1
|
Gömer A, Lang A, Janshoff S, Steinmann J, Steinmann E. Epidemiology and global spread of emerging tick-borne Alongshan virus. Emerg Microbes Infect 2024; 13:2404271. [PMID: 39259276 PMCID: PMC11423535 DOI: 10.1080/22221751.2024.2404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The emergence and spread of novel viral pathogens is a major threat to human health, particularly in the context of climate and human-induced change in land use. Alongshan virus (ALSV) is a tick-borne virus associated with human disease, which was first identified in northeast China. More recently, several studies reported the emergence of ALSV in mammalian and arthropod hosts in multiple different countries outside of Asia, and the first viral genome sequencing data has become available. ALSV is a member of the Jingmenvirus group closely related to the Flaviviridae family. Unusually, the positive-sense, single-stranded RNA genome of ALSV is segmented and consists of four distinct segments, two of which show homology with the NS3 and NS5 protein encoding regions of non-segmented flaviviruses. Transmission of arthropod-borne pathogens will likely increase in the future due to environmental change mediated by a variety of environmental and ecological factors and increasing human encroachment into wild animal habitats. In this review, we present current knowledge of global ALSV distribution and emergence patterns, highlight genetic diversity, evolution and susceptible species. Finally, we discuss the role of this emerging tick-borne virus in the context of urbanization and global health.
Collapse
Affiliation(s)
- André Gömer
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arthur Lang
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Saskia Janshoff
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - Eike Steinmann
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Picado R, Baptista CJ, Meneses A, Legatti S, Fonseca J, Belas A. Lyme disease in companion animals: an updated state-of-art and current situation in Portugal. Vet Res Commun 2024; 48:3551-3561. [PMID: 39259416 DOI: 10.1007/s11259-024-10532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Lyme disease (LD) is a globally distributed zoonotic multisystemic condition caused by gram-negative spirochete bacteria of the Borrelia burgdorferi complex, transmitted through tick bites. Research on LD in domestic animals in Portugal is limited, potentially leading to underestimating its prevalence. This disease affects many species, including humans, making it a critical public health issue. In domestic animals, LD often presents subclinically or with non-specific clinical signs, complicating its diagnosis. Nevertheless, veterinarians should always consider LD in cases with a history of tick exposure and compatible clinical signs. Diagnostic confirmation can be achieved through serological and other complementary tests. Treatment involves eradicating the bacterial infection and managing clinical signs using a combination of antibiotics, analgesics, anti-inflammatories, and other medications. Effective prevention primarily relies on tick control measures. This review aims to provide an up-to-date state-of-the-art LD, particularly in Portugal.
Collapse
Affiliation(s)
- Rita Picado
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Catarina Jota Baptista
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
- Centre for the Research and Technology of Agro-Enviromental and Biological Sciences (CITAB- Inov4Agro), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - André Meneses
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
- Animal and Veterinary Research Center (CECAV), Lusófona University- Lisbon University Centre, Lisbon, Portugal
- I-MVET- Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Lisbon, Portugal
| | - Sabrina Legatti
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Joana Fonseca
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
- School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusofonia (IPLUSO), Lisbon, Portugal
| | - Adriana Belas
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal.
- Animal and Veterinary Research Center (CECAV), Lusófona University- Lisbon University Centre, Lisbon, Portugal.
- I-MVET- Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Lisbon, Portugal.
- School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusofonia (IPLUSO), Lisbon, Portugal.
| |
Collapse
|
3
|
Sak B, Fibigerová M, Mravcová K, Holubová N, Šikutová S, Fenclová J, Kváč M, Rudolf I. Tick-borne microsporidiosis: ticks as a neglected source of human microsporidian infections? Emerg Microbes Infect 2024; 13:2384472. [PMID: 39042034 PMCID: PMC11305020 DOI: 10.1080/22221751.2024.2384472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
We detected 24 Encephalitozoon cuniculi positive Ixodes ricinus ticks of 284 collected in the Czech Republic. Since the route of transmission of microsporidia is not fully understood, the presence of microsporidia in ticks raises the question of whether they may be involved in the transmission of these pathogens.
Collapse
Affiliation(s)
- Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czech Republic
| | | | - Kristína Mravcová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Nikola Holubová
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czech Republic
| | - Silvie Šikutová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Fenclová
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czech Republic
- University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czech Republic
- University of South Bohemia, České Budějovice, Czech Republic
| | - Ivo Rudolf
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
4
|
Croci C, Erriquez L, Bisaglia B, Bellinzona G, Olivieri E, Sassera D, Castelli M. Genome sequence of Ehrlichia muris from Ixodes ricinus collected in Italy on a migratory bird provides epidemiological and evolutionary insights. Ticks Tick Borne Dis 2024; 15:102409. [PMID: 39488869 DOI: 10.1016/j.ttbdis.2024.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Ticks are prominent vectors of several zoonotic diseases. Tick-borne pathogens include the members of the genus Ehrlichia, which are obligate intracellular bacteria infecting immune and hematopoietic cells. Ehrlichia muris predominantly affects rodents, but was also reported to be a human pathogen. The known geographical distribution of this bacterium ranges from Asia, to the USA and eastern Europe. In the present work, we report the finding of E. muris in an Ixodes ricinus tick collected from a migratory bird (Turdus iliacus) in Italy, southern Europe. We sequenced the total DNA from this tick sample, and, thanks to a dedicated bioinformatic pipeline, selectively assembled the genome of the bacterium, which represents the first one for E. muris from Europe. Phylogenetic and comparative genomic analyses were then performed. Accounting for tick species distribution, bird migratory routes, and molecular phylogeny of the bacterium, it is likely that this bird transported the tick to Italy from an endemic area of E. muris, such as eastern Europe. In addition, comparative genomic analyses highlighted that E. muris and other Ehrlichia spp. display copy number variations in two families of membrane proteins, likely due to recent gene duplication, deletion and recombination events. These differences are probably a source of variability for surface antigens to evade host immunity, with a potential role in host adaptation and specificity. The present results underline the impact of migratory birds on the spread of tick-borne pathogens towards non-endemic areas, highlighting the need for further epidemiological surveillance at bird ringing stations in Italy, and advocating further investigations on possible local transmission of E. muris in competent mammalian hosts.
Collapse
Affiliation(s)
- Carlo Croci
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Luca Erriquez
- Department of Biology and Biotechnology, University of Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Italy.
| |
Collapse
|
5
|
Gray J, Kahl O, Zintl A. Pathogens transmitted by Ixodes ricinus. Ticks Tick Borne Dis 2024; 15:102402. [PMID: 39368217 DOI: 10.1016/j.ttbdis.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Ixodes ricinus is the most important tick vector in central and western Europe and one of the most researched parasites. However, in the published literature on the tick and the pathogens it transmits, conjecture about specific transmission cycles and the clinical significance of certain microbes is not always clearly separated from confirmed facts. This article aims to present up-to-date, evidence-based information about the well-researched human pathogens tick-borne encephalitis virus, louping-ill virus, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and several Babesia species, with a focus on their development in the tick, transmission dynamics and the competent reservoir hosts that support their circulation in the environment. Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia helvetica and Rickettsia monacensis, which are much less common causes of disease but may affect immunocompromised patients, are also briefly discussed. Finally, the possible role of I. ricinus in the transmission of Coxiella burnetii, Francisella tularensis, Bartonella spp. and Spiroplasma ixodetis is reviewed.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Dwużnik-Szarek D, Beliniak A, Malaszewicz W, Krauze-Gryz D, Gryz J, Jasińska KD, Wężyk D, Bajer A. Pathogens detected in ticks (Ixodes ricinus) feeding on red squirrels (Sciurus vulgaris) from city parks in Warsaw. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:677-699. [PMID: 39249583 PMCID: PMC11464548 DOI: 10.1007/s10493-024-00955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
The European red squirrel (Sciurus vulgaris) is a common host for Ixodes ricinus ticks in urban and rural habitats, however, studies on ticks and tick-borne pathogens (TBPs) of squirrels have not been conducted in Poland yet. Thus, the aims of the current study were to assess and compare the prevalence and abundance of ticks on red squirrels trapped at two sites in the Warsaw area (in an urban forest reserve and an urban park) and using molecular tools, to assess the genetic diversity of three pathogens (Borrelia burgdorferi sensu lato, Rickettsia and Babesia spp.) in I. ricinus ticks collected from squirrels. For the detection of Rickettsia spp. a 750 bp long fragment of the citrate synthase gltA gene was amplified; for B. burgdorferi s.l. 132f/905r and 220f/824r primers were used to amplify the bacterial flaB gene fragments (774 and 605 bp, respectively) and for Babesia spp., a 550 bpfragment of 18S rRNA gene was amplified. In total, 91 red squirrels were examined for ticks. There were differences in tick prevalence and mean abundance of infestation in squirrels from the urban forest reserve and urban park. Three species of B. burgdorferi s.l., Rickettsia spp., and Babesia microti were detected in ticks removed from the squirrels. Our results broaden knowledge of S. vulgaris as an important host for immature I. ricinus stages and support the hypothesis that red squirrels act as a reservoir of B. burgdorferi. Moreover, we conclude that red squirrels may also play a role in facilitating the circulation of other pathogens causing serious risk of tick-borne diseases in natural and urban areas.
Collapse
Affiliation(s)
- Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Agata Beliniak
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wiktoria Malaszewicz
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Dagny Krauze-Gryz
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Jakub Gryz
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, Raszyn, 05-090, Poland
| | - Karolina D Jasińska
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Dagmara Wężyk
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
7
|
Castelli M, Nardi T, Giovannini M, Sassera D. Addictive manipulation: a perspective on the role of reproductive parasitism in the evolution of bacteria-eukaryote symbioses. Biol Lett 2024; 20:20240310. [PMID: 39288812 PMCID: PMC11496725 DOI: 10.1098/rsbl.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities. Here, we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on protists, primary models for evolutionary investigations on eukaryotes due to their diversity and antiquity, but still overall under-investigated. After a thorough re-examination of the literature on bacterial-protist interactions with this question in mind, we conclude that such bacterial 'addictive manipulators' of protists do exist, are probably widespread, and have been overlooked until now as a consequence of the fact that investigations are commonly host-centred, thus ineffective to detect such behaviour. Additionally, we posit that toxin-antitoxin systems are crucial in these phenomena of addictive manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing functional analogy and molecular homology with plasmid-bacterial interplays. Finally, we remark that multiple addictive manipulators are affiliated with specific bacterial lineages with ancient associations with diverse eukaryotes. This suggests a possible role of addictive manipulation of protists in paving the way to the evolution of bacteria associated with multicellular organisms.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Giovannini
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
8
|
Obiegala A, Fischer L, Weilage S, Król N, Westhoff KM, Nemitz S, Lierz M, Lang J, Pfeffer M, Renteria-Solís Z. Sylvatic vector-borne pathogens including Cytauxzoon europaeus in the European wildcat (Felis silvestris) from southwestern Germany. Parasit Vectors 2024; 17:361. [PMID: 39182156 PMCID: PMC11344307 DOI: 10.1186/s13071-024-06428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND European wildcats (Felis silvestris) are widely distributed in Europe and a strictly protected species in Germany. Lately, anthropogenic protective efforts lead to increasing numbers of wildcats in southwestern Germany. Moreover, in recent years the numbers of domestic cats are increasing. Thus, the contact between domestic and wildcats may lead to the spread of zoonotic pathogens in both animal species. As data on vector-borne pathogens (VBPs) in wildcats from Germany are limited to date, the objective of this study was to investigate the presence and current distribution of VBPs in wildcats from southwestern Germany. METHODS Skin and spleen samples from 117 European wildcats, originating from a regional carcass-monitoring program in southwestern Germany, were examined by real-time and conventional polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum, Neoehrlichia mikurensis, Rickettsia spp., Bartonella spp., and Piroplasmida. RESULTS In total, 6.8% (n = 8) of the wildcats were Rickettsia-positive, specified as R. helvetica. Three wildcats were positive for A. phagocytophilum (2.6%), one for Bartonella spp., namely B. taylorii (0.8%), and 84 for Cytauxzoon spp. (71.8%). Out of these 84 samples, 23 were further sequenced revealing very high identity levels (99.84-100%) to C. europaeus, which is considered to be pathogenic for domestic cats. All wildcats were negative for the presence of N. mikurensis DNA. CONCLUSIONS European wildcats in southwestern Germany are hosting several VBPs. With the exception of Cytauxzoon spp., low prevalence rates of most examined pathogens suggest that wildcats are primarily incidental hosts for sylvatic pathogens associated with rodents, in contrast to domestic cats. However, the high prevalence of the cat-associated pathogen C. europaeus suggests that wildcats in southwestern Germany may serve as reservoirs for this pathogen.
Collapse
Affiliation(s)
- Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Luisa Fischer
- Wildlife Research Institute, State Agency for Nature, Environment and Consumer Protection North Rhine-Westphalia, Bonn, Germany
- Working Group for Wildlife Biology at Justus, Liebig University Giessen E.V., Giessen, Germany
| | - Sara Weilage
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Clinical Center for Emerging and Vector-Borne Infections, Odense University Hospital, Odense, Denmark
| | - Katharina M Westhoff
- Working Group for Wildlife Biology at Justus, Liebig University Giessen E.V., Giessen, Germany
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus Liebig University Giessen, Giessen, Germany
| | - Saskia Nemitz
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Lierz
- Working Group for Wildlife Biology at Justus, Liebig University Giessen E.V., Giessen, Germany
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus Liebig University Giessen, Giessen, Germany
| | - Johannes Lang
- Working Group for Wildlife Biology at Justus, Liebig University Giessen E.V., Giessen, Germany
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany.
| | - Zaida Renteria-Solís
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Guardone L, Nogarol C, Accorsi A, Vitale N, Listorti V, Scala S, Brusadore S, Miceli IN, Wolfsgruber L, Guercio A, Di Bella S, Grippi F, Razzuoli E, Mandola ML. Ticks and Tick-Borne Pathogens: Occurrence and Host Associations over Four Years of Wildlife Surveillance in the Liguria Region (Northwest Italy). Animals (Basel) 2024; 14:2377. [PMID: 39199911 PMCID: PMC11350676 DOI: 10.3390/ani14162377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tick-borne diseases (TBDs) are a considerable public health problem worldwide. The occurrence of Anaplasma spp., Borrelia burgdorferi s.l., Coxiella burnetii, Rickettsia spp., and tick-borne encephalitis virus (TBEv) was investigated via PCR and sequencing in 683 ticks collected from 105 roe deer, 61 wild boars, 49 fallow deer, and 2 chamois, in the Liguria region, northwest Italy, between 2019 and 2022. The ticks were morphologically identified. Four different tick species were found: Ixodes ricinus (66.8% of the collected ticks), Dermacentor marginatus (15.8%), Rhipicephalus sanguineus s.s. (15.7%), and Haemaphysalis punctata (0.9%). Six ticks (0.9%) were only identified as Rhipicephalus spp. Of the 222 pools analyzed, 27.9% were positive. Most pools (n = 58, 26.1% of pools analyzed) were positive for Rickettsia spp., and several species were found: Rickettsia slovaca was the dominant species (15.3%), followed by R. monacensis (8.1%), while R. helvetica (1.8%), R. massiliae (0.5%), and R. raoultii (0.5%) were found only sporadically. Anaplasma phagocytophilum was identified in three pools and B. burgdorferi s.l. in one pool. All samples were negative for C. burnetii and TBEv. Significant associations were found between I. ricinus and roe deer, D. marginatus and wild boar, and between R. monacensis and I. ricinus. The prevalence of Rickettsia spp. differed significantly between tick and host species. This updated picture of tick species and TBPs in wild ungulates in Liguria, where the population of these animals is increasing, shows a widespread presence of potentially zoonotic Rickettsia spp. Continuous monitoring and public information on preventive measures are needed.
Collapse
Affiliation(s)
- Lisa Guardone
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Chiara Nogarol
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Annalisa Accorsi
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Nicoletta Vitale
- S.S. Epidemiologia—Sanità Animale, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy;
| | - Valeria Listorti
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Sonia Scala
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Sonia Brusadore
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Ilaria Nina Miceli
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Lara Wolfsgruber
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Annalisa Guercio
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Santina Di Bella
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Francesca Grippi
- S.C. Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy;
| | - Elisabetta Razzuoli
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Maria Lucia Mandola
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| |
Collapse
|
10
|
Ciebiera O, Grochowalska R, Łopińska A, Zduniak P, Strzała T, Jerzak L. Ticks and spirochetes of the genus Borrelia in urban areas of Central-Western Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:421-437. [PMID: 38940943 PMCID: PMC11269503 DOI: 10.1007/s10493-024-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Due to the extensive use of green urban areas as recreation places, city residents are exposed to tick-borne pathogens. The objectives of our study were (i) to determine the occurrence of ticks in urban green areas, focussing on areas used by humans such as parks, schools and kindergartens, and urban forests, and (ii) to assess the prevalence of Borrelia infections in ticks in Zielona Góra, a medium-sized city in western Poland. A total of 161 ticks representing the two species Ixodes ricinus (34 males, 51 females, 30 nymphs) and Dermacentor reticulatus (20 males, 26 females) were collected from 29 of 72 (40.3%) study sites. In total, 26.1% of the ticks (85.7% of I. ricinus and 14.3% of D. reticulatus) yielded DNA of Borrelia. The difference in the infection rate between I. ricinus and D. reticulatus was significant. Among infected ticks, the most frequent spirochete species were B. lusitaniae (50.0%) and B. afzelii (26.2%), followed by B. spielmanii (9.5%), B. valaisiana (7.1%), B. burgdorferi sensu stricto, (4.8%) and B. miyamotoi (2.4%). No co-infections were found. We did not observe a correlation in the occurrence of Borrelia spirochetes in ticks found in individual study sites that differed in terms of habitat type and height of vegetation. Our findings demonstrate that the Borrelia transmission cycles are active within urban habitats, pointing the need for monitoring of tick-borne pathogens in public green areas. They could serve as guidelines for authorities for the proper management of urban green spaces in a way that may limit tick populations and the potential health risks posed by tick-borne pathogens.
Collapse
Affiliation(s)
- Olaf Ciebiera
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland.
| | - Renata Grochowalska
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| | - Andżelina Łopińska
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| | - Piotr Zduniak
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, 51-631, Poland
| | - Leszek Jerzak
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| |
Collapse
|
11
|
Dyczko D, Krysmann A, Kolanek A, Borczyk B, Kiewra D. Bacterial pathogens in Ixodes ricinus collected from lizards Lacerta agilis and Zootoca vivipara in urban areas of Wrocław, SW Poland- preliminary study. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:409-420. [PMID: 38869727 PMCID: PMC11269471 DOI: 10.1007/s10493-024-00927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
The aim of this study was to determine the level of infection of Ixodes ricinus ticks with pathogens (Borrelia spp., Rickettsia spp., and Anaplasma spp.) collected from Lacerta agilis and Zootoca vivipara lizards in the urban areas of Wrocław (SW Poland). The study was carried out in July-August 2020. Lizards were caught by a noose attached to a pole or by bare hands, identified by species, and examined for the presence of ticks. Each lizard was then released at the site of capture. Ticks were removed with tweezers, identified by species using keys, and molecular tests were performed for the presence of pathogens. From 28 lizards (17 specimens of Z. vivipara and 11 specimens of L. agilis) a total of 445 ticks, including 321 larvae and 124 nymphs, identified as I. ricinus were collected. A larger number of ticks were obtained from L. agilis compared to Z. vivipara. Molecular tests for the presence of pathogens were performed on 445 specimens of I. ricinus. The nested PCR method for the fla gene allowed the detection of Borrelia spp. in 9.4% of ticks, and it was higher in ticks from L. agilis (12.0%) than from Z. vivipara (1.0%). The RFLP method showed the presence of three species, including two belonging to the B. burgdorferi s.l. complex (B. lusitaniae and B. afzelii), and B. miyamotoi. The overall level of infection of Rickettsia spp. was 19.3%, including 27.2% in ticks collected from Z. vivipara and 17.0% from L. agilis. Sequencing of randomly selected samples confirmed the presence of R. helvetica. DNA of Anaplasma spp. was detected only in one pool of larvae collected from L. agilis, and sample sequencing confirmed the presence of (A) phagocytophilum. The research results indicate the important role of lizards as hosts of ticks and their role in maintaining pathogens in the environment including urban agglomeration as evidenced by the first recorded presence of (B) miyamotoi and (A) phagocytophilum in I. ricinus ticks collected from L. agilis. However, confirmation of the role of sand lizards in maintaining (B) miyamotoi and A. phagocytophilum requires more studies and sampling of lizard tissue.
Collapse
Affiliation(s)
- Dagmara Dyczko
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, Wrocław, 51-148, Poland.
| | - Alicja Krysmann
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Aleksandra Kolanek
- Department of Geoinformatics and Cartography, Institute of Geography and Regional Development, Faculty of Earth Sciences and Environmental Management, University of Wrocław, pl. Uniwersytecki 1, Wrocław, 50-137, Poland
| | - Bartosz Borczyk
- Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, Wrocław, 50-335, Poland
| | - Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, Wrocław, 51-148, Poland
| |
Collapse
|
12
|
de Cock MP, Baede VO, Esser HJ, Fonville M, de Vries A, de Boer WF, Mehl C, Ulrich RG, Schares G, Hakze-van der Honing RW, van der Poel WHM, Sprong H, Maas M. T(r)icky Environments: Higher Prevalence of Tick-Borne Zoonotic Pathogens in Rodents from Natural Areas Compared with Urban Areas. Vector Borne Zoonotic Dis 2024; 24:478-488. [PMID: 38853708 DOI: 10.1089/vbz.2023.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Background: Urban areas are unique ecosystems with stark differences in species abundance and composition compared with natural ecosystems. These differences can affect pathogen transmission dynamics, thereby altering zoonotic pathogen prevalence and diversity. In this study, we screened small mammals from natural and urban areas in the Netherlands for up to 19 zoonotic pathogens, including viruses, bacteria, and protozoan parasites. Materials and Methods: In total, 578 small mammals were captured, including wood mice (Apodemus sylvaticus), bank voles (Myodes glareolus), yellow-necked mice (Apodemus flavicollis), house mice (Mus musculus), common voles (Microtus arvalis), and greater white-toothed shrews (Crocidura russula). We detected a wide variety of zoonotic pathogens in small mammals from both urban and natural areas. For a subset of these pathogens, in wood mice and bank voles, we then tested whether pathogen prevalence and diversity were associated with habitat type (i.e., natural versus urban), degree of greenness, and various host characteristics. Results: The prevalence of tick-borne zoonotic pathogens (Borrelia spp. and Neoehrlichia mikurensis) was significantly higher in wood mice from natural areas. In contrast, the prevalence of Bartonella spp. was higher in wood mice from urban areas, but this difference was not statistically significant. Pathogen diversity was higher in bank voles from natural habitats and increased with body weight for both rodent species, although this relationship depended on sex for bank voles. In addition, we detected methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase/AmpC-producing Escherichia coli, and lymphocytic choriomeningitis virus for the first time in rodents in the Netherlands. Discussion: The differences between natural and urban areas are likely related to differences in the abundance and diversity of arthropod vectors and vertebrate community composition. With increasing environmental encroachment and changes in urban land use (e.g., urban greening), it is important to better understand transmission dynamics of zoonotic pathogens in urban environments to reduce potential disease risks for public health.
Collapse
Affiliation(s)
- Marieke P de Cock
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Valérie O Baede
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Manoj Fonville
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Ankje de Vries
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Calvin Mehl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Gereon Schares
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Wim H M van der Poel
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Hein Sprong
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Miriam Maas
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
13
|
Omeragić J, Kapo N, Goletić Š, Softić A, Terzić I, Šabić E, Škapur V, Klarić Soldo D, Goletić T. Investigation of Tick-Borne Pathogens in Ixodes Ticks from Bosnia and Herzegovina. Animals (Basel) 2024; 14:2190. [PMID: 39123716 PMCID: PMC11311058 DOI: 10.3390/ani14152190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Limited information is available regarding the presence of tick-borne pathogens and their distribution within Ixodes species in Bosnia and Herzegovina. This study aimed to identify Rickettsia spp., Babesia spp., Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) in Ixodes ticks collected from domestic and wild animals and vegetation in different regions across Bosnia and Herzegovina. A total of 7438 adult ticks, including 4526 Ixodes ricinus, Ixodes canisuga, and Ixodes hexagonus, were collected. Real-time PCR screening of 450 pooled I. ricinus samples revealed a 22.1% infection rate with at least one pathogen. Rickettsia spp. (6.3%) were found in ticks from dogs, cats, and goats, Babesia spp. (3.1%) in ticks from dogs and cattle, A. phagocytophilum (8.8%) in ticks from dogs, goats, and cattle, and B. burgdorferi s.l. (3.4%) in ticks from dogs and cats. Mixed infections with B. burgdorferi s.l. and A. phagocytophilum, as well as B. burgdorferi s.l. and Rickettsia spp., were found in two pools of I. ricinus from dogs and cats, respectively. Additionally, co-infection with Rickettsia spp. and A. phagocytophilum was confirmed in three tick pools from dogs and goats. Each tick from these pooled samples was individually retested to confirm the presence of pathogens. In the examined pooled samples of I. canisuga (1) and I. hexagonus (6), none of the tested pathogens were detected. Our findings represent the first detection of Rickettsia spp., Babesia spp., A. phagocytophilum, and B. burgdorferi s.l. in I. ricinus collected from domestic animals and vegetation in Bosnia and Herzegovina. Considering the established infection rates, the detection of tick-borne pathogens in adult ticks collected from domestic animals and vegetation enriches the current knowledge of the presence of tick-borne pathogens at the local, regional, national, and broader levels.
Collapse
Affiliation(s)
- Jasmin Omeragić
- Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina; (J.O.); (Š.G.); (A.S.); (I.T.); (E.Š.); (D.K.S.); (T.G.)
| | - Naida Kapo
- Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina; (J.O.); (Š.G.); (A.S.); (I.T.); (E.Š.); (D.K.S.); (T.G.)
| | - Šejla Goletić
- Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina; (J.O.); (Š.G.); (A.S.); (I.T.); (E.Š.); (D.K.S.); (T.G.)
| | - Adis Softić
- Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina; (J.O.); (Š.G.); (A.S.); (I.T.); (E.Š.); (D.K.S.); (T.G.)
| | - Ilma Terzić
- Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina; (J.O.); (Š.G.); (A.S.); (I.T.); (E.Š.); (D.K.S.); (T.G.)
| | - Emina Šabić
- Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina; (J.O.); (Š.G.); (A.S.); (I.T.); (E.Š.); (D.K.S.); (T.G.)
| | - Vedad Škapur
- Faculty of Agriculture and Food Science, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Darinka Klarić Soldo
- Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina; (J.O.); (Š.G.); (A.S.); (I.T.); (E.Š.); (D.K.S.); (T.G.)
| | - Teufik Goletić
- Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina; (J.O.); (Š.G.); (A.S.); (I.T.); (E.Š.); (D.K.S.); (T.G.)
| |
Collapse
|
14
|
Joly-Kukla C, Bernard C, Bru D, Galon C, Giupponi C, Huber K, Jourdan-Pineau H, Malandrin L, Rakotoarivony I, Riggi C, Vial L, Moutailler S, Pollet T. Spatial patterns of Hyalomma marginatum-borne pathogens in the Occitanie region (France), a focus on the intriguing dynamics of Rickettsia aeschlimannii. Microbiol Spectr 2024; 12:e0125624. [PMID: 39012114 DOI: 10.1128/spectrum.01256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Hyalomma marginatum is an invasive tick species recently established in mainland southern France. This tick is known to host a diverse range of human and animal pathogens. While information about the dynamics of these pathogens is crucial to assess disease risk and develop effective monitoring strategies, few data on the spatial dynamics of these pathogens are currently available. We collected ticks in 27 sites in the Occitanie region to characterize spatial patterns of H. marginatum-borne pathogens. Several pathogens have been detected: Theileria equi (9.2%), Theileria orientalis (0.2%), Anaplasma phagocytophilum (1.6%), Anaplasma marginale (0.8%), and Rickettsia aeschlimannii (87.3%). Interestingly, we found a spatial clustered distribution for the pathogen R. aeschlimannii between two geographically isolated areas with infection rates and bacterial loads significantly lower in Hérault/Gard departments (infection rate 78.6% in average) compared to Aude/Pyrénées-Orientales departments (infection rate 92.3% in average). At a smaller scale, R. aeschlimannii infection rates varied from one site to another, ranging from 29% to 100%. Overall, such high infection rates (87.3% on average) and the effective maternal transmission of R. aeschlimannii might suggest a role as a tick symbiont in H. marginatum. Further studies are thus needed to understand both the status and the role of R. aeschlimannii in H. marginatum ticks.IMPORTANCETicks are obligatory hematophagous arthropods that transmit pathogens of medical and veterinary importance. Pathogen infections cause serious health issues in humans and considerable economic loss in domestic animals. Information about the presence of pathogens in ticks and their dynamics is crucial to assess disease risk for public and animal health. Analyzing tick-borne pathogens in ticks collected in 27 sites in the Occitanie region, our results highlight clear spatial patterns in the Hyalomma marginatum-borne pathogen distribution and strengthen the postulate that it is essential to develop effective monitoring strategies and consider the spatial scale to better characterize the circulation of tick-borne pathogens.
Collapse
Affiliation(s)
- Charlotte Joly-Kukla
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Célia Bernard
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
- French Establishment for Fighting Zoonoses (ELIZ), Malzéville, France
| | - David Bru
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Carla Giupponi
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Karine Huber
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Hélène Jourdan-Pineau
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | | | - Ignace Rakotoarivony
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Camille Riggi
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Laurence Vial
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Thomas Pollet
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
15
|
Dyczko D, Błażej P, Kiewra D. The influence of forest habitat type on Ixodes ricinus infections with Rickettsia spp. in south-western Poland. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100200. [PMID: 39148674 PMCID: PMC11324835 DOI: 10.1016/j.crpvbd.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024]
Abstract
This study investigates the prevalence of Rickettsia spp. in Ixodes ricinus tick populations in different forest habitat types (broadleaf forest, mixed broadleaf and coniferous forest, and coniferous forest) in south-western Poland. During the survey periods from April to June 2018 and 2019 a total of 494 I. ricinus ticks, including 374 nymphs, 60 females and 60 males, were tested for Rickettsia infections by nested PCR targeting the gltA gene. The overall infection rate was 42.3%; however, we observed statistically significant year-to-year variation. Infection rates varied between tick developmental stages and were significantly influenced by forest habitat type. As assessed by a generalized linear mixed model (GLMM), the highest infection rates were observed in mixed broadleaf and coniferous forests, while coniferous forests had a significant negative effect on infection prevalence. DNA sequencing of selected samples confirmed the predominance of Rickettsia helvetica (91.2%) and less frequent Rickettsia monacensis (8.8%). This study suggests that the forest habitat types can influence Rickettsia spp. infection in tick populations; however, a comprehensive understanding of all factors influencing the level of infection requires future study.
Collapse
Affiliation(s)
- Dagmara Dyczko
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63, 51-148, Wroclaw, Poland
| | - Paweł Błażej
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63, 51-148, Wroclaw, Poland
| |
Collapse
|
16
|
Kazimírová M, Mangová B, Chvostáč M, Didyk YM, de Alba P, Mira A, Purgatová S, Selyemová D, Rusňáková Tarageľová V, Schnittger L. The role of wildlife in the epidemiology of tick-borne diseases in Slovakia. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100195. [PMID: 39027084 PMCID: PMC11252786 DOI: 10.1016/j.crpvbd.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Tick-borne diseases (TBD) represent an important challenge for human and veterinary medicine. In Slovakia, studies on the epidemiology of tick-borne pathogens (TBP) regarding reservoir hosts have focused on small mammals and to a lesser extent on birds or lizards, while knowledge of the role of the remaining vertebrate groups is limited. Generally, wild ungulates, hedgehogs, small- and medium-sized carnivores, or squirrels are important feeding hosts for ticks and serve as reservoirs for TBP. Importantly, because they carry infected ticks and/or are serologically positive, they can be used as sentinels to monitor the presence of ticks and TBP in the environment. With their increasing occurrence in urban and suburban habitats, wild ungulates, hedgehogs or foxes are becoming an important component in the developmental cycle of Ixodes ricinus and of TBP such as Anaplasma phagocytophilum or Babesia spp. On the other hand, it has been postulated that cervids may act as dilution hosts for Borrelia burgdorferi (sensu lato) and tick-borne encephalitis virus. In southwestern Slovakia, a high prevalence of infection with Theileria spp. (100%) was observed in some cervid populations, while A. phagocytophilum (prevalence of c.50%) was detected in cervids and wild boars. The following pathogens were detected in ticks feeding on free-ranging ungulates, birds, and hedgehogs: A. phagocytophilum, Rickettsia spp., Coxiella burnetii, Neoehrlichia mikurensis, B. burgdorferi (s.l.), and Babesia spp. The growing understanding of the role of wildlife as pathogen reservoirs and carriers of pathogen-infected ticks offers valuable insights into the epidemiology of TBP, providing a foundation for reducing the risk of TBD.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Mangová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Yuliya M. Didyk
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
- Schmalhausen Institute of Zoology NAS of Ukraine, Kyiv, Ukraine
| | - Paloma de Alba
- Instituto de Patobiología Veterinaria (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabela Mira
- Instituto de Virología e Innovaciones Tecnológicas (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Slávka Purgatová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Diana Selyemová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Middleton J, Cooper I, Rott AS. Tick hazard in the South Downs National Park (UK): species, distribution, key locations for future interventions, site density, habitats. PeerJ 2024; 12:e17483. [PMID: 38881864 PMCID: PMC11179636 DOI: 10.7717/peerj.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background South Downs National Park (SDNP) is UK's most visited National Park, and a focus of tick-borne Lyme disease. The first presumed UK autochthonous cases of tick-borne encephalitis and babesiosis were recorded in 2019-20. SDNP aims to conserve wildlife and encourage recreation, so interventions are needed that reduce hazard without negatively affecting ecosystem health. To be successful these require knowledge of site hazards. Methods British Deer Society members submitted ticks removed from deer. Key potential intervention sites were selected and six 50 m2 transects drag-sampled per site (mostly twice yearly for 2 years). Ticks were identified in-lab (sex, life stage, species), hazard measured as tick presence, density of ticks (all life stages, DOT), and density of nymphs (DON). Sites and habitat types were analysed for association with hazard. Distribution was mapped by combining our results with records from five other sources. Results A total of 87 Ixodes ricinus (all but one adults, 82% F) were removed from 14 deer (10 Dama dama; three Capreolus capreolus; one not recorded; tick burden, 1-35) at 12 locations (commonly woodland). Five key potential intervention sites were identified and drag-sampled 2015-16, collecting 623 ticks (238 on-transects): 53.8% nymphs, 42.5% larvae, 3.7% adults (13 M, 10 F). Ticks were present on-transects at all sites: I. ricinus at three (The Mens (TM); Queen Elizabeth Country Park (QECP); Cowdray Estate (CE)), Haemaphysalis punctata at two (Seven Sisters Country Park (SSCP); Ditchling Beacon Nature Reserve (DBNR)). TM had the highest DOT at 30/300 m2 (DON = 30/300 m2), followed by QECP 22/300 m2 (12/300 m2), CE 8/300 m2 (6/300 m2), and SSCP 1/300 m2 (1/300 m2). For I. ricinus, nymphs predominated in spring, larvae in the second half of summer and early autumn. The overall ranking of site hazard held for DON and DOT from both seasonal sampling periods. DBNR was sampled 2016 only (one adult H. punctata collected). Woodland had significantly greater hazard than downland, but ticks were present at all downland sites. I. ricinus has been identified in 33/37 of SDNPs 10 km2 grid squares, Ixodes hexagonus 10/37, H. punctata 7/37, Dermacentor reticulatus 1/37. Conclusions Mapping shows tick hazard broadly distributed across SDNP. I. ricinus was most common, but H. punctata's seeming range expansion is concerning. Recommendations: management of small heavily visited high hazard plots (QECP); post-visit precaution signage (all sites); repellent impregnated clothing for deerstalkers; flock trials to control H. punctata (SSCP, DBNR). Further research at TM may contribute to knowledge on ecological dynamics underlying infection density and predator re-introduction/protection as public health interventions. Ecological research on H. punctata would aid control. SDNP Authority is ideally placed to link and champion policies to reduce hazard, whilst avoiding or reducing conflict between public health and ecosystem health.
Collapse
Affiliation(s)
- Jo Middleton
- Ecology and Evolution, School of Life Sciences, University of Sussex, Falmer, United Kingdom
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, University of Sussex, Falmer, United Kingdom
| | - Ian Cooper
- Centre for Precision Health and Translational Medicine; Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Anja S Rott
- Ecology, Conservation and Society Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
18
|
Logan JJ, Knudby A, Leighton PA, Talbot B, McKay R, Ramsay T, Blanford JI, Ogden NH, Kulkarni MA. Ixodes scapularis density and Borrelia burgdorferi prevalence along a residential-woodland gradient in a region of emerging Lyme disease risk. Sci Rep 2024; 14:13107. [PMID: 38849451 PMCID: PMC11161484 DOI: 10.1038/s41598-024-64085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
The environmental risk of Lyme disease, defined by the density of Ixodes scapularis ticks and their prevalence of Borrelia burgdorferi infection, is increasing across the Ottawa, Ontario region, making this a unique location to explore the factors associated with environmental risk along a residential-woodland gradient. In this study, we collected I. scapularis ticks and trapped Peromyscus spp. mice, tested both for tick-borne pathogens, and monitored the intensity of foraging activity by deer in residential, woodland, and residential-woodland interface zones of four neighbourhoods. We constructed mixed-effect models to test for site-specific characteristics associated with densities of questing nymphal and adult ticks and the infection prevalence of nymphal and adult ticks. Compared to residential zones, we found a strong increasing gradient in tick density from interface to woodland zones, with 4 and 15 times as many nymphal ticks, respectively. Infection prevalence of nymphs and adults together was 15 to 24 times greater in non-residential zone habitats. Ecological site characteristics, including soil moisture, leaf litter depth, and understory density, were associated with variations in nymphal density and their infection prevalence. Our results suggest that high environmental risk bordering residential areas poses a concern for human-tick encounters, highlighting the need for targeted disease prevention.
Collapse
Affiliation(s)
- James J Logan
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
| | - Anders Knudby
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON, Canada
| | - Patrick A Leighton
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Roman McKay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Tim Ramsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Justine I Blanford
- Department of Earth Observation Science, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Manisha A Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Springer A, Schütte K, Brandes F, Reuschel M, Fehr M, Dobler G, Margos G, Fingerle V, Sprong H, Strube C. Potential drivers of vector-borne pathogens in urban environments: European hedgehogs ( Erinaceus europaeus) in the spotlight. One Health 2024; 18:100764. [PMID: 38855195 PMCID: PMC11157281 DOI: 10.1016/j.onehlt.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Vector-borne diseases (VBDs) are considered as (re-)emerging, but information on the transmission cycles and wildlife reservoirs is often incomplete, particularly with regard to urban areas. The present study investigated blood samples from European hedgehogs (Erinaceus europaeus) presented at wildlife rehabilitation centres in the region of Hanover. Past exposure to B. burgdorferi sensu lato (s.l.) and tick-borne encephalitis virus (TBEV) was assessed by serological detection of antibodies, while current infections with Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Neoehrlichia mikurensis, Bartonella spp., Babesia spp. and Spiroplasma ixodetis were investigated by (q)PCR. Of 539 hedgehogs tested for anti-Borrelia antibodies, 84.8% (457/539) were seropositive, with a higher seropositivity rate in adult than subadult animals, while anti-TBEV antibodies were detected in one animal only (0.2%; 1/526). By qPCR, 31.2% (168/539) of hedgehog blood samples were positive for Borrelia spp., 49.7% (261/525) for A. phagocytophilum, 13.0% (68/525) for Bartonella spp., 8.2% for S. ixodetis (43/525), 8.0% (42/525) for Rickettsia spp. and 1.3% (7/525) for Babesia spp., while N. mikurensis was not detected. While further differentiation of Borrelia spp. infections was not successful, 63.2% of the A. phagocytophilum infections were assigned to the zoonotic ecotype I and among Rickettsia spp. infections, 50.0% to R. helvetica by ecotype- or species-specific qPCR, respectively. Sequencing revealed the presence of a Rickettsia sp. closely related to Rickettsia felis in addition to a Bartonella sp. previously described from hedgehogs, as well as Babesia microti and Babesia venatorum. These findings show that hedgehogs from rehabilitation centres are valuable sources to identify One Health pathogens in urban areas. The hedgehogs are not only exposed to pathogens from fleas and ticks in urban areas, but they also act as potent amplifiers for these vectors and their pathogens, relevant for citizens and their pets.
Collapse
Affiliation(s)
- Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Karolin Schütte
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Wildlife Rescue and Conservation Center Sachsenhagen, Hohe Warte 1, 31553 Sachsenhagen, Germany
| | - Florian Brandes
- Wildlife Rescue and Conservation Center Sachsenhagen, Hohe Warte 1, 31553 Sachsenhagen, Germany
| | - Maximilian Reuschel
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hanover, Buenteweg 9, 30559 Hanover, Germany
| | - Michael Fehr
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hanover, Buenteweg 9, 30559 Hanover, Germany
| | - Gerhard Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Food and Health and Food Safety Authority, Veterinärstraße 2, 85764 Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Food and Health and Food Safety Authority, Veterinärstraße 2, 85764 Oberschleissheim, Germany
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute of Public Health and Environment, Antonie van Leeuwenhoeklaan 9, 3720, BA, Bilthoven, Netherlands
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| |
Collapse
|
20
|
Sormunen JJ, Mänttäri J, Vesterinen EJ, Klemola T. Blood meal analysis reveals sources of tick-borne pathogens and differences in host utilization of juvenile Ixodes ricinus across urban and sylvatic habitats. Zoonoses Public Health 2024; 71:442-450. [PMID: 38485205 DOI: 10.1111/zph.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 05/08/2024]
Abstract
AIMS Urban green spaces are locations of maximal human activity, forming areas of enhanced risk for tick-borne disease (TBD) transmission. Being also limited in spatial scale, green spaces form prime targets for control schemes aiming to reduce TBD risk. However, for effective control, the key species maintaining local tick and tick-borne pathogen (TBP) populations must be identified. To determine how patterns of host utilization vary spatially, we utilized blood meal analysis to study the contributions of voles, shrews, squirrels, leporids and cervids towards blood meals and the acquisition of TBPs of juvenile Ixodes ricinus in urban and sylvatic areas in Finland. METHODS AND RESULTS A total of 1084 nymphs were collected from the capital city of Finland, Helsinki and from a sylvatic island in southwestern Finland, and subjected to qPCR analysis to identify DNA remnants of the previous host. We found significant differences in host contributions between urban and sylvatic environments. Specifically, squirrels and leporids were more common hosts in urban habitats, whereas cervids and voles were more common in sylvatic habitats. In addition to providing 18.4% of larval blood meals in urban habitats, red squirrels were identified as the source of 28.6% (n = 48) of Borrelia afzelii detections and 58.1% (n = 18) of Borrelia burgdorferi sensu stricto detections, indicating an important role for local enzootic cycles. CONCLUSIONS Our study highlights that the key hosts maintaining tick and TBP populations may be different in urban and sylvatic habitats. Likewise, hosts generally perceived as important for upkeep may have limited importance in urban environments. Consequently, targeting control schemes based on off-site data of host importance may lead to suboptimal results.
Collapse
Affiliation(s)
| | - Jesse Mänttäri
- Department of Biology, University of Turku, Turku, Finland
| | | | - Tero Klemola
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Kulisz J, Hoeks S, Kunc-Kozioł R, Woźniak A, Zając Z, Schipper AM, Cabezas-Cruz A, Huijbregts MAJ. Spatiotemporal trends and covariates of Lyme borreliosis incidence in Poland, 2010-2019. Sci Rep 2024; 14:10768. [PMID: 38730239 PMCID: PMC11087522 DOI: 10.1038/s41598-024-61349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024] Open
Abstract
Lyme borreliosis (LB) is the most commonly diagnosed tick-borne disease in the northern hemisphere. Since an efficient vaccine is not yet available, prevention of transmission is essential. This, in turn, requires a thorough comprehension of the spatiotemporal dynamics of LB transmission as well as underlying drivers. This study aims to identify spatiotemporal trends and unravel environmental and socio-economic covariates of LB incidence in Poland, using consistent monitoring data from 2010 through 2019 obtained for 320 (aggregated) districts. Using yearly LB incidence values, we identified an overall increase in LB incidence from 2010 to 2019. Additionally, we observed a large variation of LB incidences between the Polish districts, with the highest risks of LB in the eastern districts. We applied spatiotemporal Bayesian models in an all-subsets modeling framework to evaluate potential associations between LB incidence and various potentially relevant environmental and socio-economic variables, including climatic conditions as well as characteristics of the vegetation and the density of tick host species. The best-supported spatiotemporal model identified positive relationships between LB incidence and forest cover, the share of parks and green areas, minimum monthly temperature, mean monthly precipitation, and gross primary productivity. A negative relationship was found with human population density. The findings of our study indicate that LB incidence in Poland might increase as a result of ongoing climate change, notably increases in minimum monthly temperature. Our results may aid in the development of targeted prevention strategies.
Collapse
Affiliation(s)
- Joanna Kulisz
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland.
| | - Selwyn Hoeks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, Nijmegen, GL, The Netherlands
| | - Renata Kunc-Kozioł
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland
| | - Aneta Woźniak
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland
| | - Zbigniew Zając
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, Nijmegen, GL, The Netherlands
| | - Alejandro Cabezas-Cruz
- Anses, UMR BIPAR, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, Nijmegen, GL, The Netherlands
| |
Collapse
|
22
|
Islam MS, Haque MS, You MJ. Comparative analysis of essential oil efficacy against the Asian longhorned tick Haemaphysalis longicornis (Acari: Ixodidae). PARASITES, HOSTS AND DISEASES 2024; 62:217-225. [PMID: 38835262 DOI: 10.3347/phd.23097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 06/06/2024]
Abstract
This study evaluated the potential repellent and acaricidal effects of 4 essential oils (clove, eucalyptus, lavender, and mint) against the Asian longhorned tick Haemaphysalis longicornis, a vector of various tick-borne diseases in medical and veterinary contexts. Selected for their potential repellent and acaricidal properties, the 4 essential oils were tested on adult and nymph H. longicornis ticks at different concentrations. The experiment assessed mortality rates and repellency, particularly during tick attachment to host skin. There was a significant increase (p<0.05) in tick mortality and repellency scores across all groups. At a 1% concentration, adult tick mortality ranged from 36% to 86%, while nymph mortality ranged from 6% to 97%. Clove oil exhibited notable efficacy, demonstrating high mortality rates of nymphs and adults. Clove oil also displayed strong repellency properties, with a repellency index of 0.05, surpassing those of mint, eucalyptus, and lavender oils. Clove oil showed the highest effectiveness in deterring nonattached adult ticks (90%) and nymphs (95%) when applied to skin. Clove oil was the most effective against adult and nymph ticks, achieving mortality rates of 86% and 97%, respectively, and led to the highest nonattachment rates when applied to skin. In conclusion, essential oils such as clove, eucalyptus, lavender, and mint oils present promising results for tick population control.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Center, Jeonbuk National University Specialized Campus, Iksan 54596, Korea
- Department of Medicine Surgery & Obstetrics, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Samiul Haque
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Center, Jeonbuk National University Specialized Campus, Iksan 54596, Korea
| | - Myung-Jo You
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Center, Jeonbuk National University Specialized Campus, Iksan 54596, Korea
| |
Collapse
|
23
|
Liberska J, Michalik JF, Olechnowicz J, Dabert M. Co-Occurrence of Borrelia burgdorferi Sensu Lato and Babesia spp. DNA in Ixodes ricinus Ticks Collected from Vegetation and Pets in the City of Poznań, Poland. Pathogens 2024; 13:307. [PMID: 38668262 PMCID: PMC11054194 DOI: 10.3390/pathogens13040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Here, we described the prevalence of Borrelia burgdorferi s.l. and Babesia species found in mono- and double infections among Ixodes ricinus ticks occurring in urban areas of the city of Poznań, Poland. We tested 1029 host-seeking ticks and 1268 engorged ticks removed from pet animals. Borrelia afzelii and B. garinii prevailed both in ticks from vegetation (3.7% and 3.7%, respectively) and from pets (3.7% and 0.6%, respectively). Babesia canis and Ba. microti were the most prevalent in host-seeking (2.6% and 1.4%, respectively) and feeding ticks (2.8% and 2.2%, respectively). Babesia microti sequences proved to be identical to the human pathogenic Ba. microti genotype "Jena/Germany". Sequences of the rarest piroplasm Ba. venatorum (0.7%) were identical with those isolated from European patients. About 1.0% of tested ticks yielded dual infections; in host-seeking ticks, Ba. canis prevailed in co-infections with B. afzelii and B. garinii, whereas Ba. microti and B. afzelii dominated in double-infected feeding ticks. Dual infections, even with a low prevalence, pose a challenge for differential diagnosis in patients with acute febrile disease after a tick bite. The finding of Ba. canis in both tick groups suggests that I. ricinus could be involved in the circulation of this piroplasm.
Collapse
Affiliation(s)
- Justyna Liberska
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (J.O.); (M.D.)
| | - Jerzy Franciszek Michalik
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Julia Olechnowicz
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (J.O.); (M.D.)
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (J.O.); (M.D.)
| |
Collapse
|
24
|
Vanwambeke S, Lambin E, Meyfroidt P, Asaaga F, Millins C, Purse B. Land system governance shapes tick-related public and animal health risks. JOURNAL OF LAND USE SCIENCE 2024; 19:78-96. [PMID: 38690402 PMCID: PMC11057406 DOI: 10.1080/1747423x.2024.2330379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/09/2024] [Indexed: 05/02/2024]
Abstract
Land cover and land use have established effects on hazard and exposure to vector-borne diseases. While our understanding of the proximate and distant causes and consequences of land use decisions has evolved, the focus on the proximate effects of landscape on disease ecology remains dominant. We argue that land use governance, viewed through a land system lens, affects tick-borne disease risk. Governance affects land use trajectories and potentially shapes landscapes favourable to ticks or increases contact with ticks by structuring human-land interactions. We illustrate the role of land use legacies, trade-offs in land-use decisions, and social inequities in access to land resources, information and decision-making, with three cases: Kyasanur Forest disease in India, Lyme disease in the Outer Hebrides (Scotland), and tick acaricide resistance in cattle in Ecuador. Land use governance is key to managing the risk of tick-borne diseases, by affecting the hazard and exposure. We propose that land use governance should consider unintended consequences on infectious disease risk.
Collapse
Affiliation(s)
- S.O Vanwambeke
- Université Catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Earth and Climate Pole (ELIC), Louvain-la-Neuve, Belgium
| | - E.F Lambin
- Université Catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Earth and Climate Pole (ELIC), Louvain-la-Neuve, Belgium
| | - P Meyfroidt
- Université Catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Earth and Climate Pole (ELIC), Louvain-la-Neuve, Belgium
- Fonds de la Recherche Scientifique F.R.S.-FNRS, Brussels, Belgium
| | - F.A Asaaga
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, UK
| | - C Millins
- Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - B.V Purse
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, UK
| |
Collapse
|
25
|
Fournet F, Simard F, Fontenille D. Green cities and vector-borne diseases: emerging concerns and opportunities. Euro Surveill 2024; 29:2300548. [PMID: 38456216 PMCID: PMC10986671 DOI: 10.2807/1560-7917.es.2024.29.10.2300548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Aligned with the Sustainable Development Goals, nature-based solutions such as urban greening e.g. public gardens, urban forests, parks and street trees, which aim to protect, sustainably manage or restore an ecosystem, have emerged as a promising tool for improving the health and well-being of an ever-increasing urban population. While urban greening efforts have undeniable benefits for human health and the biological communities inhabiting these green zones, disease vector populations may also be affected, possibly promoting greater pathogen transmission and the emergence of infectious diseases such as dengue, West Nile fever, malaria, leishmaniosis and tick-borne diseases. Evidence for the impact of urban green areas on vector-borne disease (VBD) transmission is scarce. Furthermore, because of vast disparities between cities, variation in green landscapes and differing scales of observation, findings are often contradictory; this calls for careful assessment of how urban greening affects VBD risk. Improved understanding of the effect of urban greening on VBDs would support planning, monitoring and management of green spaces in cities to sustainably mitigate VBD risks for surrounding urban populations.
Collapse
Affiliation(s)
- Florence Fournet
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Frédéric Simard
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | | |
Collapse
|
26
|
Pańczuk A, Tokarska-Rodak M, Andrzejuk P. Prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum in Ixodes ricinus collected from dogs in eastern Poland. J Vet Res 2024; 68:109-114. [PMID: 38525235 PMCID: PMC10960333 DOI: 10.2478/jvetres-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Ixodes ricinus ticks are an important vector and reservoir of pathogenic microorganisms causing dangerous infectious diseases in humans and animals. The presence of ticks in urban greenery is a particularly important public health concern due to the potential for humans and companion animals to be exposed to tick-borne diseases there. The study assessed the prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum infection in I. ricinus ticks feeding on dogs. Material and Methods The study consisted in analyses of I. ricinus ticks collected in 2018-2020 from owned and stray dogs in the north-eastern part of Lubelskie province (eastern Poland). An AmpliSens PCR kit was used for qualitative detection and differentiation of tick-borne infections. Results Infections of B. burgdorferi and A. phagocytophilum were detected in 10.9% and 12.9% of the examined ticks, respectively. One tick (0.7%) was co-infected by both pathogens. Infection with B. burgdorferi was significantly more highly prevalent in ticks collected from the owned dogs than from the strays (18.7% and 2.8%, respectively), whereas the prevalence of A. phagocytophilum was similar in both groups (12.0% and 13.9%, respectively). Conclusion The co-infection observed in the study suggests the possibility of simultaneous infection by both pathogens from a single tick bite. The presence of pathogens in ticks collected from dogs is a factor in assessing infection risk not only to companion animals but also to their owners, who are in close contact with their dogs and visit the same green areas recreationally.
Collapse
Affiliation(s)
| | | | - Patrycja Andrzejuk
- Innovation Research Centre, John Paul II University in Biała Podlaska, 21-500Biała Podlaska, Poland
| |
Collapse
|
27
|
Melis S, Batisti Biffignandi G, Olivieri E, Galon C, Vicari N, Prati P, Moutailler S, Sassera D, Castelli M. High-throughput screening of pathogens in Ixodes ricinus removed from hosts in Lombardy, northern Italy. Ticks Tick Borne Dis 2024; 15:102285. [PMID: 38035456 DOI: 10.1016/j.ttbdis.2023.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Ticks are important vectors of many pathogens in Europe, where the most impactful species is Ixodes ricinus. Recently, the geographical distribution of this tick species has been expanding, resulting in an increased risk of human exposure to tick bites. With the present study, we aimed to screen 350 I. ricinus specimens collected from humans and wild animals (mainly ungulates), to have a broader understanding of the tick-borne pathogens circulating in the Lombardy region, in northern Italy. To do so, we took advantage of a high-throughput real-time microfluidic PCR approach to screen ticks in a cost-effective and time-saving manner. Molecular analysis of the dataset revealed the presence of four genera of bacteria and two genera of protozoa: in ungulates, 77 % of collected ticks carried Anaplasma phagocytophilum, while the most common pathogen species in ticks removed from humans were those belonging to Borrelia burgdorferi sensu lato group (7.6 %). We also detected other pathogenic microorganisms, such as Rickettisa monacensis, Rickettsia helvetica, Neoehrlichia mikurensis, Babesia venatorum, and Hepatozoon martis. Besides, we also reported the presence of the pathogenic agent Borrelia miyamotoi in the area (1.4 % overall). The most common dual co-infection detected in the same tick individual involved A. phagocytophilum and Rickettsia spp. Our study provided evidence of the circulation of different tick-borne pathogens in a densely populated region in Italy.
Collapse
Affiliation(s)
- Sophie Melis
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Nadia Vicari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
28
|
VanAcker MC, DeNicola VL, DeNicola AJ, Aucoin SG, Simon R, Toal KL, Diuk-Wasser MA, Cagnacci F. Resource selection by New York City deer reveals the effective interface between wildlife, zoonotic hazards and humans. Ecol Lett 2023; 26:2029-2042. [PMID: 37882483 DOI: 10.1111/ele.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 10/27/2023]
Abstract
Although the role of host movement in shaping infectious disease dynamics is widely acknowledged, methodological separation between animal movement and disease ecology has prevented researchers from leveraging empirical insights from movement data to advance landscape scale understanding of infectious disease risk. To address this knowledge gap, we examine how movement behaviour and resource utilization by white-tailed deer (Odocoileus virginianus) determines blacklegged tick (Ixodes scapularis) distribution, which depend on deer for dispersal in a highly fragmented New York City borough. Multi-scale hierarchical resource selection analysis and movement modelling provide insight into how deer's movements contribute to the risk landscape for human exposure to the Lyme disease vector-I. scapularis. We find deer select highly vegetated and accessible residential properties which support blacklegged tick survival. We conclude the distribution of tick-borne disease risk results from the individual resource selection by deer across spatial scales in response to habitat fragmentation and anthropogenic disturbances.
Collapse
Affiliation(s)
- Meredith C VanAcker
- Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Global Health Program, Smithsonian's National Zoo and Conservation Biology Institute, District of Columbia, Washington, USA
| | | | | | | | - Richard Simon
- City of New York Parks & Recreation, New York, New York, USA
| | - Katrina L Toal
- City of New York Parks & Recreation, New York, New York, USA
| | - Maria A Diuk-Wasser
- Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Francesca Cagnacci
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- National Biodiversity Future Centre, Palermo, Italy
| |
Collapse
|
29
|
Schantz AV, Dörge DD, Peter N, Klimpel S. The hidden threat: Exploring the parasite burden and feeding habits of invasive raccoon dogs ( Nyctereutes procyonoides) in central Europe. Int J Parasitol Parasites Wildl 2023; 22:155-166. [PMID: 37869059 PMCID: PMC10585636 DOI: 10.1016/j.ijppaw.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Originally from Asia, the raccoon dog Nyctereutes procyonoides is an invasive alien species in Europe, listed since 2019 on the List of invasive alien species of Union concern. The raccoon dog is considered to have negative impact on native biodiversity, as well as a crucial role in hosting and transmitting diverse parasites and pathogens of human and veterinary importance. In the present study, stomach content analyses and parasitological examinations were performed on 73 raccoon dogs from Germany. In addition, fecal samples were analyzed. The results of the study confirm the assumption that the examined raccoon dogs were infested with a various ecto- and endoparasite fauna. A total of 9 ecto- and 11 endoparasites were detected, with 6 of the endoparasites having human pathogenic potential. Trichodectes canis (P = 53.42%), Toxocara canis (P = 50.68%) and Uncinaria stenocephala (P = 68.49%) were the most abundant parasite species. The stomach contents consisted of approximately one-third vegetable and two-thirds animal components, composed of various species of amphibians, fish, insects, mammals and birds. Among them were specially protected or endangered species such as the grass frog Rana temporaria. The study shows that the raccoon dog exerts predation pressure on native species due to its omnivorous diet and, as a carrier of various parasites, poses a potential risk of infection to wild, domestic and farm animals and humans.
Collapse
Affiliation(s)
- Anna V. Schantz
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Dorian D. Dörge
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Norbert Peter
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt/Main, D-60325, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, D-60325, Frankfurt/Main, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| |
Collapse
|
30
|
Stegmüller S, Qi W, Torgerson PR, Fraefel C, Kubacki J. Hazard potential of Swiss Ixodes ricinus ticks: Virome composition and presence of selected bacterial and protozoan pathogens. PLoS One 2023; 18:e0290942. [PMID: 37956168 PMCID: PMC10642849 DOI: 10.1371/journal.pone.0290942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ticks play an important role in transmitting many different emerging zoonotic pathogens that pose a significant threat to human and animal health. In Switzerland and abroad, the number of tick-borne diseases, in particular tick-borne encephalitis (TBE), has been increasing over the last few years. Thus, it remains essential to investigate the pathogen spectrum of ticks to rapidly detect emerging pathogens and initiate the necessary measures. To assess the risk of tick-borne diseases in different regions of Switzerland, we collected a total of 10'286 ticks from rural and urban areas in ten cantons in 2021 and 2022. Ticks were pooled according to species, developmental stage, gender, and collection site, and analyzed using next generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR). The metagenomic analysis revealed for the first time the presence of Alongshan virus (ALSV) in Swiss ticks. Interestingly, the pool-prevalence of ALSV was higher than that of tick-borne encephalitis virus (TBEV). Furthermore, several TBEV foci have been identified and pool prevalence of selected non-viral pathogens determined.
Collapse
Affiliation(s)
- Stefanie Stegmüller
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Paul R. Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
de Cock MP, de Vries A, Fonville M, Esser HJ, Mehl C, Ulrich RG, Joeres M, Hoffmann D, Eisenberg T, Schmidt K, Hulst M, van der Poel WHM, Sprong H, Maas M. Increased rat-borne zoonotic disease hazard in greener urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165069. [PMID: 37392874 DOI: 10.1016/j.scitotenv.2023.165069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Urban greening has benefits for both human and environmental health. However, urban greening might also have negative effects as the abundance of wild rats, which can host and spread a great diversity of zoonotic pathogens, increases with urban greenness. Studies on the effect of urban greening on rat-borne zoonotic pathogens are currently unavailable. Therefore, we investigated how urban greenness is associated with rat-borne zoonotic pathogen prevalence and diversity, and translated this to human disease hazard. We screened 412 wild rats (Rattus norvegicus and Rattus rattus) from three cities in the Netherlands for 18 different zoonotic pathogens: Bartonella spp., Leptospira spp., Borrelia spp., Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis, Spiroplasma spp., Streptobacillus moniliformis, Coxiella burnetii, Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)/AmpC-producing Escherichia coli, rat hepatitis E virus (ratHEV), Seoul orthohantavirus, Cowpox virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Toxoplasma gondii and Babesia spp. We modelled the relationships between pathogen prevalence and diversity and urban greenness. We detected 13 different zoonotic pathogens. Rats from greener urban areas had a significantly higher prevalence of Bartonella spp. and Borrelia spp., and a significantly lower prevalence of ESBL/AmpC-producing E. coli and ratHEV. Rat age was positively correlated with pathogen diversity while greenness was not related to pathogen diversity. Additionally, Bartonella spp. occurrence was positively correlated with that of Leptospira spp., Borrelia spp. and Rickettsia spp., and Borrelia spp. occurrence was also positively correlated with that of Rickettsia spp. Our results show an increased rat-borne zoonotic disease hazard in greener urban areas, which for most pathogens was driven by the increase in rat abundance rather than pathogen prevalence. This highlights the importance of keeping rat densities low and investigating the effects of urban greening on the exposure to zoonotic pathogens in order to make informed decisions and to take appropriate countermeasures preventing zoonotic diseases.
Collapse
Affiliation(s)
- Marieke P de Cock
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands; Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, Gelderland, the Netherlands.
| | - Ankje de Vries
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| | - Manoj Fonville
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Gelderland, the Netherlands.
| | - Calvin Mehl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany; Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research (DZIF), Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany; Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research (DZIF), Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Maike Joeres
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory, Giessen, Hessen, Germany.
| | - Katja Schmidt
- Microbiological Diagnostics, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany.
| | - Marcel Hulst
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Flevoland, the Netherlands.
| | - Wim H M van der Poel
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, Gelderland, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Flevoland, the Netherlands.
| | - Hein Sprong
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| | - Miriam Maas
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Vanat V, Aeby S, Greub G. Ticks and Chlamydia-Related Bacteria in Swiss Zoological Gardens Compared to in Contiguous and Distant Control Areas. Microorganisms 2023; 11:2468. [PMID: 37894126 PMCID: PMC10609390 DOI: 10.3390/microorganisms11102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Ticks are vectors of numerous agents of medical importance and may be infected by various Chlamydia-related bacteria, such as members of Parachlamydiaceae and Rhabdochlamydiaceae families, which are sharing the same biphasic life cycle with the pathogenic Chlamydia. However, the veterinary importance of ticks and of their internalized pathogens remains poorly studied. Thus, we wondered (i) whether the prevalence of ticks was higher in zoological gardens than in control areas with similar altitude, vegetation, humidity and temperature, and (ii) whether the presence of Chlamydia-related bacteria in ticks may vary according to the environment in which the ticks are collected. A total of 212 Ixodes ricinus ticks were collected, and all were tested for the presence of DNA from any member of the Chlamydiae phylum using a pan-Chlamydiae quantitative PCR (qPCR). We observed a higher prevalence of ticks outside animal enclosures in both zoos, compared to in enclosures. Tick prevalence was also higher outside zoos, compared to in enclosures. With 30% (3/10) of infected ticks, the zoological gardens presented a prevalence of infected ticks that was higher than that in contiguous areas (13.15%, 10/76), and higher than the control distant areas (8.65%, 9/104). In conclusion, zoological gardens in Switzerland appear to contain fewer ticks than areas outside zoological gardens. However, ticks from zoos more often contain Chlamydia-like organisms than ticks from contiguous or distant control areas.
Collapse
Affiliation(s)
- Vincent Vanat
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
| | - Sébastien Aeby
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
- Service of Infectious Diseases, University Hospital Center (CHUV), 1005 Lausanne, Switzerland
| |
Collapse
|
33
|
Taylor CL, Egan SL, Gofton AW, Irwin PJ, Oskam CL, Hochuli DF, Banks PB. An invasive human commensal and a native marsupial maintain tick populations at the urban fringe. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:460-471. [PMID: 36718907 DOI: 10.1111/mve.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Ticks (Acari: Ixodidae) are major disease vectors globally making it increasingly important to understand how altered vertebrate communities in urban areas shape tick population dynamics. In urban landscapes of Australia, little is known about which native and introduced small mammals maintain tick populations preventing host-targeted tick management and leading to human-wildlife conflict. Here, we determined (1) larval, nymphal, and adult tick burdens on host species and potential drivers, (2) the number of ticks supported by the different host populations, and (3) the proportion of medically significant tick species feeding on the different host species in Northern Sydney. We counted 3551 ticks on 241 mammals at 15 sites and found that long-nosed bandicoots (Perameles nasuta) hosted more ticks of all life stages than other small mammals but introduced black rats (Rattus rattus) were more abundant at most sites (33%-100%) and therefore important in supporting larval and nymphal ticks in our study areas. Black rats and bandicoots hosted a greater proportion of medically significant tick species including Ixodes holocyclus than other hosts. Our results show that an introduced human commensal contributes to maintaining urban tick populations and suggests ticks could be managed by controlling rat populations on urban fringes.
Collapse
Affiliation(s)
- Casey L Taylor
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Siobhon L Egan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Peter J Irwin
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Charlotte L Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Dieter F Hochuli
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
34
|
Fröhlich J, Fischer S, Bauer B, Hamel D, Kohn B, Ahlers M, Obiegala A, Overzier E, Pfeffer M, Pfister K, Răileanu C, Rehbein S, Skuballa J, Silaghi C. Host-pathogen associations revealed by genotyping of European strains of Anaplasma phagocytophilum to describe natural endemic cycles. Parasit Vectors 2023; 16:289. [PMID: 37587504 PMCID: PMC10433637 DOI: 10.1186/s13071-023-05900-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND The zoonotic intracellular alpha-proteobacterium Anaplasma phagocytophilum is a tick-transmitted pathogen. The associations between vertebrate reservoirs and vectors are described as wide-ranging, and it was previously shown that the pathogenicity of A. phagocytophilum differs depending on the combination of pathogen variant and infected host species. This leads to the question of whether there are variations in particular gene loci associated with different virulence. Therefore, this study aims at clarifying existing host-variant combinations and detecting possible reservoir hosts. To understand these interactions, a complex toolset for molecular epidemiology, phylogeny and network theory was applied. METHODS Sequences of up to four gene loci (msp4, msp2, groEL and 16S rRNA) were evaluated for different isolates from variable host species, including, for example, dogs, cattle and deer. Variant typing was conducted for each gene locus individually, and combinations of different gene loci were analysed to gain more detailed information about the genetic plasticity of A. phagocytophilum. Results were displayed as minimum spanning nets and correlation nets. RESULTS The highest diversity of variants for all gene loci was observed in roe deer. In cattle, a reduced number of variants for 16S rRNA [only 16S-20(W) and 16S-22(Y)] but multiple variants of msp4 and groEL were found. For dogs, two msp4 variants [m4-20 and m4-2(B/C)] were found to be linked to different variants of the other three gene loci, creating two main combinations of gene loci variants. Cattle are placed centrally in the minimum spanning net analyses, indicating a crucial role in the transmission cycles by possibly bridging the vector-wildlife cycle to infections of humans and domestic animals. The minimum spanning nets confirmed previously described epidemiological cycles of the bacterium in Europe, showing separation of variants originating from wildlife animals only and a set of variants shared by wild and domestic animals. CONCLUSIONS In this comprehensive study of 1280 sequences, we found a high number of gene variants only occurring in specific hosts. Additionally, different hosts show unique but also shared variant combinations. The use of our four gene loci expand the knowledge of host-pathogen interactions and may be a starting point to predict future spread and infection risks of A. phagocytophilum in Europe.
Collapse
Affiliation(s)
- Julia Fröhlich
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Leopoldstrasse 5, 80802 Munich, Germany
| | - Susanne Fischer
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Benjamin Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Dietmar Hamel
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Walchenseestr. 8-12, 83101 Rohrdorf, Germany
| | - Barbara Kohn
- Clinic for Small Animals, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19B, 14163 Berlin, Germany
| | - Marion Ahlers
- agro prax GmbH, Werner-von-Siemens-Str. 2, 49577 Ankum, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Evelyn Overzier
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Leopoldstrasse 5, 80802 Munich, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Kurt Pfister
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Leopoldstrasse 5, 80802 Munich, Germany
| | - Cristian Răileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Steffen Rehbein
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Walchenseestr. 8-12, 83101 Rohrdorf, Germany
| | - Jasmin Skuballa
- Chemical and Veterinary Investigations Office Karlsruhe (CVUA Karlsruhe), Weissenburger Str. 3, 76187 Karlsruhe, Germany
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| |
Collapse
|
35
|
Böhm S, Woudenberg T, Stark K, Böhmer MM, Katz K, Kuhnert R, Schlaud M, Wilking H, Fingerle V. Seroprevalence, seroconversion and seroreversion of Borrelia burgdorferi-specific IgG antibodies in two population-based studies in children and adolescents, Germany, 2003 to 2006 and 2014 to 2017. Euro Surveill 2023; 28:2200855. [PMID: 37616114 PMCID: PMC10451011 DOI: 10.2807/1560-7917.es.2023.28.34.2200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 08/25/2023] Open
Abstract
BackgroundLyme borreliosis (LB), caused by Borrelia burgdorferi (Bb), is the most common tick-borne infection in Germany. Antibodies against Bb are prevalent in the general population but information on temporal changes of prevalence and estimates of seroconversion (seroincidence) and seroreversion are lacking, especially for children and adolescents.AimWe aimed at assessing antibodies against Bb and factors associated with seropositivity in children and adolescents in Germany.MethodsWe estimated seroprevalence via two consecutive cross-sectional surveys (2003-2006 and 2014-2017). Based on a longitudinal survey component, we estimated annual seroconversion/seroreversion rates.ResultsSeroprevalence was 4.4% (95% confidence interval (CI): 3.9-4.9%) from 2003 to 2006 and 4.1% (95% CI: 3.2-5.1%) from 2014 to 2017. Seroprevalence increased with age, was higher in male children, the south-eastern regions of Germany and among those with a high socioeconomic status. The annual seroconversion rate was 0.3% and the annual seroreversion rate 3.9%. Males were more likely to seroconvert compared with females. Low antibody levels were the main predictor of seroreversion.ConclusionWe did not detect a change in seroprevalence in children and adolescents in Germany over a period of 11 years. Potential long-term changes, for example due to climatic changes, need to be assessed in consecutive serosurveys. Seroconversion was more likely among children and adolescents than among adults, representing a target group for preventive measures. Seroreversion rates are over twice as high in children and adolescents compared with previous studies among adults. Thus, seroprevalence estimates and seroconversion rates in children are likely underestimated.
Collapse
Affiliation(s)
- Stefanie Böhm
- Bavarian Health and Food Safety Authority, Munich, Germany
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, Berlin, Germany
- ECDC Fellowship Programme, Field Epidemiology Path (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Tom Woudenberg
- Bavarian Health and Food Safety Authority, Munich, Germany
- ECDC Fellowship Programme, Field Epidemiology Path (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- Infectious Disease Epidemiology and Analytics Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Klaus Stark
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Merle M Böhmer
- Bavarian Health and Food Safety Authority, Munich, Germany
- Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University, Magdeburg, Germany
| | - Katharina Katz
- Bavarian Health and Food Safety Authority, Munich, Germany
| | - Ronny Kuhnert
- Department for Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany
| | - Martin Schlaud
- Department for Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany
| | - Hendrik Wilking
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
- These authors contributed equally to the work and share the last authorship
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Munich, Germany
- German National Reference Centre for Borrelia, Oberschleißheim, Germany
- These authors contributed equally to the work and share the last authorship
| |
Collapse
|
36
|
Kazimírová M, Mahríková L, Hamšíková Z, Stanko M, Golovchenko M, Rudenko N. Spatial and Temporal Variability in Prevalence Rates of Members of the Borrelia burgdorferi Species Complex in Ixodes ricinus Ticks in Urban, Agricultural and Sylvatic Habitats in Slovakia. Microorganisms 2023; 11:1666. [PMID: 37512839 PMCID: PMC10383148 DOI: 10.3390/microorganisms11071666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Lyme borreliosis (LB) is the most prevalent tick-borne human infection in Europe, with increasing incidence during the latest decades. Abundant populations of Ixodes ricinus, the main vector of the causative agent, spirochetes from the Borrelia burgdorferi sensu lato (Bbsl) complex, have been observed in urban and suburban areas of Europe, in general, and Slovakia, particularly. Understanding the spread of infectious diseases is crucial for implementing effective control measures. Global changes affect contact rates of humans and animals with Borrelia-infected ticks and increase the risk of contracting LB. The aim of this study was to investigate spatial and temporal variation in prevalence of Bbsl and diversity of its species in questing I. ricinus from three sites representing urban/suburban, natural and agricultural habitat types in Slovakia. Ixodes ricinus nymphs and adults were collected by dragging the vegetation in green areas of Bratislava town (urban/suburban habitat), in the Small Carpathians Mountains (natural habitat) (south-western Slovakia) and in an agricultural habitat at Rozhanovce in eastern Slovakia. Borrelia presence in ticks was detected by PCR and Bbsl species were identified by restriction fragment length polymorphism (RFLP). Borrelia burgdorferi s.l. species in coinfected ticks were identified by reverse line blot. Significant spatial and temporal variability in prevalence of infected ticks was revealed in the explored habitats. The lowest total prevalence was detected in the urban/suburban habitat, whereas higher prevalence was found in the natural and agricultural habitat. Six Bbsl species were detected by RFLP in each habitat type -B. burgdorferi sensu stricto (s.s.), B. afzelii, B. garinii, B. valaisiana, B. lusitaniae and B. spielmanii. Coinfections accounted for 3% of the total infections, whereby B. kurtenbachii was identified by RLB and sequencing in mixed infection with B. burgdorferi s.s, B. garinii and B. valaisiana. This finding represents the first record of B. kurtenbachii in questing I. ricinus in Slovakia and Europe. Variations in the proportion of Bbsl species were found between nymphs and adults, between years and between habitat types. Spatial variations in prevalence patterns and proportion of Bbsl species were also confirmed between locations within a relatively short distance in the urban habitat. Habitat-related and spatial variations in Borrelia prevalence and distribution of Bbsl species are probably associated with the local environmental conditions and vertebrate host spectrum. Due to the presence of Borrelia species pathogenic to humans, all explored sites can be ranked as areas with high epidemiological risk.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Michal Stanko
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
37
|
Pustijanac E, Buršić M, Talapko J, Škrlec I, Meštrović T, Lišnjić D. Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 2023; 11:1634. [PMID: 37512806 PMCID: PMC10383662 DOI: 10.3390/microorganisms11071634] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, can cause serious infection of the central nervous system in humans, resulting in potential neurological complications and fatal outcomes. TBEV is primarily transmitted to humans through infected tick bites, and the viral agent circulates between ticks and animals, such as deer and small mammals. The occurrence of the infection aligns with the seasonal activity of ticks. As no specific antiviral therapy exists for TBEV infection, treatment approaches primarily focus on symptomatic relief and support. Active immunization is highly effective, especially for individuals in endemic areas. The burden of TBEV infections is increasing, posing a growing health concern. Reported incidence rates rose from 0.4 to 0.9 cases per 100,000 people between 2015 and 2020. The Baltic and Central European countries have the highest incidence, but TBE is endemic across a wide geographic area. Various factors, including social and environmental aspects, improved medical awareness, and advanced diagnostics, have contributed to the observed increase. Diagnosing TBEV infection can be challenging due to the non-specific nature of the initial symptoms and potential co-infections. Accurate diagnosis is crucial for appropriate management, prevention of complications, and effective control measures. In this comprehensive review, we summarize the molecular structure of TBEV, its transmission and circulation in natural environments, the pathogenesis of TBEV infection, the epidemiology and global distribution of the virus, associated risk factors, clinical manifestations, and diagnostic approaches. By improving understanding of these aspects, we aim to enhance knowledge and promote strategies for timely and accurate diagnosis, appropriate management, and the implementation of effective control measures against TBEV infections.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dubravka Lišnjić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
38
|
Paulson AR, Lougheed SC, Huang D, Colautti RI. Multiomics Reveals Symbionts, Pathogens, and Tissue-Specific Microbiome of Blacklegged Ticks (Ixodes scapularis) from a Lyme Disease Hot Spot in Southeastern Ontario, Canada. Microbiol Spectr 2023; 11:e0140423. [PMID: 37184407 PMCID: PMC10269869 DOI: 10.1128/spectrum.01404-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Ticks in the family Ixodidae are important vectors of zoonoses, including Lyme disease (LD), which is caused by spirochete bacteria from the Borreliella (Borrelia) burgdorferi sensu lato complex. The blacklegged tick (Ixodes scapularis) continues to expand across Canada, creating hot spots of elevated LD risk at the leading edge of its expanding range. Current efforts to understand the risk of pathogen transmission associated with I. scapularis in Canada focus primarily on targeted screens, while natural variation in the tick microbiome remains poorly understood. Using multiomics consisting of 16S metabarcoding and ribosome-depleted, whole-shotgun RNA transcriptome sequencing, we examined the microbial communities associated with adult I. scapularis (n = 32), sampled from four tissue types (whole tick, salivary glands, midgut, and viscera) and three geographical locations within a LD hot spot near Kingston, Ontario, Canada. The communities consisted of both endosymbiotic and known or potentially pathogenic microbes, including RNA viruses, bacteria, and a Babesia sp. intracellular parasite. We show that β-diversity is significantly higher between the bacterial communities of individual tick salivary glands and midguts than that of whole ticks. Linear discriminant analysis effect size (LEfSe) determined that the three potentially pathogenic bacteria detected by V4 16S rRNA sequencing also differed among dissected tissues only, including a Borrelia strain from the B. burgdorferi sensu lato complex, Borrelia miyamotoi, and Anaplasma phagocytophilum. Importantly, we find coinfection of I. scapularis by multiple microbes, in contrast to diagnostic protocols for LD, which typically focus on infection from a single pathogen of interest (B. burgdorferi sensu stricto). IMPORTANCE As a vector of human health concern, blacklegged ticks (Ixodes scapularis) transmit pathogens that cause tick-borne diseases (TBDs), including Lyme disease (LD). Several hot spots of elevated LD risk have emerged across Canada as I. scapularis expands its range. Focusing on a hot spot in southeastern Ontario, we used high-throughput sequencing to characterize the microbiome of whole ticks and dissected salivary glands and midguts. Compared with whole ticks, salivary glands and midguts were more diverse and associated with distinct bacterial communities that are less dominated by Rickettsia endosymbiont bacteria and are enriched for pathogenic bacteria, including a B. burgdorferi sensu lato-associated Borrelia sp., Borrelia miyamotoi, and Anaplasma phagocytophilum. We also found evidence of coinfection of I. scapularis by multiple pathogens. Overall, our study highlights the challenges and opportunities associated with the surveillance of the microbiome of I. scapularis for pathogen detection using metabarcoding and metatranscriptome approaches.
Collapse
Affiliation(s)
- Amber R. Paulson
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | | - David Huang
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | |
Collapse
|
39
|
Yousefi-Behzadi M, Mehrabi A, Ahmadinezhad M, Rohani M, Naddaf SR, Bagheri A, Shams-Ghahfarokhi M, Maghsoudlou E, Mojahed N, Mounesan L, Tahmasebi Z, Sohrabi A, Salehi-Vaziri M, Salehi Z, Razzaghi-Abyaneh M. Metagenomics Characterization of Ixodes ricinus Intestinal Microbiota as Major Vector of Tick-Borne Diseases in Domestic Animals. J Arthropod Borne Dis 2023; 17:152-164. [PMID: 37822757 PMCID: PMC10562206 DOI: 10.18502/jad.v17i2.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/11/2023] [Indexed: 10/13/2023] Open
Abstract
Background Understanding the microbiota of disease vectors can help for developing new strategies to prevent the transmission of vector pathogens. Ixodes ricinus is one of the most notorious tick vectors with increasing importance in Iran and other parts of the world while there is limited data on its microbiota. This study aimed to use metagenomics for identifying the I. ricinus tick's microbiota of Iran. Methods A total of 39 adult ticks were collected from Mazandaran (21 females), Gilan (17 females), and Golestan (1 male). Five tick pools prepared from 39 adults of I. ricinus were subjected to metagenomics analysis. The data were analyzed by targeting the V6 region of the 16S rRNA gene by Illumina 4000 Hiseq sequencing. Results Among hundreds of intestinal microbiota identified by metagenomics, various pathogenic microorganisms distributed in 30 genera and species including those responsible for tick-borne diseases resided in the genera Coxiella, Rickettsia, and Burkholderia were found. Conclusion Our results indicated that metagenomics identifies bacteria genera and species which cannot be easily recognized by routine methods. The presence of such pathogenic bacteria indicates the importance of possible zoonotic diseases in this region which could affect public health. These results further substantiate the importance of advanced metagenomics analyses to identify neglected tick-borne pathogens which enable researchers to provide efficient mapping roads for the management of emerging and re-emerging infectious diseases.
Collapse
Affiliation(s)
- Manijeh Yousefi-Behzadi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- National Reference Laboratory of Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar-Ahang, Hamadan, Iran
| | - Atefeh Mehrabi
- School of Advanced Medical Sciences, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mozhgan Ahmadinezhad
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amin Bagheri
- Department of Pathobiology, Faculty of Veterinary Medicine, Science and Research, Tehran, Iran
| | | | - Ebrahim Maghsoudlou
- Department of Computer Science, School of Computing, Southern Illinois University Carbondale, Illinois
| | - Nooshin Mojahed
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, Illinois
| | - Leila Mounesan
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Tahmasebi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- National Reference Laboratory of Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar-Ahang, Hamadan, Iran
| | - Aria Sohrabi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- National Reference Laboratory of Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar-Ahang, Hamadan, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Salehi
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
40
|
Kosak L, Satz N, Jutzi M, Dobec M, Schlagenhauf P. Spotted fever group rickettsiae and Anaplasma phagocytophilum in Borrelia burgdorferi sensu lato seropositive individuals with or without Lyme disease: A retrospective analysis. New Microbes New Infect 2023; 53:101139. [PMID: 37168237 PMCID: PMC10165448 DOI: 10.1016/j.nmni.2023.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023] Open
Abstract
Background The Ixodes ricinus tick is the main vector of Borrelia burgdorferi and tick-borne encephalitis virus in Switzerland. Spotted fever group Rickettsiae (SFG) and Anaplasma phagocytophilum have been detected in Swiss ticks, however, information about the extent and clinical presentation of these infections in humans is scant. Methods Indirect fluorescent antibody tests for SFG rickettsiae and Anaplasma phagocytophilum were performed on serum samples of 121 Borrelia burgdorferi seropositive patients with and without Lyme disease and 43 negative controls. Results Out of 121 Borrelia burgdorferi seropositive individuals, 65 (53.7%) were seropositive for IgG and 15 (12.4%) for IgM antibodies to SFG rickettsiae. IgM antibodies were detected more frequently in early-than in late-stage of Lyme disease (12 out of 51 and 2 out of 49; respectively; p = 0.0078). Significantly higher IgG antibody titers against SFG rickettsiae were found in patients with late-stage compared to patients with early-stage Lyme disease (mean titer 1:261 and 1:129, respectively; p = 0.038). This difference was even more pronounced in patients with acrodermatitis chronica atrophicans compared to patients with early stage of Lyme disease (mean titer 1:337 and 1:129, respectively; p = 0.009).In patients presenting with fatigue, headache and myalgia, the prevalence of IgG antibodies against SFG rickettsiae was significantly higher (7 out of 11; 63.6%) than in Borrelia burgdorferi seropositive individuals without clinical illness (1 out of 10; 10%; p = 0.024). IgG antibodies to Anaplasma phagocytophilum were detected in 12 out of 121 individuals (9.9%), no IgM antibodies were found. Conclusion Infections with SFG rickettsiae and Anaplasma phagocytophilum are underdiagnosed and should be ruled out after a tick bite. Further studies are needed to elucidate the possible causative role of SFG rickettsiae for myalgia, headache and long-lasting fatigue after a tick bite and to determine the necessity for an antibiotic treatment.
Collapse
Affiliation(s)
- Leonie Kosak
- University of Zürich, Institute for Epidemiology, Biostatistics and Prevention, Zürich, Switzerland
- Corresponding author.
| | | | - Markus Jutzi
- Analytica Medizinische Laboratorien AG, Zürich, Switzerland
| | - Marinko Dobec
- Analytica Medizinische Laboratorien AG, Zürich, Switzerland
| | - Patricia Schlagenhauf
- University of Zürich, Institute for Epidemiology, Biostatistics and Prevention, WHO Collaborating Centre for Travellers' Health, Department of Global and Public Health, MilMedBiol Competence Centre, Zürich, Switzerland
| |
Collapse
|
41
|
Haring V, Jacob J, Walther B, Trost M, Stubbe M, Mertens-Scholz K, Melzer F, Scuda N, Gentil M, Sixl W, Schäfer T, Stanko M, Wolf R, Pfeffer M, Ulrich RG, Obiegala A. White-Toothed Shrews (Genus Crocidura): Potential Reservoirs for Zoonotic Leptospira spp. and Arthropod-Borne Pathogens? Pathogens 2023; 12:781. [PMID: 37375471 DOI: 10.3390/pathogens12060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Three species of white-toothed shrews of the order Eulipotyphla are present in central Europe: the bicolored (Crocidura leucodon), greater (Crocidura russula) and lesser (Crocidura suaveolens) white-toothed shrews. Their precise distribution in Germany is ill-defined and little is known about them as reservoirs for zoonotic pathogens (Leptospira spp., Coxiella burnetii, Brucella spp., Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis and Bartonella spp.). We investigated 372 Crocidura spp. from Germany (n = 341), Austria (n = 18), Luxembourg (n = 2) and Slovakia (n = 11). West European hedgehogs (Erinaceus europaeus) were added to compare the presence of pathogens in co-occurring insectivores. Crocidura russula were distributed mainly in western and C. suaveolens mainly in north-eastern Germany. Crocidura leucodon occurred in overlapping ranges with the other shrews. Leptospira spp. DNA was detected in 28/227 C. russula and 2/78 C. leucodon samples. Further characterization revealed that Leptospira kirschneri had a sequence type (ST) 100. Neoehrlichia mikurensis DNA was detected in spleen tissue from 2/213 C. russula samples. Hedgehogs carried DNA from L. kirschneri (ST 100), L. interrogans (ST 24), A. phagocytophilum and two Bartonella species. This study improves the knowledge of the current distribution of Crocidura shrews and identifies C. russula as carrier of Leptospira kirschneri. However, shrews seem to play little-to-no role in the circulation of the arthropod-borne pathogens investigated.
Collapse
Affiliation(s)
- Viola Haring
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jens Jacob
- Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Toppheideweg 88, 48161 Münster, Germany
| | - Bernd Walther
- Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Toppheideweg 88, 48161 Münster, Germany
| | - Martin Trost
- Dezernat Artenschutz, Staatliche Vogelschutzwarte und CITES, Landesamt für Umweltschutz Sachsen-Anhalt, Reideburger Straße 47, 06116 Halle (Saale), Germany
| | - Michael Stubbe
- Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin-Luther-Universität Halle-Wittenberg, Domplatz 4, 06108 Halle (Saale), Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Str. 96a, 07743 Jena, Germany
| | - Falk Melzer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Str. 96a, 07743 Jena, Germany
| | - Nelly Scuda
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany
| | - Michaela Gentil
- Laboklin GmbH & Co.KG, Steubenstrasse 4, 97688 Bad Kissingen, Germany
| | - Wolfdieter Sixl
- Institute of Hygiene, University of Graz, 8010 Graz, Austria
| | - Tanja Schäfer
- Wildtierhilfe Schäfer e.V., Waldstraße 275, 63071 Offenbach, Germany
| | - Michal Stanko
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Ronny Wolf
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 41-43, 04103 Leipzig, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 41-43, 04103 Leipzig, Germany
| |
Collapse
|
42
|
Marini G, Tagliapietra V, Cristofolini F, Cristofori A, Dagostin F, Zuccali MG, Molinaro S, Gottardini E, Rizzoli A. Correlation between airborne pollen data and the risk of tick-borne encephalitis in northern Italy. Sci Rep 2023; 13:8262. [PMID: 37217780 DOI: 10.1038/s41598-023-35478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Tick-borne encephalitis (TBE) is caused by a flavivirus that infects animals including humans. In Europe, the TBE virus circulates enzootically in natural foci among ticks and rodent hosts. The abundance of ticks depends on the abundance of rodent hosts, which in turn depends on the availability of food resources, such as tree seeds. Trees can exhibit large inter-annual fluctuations in seed production (masting), which influences the abundance of rodents the following year, and the abundance of nymphal ticks two years later. Thus, the biology of this system predicts a 2-year time lag between masting and the incidence of tick-borne diseases such as TBE. As airborne pollen abundance is related to masting, we investigated whether inter-annual variation in pollen load could be directly correlated with inter-annual variation in the incidence of TBE in human populations with a 2-year time lag. We focused our study on the province of Trento (northern Italy), where 206 TBE cases were notified between 1992 and 2020. We tested the relationship between TBE incidence and pollen load collected from 1989 to 2020 for 7 different tree species common in our study area. Through univariate analysis we found that the pollen quantities recorded two years prior for two tree species, hop-hornbeam (Ostrya carpinifolia) and downy oak (Quercus pubescens), were positively correlated with TBE emergence (R2 = 0.2) while a multivariate model with both tree species better explained the variation in annual TBE incidence (R2 = 0.34). To the best of our knowledge, this is the first attempt at quantifying the correlation between pollen quantities and the incidence of TBE in human populations. As pollen loads are collected by widespread aerobiological networks using standardized procedures, our study could be easily replicated to test their potential as early warning system for TBE and other tick-borne diseases.
Collapse
Affiliation(s)
- Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.
| | - Valentina Tagliapietra
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Fabiana Cristofolini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Antonella Cristofori
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | | | | | - Elena Gottardini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| |
Collapse
|
43
|
Igolkina Y, Yakimenko V, Tikunov A, Epikhina T, Tancev A, Tikunova N, Rar V. Novel Genetic Lineages of Rickettsia helvetica Associated with Ixodes apronophorus and Ixodes trianguliceps Ticks. Microorganisms 2023; 11:1215. [PMID: 37317189 DOI: 10.3390/microorganisms11051215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
Ixodes apronophorus is an insufficiently studied nidicolous tick species. For the first time, the prevalence and genetic diversity of Rickettsia spp. in Ixodes apronophorus, Ixodes persulcatus, and Ixodes trianguliceps ticks from their sympatric habitats in Western Siberia were investigated. Rickettsia helvetica was first identified in I. apronophorus with a prevalence exceeding 60%. "Candidatus Rickettsia tarasevichiae" dominated in I. persulcatus, whereas I. trianguliceps were infected with "Candidatus Rickettsia uralica", R. helvetica, and "Ca. R. tarasevichiae". For larvae collected from small mammals, a strong association was observed between tick species and rickettsiae species/sequence variants, indicating that co-feeding transmission in studied habitats is absent or its impact is insignificant. Phylogenetic analysis of all available R. helvetica sequences demonstrated the presence of four distinct genetic lineages. Most sequences from I. apronophorus belong to the unique lineage III, and single sequences cluster into the lineage I alongside sequences from European I. ricinus and Siberian I. persulcatus. Rickettsia helvetica sequences from I. trianguliceps, along with sequences from I. persulcatus from northwestern Russia, form lineage II. Other known R. helvetica sequences from I. persulcatus from the Far East group into the lineage IV. The obtained results demonstrated the high genetic variability of R. helvetica.
Collapse
Affiliation(s)
- Yana Igolkina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| | - Valeriy Yakimenko
- Omsk Research Institute of Natural Foci Infections, Mira Avenue 7, 644080 Omsk, Russia
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| | - Tamara Epikhina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| | - Aleksey Tancev
- Omsk Research Institute of Natural Foci Infections, Mira Avenue 7, 644080 Omsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| | - Vera Rar
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| |
Collapse
|
44
|
Sormunen JJ, Mäkelä S, Klemola T, Alale TY, Vesterinen EJ. Voles, shrews and red squirrels as sources of tick blood meals and tick-borne pathogens on an island in southwestern Finland. Ticks Tick Borne Dis 2023; 14:102134. [PMID: 36746092 DOI: 10.1016/j.ttbdis.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Molecular identification of the previous blood meal source of a questing tick (Acari: Ixodidae) from blood meal fragments was proposed a few decades ago. Following this, several blood meal assays have been developed and published, but none of them have been taken into widespread use. Recently, novel retrotransposon-based qPCR assays designed for detecting blood meal fragments of North American host species were published. We wanted to assess their function with host species present in Finland. Questing ticks were collected by cloth dragging in August-September 2021 from an island in southwestern Finland. DNA was extracted from Ixodes ricinus nymphs (n=438) and qPCR assays applied to identify larval blood meal sources (voles, shrews and red squirrels) and screen for several tick-borne human pathogens and other microbes with pathogenic potential [Borrelia spp. (including specific assays for Borrelia afzelii, Borrelia garinii, Borrelia valaisiana), Anaplasma phagocytophilum, Babesia spp., Rickettsia spp., and Neoehrlichia mikurensis]. The probability of a nymph having fed as larva on either a vole, shrew or red squirrel was 0.34 (0.30 - 0.38; 95% confidence interval). Bacteria of the genus Borrelia were the most common pathogens detected, with host-specific probabilities of carrying Borrelia of 0.30 (0.18 - 0.44) for nymphs that had fed on voles, 0.23 (0.14 - 0.35) for nymphs that had fed on shrews, and 0.42 (0.28 - 0.58) for nymphs that had fed on red squirrels. Other microbes were rarely acquired from these hosts, apart from N. mikurensis from voles. This study highlights that shrews and red squirrels may equal voles as blood meal sources for I. ricinus larvae. Overall, variation in proportions of blood meals provided by these animals may be high across even proximate study areas. All studied host species appeared to be important sources for particularly Borrelia afzelii, and voles also for N. mikurensis.
Collapse
Affiliation(s)
- Jani J Sormunen
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; Biodiversity Unit, University of Turku, 20014 Turku, Finland.
| | - Satu Mäkelä
- Turku Bioscience Centre, University of Turku, 20520 Turku, Finland
| | - Tero Klemola
- Department of Biology, University of Turku, 20014 Turku, Finland
| | | | | |
Collapse
|
45
|
Bio-efficacy of permethrin/tetramethrin and lambda-cyhalothrin treatments in habitats of hard ticks (Acari, Ixodidae) populations with confirmed Borrelia spp. infection. Parasitol Res 2023; 122:1127-1138. [PMID: 36884104 DOI: 10.1007/s00436-023-07812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
The aim of the study was to evaluate the bio-efficacy of two different acaricides against mobile stages of hard ticks Ixodes ricinus, Dermacentor marginatus, and Haemaphysalis punctata in their natural habitats. The study was conducted during 2020 and 2021 at localities populated by I. ricinus as the predominant species, at which the presence of Borrelia afzelii, Borrelia garinii, and Borrelia lusitaniae was confirmed. During the first investigation year, a combination of two pyrethroids, permethrin, and tetramethrin, with an insecticide synergist piperonyl butoxide (trade name: Perme Plus®) was tested. At the first evaluation, 24 h after the treatment with Perme Plus®, the efficacy expressed as a reduction rate of the population density was within the interval of satisfying performance (70-90%) at all localities, while the highest efficacy (97.8%) was recorded on the 14th post-treatment day. In the second investigation year, the formulation based on lambda-cyhalothrin (trade name: Icon® 10CS) was used. On the first post-treatment evaluation day, satisfying effects were also demonstrated. The highest recorded efficacy rate of lambda-cyhalothrin (94.7%) was recorded on the 14th post-treatment day. Both tested acaricides manifested satisfying initial acaricidal effects against mobile stages of ticks and provided long-term effects. Comparison of the regression trend lines of population reduction revealed that satisfying effects of treatment with Perme Plus® lasted until the 17th post-treatment day, while in the case of Icon® 10CS, the residual effects were significantly prolonged (30 days).
Collapse
|
46
|
Köhler CF, Holding ML, Sprong H, Jansen PA, Esser HJ. Biodiversity in the Lyme-light: ecological restoration and tick-borne diseases in Europe. Trends Parasitol 2023; 39:373-385. [PMID: 36890021 DOI: 10.1016/j.pt.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Biodiversity loss and the emergence of zoonotic diseases are two major global challenges. An urgent question is how ecosystems and wildlife communities can be restored whilst minimizing the risk of zoonotic diseases carried by wildlife. Here, we evaluate how current ambitions to restore Europe's natural ecosystems may affect the hazard of diseases vectored by the tick Ixodes ricinus at different scales. We find that effects of restoration efforts on tick abundance are relatively straightforward but that the interacting effects of vertebrate diversity and abundance on pathogen transmission are insufficiently known. Long-term integrated surveillance of wildlife communities, ticks, and their pathogens is needed to understand their interactions and to prevent nature restoration from increasing tick-borne disease (TBD) hazard.
Collapse
Affiliation(s)
- Clara Florentine Köhler
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Maya Louise Holding
- Virology and Pathogenesis Group, UK Health Security Agency, Porton Down, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Hein Sprong
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Patrick A Jansen
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
47
|
Kahl O, Gray JS. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick Borne Dis 2023; 14:102114. [PMID: 36603231 DOI: 10.1016/j.ttbdis.2022.102114] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Prior to its identification as the vector of Lyme borreliosis spirochaetes in Europe in 1983, interest in Ixodes ricinus (L.) was moderate and mainly concerned the transmission of pathogens to farm animals and of tick-borne encephalitis virus to humans. The situation now is very different, and more papers have been published on I. ricinus than on any other ixodid tick species. However, this large literature is scattered and in recent years has become dominated by the molecular detection and characterization of the many pathogens that I. ricinus transmits. Several decades have now elapsed since a review addressing its basic biology and ecology appeared, and the present publication seeks to present basic aspects of its biology and ecology that are related to its role as a vector of disease agents, including its life cycle, feeding behaviour, host relations, survival off the host, and the impact of weather and climate.
Collapse
Affiliation(s)
- Olaf Kahl
- tick-radar GmbH, 10555 Berlin, Germany.
| | | |
Collapse
|
48
|
Hansford KM, Gillingham EL, Vaux AGC, Cull B, McGinley L, Catton M, Wheeler BW, Tschirren B, Medlock JM. Impact of green space connectivity on urban tick presence, density and Borrelia infected ticks in different habitats and seasons in three cities in southern England. Ticks Tick Borne Dis 2023; 14:102103. [PMID: 36525762 DOI: 10.1016/j.ttbdis.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Understanding the effects of local habitat and wider landscape connectivity factors on tick presence, nymph density and Borrelia species (spp.) prevalence in the tick population is important for identifying the public health risk from Lyme borreliosis. This multi-city study collected data in three southern England cities (Bath, Bristol, and Southampton) during spring, summer, and autumn in 2017. Focusing specifically on urban green space used for recreation which were clearly in urbanised areas, 72 locations were sampled. Additionally, geospatial datasets on urban green space coverage within 250 m and 1 km of sampling points, as well as distance to woodland were incorporated into statistical models. Distance to woodland was negatively associated with tick presence and nymph density, particularly during spring and summer. Furthermore, we observed an interaction effect between habitat and season for tick presence and nymph density, with woodland habitat having greater tick presence and nymph density during spring. Borrelia spp. infected Ixodes ricinus were found in woodland, woodland edge and under canopy habitats in Bath and Southampton. Overall Borrelia spp. prevalence in nymphs was 2.8%, similar to wider UK studies assessing prevalence in Ixodes ricinus in rural areas. Bird-related Borrelia genospecies dominated across sites, suggesting bird reservoir hosts may be important in urban green space settings for feeding and infecting ticks. Whilst overall density of infected nymphs across the three cities was low (0.03 per 100 m2), risk should be further investigated by incorporating data on tick bites acquired in urban settings, and subsequent Lyme borreliosis transmission.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK; European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK.
| | - Emma L Gillingham
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK
| | - Alexander G C Vaux
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Benjamin Cull
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Liz McGinley
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Matthew Catton
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Benedict W Wheeler
- European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK
| | | | - Jolyon M Medlock
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK; Health Protection Research Unit in Emerging & Zoonotic Infections, UK Health Security Agency, Porton Down, UK
| |
Collapse
|
49
|
Stanilov I, Blazhev A, Miteva L. Anaplasma and Ehrlichia Species in Ixodidae Ticks Collected from Two Regions of Bulgaria. Microorganisms 2023; 11:microorganisms11030594. [PMID: 36985168 PMCID: PMC10056244 DOI: 10.3390/microorganisms11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
The aim of the study was to determine prevalence of Anaplasmataceae-infected ticks in the Black Sea Coast and the Pleven regions of Bulgaria. A total of 350 ticks from different tick species were collected. Two hundred fifty-five ticks were removed from dogs in the Black Sea Coast region, and 95 Ixodes ricinus ticks were collected by flagging vegetation with a white flannel cloth in two areas in the region of Pleven. After the DNA isolation of the ticks, a genus-specific polymerase chain reaction (PCR) was performed to identify Anaplasmataceae. Second PCRs were performed with species-specific primers to identify Ehrlichia canis (E. canis) and Anaplasma phagocytophilum (A. phagocytophilum). The results showed that 26.9% of the Ixodes ricinus ticks were infected with Anaplasmataceae in the Black Sea Coast region and 36.8% in the Pleven region. The infection with E. canis was detected in 35.7% and A. phagocytophilum in 25.0% of positive ticks from the Black Sea Coast region. In the Pleven region, 22.9% of ticks were positive for E. canis, while 42.9% were positive for A. phagocytophilum. The molecular identification of E. canis in ticks collected from Bulgaria was performed for the first time. In conclusion, the present study revealed a higher prevalence of ticks infected with Anaplasmataceae, particularly A. phagocytophilum, in the Pleven region than in the Black Sea Coast region.
Collapse
Affiliation(s)
- Iskren Stanilov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Alexander Blazhev
- Department of Biology, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Lyuba Miteva
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Correspondence: ; Tel.: +359-42-664274
| |
Collapse
|
50
|
Ebert CL, Söder L, Kubinski M, Glanz J, Gregersen E, Dümmer K, Grund D, Wöhler AS, Könenkamp L, Liebig K, Knoll S, Hellhammer F, Topp AK, Becher P, Springer A, Strube C, Nagel-Kohl U, Nordhoff M, Steffen I, Bauer BU, Ganter M, Feige K, Becker SC, Boelke M. Detection and Characterization of Alongshan Virus in Ticks and Tick Saliva from Lower Saxony, Germany with Serological Evidence for Viral Transmission to Game and Domestic Animals. Microorganisms 2023; 11:microorganisms11030543. [PMID: 36985117 PMCID: PMC10055853 DOI: 10.3390/microorganisms11030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The newly discovered group of Jingmenviruses has been shown to infect a wide range of hosts and has been associated with febrile illness in humans. During a survey for Jingmenviruses in ticks from Lower Saxony, Germany, Alongshan virus (ALSV) was identified in Ixodes spp. ticks. Additional virus screenings revealed the presence of ALSV in the bodies and saliva of ticks collected at several locations in Lower Saxony. Vector competence studies that included Ixodes ricinus and Dermacentor reticulatus validated the replication of ALSV within those tick species. In vitro feeding experiments with ALSV-injected Ixodes ricinus demonstrated effective viral transmission during blood feeding. To evaluate the potential viral transmission during a natural blood meal, sera from wild game and domestic animals were investigated. One serum sample from a red deer was found to be positive for ALSV RNA, while serological screenings in game and domestic animals revealed the presence of ALSV-specific antibodies at different locations in Lower Saxony. Overall, those results demonstrate the broad distribution of ALSV in ticks in Lower Saxony and hypothesize frequent exposure to animals based on serological investigations. Hence, its potential risk to human and animal health requires further investigation.
Collapse
Affiliation(s)
- Cara Leonie Ebert
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
| | - Lars Söder
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
| | - Julien Glanz
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
| | - Eva Gregersen
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Katrin Dümmer
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
| | - Domenic Grund
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
| | - Ann-Sophie Wöhler
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
| | - Laura Könenkamp
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Katrin Liebig
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
| | - Steffen Knoll
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
| | - Anna-Katharina Topp
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Uschi Nagel-Kohl
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173 Hanover, Germany
| | - Marcel Nordhoff
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Philosophenweg 38, 26121 Oldenburg, Germany
| | - Imke Steffen
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Benjamin Ulrich Bauer
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hanover, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hanover, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Buenteweg 9, 30559 Hanover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
- Correspondence: (S.C.B.); (M.B.); Tel.: +49-511-953-8717 (S.C.B.)
| | - Mathias Boelke
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, Buenteweg 17, 30559 Hanover, Germany
- Correspondence: (S.C.B.); (M.B.); Tel.: +49-511-953-8717 (S.C.B.)
| |
Collapse
|