imaging, we examined MD network responses to low, medium, and high difficulty arithmetic problems within 2 cued contexts, an easy versus a hard set. The results showed that MD activity varied reliably with the absolute difficulty of a problem, independent of the context in which the problem was presented. Similarly, MD activity during task execution was independent of the difficulty of the previous trial. Representational similarity analysis further supported that representational distances in the MD network were consistent with a context-independent code. Finally, we identified several regions outside the MD network that showed context-dependent coding, including the inferior parietal lobule, paracentral lobule, posterior insula, and large areas of the visual cortex. In sum, a cognitive effort is processed by the MD network in a context-independent manner. We suggest that this absolute coding of cognitive demand in the MD network reflects the limited range of task difficulty that can be supported by the cognitive apparatus.
Collapse
Affiliation(s)
- Tanya Wen
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Tobias Egner
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
11
|
Humphreys GF, Jung J, Lambon Ralph MA. The convergence and divergence of episodic and semantic functions across lateral parietal cortex. Cereb Cortex 2022; 32:5664-5681. [PMID: 35196706 PMCID: PMC9753060 DOI: 10.1093/cercor/bhac044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/22/2021] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
Decades of research have highlighted the importance of lateral parietal cortex (LPC) across a myriad of cognitive domains. Yet, the underlying function of LPC remains unclear. Two domains that have emphasized LPC involvement are semantic memory and episodic memory retrieval. From each domain, sophisticated functional models have been proposed, as well as the more domain-general assumption that LPC is engaged by any form of internally directed cognition (episodic/semantic retrieval being examples). Here we used a combination of functional magnetic resonance imaging, functional connectivity, and diffusion tensor imaging white-matter connectivity to show that (i) ventral LPC (angular gyrus [AG]) was positively engaged during episodic retrieval but disengaged during semantic memory retrieval and (ii) activity negatively varied with task difficulty in the semantic task whereas episodic activation was independent of difficulty. In contrast, dorsal LPC (intraparietal sulcus) showed domain general activation that was positively correlated with task difficulty. Finally, (iii) a dorsal-ventral and anterior-posterior gradient of functional and structural connectivity was found across the AG (e.g. mid-AG connected with episodic retrieval). We propose a unifying model in which LPC as a whole might share a common underlying neurocomputation (multimodal buffering) with variations in the emergent cognitive functions across subregions arising from differences in the underlying connectivity.
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham NG9 2RD, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| |
Collapse
|
12
|
Xu L, Wang B, Guo W. The Effect of Task Difficulty and Self-Contribution on Fairness Consideration: An Event-Related Potential Study. Front Psychol 2022; 13:709310. [PMID: 35310266 PMCID: PMC8928160 DOI: 10.3389/fpsyg.2022.709310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Self-contribution may be an influential factor in fairness consideration and consequent behavioral decisions. Few studies have investigated simultaneous effects of task difficulty and self-contribution on fairness consideration outcomes and associated neurophysiological responses. To elucidate modulation effects of task difficulty and self-contribution on fairness consideration, 30 recruited participants played a modified ultimatum game (UG) while undergoing event-related potential measurements. A 2 (task difficulty: hard vs. easy) × 3 (contribution: other-contribution vs. both-contribution vs. self-contribution) × 2 (fairness type: fair vs. unfair) within-subject design was adopted. A significant interaction between fairness type and contribution was observed in the behavioral data, with unfair offers being more acceptable in the other-contribution condition than in the self-contribution or both-contribution conditions. In the early processing time window, feedback-related negative magnitudes were greater in the hard condition than in the easy condition. P300 responses were more pronounced when participants contributed equally to the proposer than in the self- and other-contribution conditions. These results demonstrated that individuals’ decisions are influenced by their own effort contributions relative to those of others in cooperative contexts.
Collapse
Affiliation(s)
- Liyan Xu
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Biye Wang
- College of Physical Education, Yangzhou University, Yangzhou, China.,Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou, China
| | - Wei Guo
- College of Physical Education, Yangzhou University, Yangzhou, China.,Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Spang RP, Pieper K. The tiny effects of respiratory masks on physiological, subjective, and behavioral measures under mental load in a randomized controlled trial. Sci Rep 2021; 11:19601. [PMID: 34599253 PMCID: PMC8486780 DOI: 10.1038/s41598-021-99100-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Since the outbreak of the coronavirus disease (COVID-19), face coverings are recommended to diminish person-to-person transmission of the SARS-CoV-2 virus. Some public debates concern claims regarding risks caused by wearing face masks, like, e.g., decreased blood oxygen levels and impaired cognitive capabilities. The present, pre-registered study aims to contribute clarity by delivering a direct comparison of wearing an N95 respirator and wearing no face covering. We focused on a demanding situation to show that cognitive efficacy and individual states are equivalent in both conditions. We conducted a randomized-controlled crossover trial with 44 participants. Participants performed the task while wearing an N95 FFR versus wearing none. We measured physiological (blood oxygen saturation and heart rate variability), behavioral (parameters of performance in the task), and subjective (perceived mental load) data to substantiate our assumption as broadly as possible. We analyzed data regarding both statistical equivalence and differences. All of the investigated dimensions showed statistical equivalence given our pre-registered equivalence boundaries. None of the dimensions showed a significant difference between wearing an FFR and not wearing an FFR.Trial Registration: Preregistered with the Open Science Framework: https://osf.io/c2xp5 (15/11/2020). Retrospectively registered with German Clinical Trials Register: DRKS00024806 (18/03/2021).
Collapse
Affiliation(s)
- Robert P Spang
- Quality and Usability Lab, Institute of Software Engineering and Theoretical Computer Science, Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany.
| | - Kerstin Pieper
- Quality and Usability Lab, Institute of Software Engineering and Theoretical Computer Science, Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
14
|
Zhang R, Tomasi D, Shokri-Kojori E, Wiers CE, Wang GJ, Volkow ND. Sleep inconsistency between weekends and weekdays is associated with changes in brain function during task and rest. Sleep 2021; 43:5825065. [PMID: 32333599 DOI: 10.1093/sleep/zsaa076] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/02/2020] [Indexed: 01/21/2023] Open
Abstract
STUDY OBJECTIVES Sleep deprivation and circadian disruptions impair brain function and cognitive performance, but few studies have examined the effect of sleep inconsistency. Here, we investigated how inconsistent sleep duration and sleep timing between weekends (WE) and weekdays (WD) correlated with changes in behavior and brain function during task and at rest in 56 (30 female) healthy human participants. METHODS WE-WD differences in sleep duration and sleep midpoint were calculated using 1-week actigraphy data. All participants underwent 3 Tesla blood-oxygen-level-dependent functional Magnetic Resonance Imaging (fMRI) to measure brain activity during a visual attention task (VAT) and in resting-state condition. RESULTS We found that WE-WD inconsistency of sleep duration and sleep midpoint were uncorrelated with each other (r = .08, p = .58) and influenced behavior and brain function differently. Our healthy participants showed relatively small WE-WD differences (WE-WD: 0.59 hours). Longer WE sleep duration (relative to WD sleep duration) was associated with better attentional performance (3-ball: β = .30, t = 2.35, p = .023; 4-ball: β = .30, t = 2.21, p = .032) and greater deactivation of the default mode network (DMN) during VAT (p < .05, cluster-corrected) and greater resting-state functional connectivity (RSFC) between anterior DMN and occipital cortex (p < .01, cluster-corrected). In contrast, later WE sleep timing (relative to WD sleep timing) (WE-WD: 1.11 hours) was associated with worse performance (4-ball: β = -.33, t = -2.42, p = .020) and with lower occipital activation during VAT and with lower RSFC within the DMN. CONCLUSIONS Our results document the importance of consistent sleep timing for brain function in particular of the DMN and provide evidence of the benefits of WE catch-up sleep in healthy adults.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD.,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Sugi M, Sakuraba S, Saito H, Miyazaki M, Yoshida S, Kamada T, Sakai S, Sawamura D. Personality Traits Modulate the Impact of Emotional Stimuli During a Working Memory Task: A Near-Infrared Spectroscopy Study. Front Behav Neurosci 2020; 14:514414. [PMID: 33093826 PMCID: PMC7528631 DOI: 10.3389/fnbeh.2020.514414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/27/2020] [Indexed: 01/02/2023] Open
Abstract
The purpose of the present study was to examine the influence of personality traits on the impact of emotional stimuli focusing on n-back task performance and brain activity changes. Previous neuroimaging studies have reported that individual differences in emotional processing can be attributed to personality traits, which is linked to the hemisphere-specific activity of the dorsolateral prefrontal cortex (DLPFC) in response to emotional stimuli. Thirty right-handed healthy young male participants were recruited in this study and classified into two groups, the behavioral inhibition system (BIS) group and behavioral activation system (BAS) group, based on their scores on the BIS/BAS scale. Participants saw six emotional images (two each with negative, neutral, and positive valence), which were selected from the International Affective Picture System and validated in a preliminary experiment. Then, a dual 2-back task that simultaneously employed auditory-verbal and visuospatial stimuli was conducted. Additionally, the concentration of oxygenated hemoglobin (Oxy-Hb) changes in the DLPFC was measured during the image presentation and dual 2-back task by near-infrared spectroscopy (NIRS). The task performance showed a significantly increased reaction time (RT) in the negative valence independent of personality traits. The results of Oxy-Hb changes showed a significant interaction between personality traits and emotional valence. Further, the hemisphere-subgroup analysis revealed that the right DLPFC activity was significantly higher in the negative valence than in the neutral valence in the BIS group; the right DLPFC activity was also significantly higher in the BIS group than in the BAS group in the positive valence. There was no main effect or interaction in the left DLPFC activity. These findings suggest the importance of considering personality traits when examining the impact of emotional stimuli. Further studies with large sample sizes warranted to examine the influence emotional stimuli exert on working memory performance, considering the personality traits to better understand individual differences in emotional processing.
Collapse
Affiliation(s)
- Masaaki Sugi
- Department of Rehabilitation, Tokeidai Memorial Hospital, Hokkaido, Japan
| | - Satoshi Sakuraba
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hirotada Saito
- Department of Rehabilitation, Tokeidai Memorial Hospital, Hokkaido, Japan
| | - Mitsunori Miyazaki
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Susumu Yoshida
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tatsuhiro Kamada
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Shinya Sakai
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Daisuke Sawamura
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
16
|
Abboud S, Cohen L. Distinctive Interaction Between Cognitive Networks and the Visual Cortex in Early Blind Individuals. Cereb Cortex 2020; 29:4725-4742. [PMID: 30715236 DOI: 10.1093/cercor/bhz006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
In early blind individuals, brain activation by a variety of nonperceptual cognitive tasks extends to the visual cortex, while in the sighted it is restricted to supramodal association areas. We hypothesized that such activation results from the integration of different sectors of the visual cortex into typical task-dependent networks. We tested this hypothesis with fMRI in blind and sighted subjects using tasks assessing speech comprehension, incidental long-term memory and both verbal and nonverbal executive control, in addition to collecting resting-state data. All tasks activated the visual cortex in blind relative to sighted subjects, which enabled its segmentation according to task sensitivity. We then assessed the unique brain-scale functional connectivity of the segmented areas during resting state. Language-related seeds were preferentially connected to frontal and temporal language areas; the seed derived from the executive task was connected to the right dorsal frontoparietal executive network; and the memory-related seed was uniquely connected to mesial frontoparietal areas involved in episodic memory retrieval. Thus, using a broad set of language, executive, and memory tasks in the same subjects, combined with resting state connectivity, we demonstrate the selective integration of different patches of the visual cortex into brain-scale networks with distinct localization, lateralization, and functional roles.
Collapse
Affiliation(s)
- Sami Abboud
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Laurent Cohen
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,Service de Neurologie 1, Hôpital de la Pitié Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
17
|
Kim DY, Jung EK, Zhang J, Lee SY, Lee JH. Functional magnetic resonance imaging multivoxel pattern analysis reveals neuronal substrates for collaboration and competition with myopic and predictive strategic reasoning. Hum Brain Mapp 2020; 41:4314-4331. [PMID: 32633451 PMCID: PMC7502831 DOI: 10.1002/hbm.25127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Competition and collaboration are strategies that can be used to optimize the outcomes of social interactions. Research into the neuronal substrates underlying these aspects of social behavior has been limited due to the difficulty in distinguishing complex activation via univariate analysis. Therefore, we employed multivoxel pattern analysis of functional magnetic resonance imaging to reveal the neuronal activations underlying competitive and collaborative processes when the collaborator/opponent used myopic/predictive reasoning. Twenty‐four healthy subjects participated in 2 × 2 matrix‐based sequential‐move games. Searchlight‐based multivoxel patterns were used as input for a support vector machine using nested cross‐validation to distinguish game conditions, and identified voxels were validated via the regression of the behavioral data with bootstrapping. The left anterior insula (accuracy = 78.5%) was associated with competition, and middle frontal gyrus (75.1%) was associated with predictive reasoning. The inferior/superior parietal lobules (84.8%) and middle frontal gyrus (84.7%) were associated with competition, particularly in trials with a predictive opponent. The visual/motor areas were related to response time as a proxy for visual attention and task difficulty. Our results suggest that multivoxel patterns better represent the neuronal substrates underlying the social cognition of collaboration and competition intermixed with myopic and predictive reasoning than do univariate features.
Collapse
Affiliation(s)
- Dong-Youl Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Eun Kyung Jung
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Jun Zhang
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Soo-Young Lee
- Department of Electrical Engineering, KAIST, Daejeon, South Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, South Korea
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
18
|
Balanced difficulty task finder: an adaptive recommendation method for learning tasks based on the concept of state of flow. Cogn Neurodyn 2020; 14:675-687. [PMID: 33014180 PMCID: PMC7501397 DOI: 10.1007/s11571-020-09624-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 11/04/2022] Open
Abstract
An adaptive task difficulty assignment method which we reckon as balanced difficulty task finder (BDTF) is proposed in this paper. The aim is to recommend tasks to a learner using a trade-off between skills of the learner and difficulty of the tasks such that the learner experiences a state of flow during the learning. Flow is a mental state that psychologists refer to when someone is completely immersed in an activity. Flow state is a multidisciplinary field of research and has been studied not only in psychology, but also neuroscience, education, sport, and games. The idea behind this paper is to try to achieve a flow state in a similar way as Elo’s chess skill rating (Glickman in Am Chess J 3:59–102) and TrueSkill (Herbrich et al. in Advances in neural information processing systems, 2006) for matching game players, where “matched players” should possess similar capabilities and skills in order to maintain the level of motivation and involvement in the game. The BDTF draws analogy between choosing an appropriate opponent or appropriate game level and automatically choosing an appropriate difficulty level of a learning task. This method, as an intelligent tutoring system, could be used in a wide range of applications from online learning environments and e-learning, to learning and remembering techniques in traditional methods such as adjusting delayed matching to sample and spaced retrieval training that can be used for people with memory problems such as people with dementia.
Collapse
|
19
|
Tabassi Mofrad F, Schiller NO. Cognitive demand modulates connectivity patterns of rostral inferior parietal cortex in cognitive control of language. Cogn Neurosci 2019; 11:181-193. [DOI: 10.1080/17588928.2019.1696764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fatemeh Tabassi Mofrad
- Leiden University Centre for Linguistics, Leiden 2300, The Netherlands
- Leiden Institute for Brain and Cognition, RC Leiden 2300, The Netherlands
- Cognitive Psychology Unit, Leiden University, AK Leiden 2333, The Netherlands
- Department of Applied Linguistics, Tarbiat Modares University, Tehran, Iran
| | - Niels O. Schiller
- Leiden University Centre for Linguistics, Leiden 2300, The Netherlands
- Leiden Institute for Brain and Cognition, RC Leiden 2300, The Netherlands
| |
Collapse
|
20
|
Venkatesan UM, Margolis SA, Tremont G, Festa EK, Heindel WC. Forward to the past: Revisiting the role of immediate recognition in the assessment of episodic memory. J Clin Exp Neuropsychol 2019; 42:160-170. [DOI: 10.1080/13803395.2019.1697210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Seth A. Margolis
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Geoffrey Tremont
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Elena K. Festa
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - William C. Heindel
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Kale EH, Üstün S, Çiçek M. Amygdala-prefrontal cortex connectivity increased during face discrimination but not time perception. Eur J Neurosci 2019; 50:3873-3888. [PMID: 31376287 DOI: 10.1111/ejn.14537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023]
Abstract
Time sensitivity is affected by emotional stimuli such as fearful faces. The effect of threatening stimuli on time perception depends on numerous factors, including task type and duration range. We applied a two-interval forced-choice task using face stimuli to healthy volunteers to evaluate time perception and emotion interaction using functional magnetic resonance imaging. We conducted finite impulse response analysis to examine time series for the significantly activated brain areas and psycho-physical interaction to investigate the connectivity between selected regions. Time perception engaged a right-lateralised frontoparietal network, while a face discrimination task activated the amygdala and fusiform face area (FFA). No voxels were active with regard to the effect of expression (fearful versus neutral). In parallel with this, our behavioural results showed that attending to the fearful faces did not cause duration overestimation. Finally, connectivity of the amygdala and FFA to the middle frontal gyrus increased during the face processing condition compared to the timing task. Overall, our results suggest that the prefrontal-amygdala connectivity might be required for the emotional processing of facial stimuli. On the other hand, attentional load, task type and task difficulty are discussed as possible factors that influence the effects of emotion on time perception.
Collapse
Affiliation(s)
- Emre H Kale
- Brain Research Centre, Ankara University, Ankara, Turkey.,Department of Interdisciplinary Neuroscience, Health Science Institute, Ankara University, Ankara, Turkey
| | - Sertaç Üstün
- Department of Physiology, School of Medicine, Ankara University, Ankara, Turkey
| | - Metehan Çiçek
- Brain Research Centre, Ankara University, Ankara, Turkey.,Department of Interdisciplinary Neuroscience, Health Science Institute, Ankara University, Ankara, Turkey.,Department of Physiology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
22
|
Duda BM, Owens MM, Hallowell ES, Sweet LH. Neurocompensatory Effects of the Default Network in Older Adults. Front Aging Neurosci 2019; 11:111. [PMID: 31214012 PMCID: PMC6558200 DOI: 10.3389/fnagi.2019.00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
The hemispheric asymmetry reduction in older adults (HAROLD) is a neurocompensatory process that has been observed across several cognitive functions but has not yet been examined in relation to task-induced relative deactivations of the default mode network. The present study investigated the presence of HAROLD effects specific to neural activations and deactivations using a functional magnetic resonance imaging (fMRI) n-back paradigm. It was hypothesized that HAROLD effects would be identified in relative activations and deactivations during the paradigm, and that they would be associated with better 2-back performance. Forty-five older adults (M age = 63.8; range = 53-83) were administered a verbal n-back paradigm during fMRI. For each participant, the volume of brain response was summarized by left and right frontal regions of interest, and laterality indices (LI; i.e., left/right) were calculated to assess HAROLD effects. Group level results indicated that age was significantly and negatively correlated with LI (i.e., reduced left lateralization) for deactivations, but positively correlated with LI (i.e., increased left lateralization) for activations. The relationship between age and LI for deactivation was significantly moderated by performance level, revealing a stronger relationship between age and LI at higher levels of 2-back performance. Findings suggest that older adults may employ neurocompensatory processes specific to deactivations, and task-independent processes may be particularly sensitive to age-related neurocompensation.
Collapse
Affiliation(s)
- Bryant M. Duda
- Department of Psychology, University of Georgia, Athens, GA, United States
| | - Max M. Owens
- Department of Psychology, University of Georgia, Athens, GA, United States
| | - Emily S. Hallowell
- Department of Psychology, University of Georgia, Athens, GA, United States
| | - Lawrence H. Sweet
- Department of Psychology, University of Georgia, Athens, GA, United States
- Department of Psychiatry & Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
23
|
Pushkarskaya H, Sobowale K, Henick D, Tolin DF, Anticevic A, Pearlson GD, Levy I, Harpaz-Rotem I, Pittenger C. Contrasting contributions of anhedonia to obsessive-compulsive, hoarding, and post-traumatic stress disorders. J Psychiatr Res 2019; 109:202-213. [PMID: 30572276 PMCID: PMC8549853 DOI: 10.1016/j.jpsychires.2018.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/28/2023]
Abstract
Anhedonia is a transdiagnostic construct that can occur independent of other symptoms of depression; its role in neuropsychiatric disorders that are not primarily affective, such as obsessive compulsive disorder (OCD), hoarding disorder (HD), and post-traumatic stress disorder (PTSD) has received limited attention. This paper addresses this gap. First, the data revealed a positive contribution of anhedonia, beyond the effects of general depression, to symptom severity in OCD but not in HD or PTSD. Second, anhedonia was operationalized as a reduced sensitivity to rewards, which allowed employing the value based decision making framework to investigate effects of anhedonia on reward-related behavioral outcomes, such as increased risk aversion and increased difficulty of making value-based choices. Both self-report and behavior-based measures were used to characterize individual risk aversion: risk perception and risk-taking propensities (measured using the Domain Specific Risk Taking scale) and risk attitudes evaluated using a gambling task. Data revealed the positive theoretically predicted correlation between anhedonia and risk perception in OCD; effects on self-reported risk taking and behavior-based risk aversion were non-significant. The same relations were weaker in HD and absent in PTSD. Response time during a gambling task, an index of difficulty of making value-based choices, significantly correlated with anhedonia in individuals with OCD and individuals with HD, even after controlling for general depression, but not in individuals with PTSD. The results suggest a unique contribution of one aspect of anhedonia in obsessive-compulsive disorder and confirm the importance of investigating the role of anhedonia transdiagnostically beyond affective and psychotic disorders.
Collapse
Affiliation(s)
- Helen Pushkarskaya
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA.
| | - Kunmi Sobowale
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Daniel Henick
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - David F Tolin
- Department of Psychology, Yale University, New Haven, CT, 06510, USA; Anxiety Disorders Center, Institute of Living, Hartford Hospital, Hartford, CT, 06114, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA; National Institute on Alcohol Abuse and Alcoholism (NIAAA) Center for the Translational Neuroscience of Alcoholism (CTNA), Yale University, New Haven, CT, 06519, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Department of Psychiatry, Yale University, New Haven, CT, 06519, USA
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, 06114, USA
| | - Ifat Levy
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA; National Center for PTSD, VA Connecticut Healthcare System and Yale Department of Psychiatry, USA
| | - Christopher Pittenger
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Psychology, Yale University, New Haven, CT, 06510, USA; Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
24
|
Jackson RL, Cloutman LL, Lambon Ralph MA. Exploring distinct default mode and semantic networks using a systematic ICA approach. Cortex 2019; 113:279-297. [PMID: 30716610 PMCID: PMC6459395 DOI: 10.1016/j.cortex.2018.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022]
Abstract
Resting-state networks (RSNs; groups of regions consistently co-activated without an explicit task) are hugely influential in modern brain research. Despite this popularity, the link between specific RSNs and their functions remains elusive, limiting the impact on cognitive neuroscience (where the goal is to link cognition to neural systems). Here we present a series of logical steps to formally test the relationship between a coherent RSN with a cognitive domain. This approach is applied to a challenging and significant test-case; extracting a recently-proposed semantic RSN, determining its relation with a well-known RSN, the default mode network (DMN), and assessing their roles in semantic cognition. Results showed the DMN and semantic network are two distinct coherent RSNs. Assessing the cognitive signature of these spatiotemporally coherent networks directly (and therefore accounting for overlapping networks) showed involvement of the proposed semantic network, but not the DMN, in task-based semantic cognition. Following the steps presented here, researchers could formally test specific hypotheses regarding the function of RSNs, including other possible functions of the DMN.
Collapse
Affiliation(s)
- Rebecca L Jackson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology (Zochonis Building), University of Manchester, Manchester, UK
| | | |
Collapse
|
25
|
Cadena EJ, White DM, Kraguljac NV, Reid MA, Maximo JO, Nelson EA, Gawronski BA, Lahti AC. A Longitudinal Multimodal Neuroimaging Study to Examine Relationships Between Resting State Glutamate and Task Related BOLD Response in Schizophrenia. Front Psychiatry 2018; 9:632. [PMID: 30555359 PMCID: PMC6281980 DOI: 10.3389/fpsyt.2018.00632] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 01/10/2023] Open
Abstract
Previous studies have observed impairments in both brain function and neurometabolite levels in schizophrenia. In this study, we investigated the relationship between brain activity and neurochemistry in off-medication patients with schizophrenia and if this relationship is altered following antipsychotic medication by combining proton magnetic resonance spectroscopy (1H-MRS) with functional magnetic resonance imaging (fMRI). We used single voxel MRS acquired in the bilateral dorsal anterior cingulate cortex (ACC) and fMRI during performance of a Stroop color-naming task in 22 patients with schizophrenia (SZ), initially off-medication and after a 6-week course of risperidone, and 20 matched healthy controls (HC) twice, 6 weeks apart. We observed a significant decrease in ACC glutamate + glutamine (Glx)/Creatine (Cr) levels in medicated SZ patients compared to HC but not compared to their off-medication baseline. In off-medication SZ, the relationship between ACC Glx/Cr levels and the blood oxygen level-dependent (BOLD) response in regions of the salience network (SN) and posterior default mode network (DMN) was opposite than of HC. After 6 weeks, the relationship between Glx and the BOLD response was still opposite between the groups; however for both groups the direction of the relationship changed from baseline to week 6. These results suggest a mechanism whereby alterations in the relationship between cortical glutamate and BOLD response is disrupting the modulation of major neural networks subserving cognitive processes, potentially affecting cognition. While these relationships appear to normalize with treatment in patients, the interpretations of the results are confounded by significant group differences in Glx levels, as well as the variability of the relationship between Glx and BOLD response in HC over time, which may be driven by factors including habituation to task or scanner environment.
Collapse
Affiliation(s)
- Elyse J. Cadena
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David M. White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nina V. Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meredith A. Reid
- Magnetic Resonance Imaging Research Center, Auburn University at Birmingham, Birmingham, AL, United States
| | - Jose O. Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric A. Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian A. Gawronski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adrienne C. Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
26
|
|
27
|
Salmi J, Salmela V, Salo E, Mikkola K, Leppämäki S, Tani P, Hokkanen L, Laasonen M, Numminen J, Alho K. Out of focus – Brain attention control deficits in adult ADHD. Brain Res 2018; 1692:12-22. [DOI: 10.1016/j.brainres.2018.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
|
28
|
Effects of task complexity and age-differences on task-related functional connectivity of attentional networks. Neuropsychologia 2018; 114:50-64. [PMID: 29655800 DOI: 10.1016/j.neuropsychologia.2018.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/21/2022]
Abstract
Studies investigating the strength and membership of regions within multiple functional networks primarily focus on either resting state or single cognitive tasks. The goals of the current study were to investigate whether task-related functional connectivity changes with task complexity, and whether this connectivity-complexity relationship is age-sensitive. We assessed seed-to-voxel functional connectivity for the default mode network (DMN) and two attentional networks [cingulo-opercular (CO), fronto-parietal (FP)] in three cognitive control tasks of increasing complexity (Single task, Dual task, and Memory Updating), across younger and older adults (N = 52; NYoung = 23; NOld = 29). The three tasks systematically varied in cognitive control demands due to differing maintenance, switching, and updating requirements. Functional connectivity for all networks, resulting from task > rest contrasts, increased with greater task complexity, irrespective of age and gray matter volume. Moreover, between-network connectivity for DMN, CO, and FP regions was greatest for working memory updating, the most complex task. Regarding age-related differences in accuracy, none were observed for Single or Dual tasks, but older adults had poorer accuracy in Memory Updating. More anterior frontal clusters of functional connectivity were observed for older, compared to younger, adults; these were limited to seeds of the two attentional networks. Importantly, increased connectivity in these additional frontal regions in older adults were non-compensatory, because they were associated with detrimental task performance, especially Memory Updating. For the Memory Updating > Rest, the younger > older contrast resulted in greater DMN seed connectivity to regions in the other two attentional networks, implicating increased reliance on between-network connectivity for the DMN seeds during complex cognitive tasks. Our results also implicate functional connectivity between attentional networks and the cerebellum during cognitive control. Reliability of multiple seeds in the seed-to-voxel connectivity is also discussed.
Collapse
|
29
|
St Jacques PL, Szpunar KK, Schacter DL. Shifting visual perspective during retrieval shapes autobiographical memories. Neuroimage 2016; 148:103-114. [PMID: 27989780 DOI: 10.1016/j.neuroimage.2016.12.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/14/2016] [Accepted: 12/10/2016] [Indexed: 01/21/2023] Open
Abstract
The dynamic and flexible nature of memories is evident in our ability to adopt multiple visual perspectives. Although autobiographical memories are typically encoded from the visual perspective of our own eyes they can be retrieved from the perspective of an observer looking at our self. Here, we examined the neural mechanisms of shifting visual perspective during long-term memory retrieval and its influence on online and subsequent memories using functional magnetic resonance imaging (fMRI). Participants generated specific autobiographical memories from the last five years and rated their visual perspective. In a separate fMRI session, they were asked to retrieve the memories across three repetitions while maintaining the same visual perspective as their initial rating or by shifting to an alternative perspective. Visual perspective shifting during autobiographical memory retrieval was supported by a linear decrease in neural recruitment across repetitions in the posterior parietal cortices. Additional analyses revealed that the precuneus, in particular, contributed to both online and subsequent changes in the phenomenology of memories. Our findings show that flexibly shifting egocentric perspective during autobiographical memory retrieval is supported by the precuneus, and suggest that this manipulation of mental imagery during retrieval has consequences for how memories are retrieved and later remembered.
Collapse
Affiliation(s)
- Peggy L St Jacques
- School of Psychology, University of Sussex, Pevensey 1, Room 2C5, Brighton BN1 9QH, UK.
| | - Karl K Szpunar
- Department of Psychology, University of Illinois at Chicago, Chicago 60607, USA
| | - Daniel L Schacter
- Department of Psychology, Harvard University, Cambridge 02138, USA; Center for Brain Science, Harvard University, Cambridge 02138, USA
| |
Collapse
|
30
|
Large-scale functional network overlap is a general property of brain functional organization: Reconciling inconsistent fMRI findings from general-linear-model-based analyses. Neurosci Biobehav Rev 2016; 71:83-100. [PMID: 27592153 DOI: 10.1016/j.neubiorev.2016.08.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain's properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings.
Collapse
|
31
|
Electrophysiological evidence during episodic prospection implicates medial prefrontal and bilateral middle temporal gyrus. Brain Res 2016; 1644:296-305. [DOI: 10.1016/j.brainres.2016.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/12/2016] [Accepted: 03/24/2016] [Indexed: 11/19/2022]
|
32
|
de Bézenac CE, Sluming V, Gouws A, Corcoran R. Neural response to modulating the probability that actions of self or other result in auditory tones: A parametric fMRI study into causal ambiguity. Biol Psychol 2016; 119:64-78. [PMID: 27381929 DOI: 10.1016/j.biopsycho.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/01/2016] [Indexed: 01/26/2023]
Abstract
In normal circumstances we can easily distinguish between changes to the external world brought about by our own actions from those with external causes. However, in certain contexts our sense of ownership and agency over acts is not so clear. Neuroimaging studies have implicated a number of regions in the sense of agency, some of which have been shown to vary continuously with action-outcome discordance. However, little is known about dynamic, ambiguous contexts characterised by a lack of information for self-other differentiation, yet such ambiguous states are important in relation to symptoms and levels of consciousness that characterise certain mental health conditions. With a block-design fMRI paradigm, we investigated neural responses to changes in the probability that a participant's irregular finger taps over 12s would result in auditory tones as opposed to tones generated by 'another's finger taps'. The main findings were that misattribution increased in ambiguous conditions where the probability of a tone belonging to self and other was equal. Task-sensitive brain regions, previously identified in self-agency, motor cognition, and ambiguity processing, showed a quadratic response to our self-to-other manipulation, with particular sensitivity to self-control. Task performance (low error and bias) was related to attenuated response in ambiguous conditions while increased response in regions associated with the default mode network was associated with greater overall error and bias towards other. These findings suggest that causal ambiguity as it occurs over time is a prominent feature in sense of agency, one that may eventually contribute to a more comprehensive understanding of positive symptoms of psychosis.
Collapse
Affiliation(s)
- Christophe E de Bézenac
- Psychological Sciences, University of Liverpool, Waterhouse Building, Block B, 2nd Floor, L69 3BX, United Kingdom.
| | - Vanessa Sluming
- School of Health Sciences, Thompson Yates Building, The Quadrangle, Brownlow Hill, Liverpool L69 3GB, United Kingdom.
| | - André Gouws
- York Neuroimaging Centre (YNiC), The Biocentre, York Science Park, Heslington, York YO10 5NY, United Kingdom.
| | - Rhiannon Corcoran
- Psychological Sciences, University of Liverpool, Waterhouse Building, Block B, 2nd Floor, L69 3BX, United Kingdom.
| |
Collapse
|
33
|
Wang X, Peelen MV, Han Z, Caramazza A, Bi Y. The role of vision in the neural representation of unique entities. Neuropsychologia 2016; 87:144-156. [DOI: 10.1016/j.neuropsychologia.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/02/2016] [Accepted: 05/08/2016] [Indexed: 11/17/2022]
|
34
|
Crittenden BM, Mitchell DJ, Duncan J. Recruitment of the default mode network during a demanding act of executive control. eLife 2015; 4:e06481. [PMID: 25866927 PMCID: PMC4427863 DOI: 10.7554/elife.06481] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/11/2015] [Indexed: 11/13/2022] Open
Abstract
In the human brain, a default mode or task-negative network shows reduced activity during many cognitive tasks and is often associated with internally-directed processes, such as mind wandering and thoughts about the self. In contrast to this task-negative pattern, we show increased activity during a large and demanding switch in task set. Furthermore, we employ multivoxel pattern analysis and find that regions of interest within default mode network are encoding task-relevant information during task performance. Activity in this network may be driven by major revisions of cognitive context, whether internally or externally focused. DOI:http://dx.doi.org/10.7554/eLife.06481.001 The default mode network is a network in the brain that is often active when we think about ourselves, reminiscence about the past or just let our minds wander. However, this network—which involves many different regions of the brain—usually becomes inactive when we focus on a specific cognitive task. Now Crittenden et al. have used a technique called functional MRI to show that the default mode network can become active again if we switch from one task to another. Functional MRI works by measuring the blood flow in the brain: regions of the brain that are active have more blood flow than regions that are not active. Crittenden et al. studied the brains of human subjects as they performed a series of different tasks. These experiments showed that the activity of the default mode network does not change when the subject is focused on a single task. This is also true for when the subject switches between two similar tasks. However, when the subject switches between two very different tasks, the network becomes significantly more active. Moreover, the patterns of activity in the network seem to reflect the nature of the tasks. The work of Crittenden et al. strongly suggests that in order to successfully switch between two different tasks, the brain needs to engage the default mode network and allow the mind to wander. Future studies will involve exploring how different the two tasks need to be in order to activate the default mode network, and studying how brain damage within the network may impair patients ability to switch between different tasks. DOI:http://dx.doi.org/10.7554/eLife.06481.002
Collapse
Affiliation(s)
- Ben M Crittenden
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom.,University of Cambridge, Cambridge, United Kingdom.,Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
| | - Daniel J Mitchell
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
| | - John Duncan
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom.,University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Jackson RL, Hoffman P, Pobric G, Lambon Ralph MA. The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity. Cereb Cortex 2015; 25:4319-33. [PMID: 25636912 PMCID: PMC4816784 DOI: 10.1093/cercor/bhv003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The ability to represent concepts and the relationships between them is critical to human cognition. How does the brain code relationships between items that share basic conceptual properties (e.g., dog and wolf) while simultaneously representing associative links between dissimilar items that co-occur in particular contexts (e.g., dog and bone)? To clarify the neural bases of these semantic components in neurologically intact participants, both types of semantic relationship were investigated in an fMRI study optimized for anterior temporal lobe (ATL) coverage. The clear principal finding was that the same core semantic network (ATL, superior temporal sulcus, ventral prefrontal cortex) was equivalently engaged when participants made semantic judgments on the basis of association or conceptual similarity. Direct comparisons revealed small, weaker differences for conceptual similarity > associative decisions (e.g., inferior prefrontal cortex) and associative > conceptual similarity (e.g., ventral parietal cortex) which appear to reflect graded differences in task difficulty. Indeed, once reaction time was entered as a covariate into the analysis, no associative versus category differences remained. The paper concludes with a discussion of how categorical/feature-based and associative relationships might be represented within a single, unified semantic system.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences (Zochonis Building), University of Manchester, Manchester M13 9PL, UK
| | - Paul Hoffman
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences (Zochonis Building), University of Manchester, Manchester M13 9PL, UK
| | - Gorana Pobric
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences (Zochonis Building), University of Manchester, Manchester M13 9PL, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences (Zochonis Building), University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
36
|
Landsiedel J, Gilbert SJ. Creating external reminders for delayed intentions: dissociable influence on "task-positive" and "task-negative" brain networks. Neuroimage 2014; 104:231-40. [PMID: 25451474 DOI: 10.1016/j.neuroimage.2014.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/30/2022] Open
Abstract
Studies of prospective memory and other paradigms requiring participants to remember delayed intentions typically reveal a distinction between lateral and medial rostral prefrontal cortex, whereby the experimental condition yields increased signal in the former region and decreased signal in the latter. These regions comprise nodes of larger "task-positive" and "task-negative" networks that often show opposite patterns of signal change in response to diverse cognitive demands. However, it is not clear to what extent activity in these networks is A) inverse but equivalent, or B) functionally dissociable. In order to address this question, participants performed an "intention-offloading" task while undergoing fMRI. On each trial they remembered a delayed intention, which they had the opportunity to fulfill after a brief filled delay. In one condition they were required to set an external reminder of this intention, while in the other they acted without any external memory aid. Results indicated a clear functional dissociation between the two networks. Compared with a control task with no delayed intention, there was a highly significant reduction in task-negative deactivation when participants used an external memory aid. However, there was no reduction in task-positive activation. These results are consistent with previous evidence that medial rostral prefrontal cortex plays a prominent role in representing the content of delayed intentions, accompanied by a reduction in BOLD signal and potentially increased theta-band oscillatory activity. This role is no longer required once an external reminder has been created. By contrast, lateral rostral prefrontal cortex may play a content-free role, unaffected by the offloading of content into the external environment.
Collapse
Affiliation(s)
- Julia Landsiedel
- Institute of Cognitive Neuroscience, University College London, UK
| | - Sam J Gilbert
- Institute of Cognitive Neuroscience, University College London, UK.
| |
Collapse
|
37
|
Myers EB, Mesite LM. Neural Systems Underlying Perceptual Adjustment to Non-Standard Speech Tokens. JOURNAL OF MEMORY AND LANGUAGE 2014; 76:80-93. [PMID: 25092949 PMCID: PMC4118215 DOI: 10.1016/j.jml.2014.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It has long been noted that listeners use top-down information from context to guide perception of speech sounds. A recent line of work employing a phenomenon termed 'perceptual learning for speech' shows that listeners use top-down information to not only resolve the identity of perceptually ambiguous speech sounds, but also to adjust perceptual boundaries in subsequent processing of speech from the same talker. Even so, the neural mechanisms that underlie this process are not well understood. Of particular interest is whether this type of adjustment comes about because of a retuning of sensitivities to phonetic category structure early in the neural processing stream or whether the boundary shift results from decision-related or attentional mechanisms further downstream. In the current study, neural activation was measured using fMRI as participants categorized speech sounds that were perceptually shifted as a result of exposure to these sounds in lexically-unambiguous contexts. Sensitivity to lexically-mediated shifts in phonetic categorization emerged in right hemisphere frontal and middle temporal regions, suggesting that the perceptual learning for speech phenomenon relies on the adjustment of perceptual criteria downstream from primary auditory cortex. By the end of the session, this same sensitivity was seen in left superior temporal areas, which suggests that a rapidly-adapting system may be accompanied by more slowly evolving shifts in regions of the brain related to phonetic processing.
Collapse
Affiliation(s)
- Emily B. Myers
- University of Connecticut, Department of Speech, Language, and Hearing Sciences, 850 Bolton Road, Storrs, CT 06269
- University of Connecticut, Department of Psychology, 406 Babbidge Road, Storrs, CT 06269
- Brown University, Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer Street, Providence, RI 02912
- Haskins Laboratories, 300 George Street #900, New Haven, CT 06511
- Corresponding Author: Emily Myers, Department of Speech, Language, and Hearing Sciences, University of Connecticut, 850 Bolton Road, Storrs, CT 06269, , 860-486-2630
| | - Laura M. Mesite
- Brown University, Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer Street, Providence, RI 02912
- Haskins Laboratories, 300 George Street #900, New Haven, CT 06511
| |
Collapse
|
38
|
Sensitivity of negative subsequent memory and task-negative effects to age and associative memory performance. Brain Res 2014; 1612:16-29. [PMID: 25264353 DOI: 10.1016/j.brainres.2014.09.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 11/23/2022]
Abstract
The present fMRI experiment employed associative recognition to investigate the relationships between age and encoding-related negative subsequent memory effects and task-negative effects. Young, middle-aged and older adults (total n=136) were scanned while they made relational judgments on visually presented word pairs. In a later memory test, the participants made associative recognition judgments on studied, rearranged (items studied on different trials) and new pairs. Several regions, mostly localized to the default mode network, demonstrated negative subsequent memory effects in an across age-group analysis. All but one of these regions also demonstrated task-negative effects, although there was no correlation between the size of the respective effects. Whereas negative subsequent memory effects demonstrated a graded attenuation with age, task-negative effects declined markedly between the young and the middle-aged group, but showed no further reduction in the older group. Negative subsequent memory effects did not correlate with memory performance within any age group. By contrast, in the older group only, task-negative effects predicted later memory performance. The findings demonstrate that negative subsequent memory and task-negative effects depend on dissociable neural mechanisms and likely reflect distinct cognitive processes. The relationship between task-negative effects and memory performance in the older group might reflect the sensitivity of these effects to variations in amount of age-related neuropathology. This article is part of a Special Issue entitled SI: Memory.
Collapse
|
39
|
Dayan E, Sella I, Mukovskiy A, Douek Y, Giese MA, Malach R, Flash T. The Default Mode Network Differentiates Biological From Non-Biological Motion. Cereb Cortex 2014; 26:234-245. [PMID: 25217472 DOI: 10.1093/cercor/bhu199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing.
Collapse
Affiliation(s)
- Eran Dayan
- Department of Computer Science and Applied Mathematics.,Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.,Present Address: Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| | - Irit Sella
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Albert Mukovskiy
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Center for Integrative Neuroscience, University Clinic Tübingen, Tübingen 72076, Germany
| | | | - Martin A Giese
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Center for Integrative Neuroscience, University Clinic Tübingen, Tübingen 72076, Germany
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Flash
- Department of Computer Science and Applied Mathematics
| |
Collapse
|
40
|
Wolf RC, Sambataro F, Vasic N, Wolf ND, Thomann PA, Landwehrmeyer GB, Orth M. Longitudinal task-negative network analyses in preclinical Huntington's disease. Eur Arch Psychiatry Clin Neurosci 2014; 264:493-505. [PMID: 24071913 DOI: 10.1007/s00406-013-0447-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023]
Abstract
Functional neuroimaging studies have reported task-related brain activation changes in preclinical individuals carrying the Huntington's disease (HD) gene mutation (preHD). Little is known about "task-negative" activity, i.e., patterns of task-related deactivation in preHD, and about the stability of any deactivation changes over the course of the disease. Here, we explored task-related deactivation and functional connectivity of "task-negative" networks (TNNs) in preHD followed over a time period of 2 years. Thirteen far-from-onset preHD (mean time to estimated motor onset = 19.5 years) and thirteen healthy controls were investigated. We used functional magnetic resonance imaging (fMRI), a verbal working memory task, and uni- and multivariate analysis techniques for fMRI data. Behavior was similar in preHD and controls at baseline and did not change 2 years later. At both time points, deactivation was similar in preHD and controls. Within two spatio-temporally distinct TNNs, preHD had lower functional connectivity in the posterior cingulate cortex and higher functional connectivity in the left anterior prefrontal cortex compared to controls (p < 0.05, cluster-corrected). These findings remained stable at follow-up. Anterior prefrontal connectivity correlated with disease burden scores both at baseline and at follow-up. Over time, preHD exhibited higher connectivity in a dorsal cingulate region. Functional connectivity differences within this region were inversely associated with changes of motor function. These data provide first evidence for TNN connectivity changes in preHD followed over a period of 2 years. The relationship between dorsal cingulate connectivity and motor function suggests that "task-negative" activity may capture time-sensitive neural and functional processes in preHD.
Collapse
Affiliation(s)
- Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Voßstraße 4, 69115, Heidelberg, Germany,
| | | | | | | | | | | | | |
Collapse
|
41
|
Sawamura D, Ikoma K, Yoshida K, Inagaki Y, Ogawa K, Sakai S. Active inhibition of task-irrelevant sounds and its neural basis in patients with attention deficits after traumatic brain injury. Brain Inj 2014; 28:1455-60. [DOI: 10.3109/02699052.2014.919531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Schmithorst VJ, Plante E, Holland S. Unilateral deafness in children affects development of multi-modal modulation and default mode networks. Front Hum Neurosci 2014; 8:164. [PMID: 24723873 PMCID: PMC3971169 DOI: 10.3389/fnhum.2014.00164] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 03/05/2014] [Indexed: 11/13/2022] Open
Abstract
Monaural auditory input due to congenital or acquired unilateral hearing loss (UHL) may have neurobiological effects on the developing brain. Using functional magnetic resonance imaging (fMRI), we investigated the effect of UHL on the development of functional brain networks used for cross-modal processing. Children ages 7-12 with moderate or greater unilateral hearing loss of sensorineural origin (UHL-SN; N = 21) and normal-hearing controls (N = 23) performed an fMRI-compatible adaptation of the Token Test involving listening to a sentence such as "touched the small green circle and the large blue square" and simultaneously viewing an arrow touching colored shapes on a video. Children with right or severe-to-profound UHL-SN displayed smaller activation in a region encompassing the right inferior temporal, middle temporal, and middle occipital gyrus (BA 19/37/39), evidencing differences due to monaural hearing in cross-modal modulation of the visual processing pathway. Children with UHL-SN displayed increased activation in the left posterior superior temporal gyrus, likely the result either of more effortful low-level processing of auditory stimuli or differences in cross-modal modulation of the auditory processing pathway. Additionally, children with UHL-SN displayed reduced deactivation of anterior and posterior regions of the default mode network. Results suggest that monaural hearing affects the development of brain networks related to cross-modal sensory processing and the regulation of the default network during processing of spoken language.
Collapse
Affiliation(s)
- Vincent J. Schmithorst
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, CincinnatiOH, USA
- Department of Radiology, Children’s Hospital of Pittsburgh of UPMC, PittsburghPA, USA
| | - Elena Plante
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, TucsonAZ, USA
| | - Scott Holland
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, CincinnatiOH, USA
| |
Collapse
|
43
|
Hansen NL, Lauritzen M, Mortensen EL, Osler M, Avlund K, Fagerlund B, Rostrup E. Subclinical cognitive decline in middle-age is associated with reduced task-induced deactivation of the brain's default mode network. Hum Brain Mapp 2014; 35:4488-98. [PMID: 24578157 DOI: 10.1002/hbm.22489] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/07/2013] [Accepted: 01/30/2014] [Indexed: 11/08/2022] Open
Abstract
Cognitive abilities decline with age, but with considerable individual variation. The neurobiological correlate of this variation is not well described. Functional brain imaging studies have demonstrated reduced task-induced deactivation (TID) of the brain's default mode network (DMN) in a wide range of neurodegenerative diseases involving cognitive symptoms, in conditions with increased risk of Alzheimer's disease, and even in advanced but healthy aging. Here, we investigated brain activation and deactivation during a visual-motor task in 185 clinically healthy males from a Danish birth cohort, whose cognitive function was assessed in youth and midlife. Using each individual as his own control, we defined a group with a large degree of cognitive decline, and a control group. When correcting for effects of total cerebral blood flow and hemoglobin level, we found reduced TID in the posterior region of the DMN in the cognitive decline group compared to the control group. Furthermore, increased visual activation response was found in the cognitive decline group, indicating that the TID reduction was not exclusively due to overall impaired vascular reactivity. These results suggest a neurobiological basis for subclinical cognitive decline in late midlife, which includes TID alterations similar to the pattern seen in patients with AD and mild cognitive impairment. Hence, TID reduction might be suggested as an early marker for subtle cognitive decline in aging.
Collapse
Affiliation(s)
- Naja Liv Hansen
- Functional Imaging Unit, Diagnostic Department, Glostrup Hospital, Glostrup, Denmark; Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
44
|
de Chastelaine M, Rugg MD. The relationship between task-related and subsequent memory effects. Hum Brain Mapp 2014; 35:3687-700. [PMID: 24615858 DOI: 10.1002/hbm.22430] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 11/11/2022] Open
Abstract
The primary aim of this fMRI study was to assess the proposal that negative subsequent memory effects-greater activity for later forgotten relative to later remembered study items-are localized to regions demonstrating task-negative effects, and hence to potential components of the default mode network. Additionally, we assessed whether positive subsequent memory effects overlapped with regions demonstrating task-positive effects. Eighteen participants were scanned while they made easy or difficult relational judgments on visually presented word pairs. Easy and hard task blocks were interleaved with fixation-only rest periods. In the later unscanned test phase, associative recognition judgments were required on intact word pairs (studied pairs), rearranged pairs (pairs formed from words presented on different study trials) and new pairs. Subsequent memory effects were identified by contrasting the activity elicited by study pairs that went on to be correctly endorsed as intact versus incorrectly endorsed as rearranged. Task effects were identified by contrasting all study items and rest blocks. Both task-negative and task-positive effects were evident in widespread cortical regions and negative and positive subsequent memory effects were generally confined to task-negative and task-positive regions respectively. However, subsequent memory effects could be identified in only a fraction of task-sensitive voxels and, unlike task effects, were insensitive to the difficulty manipulation. The findings for the negative subsequent memory effects are consistent with recent proposals that the default mode network is functionally heterogeneous, and suggest that these effects are not accurately characterized as reflections of the modulation of the network as a whole.
Collapse
Affiliation(s)
- Marianne de Chastelaine
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Texas
| | | |
Collapse
|
45
|
Content matters: neuroimaging investigation of brain and behavioral impact of televised anti-tobacco public service announcements. J Neurosci 2013; 33:7420-7. [PMID: 23616548 DOI: 10.1523/jneurosci.3840-12.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Televised public service announcements are video ads that are a key component of public health campaigns against smoking. Understanding the neurophysiological correlates of anti-tobacco ads is an important step toward novel objective methods of their evaluation and design. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the brain and behavioral effects of the interaction between content ("argument strength," AS) and format ("message sensation value," MSV) of anti-smoking ads in humans. Seventy-one nontreatment-seeking smokers viewed a sequence of 16 high or 16 low AS ads during an fMRI scan. Dependent variables were brain fMRI signal, the immediate recall of the ads, the immediate change in intentions to quit smoking, and the urine levels of a major nicotine metabolite cotinine at a 1 month follow-up. Whole-brain ANOVA revealed that AS and MSV interacted in the inferior frontal, inferior parietal, and fusiform gyri; the precuneus; and the dorsomedial prefrontal cortex (dMPFC). Regression analysis showed that the activation in the dMPFC predicted the urine cotinine levels 1 month later. These results characterize the key brain regions engaged in the processing of persuasive communications and suggest that brain fMRI response to anti-smoking ads could predict subsequent smoking severity in nontreatment-seeking smokers. Our findings demonstrate the importance of the quality of content for objective ad outcomes and suggest that fMRI investigation may aid the prerelease evaluation of televised public health ads.
Collapse
|
46
|
Mayer KM, Vuong QC. Automatic processing of unattended object features by functional connectivity. Front Hum Neurosci 2013; 7:193. [PMID: 23720620 PMCID: PMC3654219 DOI: 10.3389/fnhum.2013.00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/26/2013] [Indexed: 11/15/2022] Open
Abstract
Observers can selectively attend to object features that are relevant for a task. However, unattended task-irrelevant features may still be processed and possibly integrated with the attended features. This study investigated the neural mechanisms for processing both task-relevant (attended) and task-irrelevant (unattended) object features. The Garner paradigm was adapted for functional magnetic resonance imaging (fMRI) to test whether specific brain areas process the conjunction of features or whether multiple interacting areas are involved in this form of feature integration. Observers attended to shape, color, or non-rigid motion of novel objects while unattended features changed from trial to trial (change blocks) or remained constant (no-change blocks) during a given block. This block manipulation allowed us to measure the extent to which unattended features affected neural responses which would reflect the extent to which multiple object features are automatically processed. We did not find Garner interference at the behavioral level. However, we designed the experiment to equate performance across block types so that any fMRI results could not be due solely to differences in task difficulty between change and no-change blocks. Attention to specific features localized several areas known to be involved in object processing. No area showed larger responses on change blocks compared to no-change blocks. However, psychophysiological interaction (PPI) analyses revealed that several functionally-localized areas showed significant positive interactions with areas in occipito-temporal and frontal areas that depended on block type. Overall, these findings suggest that both regional responses and functional connectivity are crucial for processing multi-featured objects.
Collapse
Affiliation(s)
- Katja M Mayer
- Institute of Neuroscience, Newcastle University Newcastle Upon Tyne, UK ; MPRG Neural mechanisms of human communication, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | | |
Collapse
|