1
|
Jin L, Yang K, Wu X, Zhang J. Safety assessment of brexanolone in the FAERS database: real adverse event analysis and discussion of side effects. Expert Opin Drug Saf 2024:1-7. [PMID: 39093352 DOI: 10.1080/14740338.2024.2387316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Postpartum depression (PPD) is linked to hormonal changes. Brexanolone, the first FDA-approved drug for PPD, is a potential treatment. This study analyzes Brexanolone's safety using the FAERS database, highlighting its adverse effects and potential risk factors. METHODS We analyzed FAERS data from Q3 2019 to Q3 2023, evaluating adverse reactions to Brexanolone. The analysis includes demographics, reporting regions, reporter identities, and types of adverse reactions. RESULTS Most reports are from the United States, with consumers and physicians as primary reporters. Adverse reactions mainly involve severe systemic diseases, administration site reactions, injuries, intoxication, operational complications, and mental disorders. Specific adverse reactions include incorrect drug monitoring, PPD, intrusive thoughts, delayed treatment efficacy, sedation complications, product discontinuation, misuse, infusion site leakage and pain, and medication errors. CONCLUSION The study confirms known safety information about Brexanolone and provides comprehensive data for medical practices and public health decisions. However, relying on spontaneous reports may introduce biases and incomplete information. Continued monitoring and reporting of adverse reactions to newer drugs like Brexanolone remain crucial.
Collapse
Affiliation(s)
- Liuyin Jin
- Department of Science and Education, Lishui Second People's Hospital, Lishui, China
| | - Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Jing Zhang
- Second Department of Infectious Disease, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Sackeim HA, Aaronson ST, Bunker MT, Conway CR, George MS, McAlister-Williams RH, Prudic J, Thase ME, Young AH, Rush AJ. Update on the assessment of resistance to antidepressant treatment: Rationale for the Antidepressant Treatment History Form: Short Form-2 (ATHF-SF2). J Psychiatr Res 2024; 176:325-337. [PMID: 38917723 DOI: 10.1016/j.jpsychires.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
All definitions of treatment-resistant depression (TRD) require that patients have experienced insufficient benefit from one or more adequate antidepressant trials. Thus, identifying "failed, adequate trials" is key to the assessment of TRD. The Antidepressant Treatment History Form (ATHF) was one of the first and most widely used instruments that provided objective criteria in making these assessments. The original ATHF was updated in 2018 to the ATHF-SF, changing to a checklist format for scoring, and including specific pharmacotherapy, brain stimulation, and psychotherapy interventions as potentially adequate antidepressant treatments. The ATHF-SF2, presented here, is based on the consensus of the ATHF workgroup about the novel interventions introduced since the last revision and which should/should not be considered effective treatments for major depressive episodes. This document describes the rationale for these choices and, for each intervention, the minimal criteria for determining the adequacy of treatment administration. The Supplementary Material that accompanies this article provide the Scoring Checklist, Data Collection Forms (current episode and composite of previous episodes), and Instruction Manual for the ATHF-SF2.
Collapse
Affiliation(s)
- Harold A Sackeim
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, USA.
| | - Scott T Aaronson
- Sheppard Pratt Health System and Department of Psychiatry, University of Maryland, Baltimore, MD, USA
| | | | - Charles R Conway
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Mark S George
- Departments of Psychiatry,Neurology,and Neuroscience, Medical University of South Carolina and Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - R Hamish McAlister-Williams
- Northern Centre for Mood Disorders, Translational and Clinical Research Institute, Newcastle University, UK; Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Joan Prudic
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York, NY, USA
| | - Michael E Thase
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - A John Rush
- Duke-NUS Medical School, Singapore; Duke University, Durham, NC, USA; Texas Tech University, Permian Basin, TX, USA
| |
Collapse
|
3
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
4
|
Phillips S, Chatham JC, McMahon LL. Forskolin reverses the O-GlcNAcylation dependent decrease in GABA AR current amplitude at hippocampal synapses possibly at a neurosteroid site on GABA ARs. Sci Rep 2024; 14:17461. [PMID: 39075105 PMCID: PMC11286967 DOI: 10.1038/s41598-024-66025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
GABAergic transmission is influenced by post-translational modifications, like phosphorylation, impacting channel conductance, allosteric modulator sensitivity, and membrane trafficking. O-GlcNAcylation is a post-translational modification involving the O-linked attachment of β-N-acetylglucosamine on serine/threonine residues. Previously we reported an acute increase in O-GlcNAcylation elicits a long-term depression of evoked GABAAR inhibitory postsynaptic currents (eIPSCs) onto hippocampal principal cells. Importantly, O-GlcNAcylation and phosphorylation can co-occur or compete for the same residue; whether they interact in modulating GABAergic IPSCs is unknown. We tested this by recording IPSCs from hippocampal principal cells and pharmacologically increased O-GlcNAcylation, before or after increasing serine phosphorylation using the adenylate cyclase activator, forskolin. Although forskolin had no significant effect on baseline eIPSC amplitude, we found that a prior increase in O-GlcNAcylation unmasks a forskolin-dependent increase in eIPSC amplitude, reversing the O-GlcNAc-induced eIPSC depression. Inhibition of adenylate cyclase or protein kinase A did not prevent the potentiating effect of forskolin, indicating serine phosphorylation is not the mechanism. Surprisingly, increasing O-GlcNAcylation also unmasked a potentiating effect of the neurosteroids 5α-pregnane-3α,21-diol-20-one (THDOC) and progesterone on eIPSC amplitude in about half of the recorded cells, mimicking forskolin. Our findings show that under conditions of heightened O-GlcNAcylation, the neurosteroid site on synaptic GABAARs is possibly accessible to agonists, permitting strengthening of synaptic inhibition.
Collapse
Affiliation(s)
- Shekinah Phillips
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29403, USA
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lori L McMahon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29403, USA.
| |
Collapse
|
5
|
Costa B, Vale N. Advances in Psychotropic Treatment for Pregnant Women: Efficacy, Adverse Outcomes, and Therapeutic Monitoring. J Clin Med 2024; 13:4398. [PMID: 39124665 PMCID: PMC11312735 DOI: 10.3390/jcm13154398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Advancements in psychotropic therapy for pregnant women are pivotal for addressing maternal mental health during the perinatal period. Screening for mood and anxiety symptoms during pregnancy is recommended to enable early intervention. Psychotropic medications, including antidepressants, benzodiazepines, antipsychotics, and mood stabilizers, are commonly used, but challenges remain regarding their safety and efficacy during pregnancy. Pregnancy induces significant changes in pharmacokinetics, necessitating personalized dosing strategies and careful monitoring. Real-time monitoring technologies, such as smartphone-integrated platforms and home-based monitoring, enhance accessibility and accuracy. Prospective studies and collaboration among healthcare providers are essential for evidence-based guidelines and optimal treatment strategies. Reducing stigma around mental health during pregnancy is crucial to ensure women seek help and discuss treatment options, promoting understanding and acceptance within the community.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
6
|
Neale I, Reddy C, Tan ZY, Li B, Nag PP, Park J, Park J, Carey KL, Graham DB, Xavier RJ. Small-molecule probe for IBD risk variant GPR65 I231L alters cytokine signaling networks through positive allosteric modulation. SCIENCE ADVANCES 2024; 10:eadn2339. [PMID: 39028811 PMCID: PMC11259170 DOI: 10.1126/sciadv.adn2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
The proton-sensing heterotrimeric guanine nucleotide-binding protein-coupled receptor GPR65 is expressed in immune cells and regulates tissue homeostasis in response to decreased extracellular pH, which occurs in the context of inflammation and tumorigenesis. Genome-wide association studies linked GPR65 to several autoimmune and inflammatory diseases such as multiple sclerosis and inflammatory bowel disease (IBD). The loss-of-function GPR65 I231L IBD risk variant alters cellular metabolism, impairs protective tissue functions, and increases proinflammatory cytokine production. Hypothesizing that a small molecule designed to potentiate GPR65 at subphysiological pH could decrease inflammatory responses, we found positive allosteric modulators of GPR65 that engage and activate both human and mouse orthologs of the receptor. We observed that the chemical probe BRD5075 alters cytokine and chemokine programs in dendritic cells, establishing that immune signaling can be modulated by targeting GPR65. Our investigation offers improved chemical probes to further interrogate the biology of human GPR65 and its clinically relevant genetic variants.
Collapse
Affiliation(s)
- Ilona Neale
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clark Reddy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zher Yin Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bihua Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Partha P. Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jihye Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
7
|
Yawata Y, Tashima R, Aritomi H, Shimada S, Onodera T, Taishi T, Takasu K, Ogawa K. Differential effects of allopregnanolone and diazepam on social behavior through modulation of neural oscillation dynamics in basolateral amygdala and medial prefrontal cortex. Front Cell Neurosci 2024; 18:1404603. [PMID: 38899227 PMCID: PMC11185934 DOI: 10.3389/fncel.2024.1404603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Effective treatments for major depressive disorder (MDD) have long been needed. One hypothesis for the mechanism of depression involves a decrease in neuroactive steroids such as allopregnanolone, an endogenous positive allosteric modulator of the γ-aminobutyric acid-gated chloride channel (GABAA) receptor. In our previous study, we discovered that allopregnanolone, not diazepam, exhibited antidepressant-like effects in the social interaction test (SIT) of social defeat stress (SDS) model mice. However, the dynamics of neuronal activity underlying the antidepressant-like effect remain unknown. In the current study, we conducted local field potentials (LFPs) recordings from the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) during the SIT to elucidate the relationship between the antidepressant-like effect and neuronal oscillation. We discovered that allopregnanolone has antidepressant-like effects in the SIT of SDS model mice by decreasing intervals of repetitive social interaction (inter-event intervals), resulting in increase of total social interaction time. We also found that theta and beta oscillation increased in BLA at the onset of social interaction following administration of allopregnanolone, which differed from the effects of diazepam. Theta and beta power in BLA within the social interaction zone exhibited a positive correlation with interaction time. This increase of theta and beta power was negatively correlated with inter-event intervals. Regarding theta-band coordinated activity between the BLA and mPFC, theta power correlation decreased at the onset of social interaction with the administration of allopregnanolone. These findings suggest that theta activity in BLA following social interaction and the reduced theta-band coordinated activity between the BLA and mPFC are implicated in social interaction, which is one of the antidepressant behaviors. These differences in neural activity could elucidate the distinctive mechanism underlying antidepressant-like effects of neuroactive steroids, as opposed to benzodiazepines.
Collapse
Affiliation(s)
- Yosuke Yawata
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Ryoichi Tashima
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | | | | | - Tsukasa Onodera
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Teruhiko Taishi
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Keiko Takasu
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Koichi Ogawa
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
8
|
Orser BA. Discovering the Intriguing Properties of Extrasynaptic γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2024; 140:1192-1200. [PMID: 38624275 DOI: 10.1097/aln.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.
Collapse
Affiliation(s)
- Beverley A Orser
- Department of Anesthesiology and Pain Medicine, and Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Björväng RD, Walldén Y, Fransson E, Comasco E, Sundström-Poromaa I, Skalkidou A. Mid-pregnancy allopregnanolone levels and trajectories of perinatal depressive symptoms. Psychoneuroendocrinology 2024; 164:107009. [PMID: 38442504 DOI: 10.1016/j.psyneuen.2024.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Perinatal depression is a major cause of disability for individuals giving birth worldwide, with detrimental effects on short- and long-term parental and child outcomes. There is emerging evidence that the neuroactive steroid hormone allopregnanolone is implicated in the pathophysiology and course of perinatal mood symptoms. However, no study thus far has examined allopregnanolone levels whilst making use of longitudinal data on depressive symptom trajectories throughout the perinatal period. The present study investigated levels of allopregnanolone at gestational week 17 of 252 participants in relation to perinatal depressive symptom trajectories, with a secondary aim of exploring the role of history of depression as an effect modifier. Four perinatal depressive symptom trajectories were investigated: controls (no depressive symptoms throughout perinatal period) (N=161), antepartum (depressive symptoms prenatally with postpartum remission) (N=31), postpartum-onset (no depressive symptoms during pregnancy, development of depressive symptoms postpartum) (N=23), and persistent (depressive symptoms throughout the perinatal period) (N=37). Results show that for every one nmol/l increase in allopregnanolone, there was 7% higher odds for persistent depressive symptoms (OR 1.07, 95% CI 1.01-1.14) compared to controls. No association was seen for antepartum and postpartum-onset depressive symptoms. History of depression did not modify the association between allopregnanolone and perinatal depressive symptom trajectories. These results show the role of allopregnanolone for persistent depressive symptoms and strengthen the hypothesis of differences in pathophysiology among the trajectories.
Collapse
Affiliation(s)
- Richelle D Björväng
- Department of Women's and Children's Health, Uppsala University, Uppsala 751 85, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge 14158, Sweden.
| | - Ylva Walldén
- Department of Women's and Children's Health, Uppsala University, Uppsala 751 85, Sweden
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala 751 85, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala 751 85, Sweden
| | | | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala 751 85, Sweden
| |
Collapse
|
10
|
Qian M, Covey DF. A unified total synthesis route to 18-trideuterated and/or 19-trideuterated testosterone, androstenedione and progesterone. Steroids 2024; 205:109391. [PMID: 38437943 PMCID: PMC10981554 DOI: 10.1016/j.steroids.2024.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
A unified total synthesis route has been used to prepare 18- and 19-trideuterated testosterone, androstenedione and progesterone. The 18-trideuterated steroid synthetic method starts with the synthesis of 2-(methyl-d3)-1,3-cyclopentanedione from CD3I and 1,3-cyclopentanedione and is subsequently converted into the Hajos-Parrish ketone for synthesis of these trideuterated steroids. The 19-trideuterated steroid synthesis proceeds through non-deuterated Hajos-Parrish ketone with incorporation of the 19-methyl-d3 group from CD3I at a later stage of the same synthetic route. Utilization of CD3I at both the initial and later stages of the synthesis provides a route to 18,19-hexadeuterated steroids. The deuterated steroids are useful for studies of steroid biosynthesis and metabolism.
Collapse
Affiliation(s)
- Mingxing Qian
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Department of Psychiatry, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Guard M, Labonte AK, Mendoza M, Myers MJ, Duncan M, Drysdale AT, Mukherji E, Rahman T, Tandon M, Kelly JC, Cooke E, Rogers CE, Lenze S, Sylvester CM. Brexanolone Treatment in a Real-World Patient Population: A Case Series and Pilot Feasibility Study of Precision Neuroimaging. J Clin Psychopharmacol 2024; 44:240-249. [PMID: 38551454 PMCID: PMC11177577 DOI: 10.1097/jcp.0000000000001859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
PURPOSE/BACKGROUND Brexanolone is approved for postpartum depression (PPD) by the United States Food and Drug Administration. Brexanolone has outperformed placebo in clinical trials, but less is known about the efficacy in real-world patients with complex social and medical histories. Furthermore, the impact of brexanolone on large-scale brain systems such as changes in functional connectivity (FC) is unknown. METHODS/PROCEDURES We tracked changes in depressive symptoms across a diverse group of patients who received brexanolone at a large medical center. Edinburgh Postnatal Depression Scale (EPDS) scores were collected through chart review for 17 patients immediately prior to infusion through approximately 1 year postinfusion. In 2 participants, we performed precision functional neuroimaging (pfMRI), including before and after treatment in 1 patient. pfMRI collects many hours of data in individuals for precision medicine applications and was performed to assess the feasibility of investigating changes in FC with brexanolone. FINDINGS/RESULTS The mean EPDS score immediately postinfusion was significantly lower than the mean preinfusion score (mean change [95% CI]: 10.76 [7.11-14.40], t (15) = 6.29, P < 0.0001). The mean EPDS score stayed significantly lower at 1 week (mean difference [95% CI]: 9.50 [5.23-13.76], t (11) = 4.90, P = 0.0005) and 3 months (mean difference [95% CI]: 9.99 [4.71-15.27], t (6) = 4.63, P = 0.0036) postinfusion. Widespread changes in FC followed infusion, which correlated with EPDS scores. IMPLICATIONS/CONCLUSIONS Brexanolone is a successful treatment for PPD in the clinical setting. In conjunction with routine clinical care, brexanolone was linked to a reduction in symptoms lasting at least 3 months. pfMRI is feasible in postpartum patients receiving brexanolone and has the potential to elucidate individual-specific mechanisms of action.
Collapse
Affiliation(s)
- Meg Guard
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- New York State Psychiatric Institute and the Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Alyssa K. Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Molly Mendoza
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael J. Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Maida Duncan
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew T. Drysdale
- New York State Psychiatric Institute and the Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Emily Mukherji
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Tahir Rahman
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Mini Tandon
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeannie C. Kelly
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily Cooke
- Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Cynthia E. Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Shannon Lenze
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M. Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
12
|
Phillips S, Chatham JC, McMahon LL. Forskolin reverses the O-GlcNAcylation dependent decrease in GABAAR current amplitude at hippocampal synapses possibly at a neurosteroid site on GABAARs. RESEARCH SQUARE 2024:rs.3.rs-4140038. [PMID: 38659738 PMCID: PMC11042418 DOI: 10.21203/rs.3.rs-4140038/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
GABAergic transmission is influenced by post-translational modifications, like phosphorylation, impacting channel conductance, allosteric modulator sensitivity, and membrane trafficking. O-GlcNAcylation is a post-translational modification involving the O-linked attachment of β-N-acetylglucosamine on serine/threonine residues. Previously we reported an acute increase in O-GlcNAcylation elicits a long-term depression of evoked GABAAR inhibitory post synaptic currents (eIPSCs) onto hippocampal principal cells. Importantly, O-GlcNAcylation and phosphorylation can co-occur or compete for the same residue; whether they interact in modulating GABAergic IPSCs is unknown. We tested this by recording IPSCs from hippocampal principal cells and pharmacologically increased O-GlcNAcylation, before or after increasing serine phosphorylation using the adenylate cyclase activator, forskolin. Although forskolin had no significant effect on baseline eIPSC amplitude, we found that a prior increase in O-GlcNAcylation unmasks a forskolin-dependent increase in eIPSC amplitude, reversing the O-GlcNAc-induced eIPSC depression. Inhibition of adenylate cyclase or protein kinase A did not prevent the potentiating effect of forskolin, indicating serine phosphorylation is not the mechanism. Surprisingly, increasing O-GlcNAcylation also unmasked a potentiating effect of the neurosteroids 5α-pregnane-3α,21-diol-20-one (THDOC) and progesterone on eIPSC amplitude, mimicking forskolin. Our findings show under conditions of heightened O-GlcNAcylation, the neurosteroid site on synaptic GABAARs is accessible to agonists, permitting strengthening of synaptic inhibition.
Collapse
|
13
|
Phillips S, Chatham JC, McMahon L. Forskolin reverses the O-GlcNAcylation dependent decrease in GABAAR current amplitude at hippocampal synapses possibly through a neurosteroid site on GABAARs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583612. [PMID: 38496430 PMCID: PMC10942432 DOI: 10.1101/2024.03.06.583612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
GABAergic transmission is influenced by post-translational modifications, like phosphorylation, impacting channel conductance, allosteric modulator sensitivity, and membrane trafficking. O-GlcNAcylation is a post-translational modification involving the O-linked attachment of β-N-acetylglucosamine on serine/threonine residues. Previously we reported an acute increase in O-GlcNAcylation elicits a long-term depression of evoked GABAAR inhibitory post synaptic currents (eIPSCs) onto hippocampal principal cells. Importantly O-GlcNAcylation and phosphorylation can co-occur or compete for the same residue; whether they interact in modulating GABAergic IPSCs is unknown. We tested this by recording IPSCs from hippocampal principal cells and pharmacologically increased O-GlcNAcylation, before or after increasing serine phosphorylation using the adenylate cyclase activator, forskolin. Although forskolin had no significant effect on baseline eIPSC amplitude, we found that a prior increase in O-GlcNAcylation unmasks a forskolin-dependent increase in eIPSC amplitude, reversing the O-GlcNAc-induced eIPSC depression. Inhibition of adenylate cyclase or protein kinase A did not prevent the potentiating effect of forskolin, indicating serine phosphorylation is not the mechanism. Surprisingly, increasing O-GlcNAcylation also unmasked a potentiating effect of the neurosteroids 5α-pregnane-3α,21-diol-20-one (THDOC) and progesterone on eIPSC amplitude, mimicking forskolin. Our findings show under conditions of heightened O-GlcNAcylation, the neurosteroid site on synaptic GABAARs is accessible to agonists, permitting strengthening of synaptic inhibition.
Collapse
|
14
|
Sun Q, Li G, Zhao F, Dong M, Xie W, Liu Q, Yang W, Cui R. Role of estrogen in treatment of female depression. Aging (Albany NY) 2024; 16:3021-3042. [PMID: 38309292 PMCID: PMC10911346 DOI: 10.18632/aging.205507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/28/2023] [Indexed: 02/05/2024]
Abstract
Depression is a neurological disorder that profoundly affects human physical and mental health, resulting in various changes in the central nervous system. Despite several prominent hypotheses, such as the monoaminergic theory, hypothalamic-pituitary-adrenal (HPA) axis theory, neuroinflammation, and neuroplasticity, the current understanding of depression's pathogenesis remains incomplete. Importantly, depression is a gender-dimorphic disorder, with women exhibiting higher incidence rates than men. Given estrogen's pivotal role in the menstrual cycle, it is reasonable to postulate that its fluctuating levels could contribute to the pathogenesis of depression. Estrogen acts by binding to a diversity of receptors, which are widely distributed in the central nervous system. An abundance of research has established that estrogen and its receptors play a crucial role in depression, spanning pathogenesis and treatment. In this comprehensive review, we provide an in-depth analysis of the fundamental role of estrogen and its receptors in depression, with a focus on neuroinflammation, neuroendocrinology, and neuroplasticity. Furthermore, we discuss potential mechanisms underlying the therapeutic effects of estrogen in the treatment of depression, which may pave the way for new antidepressant drug development and alternative treatment options.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Mengmeng Dong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
15
|
Pallanti S, Zohar J, Kasper S, Möller HJ, Hollander E. Revisiting benzodiazepines (GABA Enhancers):A transdiagnostic and precision medicine approach. J Psychiatr Res 2024; 170:65-72. [PMID: 38103451 DOI: 10.1016/j.jpsychires.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Since the mid 1980's, there has been an increased focus on the side effects of benzodiazepines (GABA enhancers), and as a result there has been a decrease in their use. We have systematically reviewed recent studies of GABA enhancers in psychiatry, and highlight evidence of their utility which may impact their negative conceptualization in clinical practice. We propose a new perspective on the appropriate use of these medications and describeclinical reasoning underpinning the use of benzodiazepine (GABA enhancers) based on their effect on specific receptors. A translational approach, involving a more comprehensive characterization of GABA receptors and their neuroscience-based mechanisms allows for a more precise use of this medication class. By adopting a precision person-centered approach, instead of a categorical approach, supports the prescribing of GABA enhancers when a cross-cutting transdiagnostic assessment shows anxiety symptoms associated with clinical impairment.
Collapse
Affiliation(s)
- Stefano Pallanti
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, USA; Institute of Neuroscience, Florence, Italy.
| | | | - Siegfried Kasper
- Center for Brain Research, Department of Molecular Neuroscience, Medical University of Vienna, Vienna, Austria
| | - Hans-Jürgen Möller
- Department of Psychiatry and Psychotherapy, University of München, Munich, Germany
| | - Eric Hollander
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatric Research Institute at Montefiore-Einstein, Albert Einstein College of Medicine, USA
| |
Collapse
|
16
|
Zhang M, Xie W, Li J, Zheng J, Zhou Y. Postmarketing safety profile of brexanolone: a pharmacovigilance analysis based on FDA Adverse Event Reporting System (FAERS). Arch Womens Ment Health 2024; 27:35-44. [PMID: 37831172 DOI: 10.1007/s00737-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Brexanolone (Zulresso®) that was approved for the USA in March 2019 is indicated for the treatment of postpartum depression (PPD), but information on adverse drug reactions (ADRs) associated with its use is limited. The main aim of this study was to explore the postmarketing safety profile of brexanolone. METHODS In our case/non-case pharmacovigilance study based on the FDA Adverse Event Reporting System (FAERS), the reporting odds ratio and information component with 95% confidence intervals were estimated as measures of disproportionate reporting. Primary disproportionality analyses were performed by comparing brexanolone with all other drugs or selective serotonin reuptake inhibitors (SSRIs). Sensitivity analyses were performed on a subset of perinatal depression. RESULTS We identified 267 cases using brexanolone. Brexanolone was reported as a primary or secondary suspect drug in most cases (n = 260, 97.38%). Of the total brexanolone cases, positive dechallenge and discontinuation accounted for 12.36% (n = 33) and 26.22% (n = 70), respectively. Serious outcomes were reported in 11.61% (n = 31) patients. Compared to all the other drugs or SSRIs within the same time window, the reporting risks of brexanolone were mainly from psychiatric and nervous systems. Sensitivity analyses indicated that these significant disproportionalities were mostly retained. CONCLUSION Our pharmacovigilance analysis showed a high reporting frequency of psychiatric and nervous system ADRs associated with the use of brexanolone. In additional prospective research, these signals urgently need to be clarified.
Collapse
Affiliation(s)
- Meilian Zhang
- Department of Ultrasound, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianbin Li
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jiaping Zheng
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China.
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
17
|
Takasu K, Yawata Y, Tashima R, Aritomi H, Shimada S, Onodera T, Taishi T, Ogawa K. Distinct mechanisms of allopregnanolone and diazepam underlie neuronal oscillations and differential antidepressant effect. Front Cell Neurosci 2024; 17:1274459. [PMID: 38259500 PMCID: PMC10800935 DOI: 10.3389/fncel.2023.1274459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024] Open
Abstract
The rapid relief of depressive symptoms is a major medical requirement for effective treatments for major depressive disorder (MDD). A decrease in neuroactive steroids contributes to the pathophysiological mechanisms associated with the neurological symptoms of MDD. Zuranolone (SAGE-217), a neuroactive steroid that acts as a positive allosteric modulator of synaptic and extrasynaptic δ-subunit-containing GABAA receptors, has shown rapid-onset, clinically effective antidepressant action in patients with MDD or postpartum depression (PPD). Benzodiazepines, on the other hand, act as positive allosteric modulators of synaptic GABAA receptors but are not approved for the treatment of patients with MDD. It remains unclear how differences in molecular mechanisms contribute to the alleviation of depressive symptoms and the regulation of associated neuronal activity. Focusing on the antidepressant-like effects and neuronal activity of the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), we conducted a head-to-head comparison study of the neuroactive steroid allopregnanolone and the benzodiazepine diazepam using a mouse social defeat stress (SDS) model. Allopregnanolone but not diazepam exhibited antidepressant-like effects in a social interaction test in SDS mice. This antidepressant-like effect of allopregnanolone was abolished in extrasynaptic GABAA receptor δ-subunit knockout mice (δko mice) subjected to the same SDS protocol. Regarding the neurophysiological mechanism associated with these antidepressant-like effects, allopregnanolone but not diazepam increased theta oscillation in the BLA of SDS mice. This increase did not occur in δko mice. Consistent with this, allopregnanolone potentiated tonic inhibition in BLA interneurons via δ-subunit-containing extrasynaptic GABAA receptors. Theta oscillation in the mPFC of SDS mice was also increased by allopregnanolone but not by diazepam. Finally, allopregnanolone but not diazepam increased frontal theta activity in electroencephalography recordings in naïve and SDS mice. Neuronal network alterations associated with MDD showed decreased frontal theta and beta activity in depressed SDS mice. These results demonstrated that, unlike benzodiazepines, neuroactive steroids increased theta oscillation in the BLA and mPFC through the activation of δ-subunit-containing GABAA receptors, and this change was associated with antidepressant-like effects in the SDS model. Our findings support the notion that the distinctive mechanism of neuroactive steroids may contribute to the rapid antidepressant effects in MDD.
Collapse
Affiliation(s)
- Keiko Takasu
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Yosuke Yawata
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Ryoichi Tashima
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | | | | | - Tsukasa Onodera
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Teruhiko Taishi
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Koichi Ogawa
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
18
|
Nashwan AJ, Rehan ST, Imran L, Abbas SG, Khan S. Redefining Postpartum Depression Treatment: The Clinical Potential of Zuranolone. Asian J Psychiatr 2024; 91:103849. [PMID: 38056137 DOI: 10.1016/j.ajp.2023.103849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Affiliation(s)
- Abdulqadir J Nashwan
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Hamad Medical Corporation, Doha 3050, Qatar.
| | | | - Laiba Imran
- Dow University of Health Sciences, Karachi 74200, Pakistan.
| | | | - Sara Khan
- Institute of Professional Psychology, Bahria University, Karachi 75260, Pakistan.
| |
Collapse
|
19
|
Marecki R, Kałuska J, Kolanek A, Hakało D, Waszkiewicz N. Zuranolone - synthetic neurosteroid in treatment of mental disorders: narrative review. Front Psychiatry 2023; 14:1298359. [PMID: 38116383 PMCID: PMC10729607 DOI: 10.3389/fpsyt.2023.1298359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
With each passing year, the number of people suffering from mental disorders grows at a disturbing speed. Neuroactive steroids are a new promising group of drugs with the potential for use in many diseases like postpartum depression, postnatal psychosis, major depression, insomnia, bipolar disorder, and Parkinson's tremor, due to their ability to modulate the activity of GABAA receptor. Neurosteroids are progesterone metabolites that are synthesized from cholesterol or steroid hormones in various brain regions. They regulate neuronal development, regeneration, and neurotransmission. They are implicated in mood disorders, anxiety disorders, schizophrenia, PTSD, and impulsive aggression. Neurosteroids have been studied for their potential to prevent or treat neurodegenerative diseases such as Alzheimer's disease and HIV-associated dementia. They can promote neurogenesis, neuronal survival, myelination, and memory function. They can also affect the growth and sensitivity of hormone-dependent brain tumors such as gliomas. Zuranolone, a newly registered neurosteroid drug has shown huge flexibility in both clinical and ambulatory treatment thanks to its pharmacokinetic traits, especially the possibility for oral administration, unlike its predecessor Brexanolone. Zuranolone is a synthetic positive allosteric modulator of the GABAA receptor that can be taken orally. The review aims to summarize the current knowledge on zuranolone as a novel neurosteroid drug for various mental disorders, especially for postpartum mental disorders for which this drug was meant originally. It covers studies indexed in the PubMed, Scopus, and Web of Science databases published since 2017. Keywords used in the search, as well as inclusion and exclusion criteria, are given in the aims and methodology section. The review explains the evidence for the role of neurosteroids, especially allopregnanolone, in the pathophysiology and treatment of postpartum depression. It discusses the mechanisms of neurosteroid action, the changes in neurosteroid levels during pregnancy and postpartum, and the clinical trials of brexanolone and zuranolone, two synthetic analogs of allopregnanolone, for postpartum depression. It provides an overview of the biosynthesis and metabolism of neurosteroids in the central and peripheral nervous system. Furthermore, it explains the different sources and pathways of neurosteroid production and the factors that influence their synthesis and regulation, such as stress, hormones, drugs, and genetic variations. The review also explores the potential relevance of neurosteroids for other psychiatric disorders, such as major depression, bipolar disorder, post-traumatic stress disorder (PTSD), schizophrenia, and premenstrual dysphoric disorder. Finally, it highlights the associations between neurosteroid levels and symptom severity and the effects of neurosteroid modulation on mood, cognition, and neuroplasticity.
Collapse
|
20
|
Dong M, Wang Y, Li P, Chen Z, Anirudhan V, Cui Q, Rong L, Du R. Allopregnanolone targets nucleoprotein as a novel influenza virus inhibitor. Virol Sin 2023; 38:931-939. [PMID: 37741571 PMCID: PMC10786660 DOI: 10.1016/j.virs.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
Influenza A virus (IAV) poses a global public health concern and remains an imminent threat to human health. Emerging antiviral resistance to the currently approved influenza drugs emphasizes the urgent need for new therapeutic entities against IAV. Allopregnanolone (ALLO) is a natural product that has been approved as an antidepressant drug. In the present study, we repurposed ALLO as a novel inhibitor against IAVs. Mechanistic studies demonstrated that ALLO inhibited virus replication by interfering with the nucleus translocation of viral nucleoprotein (NP). In addition, ALLO showed significant synergistic activity with compound 16, a hemagglutinin inhibitor of IAVs. In summary, we have identified ALLO as a novel influenza virus inhibitor targeting NP, providing a promising candidate that deserves further investigation as a useful anti-influenza strategy in the future.
Collapse
Affiliation(s)
- Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zinuo Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA.
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| |
Collapse
|
21
|
Lin LJ, Zhou HX, Ye ZY, Zhang Q, Chen S. Construction and validation of a personalized prediction model for postpartum anxiety in pregnant women with preeclampsia. World J Psychiatry 2023; 13:763-771. [PMID: 38058687 PMCID: PMC10696290 DOI: 10.5498/wjp.v13.i10.763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Preeclampsia is a pregnancy-specific multi-system disease with multi-factor and multi-mechanism characteristics. The cure for preeclampsia is to terminate the pregnancy and deliver the placenta. However, it will reduce the perinatal survival rate, prolong the pregnancy cycle, and increase the incidence of maternal complications. With relaxation of the birth policy, the number of elderly pregnant women has increased significantly, and the prevalence rate of preeclampsia has increased. Inappropriate treatment can seriously affect the normal postpartum life of pregnant women. Studies have shown that postpartum anxiety in women with preeclampsia can affect physical and mental health, as well as infant growth and development. AIM To analyze the factors influencing preeclampsia in pregnant women complicated with postpartum anxiety, and to construct a personalized predictive model. METHODS We retrospectively studied 528 pregnant women with preeclampsia who delivered in Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine between January 2018 and December 2021. Their basic data were collected, and various physiological and biochemical indicators were obtained by laboratory examination. The self-rating anxiety scale was used to determine whether the women had postpartum anxiety 42 d after delivery. The independent factors influencing postpartum anxiety in early pregnant women with eclampsia were analyzed with multifactor logistic regression and a predictive model was constructed. The Hosmer-Lemeshow test and receiver operating characteristic (ROC) curve were used to evaluate the calibration and discrimination of the predictive model. Eighty pregnant women with preeclampsia admitted to our hospital from January 2022 to May 2022 were retrospectively selected to verify the prediction model. RESULTS We excluded 46 of the 528 pregnant women with preeclampsia because of loss to follow-up and adverse outcomes. A total of 482 cases completed the assessment of postpartum anxiety 42 d after delivery, and 126 (26.14%) had postpartum anxiety. Bad marital relationship, gender discrimination in family members, hematocrit (Hct), estradiol (E2) hormone and interleukin (IL)-6 were independent risk factors for postpartum anxiety in pregnant women with preeclampsia (P < 0.05). Prediction model: Logit (P) = 0.880 × marital relationship + 0.870 × gender discrimination of family members + 0.130 × Hct - 0.044 × E2 + 0.286 × IL-6 - 21.420. The area under the ROC curve of the model was 0.943 (95% confidence interval: 0.919-0.966). The threshold of the model was -1.507 according to the maximum Youden index (0.757), the corresponding sensitivity was 84.90%, and the specificity was 90.70%. Hosmer-Lemeshow χ2 = 5.900, P = 0.658. The sensitivity, specificity and accuracy of the model were 81.82%, 84.48% and 83.75%, respectively. CONCLUSION Poor marital relationship, family gender discrimination, Hct, IL-6 and E2 are the influencing factors of postpartum anxiety in preeclampsia women. The constructed prediction model has high sensitivity and specificity.
Collapse
Affiliation(s)
- Le-Jing Lin
- Department of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, Zhejiang Province, China
| | - Hai-Xian Zhou
- Department of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, Zhejiang Province, China
| | - Zhi-Yun Ye
- Department of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, Zhejiang Province, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, Zhejiang Province, China
| | - Shu Chen
- Department of Gynecology, Wenzhou Traditional Chinese Medicine Hospital, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
22
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
23
|
Verdoorn TA, Parry TJ, Pinna G, Lifshitz J. Neurosteroid Receptor Modulators for Treating Traumatic Brain Injury. Neurotherapeutics 2023; 20:1603-1615. [PMID: 37653253 PMCID: PMC10684848 DOI: 10.1007/s13311-023-01428-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Traumatic brain injury (TBI) triggers wide-ranging pathology that impacts multiple biochemical and physiological systems, both inside and outside the brain. Functional recovery in patients is impeded by early onset brain edema, acute and chronic inflammation, delayed cell death, and neurovascular disruption. Drug treatments that target these deficits are under active development, but it seems likely that fully effective therapy may require interruption of the multiplicity of TBI-induced pathological processes either by a cocktail of drug treatments or a single pleiotropic drug. The complex and highly interconnected biochemical network embodied by the neurosteroid system offers multiple options for the research and development of pleiotropic drug treatments that may provide benefit for those who have suffered a TBI. This narrative review examines the neurosteroids and their signaling systems and proposes directions for their utility in the next stage of TBI drug research and development.
Collapse
Affiliation(s)
- Todd A Verdoorn
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA.
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA
| | - Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago College of Medicine, 1601 W. Taylor Street, Chicago, IL 60612, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, 475 N. 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
24
|
Finn DA. Stress and gonadal steroid influences on alcohol drinking and withdrawal, with focus on animal models in females. Front Neuroendocrinol 2023; 71:101094. [PMID: 37558184 PMCID: PMC10840953 DOI: 10.1016/j.yfrne.2023.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Sexually dimorphic effects of alcohol, following binge drinking, chronic intoxication, and withdrawal, are documented at the level of the transcriptome and in behavioral and physiological responses. The purpose of the current review is to update and to expand upon contributions of the endocrine system to alcohol drinking and withdrawal in females, with a focus on animal models. Steroids important in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, the reciprocal interactions between these axes, the effects of chronic alcohol use on steroid levels, and the genomic and rapid membrane-associated effects of steroids and neurosteroids in models of alcohol drinking and withdrawal are described. Importantly, comparison between males and females highlight some divergent effects of sex- and stress-steroids on alcohol drinking- and withdrawal-related behaviors, and the distinct differences in response emphasize the importance of considering sex in the development of novel pharmacotherapies for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Department of Research, VA Portland Health Care System, Portland, OR, United States.
| |
Collapse
|
25
|
Roberts B, Cooper Z, Lu S, Stanley S, Majda BT, Collins KRL, Gilkes L, Rodger J, Akkari PA, Hood SD. Utility of pharmacogenetic testing to optimise antidepressant pharmacotherapy in youth: a narrative literature review. Front Pharmacol 2023; 14:1267294. [PMID: 37795032 PMCID: PMC10545970 DOI: 10.3389/fphar.2023.1267294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Pharmacogenetics (PGx) is the study and application of how interindividual differences in our genomes can influence drug responses. By evaluating individuals' genetic variability in genes related to drug metabolism, PGx testing has the capabilities to individualise primary care and build a safer drug prescription model than the current "one-size-fits-all" approach. In particular, the use of PGx testing in psychiatry has shown promising evidence in improving drug efficacy as well as reducing toxicity and adverse drug reactions. Despite randomised controlled trials demonstrating an evidence base for its use, there are still numerous barriers impeding its implementation. This review paper will discuss the management of mental health conditions with PGx-guided treatment with a strong focus on youth mental illness. PGx testing in clinical practice, the concerns for its implementation in youth psychiatry, and some of the barriers inhibiting its integration in clinical healthcare will also be discussed. Overall, this paper provides a comprehensive review of the current state of knowledge and application for PGx in psychiatry and summarises the capabilities of genetic information to personalising medicine for the treatment of mental ill-health in youth.
Collapse
Affiliation(s)
- Bradley Roberts
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Zahra Cooper
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stephanie Lu
- School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Susanne Stanley
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Khan R. L. Collins
- Western Australian Department of Health, North Metropolitan Health Service, Perth, WA, Australia
| | - Lucy Gilkes
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- Divison of General Practice, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - P. Anthony Akkari
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Division of Neurology, Duke University Medical Centre, Duke University, Durham, United States
| | - Sean D. Hood
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
26
|
Abstract
Depression is a disabling condition that often leads to significant burden. Women are more vulnerable to depression during reproductive-related "windows of vulnerability" such as the menopause transition and early postmenopausal years. This heightened vulnerability can be attributed, at least in part, to the neuromodulatory effects of estrogen on mood and cognition and the exposure to rapid fluctuations of estradiol levels during midlife years. The management of midlife depression can be challenging due to the presence and severity of other complaints such as vasomotor symptoms and sleep disturbances. Psychopharmacologic, behavioral, and hormonal interventions should be part of the treatment armamentarium.
Collapse
Affiliation(s)
- Claudio N Soares
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Ontario, Canada.
| |
Collapse
|
27
|
Reddy DS, Mbilinyi RH, Estes E. Preclinical and clinical pharmacology of brexanolone (allopregnanolone) for postpartum depression: a landmark journey from concept to clinic in neurosteroid replacement therapy. Psychopharmacology (Berl) 2023; 240:1841-1863. [PMID: 37566239 PMCID: PMC10471722 DOI: 10.1007/s00213-023-06427-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
This article describes the critical role of neurosteroids in postpartum depression (PPD) and outlines the landmark pharmacological journey of brexanolone as a first-in-class neurosteroid antidepressant with significant advantages over traditional antidepressants. PPD is a neuroendocrine disorder that affects about 20% of mothers after childbirth and is characterized by symptoms including persistent sadness, fatigue, dysphoria, as well as disturbances in cognition, emotion, appetite, and sleep. The main pathology behind PPD is the postpartum reduction of neurosteroids, referred to as neurosteroid withdrawal, a concept pioneered by our preclinical studies. We developed neurosteroid replacement therapy (NRT) as a rational approach for treating PPD and other conditions related to neurosteroid deficiency, unveiling the power of neurosteroids as novel anxiolytic-antidepressants. The neurosteroid, brexanolone (BX), is a progesterone-derived allopregnanolone that rapidly relieves anxiety and mood deficits by activating GABA-A receptors, making it a transformational treatment for PPD. In 2019, the FDA approved BX, an intravenous formulation of allopregnanolone, as an NRT to treat PPD. In clinical studies, BX significantly improved PPD symptoms within hours of administration, with tolerable side effects including headache, dizziness, and somnolence. We identified the molecular mechanism of BX in a neuronal PPD-like milieu. The mechanism of BX involves activation of both synaptic and extrasynaptic GABA-A receptors, which promote tonic inhibition and serve as a key target for PPD and related conditions. Neurosteroids offer several advantages over traditional antidepressants, including rapid onset, unique mechanism, and lack of tolerance upon repeated use. Some limitations of BX therapy include lack of aqueous solubility, limited accessibility, hospitalization for treatment, lack of oral product, and serious adverse events at high doses. However, the unmet need for synthetic neurosteroids to address this critical condition supersedes these limitations. Recently, we developed novel hydrophilic neurosteroids with a superior profile and improved drug delivery. Overall, approval of BX is a major milestone in the field of neurotherapeutics, paving the way for the development of novel synthetic neurosteroids to treat depression, epilepsy, and status epilepticus.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA.
- Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| | - Robert H Mbilinyi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| | - Emily Estes
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
28
|
Bhatti NA, Jobilal A, Asif K, Jaramillo Villegas M, Pandey P, Tahir AN, Balla N, Arellano Camargo MP, Ahmad S, Kataria J, Abdin ZU, Ayyan M. Exploring Novel Therapeutic Approaches for Depressive Disorders: The Role of Allopregnanolone Agonists. Cureus 2023; 15:e44038. [PMID: 37746458 PMCID: PMC10517642 DOI: 10.7759/cureus.44038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Depressive disorders are caused due to the impaired functioning of important brain networks. Recent studies have also shown that it is caused by a significant reduction in the levels of allopregnanolone, which is a progesterone metabolite. Newer treatment modalities are now focusing on the usage of neuroactive steroids, such as allopregnanolone, in various depressive disorders. Our aim was to provide a comprehensive literature review on the clinical aspects of the allopregnanolone agonists brexanolone and zuranolone with reference to the physiological role of allopregnanolone. Brexanolone was approved by the FDA in 2019 for the treatment of postpartum depression and has greatly influenced further research into potential drugs such as zuranolone, which is currently undergoing phase 3 of clinical trials. Although these drugs exhibit improvement in symptoms of depressive disorders along with notable side effects, further research is required for their future clinical use.
Collapse
Affiliation(s)
| | - Anna Jobilal
- Internal Medicine, Sri Ramaswamy Memorial Medical College Hospital and Research Centre, Kattankulathur, IND
| | - Kainat Asif
- Internal Medicine, Dr. Ruth K. M. Pfau Civil Hospital, Karachi, PAK
| | | | - Priyanka Pandey
- Anatomical Sciences, Hind Institute of Medical Sciences, Sitapur, IND
| | | | - Neeharika Balla
- Internal Medicine, Maharajah's Institute of Medical Sciences, Vizianagaram, IND
| | | | - Sana Ahmad
- Psychiatry, TIME Organization Inc, Baltimore, USA
| | | | - Zain U Abdin
- Family Medicine, IMG Helping Hands, Chicago, USA
| | | |
Collapse
|
29
|
Benyshek DC, Bovbjerg ML, Cheyney M. Comparison of placenta consumers' and non-consumers' postpartum depression screening results using EPDS in US community birth settings (n=6038): a propensity score analysis. BMC Pregnancy Childbirth 2023; 23:534. [PMID: 37481527 PMCID: PMC10362633 DOI: 10.1186/s12884-023-05852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Preventing postpartum depression (PPD) is the most common self-reported motivation for human maternal placentophagy, yet very little systematic research has assessed mental health following placenta consumption. Our aim was to compare PPD screening scores of placenta consumers and non-consumers in a community birth setting, using propensity score matching to address anticipated extensive confounding. METHODS We used a medical records-based data set (n = 6038) containing pregnancy, birth, and postpartum information for US women who planned and completed community births. We first compared PPD screening scores as measured by the Edinburgh Postpartum Depression Scale (EPDS) of individuals who consumed their placenta to those who did not, with regard to demographics, pregnancy characteristics, and history of mental health challenges. Matching placentophagic (n = 1876) and non-placentophagic (n = 1876) groups were then created using propensity scores. The propensity score model included more than 90 variables describing medical and obstetric history, demographics, pregnancy characteristics, and intrapartum and postpartum complications, thus addressing confounding by all of these variables. We then used logistic regression to compare placentophagic to non-placentophagic groups based on commonly-cited EPDS cutoff values (≥ 11; ≥ 13) for likely PPD. RESULTS In the unmatched and unadjusted analysis, placentophagy was associated with an increased risk of PPD. In the matched sample, 9.9% of women who ate their placentas reported EPDS ≥ 11, compared to 8.4% of women who did not (5.5% and 4.8%, respectively, EPDS ≥ 13 or greater). After controlling for over 90 variables (including prior mental health challenges) in the matched and adjusted analysis, placentophagy was associated with an increased risk of PPD between 15 and 20%, depending on the published EPDS cutoff point used. Numerous sensitivity analyses did not alter this general finding. CONCLUSIONS Placentophagic individuals in our study scored higher on an EPDS screening than carefully matched non-placentophagic controls. Why placentophagic women score higher on the EPDS remains unclear, but we suspect reverse causality plays an important role. Future research could assess psychosocial factors that may motivate some individuals to engage in placentophagy, and that may also indicate greater risk of PPD.
Collapse
Affiliation(s)
- Daniel C Benyshek
- Department of Anthropology, Nutrition and Reproduction Laboratory, University of Nevada, Las Vegas, NV, USA.
- Kirk Kerkorian School of Medicine at University of Nevada, NV, Las Vegas, USA.
| | - Marit L Bovbjerg
- Epidemiology Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Melissa Cheyney
- Department of Anthropology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
30
|
De Giorgi R, Rizzo Pesci N, Rosso G, Maina G, Cowen PJ, Harmer CJ. The pharmacological bases for repurposing statins in depression: a review of mechanistic studies. Transl Psychiatry 2023; 13:253. [PMID: 37438361 PMCID: PMC10338465 DOI: 10.1038/s41398-023-02533-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Statins are commonly prescribed medications widely investigated for their potential actions on the brain and mental health. Pre-clinical and clinical evidence suggests that statins may play a role in the treatment of depressive disorders, but only the latter has been systematically assessed. Thus, the physiopathological mechanisms underlying statins' putative antidepressant or depressogenic effects have not been established. This review aims to gather available evidence from mechanistic studies to strengthen the pharmacological basis for repurposing statins in depression. We used a broad, well-validated search strategy over three major databases (Pubmed/MEDLINE, Embase, PsychINFO) to retrieve any mechanistic study investigating statins' effects on depression. The systematic search yielded 8068 records, which were narrowed down to 77 relevant papers. The selected studies (some dealing with more than one bodily system) described several neuropsychopharmacological (44 studies), endocrine-metabolic (17 studies), cardiovascular (6 studies) and immunological (15 studies) mechanisms potentially contributing to the effects of statins on mood. Numerous articles highlighted the beneficial effect of statins on depression, particularly through positive actions on serotonergic neurotransmission, neurogenesis and neuroplasticity, hypothalamic-pituitary axis regulation and modulation of inflammation. The role of other mechanisms, especially the association between statins, lipid metabolism and worsening of depressive symptoms, appears more controversial. Overall, most mechanistic evidence supports an antidepressant activity for statins, likely mediated by a variety of intertwined processes involving several bodily systems. Further research in this area can benefit from measuring relevant biomarkers to inform the selection of patients most likely to respond to statins' antidepressant effects while also improving our understanding of the physiopathological basis of depression.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
| | - Nicola Rizzo Pesci
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Gianluca Rosso
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Giuseppe Maina
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Philip J Cowen
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| | - Catherine J Harmer
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| |
Collapse
|
31
|
Tran KH, Luki J, Hanstock S, Hanstock CC, Seres P, Aitchison K, Le Melledo JM. Decreased GABA+ ratios referenced to creatine and phosphocreatine in the left dorsolateral prefrontal cortex of females of reproductive age with major depression. J Psychiatry Neurosci 2023; 48:E285-E294. [PMID: 37607825 PMCID: PMC10446145 DOI: 10.1503/jpn.230016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/16/2023] [Accepted: 05/17/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND It has been suggested that the dorsolateral prefrontal cortex (DLPFC), especially the left DLPFC, has an important role in the pathophysiology and the treatment of major depressive disorder (MDD); furthermore, the contributory and antidepressant role of γ-aminobutyric acid (GABA) is increasingly recognized. Given that most female patients with MDD are of reproductive age, we sought to assess in vivo baseline GABA levels in the left DLPFC among unmedicated females of reproductive age with depression. METHODS We compared healthy females and females with MDD. Both groups were of reproductive age. We confirmed absence of current or past psychiatric diagnosis among healthy controls or a current diagnosis of MDD via a structured interview. We measured GABA+ (including homocarnosine and macromolecules), referenced to creatine and phosphocreatine, via magnetic resonance spectroscopy using a 3 Tesla magnet. RESULTS We included 20 healthy controls and 13 participants with MDD. All participants were unmedicated at the time of the study. All females were scanned during the early follicular phase of the menstrual cycle. Levels of GABA+ in the left DLPFC were significantly lower among participants with MDD (median 0.08) than healthy controls (median 0.10; U = 66.0, p = 0.02, r = 0.41). LIMITATIONS When we adjusted for fit error as a covariate, we lost statistical significance for left DLPFC GABA+. However, when we adjusted for signal-to-noise ratio, statistical significance was maintained. CONCLUSION Our results suggest that GABA+ levels in the left DLPFC may vary by depression status and should be examined as a possible treatment target.
Collapse
Affiliation(s)
- Kim H Tran
- From the Department of Psychiatry, University of Alberta, Edmonton, Alta. (Tran, Luki, S. Hanstock, Aitchison, Le Melledo); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta. (C. Hanstock, Seres); the Department of Medical Genetics, University of Alberta, Edmonton, Alta. (Aitchison); the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Women and Children's Research Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Psychiatry Section, Division of Clinical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ont. (Aitchison)
| | - Jessica Luki
- From the Department of Psychiatry, University of Alberta, Edmonton, Alta. (Tran, Luki, S. Hanstock, Aitchison, Le Melledo); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta. (C. Hanstock, Seres); the Department of Medical Genetics, University of Alberta, Edmonton, Alta. (Aitchison); the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Women and Children's Research Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Psychiatry Section, Division of Clinical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ont. (Aitchison)
| | - Sarah Hanstock
- From the Department of Psychiatry, University of Alberta, Edmonton, Alta. (Tran, Luki, S. Hanstock, Aitchison, Le Melledo); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta. (C. Hanstock, Seres); the Department of Medical Genetics, University of Alberta, Edmonton, Alta. (Aitchison); the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Women and Children's Research Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Psychiatry Section, Division of Clinical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ont. (Aitchison)
| | - Christopher C Hanstock
- From the Department of Psychiatry, University of Alberta, Edmonton, Alta. (Tran, Luki, S. Hanstock, Aitchison, Le Melledo); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta. (C. Hanstock, Seres); the Department of Medical Genetics, University of Alberta, Edmonton, Alta. (Aitchison); the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Women and Children's Research Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Psychiatry Section, Division of Clinical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ont. (Aitchison)
| | - Peter Seres
- From the Department of Psychiatry, University of Alberta, Edmonton, Alta. (Tran, Luki, S. Hanstock, Aitchison, Le Melledo); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta. (C. Hanstock, Seres); the Department of Medical Genetics, University of Alberta, Edmonton, Alta. (Aitchison); the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Women and Children's Research Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Psychiatry Section, Division of Clinical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ont. (Aitchison)
| | - Katherine Aitchison
- From the Department of Psychiatry, University of Alberta, Edmonton, Alta. (Tran, Luki, S. Hanstock, Aitchison, Le Melledo); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta. (C. Hanstock, Seres); the Department of Medical Genetics, University of Alberta, Edmonton, Alta. (Aitchison); the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Women and Children's Research Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Psychiatry Section, Division of Clinical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ont. (Aitchison)
| | - Jean-Michel Le Melledo
- From the Department of Psychiatry, University of Alberta, Edmonton, Alta. (Tran, Luki, S. Hanstock, Aitchison, Le Melledo); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta. (C. Hanstock, Seres); the Department of Medical Genetics, University of Alberta, Edmonton, Alta. (Aitchison); the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Women and Children's Research Institute, University of Alberta, Edmonton, Alta. (Aitchison); the Psychiatry Section, Division of Clinical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ont. (Aitchison)
| |
Collapse
|
32
|
Shad MU. Recent Developments in Pharmacotherapy of Depression: Bench to Bedside. J Pers Med 2023; 13:jpm13050773. [PMID: 37240943 DOI: 10.3390/jpm13050773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
For the last 70 years, we did not move beyond the monoamine hypothesis of depression until the approval of the S-enantiomer of ketamine, an N-methyl-D-aspartate (NMDA) receptor blocker and the first non-monoaminergic antidepressant characterized by rapid antidepressant and antisuicidal effects. A similar profile has been reported with another NMDA receptor antagonist, dextromethorphan, which has also been approved to manage depression in combination with bupropion. More recently, the approval of a positive allosteric modulator of GABA-A receptors, brexanolone, has added to the list of recent breakthroughs with the relatively rapid onset of antidepressant efficacy. However, multiple factors have compromised the clinical utility of these exciting discoveries in the general population, including high drug acquisition costs, mandatory monitoring requirements, parenteral drug administration, lack of insurance coverage, indirect COVID-19 effects on healthcare systems, and training gaps in psychopharmacology. This narrative review aims to analyze the clinical pharmacology of recently approved antidepressants and discuss potential barriers to the bench-to-bedside transfer of knowledge and clinical application of exciting recent discoveries. Overall, clinically meaningful advances in the treatment of depression have not reached a large proportion of depressed patients, including those with treatment-resistant depression, who might benefit the most from the novel antidepressants.
Collapse
Affiliation(s)
- Mujeeb U Shad
- Valley Health System (VHS), Las Vegas, NV 89118, USA
- The Department of Psychiatry, University of Nevada, Las Vegas, School of Medicine, The Touro University of Nevada College of Osteopathic Medicine (TUNCOM), Henderson, NV 89014, USA
- The University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
33
|
Witkin JM, Golani LK, Smith JL. Clinical pharmacological innovation in the treatment of depression. Expert Rev Clin Pharmacol 2023; 16:349-362. [PMID: 37000975 DOI: 10.1080/17512433.2023.2198703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Deficiencies in standard of care antidepressants are driving novel drug discovery. A new age of antidepressant medications has emerged with the introduction of rapid-acting antidepressants with efficacy in treatment-resistant patients. AREAS COVERED The newly approved medicines and those in clinical development for major depressive disorder (MDD) are documented in this scoping review of newly approved and emerging antidepressants. Compounds are evaluated for clinical efficacy, tolerability, and safety and compared to those of standard of care medicines. EXPERT OPINION A new age of antidepressant discovery relies heavily on glutamatergic mechanisms. New medicines based upon the model of ketamine have been delivered and are in clinical development. Rapid onset and the ability to impact treatment-resistant depression, raises the question of the best first-line medicines for patients. Drugs with improvements in tolerability are being investigated (e.g. mGlu2/3 receptor antagonists, AMPA receptor potentiators, and novel NMDA receptor modulators). Multiple companies are working toward the identification of novel psychedelic drugs where the requirement for psychedelic activity is not fully known. Gaps still exist - methods for matching patients with specific medicines are needed, and medicines for the prevention of MDD and its disease progression need research attention.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN USA
| | - Lalit K Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| |
Collapse
|
34
|
Scangos KW, State MW, Miller AH, Baker JT, Williams LM. New and emerging approaches to treat psychiatric disorders. Nat Med 2023; 29:317-333. [PMID: 36797480 PMCID: PMC11219030 DOI: 10.1038/s41591-022-02197-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Psychiatric disorders are highly prevalent, often devastating diseases that negatively impact the lives of millions of people worldwide. Although their etiological and diagnostic heterogeneity has long challenged drug discovery, an emerging circuit-based understanding of psychiatric illness is offering an important alternative to the current reliance on trial and error, both in the development and in the clinical application of treatments. Here we review new and emerging treatment approaches, with a particular emphasis on the revolutionary potential of brain-circuit-based interventions for precision psychiatry. Limitations of circuit models, challenges of bringing precision therapeutics to market and the crucial advances needed to overcome these obstacles are presented.
Collapse
Affiliation(s)
- Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin T Baker
- McLean Hospital Institute for Technology in Psychiatry, Belmont, MA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
35
|
Behavioral Despair Is Blocked by the Flavonoid Chrysin (5,7-Dihydroxyflavone) in a Rat Model of Surgical Menopause. Molecules 2023; 28:molecules28020587. [PMID: 36677645 PMCID: PMC9862461 DOI: 10.3390/molecules28020587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Women have a high susceptibility to the negative effects of stress. Hormonal changes experienced throughout their reproductive life partially contribute to a higher incidence of anxiety and depression symptoms, particularly, during natural or surgical menopause. In preclinical research, the flavonoid chrysin (5,7-dihydroxyflavone) exerts anxiolytic- and anti-despair-like effects; however, it is unknown whether chrysin exerts a protective effect against the behavioral changes produced by acute stress on locomotor activity and behavioral despair in rats at 12-weeks post-ovariectomy. Ovariectomized female Wistar rats were assigned to eight groups: vehicle group (10% DMSO), three groups with chrysin and three groups with the same dose of allopregnanolone (0.5, 1, and 2 mg/kg), and one group with diazepam (2 mg/kg). The treatments were administered for seven consecutive days and the effects were evaluated in the locomotor activity and swimming tests. Chrysin (2 mg/kg) increased the latency to first immobility and decreased the total immobility time in the swimming test as the reference drugs allopregnanolone and diazepam (2 mg/kg); while locomotor activity prevented the behavioral changes produced by swimming. In conclusion, chrysin exerts a protective effect against the behavioral changes induced by acute stress, similarly to the neurosteroid allopregnanolone and the benzodiazepine diazepam in rats subjected to a surgical menopause model.
Collapse
|
36
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
37
|
Horwitz AB, Rubin RT. Barbiturates and pyrazolopyridines for the treatment of postpartum depression-repurposing of two drug classes. Front Pharmacol 2023; 14:1139889. [PMID: 36909181 PMCID: PMC9995982 DOI: 10.3389/fphar.2023.1139889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Zulresso (brexanolone) is an aqueous formulation of the neurosteroid, allopregnanolone, and the only FDA-approved medication for the treatment of postpartum depression (PPD). While brexanolone is effective for the treatment of PPD, lengthy infusion time and high cost can be prohibitive. Failure of GABAA receptors to adapt to fluctuating neurosteroid levels is considered to predispose women to mood disorders in the postpartum period. Brexanolone is thought to act via stimulation of δ subunit-containing GABAA receptors, which are extrasynaptic and localized to particular brain regions. Neurosteroid stimulation of δ subunit-containing GABAA receptors leads to sustained inhibition (hyperpolarization) of GABAergic neurons, which makes δ subunit-containing GABAA receptors a potentially important pharmacologic target. Barbiturates and pyrazolopyridines are potent stimulators of δ subunit-containing GABAA receptors and therefore potentially cost-effective treatments for PPD. Barbiturates are often not prescribed, owing to risk of dependence and respiratory depression. The pyrazolopyridines were tested several decades ago for anxiety and depression but never developed commercially. Herein we use the FDA-approved dosing schedule of brexanolone and GABAA receptor binding data from various animal models to examine the safety, efficacy, and potential clinical utility of barbiturates and pyrazolopyridines for the treatment of PPD. We suggest consideration of repurposing barbiturates and pyrazolopyridines as safe and readily available treatment alternatives for PPD.
Collapse
Affiliation(s)
- Alexander B Horwitz
- Department of Graduate Medical Education, Community Memorial Healthcare, Ventura, CA, United States
| | - Robert T Rubin
- Department of Graduate Medical Education, Community Memorial Healthcare, Ventura, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
38
|
Epperson CN, Rubinow DR, Meltzer-Brody S, Deligiannidis KM, Riesenberg R, Krystal AD, Bankole K, Huang MY, Li H, Brown C, Kanes SJ, Lasser R. Effect of brexanolone on depressive symptoms, anxiety, and insomnia in women with postpartum depression: Pooled analyses from 3 double-blind, randomized, placebo-controlled clinical trials in the HUMMINGBIRD clinical program. J Affect Disord 2023; 320:353-359. [PMID: 36191643 DOI: 10.1016/j.jad.2022.09.143] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Brexanolone is currently the only treatment specifically approved for postpartum depression (PPD) in the United States, based on the results from one Phase 2 and two Phase 3 double-blind, randomized, controlled trials in the HUMMINGBIRD program. METHODS Adults with PPD randomized to a 60-h infusion of brexanolone 90 μg/kg/h (BRX90) or placebo from the 3 trials were included in these post hoc analyses. Data on change from baseline (CFB) in the 17-item Hamilton Rating Scale for Depression (HAMD-17) total score, HAMD-17 Anxiety/Somatization and Insomnia subscales, and Clinical Global Impression of Improvement (CGI-I) scale were pooled. Response rates for HAMD-17 (≥50 % reduction from baseline) and CGI-I (score of 1 or 2) scales and time to response were analyzed. RESULTS Patients receiving BRX90 (n = 102) versus placebo (n = 107) achieved a more rapid HAMD-17 response (median, 24 vs 36 h; p = 0.0265), with an Hour-60 cumulative response rate of 81.4 % versus 67.3 %; results were similar for time to CGI-I response (median, 24 vs 36 h; p = 0.0058), with an Hour-60 cumulative response rate of 81.4 % versus 61.7 %. CFB in HAMD-17 Anxiety/Somatization and Insomnia subscales also favored BRX90 versus placebo, starting at Hour 24 through Day 30 (all p < 0.05), and response rates for both subscales were higher with BRX90. LIMITATIONS The study was not powered to assess exploratory outcomes. CONCLUSIONS Brexanolone was associated with rapid improvement in depressive symptoms and symptoms of anxiety and insomnia compared with placebo in women with PPD. These data continue to support the use of brexanolone to treat adults with PPD.
Collapse
Affiliation(s)
- C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States of America.
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Samantha Meltzer-Brody
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Kristina M Deligiannidis
- Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States of America; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Robert Riesenberg
- Atlanta Center for Medical Research, Atlanta, GA, United States of America
| | - Andrew D Krystal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Kemi Bankole
- Sage Therapeutics, Inc., Cambridge, MA, United States of America
| | - Ming-Yi Huang
- Sage Therapeutics, Inc., Cambridge, MA, United States of America
| | - Haihong Li
- Sage Therapeutics, Inc., Cambridge, MA, United States of America
| | - Colville Brown
- Sage Therapeutics, Inc., Cambridge, MA, United States of America
| | - Stephen J Kanes
- Sage Therapeutics, Inc., Cambridge, MA, United States of America
| | - Robert Lasser
- Sage Therapeutics, Inc., Cambridge, MA, United States of America
| |
Collapse
|
39
|
Ponomareva OY, Fenster RJ, Ressler KJ. Enhancing Fear Extinction: Pharmacological Approaches. Curr Top Behav Neurosci 2023; 64:289-305. [PMID: 37584834 DOI: 10.1007/7854_2023_443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Extinction is the process by which the memory of a learned conditioned association decreases over time and with introduction of new associations. It is a vital part of fear learning, and it is critical to recovery in multiple fear-related disorders, including Specific and Social Phobias, Panic Disorder, Obsessive Compulsive Disorder (OCD), and Posttraumatic Stress Disorder (PTSD). The process of extinction is also the underlying mechanism for recovery in gold-standard therapies for PTSD, including prolonged exposure, cognitive processing therapy, eye movement desensitization and procession, as well as other empirically-based paradigms. Pharmacological modulators of extinction are thus promising targets for treatment of fear-related disorders. We focus here on emerging psychopharmacological treatments to facilitate extinction: D-cycloserine, scopolamine, losartan, ketamine, and 3,4-methylenedioxymethamphetamine. We also provide an overview of recent advances in molecular pathways that show promise as targets for extincion and inhibitory learning, including pathways related to cannabinoid, brain-derived neurotrophic factor, hypothalamic-pituitary-adrenal signaling, and promising work in neurosteroid compounds.
Collapse
|
40
|
Wendler A, Wehling M. Many or too many progesterone membrane receptors? Clinical implications. Trends Endocrinol Metab 2022; 33:850-868. [PMID: 36384863 DOI: 10.1016/j.tem.2022.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
Abstract
Several receptors for nongenomically initiated actions of progesterone (P4) exist, namely membrane-associated P4 receptors (MAPRs), membrane progestin receptors (mPRs), receptors for neurosteroids [GABAA receptor (GABAAR), NMDA receptor, sigma-1 and -2 receptors (S1R/S2R)], the classical genomic P4 receptor (PGR), and α/β hydrolase domain-containing protein 2 (ABHD2). Two drugs related to this field have been approved: brexanolone (Zulresso™) for the treatment of postpartum depression, and ganaxolone (Ztalmy™) for the treatment of CDKL5 deficiency disorder. Both are derivatives of P4 and target the GABAAR. Several other indications are in clinical testing. CT1812 (Elayta™) is also being tested for the treatment of Alzheimer's disease (AD) in Phase 2 clinical trials, targeting the P4 receptor membrane component 1 (PGRMC1)/S2R complex. In this Review, we highlight emerging knowledge on the mechanisms of nongenomically initiated actions of P4 and its derivatives.
Collapse
Affiliation(s)
- Alexandra Wendler
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Martin Wehling
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| |
Collapse
|
41
|
Tran KH, Luki J, Hanstock S, Hanstock CC, Seres P, Aitchison K, Shandro T, Le Melledo JM. Decreased GABA+ Levels in the Medial Prefrontal Cortex of Perimenopausal Women: A 3T 1H-MRS Study. Int J Neuropsychopharmacol 2022; 26:32-41. [PMID: 36146906 PMCID: PMC9850658 DOI: 10.1093/ijnp/pyac066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Perimenopause is associated with an increased risk of developing a major depressive (MD) episode. A significant number of women develop their first MD episode during perimenopause, suggesting a unique pathophysiology of perimenopausal (PM) depression. Previous research has shown that depression is associated with decreased gamma-aminobutyric acid (GABA) levels in the medial prefrontal cortex (MPFC) of MD patients. The objective of this study was to compare MPFC GABA+ levels in healthy reproductive-aged (RD) and PM women. METHODS A total of 18 healthy PM and 20 RD women were included in the study. MPFC GABA+ levels, which include homocarnosine and macromolecules, were measured via magnetic resonance spectroscopy using a 3 Tesla magnet. MPFC GABA+ levels were referenced to creatine + phosphocreatine (Cr+PCr). Absence of current or past psychiatric diagnosis was confirmed via a structured interview. RD participants were scanned during the early follicular phase of the menstrual cycle. PM women were scanned outside of ovulatory cycles. RESULTS Mean MPFC GABA+ concentrations (relative to Cr+PCr) were decreased in the PM group compared with the RD group (PM mean = 0.08 ± 0.02, RD mean = 0.09 ± 0.02, t = -2.03, df = 36, P = .05) even after correcting for in percentage in gray matter (GM). Because PM women were inherently older than RD women (aged 48.8 ± 3.55 and 31.5 ± 9.66 years, respectively), the age difference between the 2 groups was statistically significant (P < .001). When age was treated as an independent covariate and included in the model, the difference in GABA+ between PM and RD women was no longer significant (P = .092). CONCLUSION Perimenopause is associated with decreased MPFC GABA+/Cr+PCr levels, which may contribute to the increased risk of experiencing a MD episode during PM.
Collapse
Affiliation(s)
- Kim H Tran
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada
| | - Jessica Luki
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada
| | - Sarah Hanstock
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada,University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Christopher C Hanstock
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada,University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Peter Seres
- University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Katherine Aitchison
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada,University of Alberta, Department of Medical Genetics, Edmonton, AB, Canada,University of Alberta, Neuroscience and Mental Health Institute, Edmonton, AB, Canada,Northern Ontario School of Medicine, Division of Clinical Sciences, Psychiatry Section, Thunder Bay, ON, Canada
| | - Tami Shandro
- Lois Hole Hospital for Women, Royal Alexandra Hospital, Edmonton, AB, Canada
| | - Jean-Michel Le Melledo
- Correspondence: Jean-Michel Le Melledo, MD, Department of Psychiatry, Room 1E7.14, 8440 112 Street, Walter Mackenzie Center, Edmonton, Alberta, Canada, T6G 2B7 ()
| |
Collapse
|
42
|
Ghuman A, McEwen A, Tran KH, Mitchell N, Hanstock C, Seres P, Jhangri G, Burgess D, Baker G, Le Melledo JM. Prospective Investigation of Glutamate Levels and Percentage Gray Matter in the Medial Prefrontal Cortex in Females at Risk for Postpartum Depression. Curr Neuropharmacol 2022; 20:1988-2000. [PMID: 35236264 PMCID: PMC9886796 DOI: 10.2174/1570159x20666220302101115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The substantial female hormone fluctuations associated with pregnancy and postpartum have been linked to a greater risk of developing depressive symptoms, particularly in high-risk women (HRW), i.e. those with histories of mood sensitivity to female hormone fluctuations. We have shown that glutamate (Glu) levels in the medial prefrontal cortex (MPFC) decrease during perimenopause, a period of increased risk of developing a major depressive episode. Our team has also demonstrated that percentage gray matter (%GM), another neural correlate of maternal brain health, decreases in the MPFC during pregnancy. OBJECTIVE To investigate MPFC Glu levels and %GM from late pregnancy up to 7 weeks postpartum in HRW and healthy pregnant women (HPW). METHODS Single-voxel spectra were acquired from the MPFC of 41 HPW and 22 HRW using 3- Tesla in vivo proton magnetic resonance spectroscopy at five different time points. RESULTS We observed a statistically significant interaction between time and group for the metabolite Glu, with Glu levels being lower for HRW during pregnancy and early postpartum (p<0.05). MPFC %GM was initially lower during pregnancy and then significantly increased over time in both groups (p<0.01). CONCLUSION This investigation suggests that the vulnerability towards PPD is associated with unique fluctuations of MPFC Glu levels during pregnancy and early postpartum period. Our results also suggest that the decline in MPFC %GM associated with pregnancy seems to progressively recover over time. Further investigations are needed to determine the specific role that female hormones play on the physiological changes in %GM during pregnancy and postpartum.
Collapse
Affiliation(s)
- Arjun Ghuman
- Address correspondence to these authors at the Department of Psychiatry, Room 1E7.14, 8440 112 street Walter Mackenzie Center, Edmonton, Alberta, Canada, T6G 2B7; Tel: 780-407-6578; Fax: 780-407-6672; E-mail:
| | - Alyssa McEwen
- Address correspondence to these authors at the Department of Psychiatry, Room 1E7.14, 8440 112 street Walter Mackenzie Center, Edmonton, Alberta, Canada, T6G 2B7; Tel: 780-407-6578; Fax: 780-407-6672; E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
44
|
Vasiliu O. Investigational Drugs for the Treatment of Depression (Part 1): Monoaminergic, Orexinergic, GABA-Ergic, and Anti-Inflammatory Agents. Front Pharmacol 2022; 13:884143. [PMID: 35774601 PMCID: PMC9237478 DOI: 10.3389/fphar.2022.884143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022] Open
Abstract
Therapeutic management of depression has currently important limitations, and its low efficacy is reflected in high rates of non-response even after multiple trials of antidepressants. Almost two-thirds of the patients diagnosed with major depression who received a 4–6 weeks trial of antidepressant could not reach remission, and more than 30% of these patients are considered treatment-resistant. In bipolar depression, the situation is also discouraging if we analyze the high suicide rate, the risk for the treatment-emergent affective switch when antidepressants are added, the high rate of treatment resistance (up to 25%), and the severe functional impairments associated with these episodes. Therefore, new therapeutic agents are needed, as well as new pathogenetic models for depression. The vast majority of the currently approved antidepressants are based on the monoamine hypothesis, although new drugs exploiting different neurotransmitter pathways have been recently approved by FDA. Brexanolone, an allopregnanolone analog, is an example of such new antidepressants, and its approval for post-partum depression inspired the search for a new generation of neurosteroids and GABA-ergic modulators, with an easier way of administration and superior tolerability profile. Orexin receptors antagonists are also extensively studied for different psychiatric disorders, depression included, in phase II trials. Antiinflammatory drugs, both cyclo-oxygenase 2 inhibitors and biological therapy, are investigated in patients with depressive disorders based on the proven correlation between inflammation and mood disorders in preclinical and clinical studies. Also, a new generation of monoamine-based investigational drugs is explored, ranging from triple reuptake inhibitors to atypical antipsychotics, in patients with major depression. In conclusion, there is hope for new treatments in uni- and bipolar depression, as it became clear, after almost seven decades, that new pathogenetic pathways should be targeted to increase these patients’ response rate.
Collapse
|