1
|
Ruedas-Torres I, Thi to Nga B, Salguero FJ. Pathogenicity and virulence of African swine fever virus. Virulence 2024; 15:2375550. [PMID: 38973077 PMCID: PMC11232652 DOI: 10.1080/21505594.2024.2375550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.
Collapse
Affiliation(s)
- Ines Ruedas-Torres
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
| | - Bui Thi to Nga
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Francisco J. Salguero
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Han S, Oh D, Balmelle N, Cay AB, Ren X, Droesbeke B, Tignon M, Nauwynck H. Replication Characteristics of African Swine Fever Virus (ASFV) Genotype I E70 and ASFV Genotype II Belgium 2018/1 in Perivenous Macrophages Using Established Vein Explant Model. Viruses 2024; 16:1602. [PMID: 39459935 PMCID: PMC11512260 DOI: 10.3390/v16101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
African Swine Fever Virus (ASFV), resulting in strain-dependent vascular pathology, leading to hemorrhagic fever, is an important pathogen in swine. The pathogenesis of ASFV is determined by the array and spatial distribution of susceptible cells within the host. In this study, the replication characteristics of ASFV genotype I E70 (G1-E70) and ASFV genotype II Belgium 2018/1 (G2-B18) in the environment of small veins were investigated in an established vein explant model. Immunofluorescence staining analysis revealed that perivenous macrophages (CD163+ cells) were widely distributed in the explant, with most of them (approximately 2-10 cells/0.03 mm2) being present close to the vein (within a radius of 0-348 µm). Upon inoculation with G1-E70 and G2-B18, we observed an increase in the quantity of cells testing positive for viral antigens over time. G1-E70 replicated more efficiently than G2-B18 in the vein explants (7.6-fold for the ear explant at 72 hpi). The majority of ASFV+ cells were CD163+, indicating that macrophages are the primary target cells. Additional identification of cells infected with ASFV revealed the presence of vimentin+, CD14+, and VWF+ cells, demonstrating the cellular diversity and complexity associated with ASFV infection. By the use of this new vein explant model, the susceptibility of vascular and perivascular cells to an ASFV infection was identified. With this model, it will be possible now to conduct more functional analyses to get better insights into the pathogenesis of ASFV-induced hemorrhages.
Collapse
Affiliation(s)
- Shaojie Han
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nadège Balmelle
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Ann Brigitte Cay
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Xiaolei Ren
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Brecht Droesbeke
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Marylène Tignon
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
3
|
Zhu Y, Zhang M, Jie Z, Guo S, Zhu Z, Tao SC. Strategic nucleic acid detection approaches for diagnosing African swine fever (ASF): navigating disease dynamics. Vet Res 2024; 55:131. [PMID: 39375775 PMCID: PMC11460097 DOI: 10.1186/s13567-024-01386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease caused by African swine fever virus (ASFV) and leads to significant economic losses in the pig farming industry. Given the absence of an effective vaccine or treatment, the mortality rate of ASF is alarmingly close to 100%. Consequently, the ability to rapidly and accurately detect ASFV on site and promptly identify infected pigs is critical for controlling the spread of this pandemic. The dynamics of the ASF virus load and antibody response necessitate the adoption of various detection strategies at different stages of infection, a topic that has received limited attention to date. This review offers detailed guidance for choosing appropriate ASF diagnostic techniques tailored to the clinical manifestations observed from the acute to chronic phases, including asymptomatic cases. We comprehensively summarize and evaluate the latest advancements in ASFV detection methods, such as CRISPR-based diagnostics, biosensors, and microfluidics. Additionally, we address the challenges of false negatives or positives due to ASF variants or the use of injected live attenuated vaccines. This review provides an exhaustive list of diagnostic tests suitable for detecting each stage of symptoms and potential target genes for developing new detection methods. In conclusion, we highlight the current challenges and future directions in ASFV detection, underscoring the need for continued research and innovation in this field.
Collapse
Affiliation(s)
- Yuanshou Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, 200240, China
| | - Shujuan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Sembada AA, Theda Y, Faizal A. Duckweeds as edible vaccines in the animal farming industry. 3 Biotech 2024; 14:222. [PMID: 39247453 PMCID: PMC11379843 DOI: 10.1007/s13205-024-04074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Animal diseases are among the most debilitating issues in the animal farming industry, resulting in decreased productivity and product quality worldwide. An emerging alternative to conventional injectable vaccines is edible vaccines, which promise increased delivery efficiency while maintaining vaccine effectiveness. One of the most promising platforms for edible vaccines is duckweeds, due to their high growth rate, ease of transformation, and excellent nutritional content. This review explores the potential, feasibility, and advantages of using duckweeds as platforms for edible vaccines. Duckweeds have proven to be superb feed sources, as evidenced by numerous improvements in both quantity (e.g., weight gain) and quality (e.g., yolk pigmentation). In terms of heterologous protein production, duckweeds, being plants, are capable of expressing proteins with complex structures and post-translational modifications. Research efforts have focused on the development of duckweed-based edible vaccines, including those against avian influenza, tuberculosis, Newcastle disease, and mastitis, among others. As with any emerging technology, the development of duckweeds as a platform for edible vaccines is still in its early stages compared to well-established injectable vaccines. It is evident that more proof-of-concept studies are required to bring edible vaccines closer to the current standards of conventional vaccines. Specifically, the duckweed expression system needs further development in areas such as yield and growth rate, especially when compared to bacterial and mammalian expression systems. Continued efforts in this field could lead to breakthroughs that significantly improve the resilience of the animal farming industry against disease threats.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Research Center for New and Renewable Energy, Bandung Institute of Technology, Bandung, 40132 Indonesia
- Forestry Technology Research Group, School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, 40132 Indonesia
| | - Yohanes Theda
- Department of Biochemical Engineering, University College London, London, WC1E 6BT UK
| | - Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, 40132 Indonesia
| |
Collapse
|
5
|
Mahanta K, Jabeen B, Chatterjee R, Amin RM, Bayan J, Sulabh S. Navigating the threat of African swine fever: a comprehensive review. Trop Anim Health Prod 2024; 56:278. [PMID: 39316231 DOI: 10.1007/s11250-024-04129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
African swine fever (ASF) is caused by Asfivirus and has become one of the most important diseases of swine in recent years. ASF was an endemic disease of the sub-Saharan Africa but later spread to various parts of the world. The infection in ticks and wild swine, alongside global pork trade, drives its spread and persistence. Once introduced to an area, the disease is difficult to eliminate due to sylvatic, domestic, and tick-swine transmission cycles. Because of the existence of various modes of transmission of the ASF virus, biosecurity measures have not been very successful. The line of treatment is not of much use and the outcome of this disease is usually fatal. The prognosis or the recovery of the animal depends on the virulence of the strain involved. Development of vaccines has been attempted but to date has not been very successful. This review focuses on the basic context of ASF, the challenges associated with it, and the options that might be available to prevent its occurrence which includes the different vaccine development strategies tried and tested till now.
Collapse
Affiliation(s)
- Keya Mahanta
- Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Bushra Jabeen
- Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Ranjita Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Rafiqul M Amin
- Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Jyotishree Bayan
- Department of Animal Genetics and Breeding, College of Veterinary Science, Assam Agricultural University, 781022, Khanapara, Assam, India
| | - Sourabh Sulabh
- Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| |
Collapse
|
6
|
Wang A, Yin J, Liu Y, Zhu R, Zhao J, Zhou J, Liu H, Ding P, Zhang G. Identification of linear B-cell epitope on the structure protein p49 of African Swine Fever Virus (ASFV). Int J Biol Macromol 2024; 280:135983. [PMID: 39326597 DOI: 10.1016/j.ijbiomac.2024.135983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
African swine fever (ASF), a viral disease affecting both domestic pigs and wild boars, is caused by the African swine fever virus (ASFV). Currently, an effective vaccine is lacking. The structural protein p49, encoded by the B438L gene, is vital for the virus's capsid structure and architecture. Research indicates its potential as a vaccine target. In this study, mAbs against ASFV p49 were generated using the hybridoma technique. The full-length B438L sequence was divided into 5 segments (B1 ∼ B5) via the overlapping polypeptide method, and an expression vector was constructed for expression and purification. Three hybridoma cell lines recognized epitope regions, with 3B12 and 6F1 recognizing the B4 (aa 234-362) fragment, and 3B12, 6F1, and 7C5 reacting with the B5 (aa 312-438) segment. The amino acid sequence (aa 333-438) was further divided into three segments (B6 ∼ B8) for verification. Results from Dot-ELISA and peptide ELISA confirmed that 333-YQTHYMENIVTLVPR-347 and 383-NNYIPKYTGGIGDSK-397 were the major B cell antigenic, highly conserved across ASFV strains. Interestingly, the motif 333-YQTHYMENIVTLVPR-347 was highly conserved, except for a single substitution (T → S) in three residues. This study identifies the B cell epitope of p49 protein, providing insights into ASFV p49 protein structure and function and supporting the development of ASFV-related vaccine products.
Collapse
Affiliation(s)
- Aiping Wang
- Longhu Laboratory, Zhengzhou 451100, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jiajia Yin
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Ruixin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jianguo Zhao
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jingming Zhou
- Longhu Laboratory, Zhengzhou 451100, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Hongliang Liu
- Longhu Laboratory, Zhengzhou 451100, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Peiyang Ding
- Longhu Laboratory, Zhengzhou 451100, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Gaiping Zhang
- Longhu Laboratory, Zhengzhou 451100, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Truong QL, Wang L, Nguyen TA, Nguyen HT, Le AD, Nguyen GV, Vu AT, Hoang PT, Le TT, Nguyen HT, Nguyen HTT, Lai HLT, Bui DAT, Huynh LMT, Madera R, Li Y, Retallick J, Matias-Ferreyra F, Nguyen LT, Shi J. A Non-Hemadsorbing Live-Attenuated Virus Vaccine Candidate Protects Pigs against the Contemporary Pandemic Genotype II African Swine Fever Virus. Viruses 2024; 16:1326. [PMID: 39205300 PMCID: PMC11359042 DOI: 10.3390/v16081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
African swine fever (ASF) is a highly contagious and severe hemorrhagic transboundary swine viral disease with up to a 100% mortality rate, which leads to a tremendous socio-economic loss worldwide. The lack of safe and efficacious ASF vaccines is the greatest challenge in the prevention and control of ASF. In this study, we generated a safe and effective live-attenuated virus (LAV) vaccine candidate VNUA-ASFV-LAVL3 by serially passaging a virulent genotype II strain (VNUA-ASFV-L2) in an immortalized porcine alveolar macrophage cell line (3D4/21, 50 passages). VNUA-ASFV-LAVL3 lost its hemadsorption ability but maintained comparable growth kinetics in 3D4/21 cells to that of the parental strain. Notably, it exhibited significant attenuation of virulence in pigs across different doses (103, 104, and 105 TCID50). All vaccinated pigs remained healthy with no clinical signs of African swine fever virus (ASFV) infection throughout the 28-day observation period of immunization. VNUA-ASFV-LAVL3 was efficiently cleared from the blood at 14-17 days post-infection, even at the highest dose (105 TCID50). Importantly, the attenuation observed in vivo did not compromise the ability of VNUA-ASFV-LAVL3 to induce protective immunity. Vaccination with VNUA-ASFV-LAVL3 elicited robust humoral and cellular immune responses in pigs, achieving 100% protection against a lethal wild-type ASFV (genotype II) challenge at all tested doses (103, 104, and 105 TCID50). Furthermore, a single vaccination (104 TCID50) provided protection for up to 2 months. These findings suggest that VNUA-ASFV-LAVL3 can be utilized as a promising safe and efficacious LAV candidate against the contemporary pandemic genotype II ASFV.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Lihua Wang
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Tuan Anh Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Anh Dao Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Giap Van Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Anh Thi Vu
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Phuong Thi Hoang
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Trang Thi Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huyen Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hang Thu Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huong Lan Thi Lai
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Dao Anh Tran Bui
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Le My Thi Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Rachel Madera
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Yuzhen Li
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Jamie Retallick
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Jishu Shi
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| |
Collapse
|
8
|
Porras N, Sánchez-Vizcaíno JM, Barasona JÁ, Gómez-Buendía A, Cadenas-Fernández E, Rodríguez-Bertos A. Histopathologic evaluation system of African swine fever in wild boar infected with high (Arm07) and low virulence (Lv17/WB/Riel) isolates. Vet Pathol 2024:3009858241266944. [PMID: 39078034 DOI: 10.1177/03009858241266944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
To understand the clinicopathological forms of African swine fever (ASF) in wild boar, it is crucial to possess a basic knowledge of the biological characteristics of the currently circulating ASF virus isolates. The aim of this work is to establish an accurate and comprehensive histopathologic grading system to standardize the assessment of the ASF lesions in wild boar. The study evaluated the differences between animals infected with a high virulence genotype II isolate (Arm07) (HVI) through intramuscular (IM) (n = 6) and contact-infected (n = 12) routes, alongside those orally infected with a low virulence isolate (Lv17/WB/Riel) (LVI) (n = 6). The assessment included clinical (CS), macroscopic (MS), and histopathologic (HS) scores, as well as viral loads in blood and tissues by real-time quantitative polymerase chain reaction (qPCR). Tissues examined included skin, lymph nodes, bone marrow, palatine tonsil, lungs, spleen, liver, kidneys, thymus, heart, adrenal glands, pancreas, urinary bladder, brain, and gastrointestinal and reproductive tracts. The HVI group exhibited a 100% mortality rate with elevated CS, MS, and HS values. Animals infected by contact (CS = 12; MS = 58.5; HS = 112) and those intramuscularly infected (CS = 14.8; MS = 47; HS = 104) demonstrated similar values, indicating that the route of infection does not decisively influence the severity of clinical and pathological signs. The LVI group showed a 0% mortality rate, an inconspicuous clinical form, minimal lesions (CS = 0; MS = 12; HS = 29), and a lower viral load. Histopathologic evaluation has proven valuable in advancing our comprehension of ASF pathogenesis in wild boar and paves the groundwork for further research investigating protective mechanisms in vaccinated animals.
Collapse
Affiliation(s)
- Néstor Porras
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - José M Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Á Barasona
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Zhang D, Hao Y, Yang X, Shi X, Zhao D, Chen L, Liu H, Zhu Z, Zheng H. ASFV infection induces macrophage necroptosis and releases proinflammatory cytokine by ZBP1-RIPK3-MLKL necrosome activation. Front Microbiol 2024; 15:1419615. [PMID: 38952452 PMCID: PMC11215146 DOI: 10.3389/fmicb.2024.1419615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
African swine fever (ASF) is an infectious disease characterized by hemorrhagic fever, which is highly pathogenic and causes severe mortality in domestic pigs. It is caused by the African swine fever virus (ASFV). ASFV is a large DNA virus and primarily infects porcine monocyte macrophages. The interaction between ASFV and host macrophages is the major reason for gross pathological lesions caused by ASFV. Necroptosis is an inflammatory programmed cell death and plays an important immune role during virus infection. However, whether and how ASFV induces macrophage necroptosis and the effect of necroptosis signaling on host immunity and ASFV infection remains unknown. This study uncovered that ASFV infection activates the necroptosis signaling in vivo and macrophage necroptosis in vitro. Further evidence showed that ASFV infection upregulates the expression of ZBP1 and RIPK3 to consist of the ZBP1-RIPK3-MLKL necrosome and further activates macrophage necroptosis. Subsequently, multiple Z-DNA sequences were predicted to be present in the ASFV genome. The Z-DNA signals were further confirmed to be present and colocalized with ZBP1 in the cytoplasm and nucleus of ASFV-infected cells. Moreover, ZBP1-mediated macrophage necroptosis provoked the extracellular release of proinflammatory cytokines, including TNF-α and IL-1β induced by ASFV infection. Finally, we demonstrated that ZBP1-mediated necroptosis signaling inhibits ASFV replication in host macrophages. Our findings uncovered a novel mechanism by which ASFV induces macrophage necroptosis by facilitating Z-DNA accumulation and ZBP1 necrosome assembly, providing significant insights into the pathogenesis of ASFV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
Lai DC, Chaudhari J, Vu HLX. African swine fever virus early protein pI73R suppresses the type-I IFN promoter activities. Virus Res 2024; 343:199342. [PMID: 38408646 PMCID: PMC10918272 DOI: 10.1016/j.virusres.2024.199342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-β promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-β was independent of Z-DNA binding activity. Instead, the α3 and β1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-β. These findings offer insights into the protein's functions and support its role as a virulence factor.
Collapse
Affiliation(s)
- Danh Cong Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | | | - Hiep L X Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States; Department of Animal Science, University of Nebraska-Lincoln, United States.
| |
Collapse
|
11
|
Jackman JA, Hakobyan A, Grigoryan R, Izmailyan R, Elrod CC, Zakaryan H. Antiviral screening of natural, anti-inflammatory compound library against African swine fever virus. Virol J 2024; 21:95. [PMID: 38664855 PMCID: PMC11046949 DOI: 10.1186/s12985-024-02374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND African swine fever virus (ASFV) is a major threat to pig production and the lack of effective vaccines underscores the need to develop robust antiviral countermeasures. Pathologically, a significant elevation in pro-inflammatory cytokine production is associated with ASFV infection in pigs and there is high interest in identifying dual-acting natural compounds that exhibit antiviral and anti-inflammatory activities. METHODS Using the laboratory-adapted ASFV BA71V strain, we screened a library of 297 natural, anti-inflammatory compounds to identify promising candidates that protected Vero cells against virus-induced cytopathic effect (CPE). Virus yield reduction, virucidal, and cell cytotoxicity experiments were performed on positive hits and two lead compounds were further characterized in dose-dependent assays along with time-of-addition, time-of-removal, virus entry, and viral protein synthesis assays. The antiviral effects of the two lead compounds on mitigating virulent ASFV infection in porcine macrophages (PAMs) were also tested using similar methods, and the ability to inhibit pro-inflammatory cytokine production during virulent ASFV infection was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS The screen identified five compounds that inhibited ASFV-induced CPE by greater than 50% and virus yield reduction experiments showed that two of these compounds, tetrandrine and berbamine, exhibited particularly high levels of anti-ASFV activity. Mechanistic analysis confirmed that both compounds potently inhibited early stages of ASFV infection and that the compounds also inhibited infection of PAMs by the virulent ASFV Arm/07 isolate. Importantly, during ASFV infection in PAM cells, both compounds markedly reduced the production of pro-inflammatory cytokines involved in disease pathogenesis while tetrandrine had a greater and more sustained anti-inflammatory effect than berbamine. CONCLUSIONS Together, these findings support that dual-acting natural compounds with antiviral and anti-inflammatory properties hold promise as preventative and therapeutic agents to combat ASFV infection by simultaneously inhibiting viral replication and reducing virus-induced cytokine production.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Astghik Hakobyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Rafayela Grigoryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Roza Izmailyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Charles C Elrod
- Natural Biologics Inc, Newfield, NY, 14867, USA.
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia.
| |
Collapse
|
12
|
Bisimwa PN, Ongus JR, Tonui R, Bisimwa EB, Steinaa L. Resistance to African swine fever virus among African domestic pigs appears to be associated with a distinct polymorphic signature in the RelA gene and upregulation of RelA transcription. Virol J 2024; 21:93. [PMID: 38658979 PMCID: PMC11041040 DOI: 10.1186/s12985-024-02351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
African swine fever virus (ASFV) is a highly contagious and fatal hemorrhagic disease of domestic pigs, which poses a major threat to the swine industry worldwide. Studies have shown that indigenous African pigs tolerate ASFV infection better than European pigs. The porcine v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) encoding a p65 kD protein, a major subunit of the NF-kB transcription factor, plays important roles in controlling both innate and adaptive immunity during infection with ASFV. In the present study, RelA genes from ASFV-surviving and symptomatic pigs were sequenced and found to contain polymorphisms revealing two discrete RelA amino acid sequences. One was found in the surviving pigs, and the other in symptomatic pigs. In total, 16 nonsynonymous SNPs (nsSNPs) resulting in codon changes were identified using bioinformatics software (SIFT and Polyphen v2) and web-based tools (MutPre and PredictSNP). Seven nsSNPs (P374-S, T448-S, P462-R, V464-P, Q478-H, L495-E, and P499-Q) were predicted to alter RelA protein function and stability, while 5 of these (P374-S, T448-S, P462-R, L495-E, and Q499-P) were predicted as disease-related SNPs.Additionally, the inflammatory cytokine levels of IFN-α, IL-10, and TNF-α at both the protein and the mRNA transcript levels were measured using ELISA and Real-Time PCR, respectively. The resulting data was used in correlation analysis to assess the association between cytokine levels and the RelA gene expression. Higher levels of IFN-α and detectable levels of IL-10 protein and RelA mRNA were observed in surviving pigs compared to healthy (non-infected). A positive correlation of IFN-α cytokine levels with RelA mRNA expression was also obtained. In conclusion, 7 polymorphic events in the coding region of the RelA gene may contribute to the tolerance of ASFV in pigs.
Collapse
Affiliation(s)
- Patrick N Bisimwa
- Molecular Biology Laboratory, Department of Animal Sciences and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of Congo.
- Institut Supérieur de Dévelopement Rural de Kaziba, Kaziba, Democratic Republic of Congo.
| | - Juliette R Ongus
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Biotechnology Laboratory, Departement of Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Ronald Tonui
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Espoir B Bisimwa
- Molecular Biology Laboratory, Department of Animal Sciences and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of Congo
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
13
|
Thaweerattanasinp T, Kaewborisuth C, Viriyakitkosol R, Saenboonrueng J, Wanitchang A, Tanwattana N, Sonthirod C, Sangsrakru D, Pootakham W, Tangphatsornruang S, Jongkaewwattana A. Adaptation of African swine fever virus to MA-104 cells: Implications of unique genetic variations. Vet Microbiol 2024; 291:110016. [PMID: 38340553 DOI: 10.1016/j.vetmic.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal, contagious disease specifically in pigs. However, prevention and control of ASFV outbreaks have been hampered by the lack of an effective vaccine or antiviral treatment for ASFV. Although ASFV has been reported to adapt to a variety of continuous cell lines, the phenotypic and genetic changes associated with ASFV adaptation to MA-104 cells remain poorly understood. Here, we adapted ASFV field isolates to efficiently propagate through serial viral passages in MA-104 cells. The adapted ASFV strain developed a pronounced cytopathic effect and robust infection in MA-104 cells. Interestingly, the adapted variant maintained its tropism in primary porcine kidney macrophages. Whole genome analysis of the adapted virus revealed unique gene deletions in the left and right variable regions of the viral genome compared to other previously reported cell culture-adapted ASFV strains. Notably, gene duplications at the 5' and 3' ends of the viral genome were in reverse complementary alignment with their paralogs. Single point mutations in protein-coding genes and intergenic regions were also observed in the viral genome. Collectively, our results shed light on the significance of these unique genetic changes during adaptation, which facilitate the growth of ASFV in MA-104 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chutima Sonthirod
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Duangjai Sangsrakru
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wirulda Pootakham
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | | |
Collapse
|
14
|
Hiremath J, Hemadri D, Nayakvadi S, Kumar C, Gowda CSS, Sharma D, Ramamoorthy R, Mamatha SS, Patil S, Ranjini RA, Jayamohanan TV, Swapna SA, Gulati BR. Epidemiological investigation of ASF outbreaks in Kerala (India): detection, source tracing and economic implications. Vet Res Commun 2024; 48:827-837. [PMID: 37955753 DOI: 10.1007/s11259-023-10254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
This study investigates suspected African swine fever (ASF) outbreaks in two villages of Kannur district in Kerala, India, with the aim of identifying the causative agent and its genotype, the source of infection, and estimating the economic losses due to the outbreaks. Clinically, the disease was acute with high mortality, while gross pathology was characterized by widespread haemorrhages in various organs, especially the spleen, which was dark, enlarged and had friable cut surfaces with diffuse haemorrhages. Notably, histopathological examination revealed multifocal, diffuse haemorrhages in the splenic parenchyma and lymphoid depletion accompanied by lymphoid cell necrosis. The clinico-pathological observations were suggestive of ASF, which was confirmed by PCR. The source of outbreak was identified as swill and it was a likely point source infection as revealed by epidemic curve analysis. The phylogenetic analysis of p72 gene identified the ASFV in the current outbreak as genotype-II and IGR II variant consistent with ASFVs detected in India thus far. However, the sequence analysis of the Central Variable Region (CVR) of the B602L gene showed that the ASFVs circulating in Kerala (South India) formed a separate clade along with those found in Mizoram (North East India), while ASFVs circulating in Arunachal Pradesh and Assam states of India grouped in to different clade. This study represents the first investigation of ASF outbreak in South India, establishing the genetic relatedness of the ASFV circulating in this region with that in other parts of the country. The study also underscores the utility of the CVR of the B602L gene in genetically characterizing highly similar Genotype II ASFVs to understand the spread of ASF within the country.
Collapse
Affiliation(s)
- Jagadish Hiremath
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Divakar Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Shivasharanappa Nayakvadi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Chethan Kumar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | | | - Damini Sharma
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Rajendran Ramamoorthy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Suresh Shankanahalli Mamatha
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Sharanagouda Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | | | | | - Susan Abraham Swapna
- Department of Animal Husbandry, State Institute for Animal Diseases, Palode, Kerala, India
| | - Baldev Raj Gulati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India.
| |
Collapse
|
15
|
Banabazi MH, Freimanis G, Goatley LC, Netherton CL, de Koning DJ. The transcriptomic insight into the differential susceptibility of African Swine Fever in inbred pigs. Sci Rep 2024; 14:5944. [PMID: 38467747 PMCID: PMC10928096 DOI: 10.1038/s41598-024-56569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
African swine fever (ASF) is a global threat to animal health and food security. ASF is typically controlled by strict biosecurity, rapid diagnosis, and culling of affected herds. Much progress has been made in developing modified live virus vaccines against ASF. There is host variation in response to ASF infection in the field and under controlled conditions. To better understand the dynamics underlying this host differential morbidity, whole transcriptome profiling was carried out in twelve immunized and five sham immunized pigs. Seventeen MHC homozygous inbred Large white Babraham pigs were sampled at three time points before and after the challenge. The changes in the transcriptome profiles of infected animals were surveyed over time. In addition, the immunization effect on the host response was studied as well among the contrasts of all protection subgroups. The results showed two promising candidate genes to distinguish between recovered and non-recovered pigs after infection with a virulent African swine fever virus (ASFV) pre-infection: HTRA3 and GFPT2 (padj < 0.05). Variant calling on the transcriptome assemblies showed a two-base pair insertion into the ACOX3 gene closely located to HTRA3 that may regulate its expression as a putative genomic variant for ASF. Several significant DGEs, enriched gene ontology (GO) terms, and KEGG pathways at 1 day and 7 days post-infection, compared to the pre-infection, indicate a significant inflammation response immediately after ASF infection. The presence of the virus was confirmed by the mapping of RNA-Seq reads on two whole viral genome sequences. This was concordant with a higher virus load in the non-recovered animals 7 days post-infection. There was no transcriptome signature on the immunization at pre-infection and 1 day post-infection. More samples and data from additional clinical trials may support these findings.
Collapse
Affiliation(s)
- Mohammad Hossein Banabazi
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | | | | | | | - Dirk-Jan de Koning
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden.
| |
Collapse
|
16
|
Gao H, Di D, Wu Q, Li J, Liu X, Xu Z, Xu S, Wu C, Gong L, Sun Y, Zhang G, Chen H, Wang H. Pathogenicity and horizontal transmission evaluation of a novel isolated African swine fever virus strain with a three-large-fragment-gene deletion. Vet Microbiol 2024; 290:110002. [PMID: 38295489 DOI: 10.1016/j.vetmic.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
African swine fever has caused substantial economic losses to China`s pig industry in recent years. Currently, the highly pathogenic African swine fever virus strain of genotype II is predominantly circulating in China, accompanied by a series of emerging isolates displaying unique genetic variations. The pathogenicity of these emerging strains is still unclear. Recently, a novel ASFV strain with a distinguishable three-large-fragment gene deletion was obtained from the field specimens, and its in vivo pathogenicity and transmission were evaluated in this study. The animal experiment involved inoculating a high dose of YNFN202103 and comparing its effects with those of the highly pathogenic strain GZ201801_2. Results showed that pigs infected by YNFN202103 exhibited significantly prolonged onset and survival time, lower viremia levels, and less severe histopathological lesions compared to GZ201801_2. These findings contributed valuable insights into the pathogenicity and transmission of ASFV and its prevention and eradication strategies in practical settings.
Collapse
Affiliation(s)
- Han Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Dongdong Di
- The Spirit Jinyu Biological Pharmaceutical Co., Ltd., Hohhot, People's Republic of China
| | - Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Jie Li
- The Spirit Jinyu Biological Pharmaceutical Co., Ltd., Hohhot, People's Republic of China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Zhiying Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Sijia Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Chengyu Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People's Republic of China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China.
| |
Collapse
|
17
|
Bosch-Camós L, Martínez-Torró C, López-Laguna H, Lascorz J, Argilaguet J, Villaverde A, Rodríguez F, Vázquez E. Nanoparticle-Based Secretory Granules Induce a Specific and Long-Lasting Immune Response through Prolonged Antigen Release. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:435. [PMID: 38470766 DOI: 10.3390/nano14050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Developing prolonged antigen delivery systems that mimic long-term exposure to pathogens appears as a promising but still poorly explored approach to reach durable immunities. In this study, we have used a simple technology by which His-tagged proteins can be assembled, assisted by divalent cations, as supramolecular complexes with progressive complexity, namely protein-only nanoparticles and microparticles. Microparticles produced out of nanoparticles are biomimetics of secretory granules from the mammalian hormonal system. Upon subcutaneous administration, they slowly disintegrate, acting as an endocrine-like secretory system and rendering the building block nanoparticles progressively bioavailable. The performance of such materials, previously validated for drug delivery in oncology, has been tested here regarding the potential for time-prolonged antigen release. This has been completed by taking, as a building block, a nanostructured version of p30, a main structural immunogen from the African swine fever virus (ASFV). By challenging the system in both mice and pigs, we have observed unusually potent pro-inflammatory activity in porcine macrophages, and long-lasting humoral and cellular responses in vivo, which might overcome the need for an adjuvant. The robustness of both innate and adaptive responses tag, for the first time, these dynamic depot materials as a novel and valuable instrument with transversal applicability in immune stimulation and vaccinology.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Carlos Martínez-Torró
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jara Lascorz
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Argilaguet
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Fernando Rodríguez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
18
|
Yang M, Ge X, Zhou L, Guo X, Han J, Zhang Y, Yang H. Preparation and characterization of monoclonal antibodies against porcine gasdermin D protein. Appl Microbiol Biotechnol 2024; 108:173. [PMID: 38267794 PMCID: PMC10808365 DOI: 10.1007/s00253-023-12938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
Pyroptosis is a newly discovered type of pro-inflammatory programmed cell death that plays a vital role in various processes such as inflammations, immune responses, and pathogen infections. As one of the main executioners of pyroptosis, gasdermin D (GSDMD) is a membrane pore-forming protein that typically exists in a self-inhibitory state. Once activated, GSDMD will be cleaved into an N-terminal fragment with pore-forming activity, becoming the key indicator of pyroptosis activation, and a C-terminal fragment. Although commercial antibodies against human and murine GSDMD proteins are currently available, their reactivity with porcine GSDMD (pGSDMD) is poor, which limits research on the biological functions of pGSDMD and pyroptosis in pigs in vivo and in vitro. Here, five monoclonal antibodies (mAbs) were prepared by immunizing BALB/c mice with procaryotically expressed full-length pGSDMD, all of which did not cross react with human and murine GSDMD proteins. Epitope mapping demonstrated that 15H6 recognizes amino acids (aa) at positions 28-34 of pGSDMD (LQTSDRF), 19H3 recognizes 257-260aa (PPQF), 23H10 and 27A10 recognize 78-82aa (GPFYF), and 25E2 recognizes 429-435aa (PPTLLGS). The affinity constant and isotype of 15H6, 19H3, 23H10, 27A10, and 25E2 mAbs were determined to be 1.32 × 10-9, 3.66 × 10-9, 9.04 × 10-9, 1.83 × 10-9, and 8.00 × 10-8 mol/L and IgG1/κ, IgG2a/κ, IgG2a/κ, IgG1/κ, and IgG1/κ, respectively. Heavy- and light-chain variable regions sequencing showed that the heavy-chain complementarity-determining region (CDR) sequences of all five mAbs are completely different, while the light-chain CDR sequences of the four mAbs that recognize the N-terminus of pGSDMD are identical. Our prepared mAbs provide valuable materials for studying pGSDMD function and pyroptosis. KEY POINTS: • A total of five mouse anti-pGSDMD mAbs were prepared, of which four recognize the N-terminus of pGSDMD and one recognize its C-terminus. • The main performance parameters of the five mAbs, including epitope, antibody titer, affinity constant, isotype, and heavy- and light-chain CDR, were characterized. • All five mAbs specifically recognize pGSDMD protein and do not cross react with human and murine GSDMD proteins.
Collapse
Affiliation(s)
- Minhui Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| |
Collapse
|
19
|
Shi LF, Ren H, Zhang B, Shi SY, Shao HC, Xing H, Zhao YY, Lin ZZ, Zhang Y, Han S, He WR, Zhang G, Wan B. Preparation and epitope mapping of monoclonal antibodies against African swine fever virus p22 protein. Int J Biol Macromol 2024; 255:128111. [PMID: 37979744 DOI: 10.1016/j.ijbiomac.2023.128111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is now widespread in many countries and severely affects the commercial rearing of swine. Rapid and early diagnosis is crucial for the prevention of ASF. ASFV mature virions comprise the inner envelope protein, p22, making it an excellent candidate for the serological diagnosis and surveillance of ASF. In this study, the prokaryotic-expressed p22 recombinant protein was prepared and purified for immunization in mice. Four monoclonal antibodies (mAbs) were identified using hybridoma cell fusion, clone purification, and immunological assays. The epitopes of mAbs 14G1 and 22D8 were further defined by alanine-scanning mutagenesis. Our results showed that amino acids C39, K40, V41, D42, C45, G48, E49, and C51 directly bound to 14G1, while the key amino acid epitope for 22D8 included K161, Y162, G163, D165, H166, I167, and I168. Homologous and structural analysis revealed that these sites were highly conserved across Asian and European ASFV strains, and the amino acids identified were located on the surface of p22. Thus, our study contributes to a better understanding of the antigenicity of the ASFV p22 protein, and the results could facilitate the prevention and control of ASF.
Collapse
Affiliation(s)
- Lan-Fang Shi
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haojie Ren
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Biao Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sai-Yan Shi
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Han-Cheng Shao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hainan Xing
- Comprehensive service centers of Yilan Town, Yanji, China
| | - Yan-Yan Zhao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhi-Zhao Lin
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Shichong Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Wen-Rui He
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China.
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China.
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
20
|
Dei Giudici S, Loi F, Ghisu S, Angioi PP, Zinellu S, Fiori MS, Carusillo F, Brundu D, Franzoni G, Zidda GM, Tolu P, Bandino E, Cappai S, Oggiano A. The Long-Jumping of African Swine Fever: First Genotype II Notified in Sardinia, Italy. Viruses 2023; 16:32. [PMID: 38257733 PMCID: PMC10820622 DOI: 10.3390/v16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
African swine fever (ASF) is a devastating infectious disease of domestic pigs and wild boar that is spreading quickly around the world and causing huge economic losses. Although the development of effective vaccines is currently being attempted by several labs, the absence of globally recognized licensed vaccines makes disease prevention and early detection even more crucial. ASF has spread across many countries in Europe and about two years ago affected the Italian susceptible population. In Italy, the first case of ASF genotype II in wild boar dates back to January 2022, while the first outbreak in a domestic pig farm was notified in August 2023. Currently, four clusters of infection are still ongoing in northern (Piedmont-Liguria and Lombardy), central (Lazio), and southern Italy (Calabria and Campania). In early September 2023, the first case of ASFV genotype II was detected in a domestic pig farm in Sardinia, historically affected by genotype I and in the final stage of eradication. Genomic characterization of p72, p54, and I73R/I329L genome regions revealed 100% similarity to those obtained from isolates that have been circulating in mainland Italy since January 2022 and also with international strains. The outbreak was detected and confirmed due to the passive surveillance plan on domestic pig farms put in place to provide evidence on genotype I's absence. Epidemiological investigations suggest 24 August as the most probable time of ASFV genotype II's arrival in Sardinia, likely due to human activities.
Collapse
Affiliation(s)
- Silvia Dei Giudici
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | - Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy;
| | - Sonia Ghisu
- Diagnostic Laboratories, Istituto Zooprofilattico Sperimentale della Sardegna, 08100 Nuoro, Italy; (S.G.); (F.C.); (D.B.); (E.B.)
| | - Pier Paolo Angioi
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | - Susanna Zinellu
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | - Mariangela Stefania Fiori
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | - Francesca Carusillo
- Diagnostic Laboratories, Istituto Zooprofilattico Sperimentale della Sardegna, 08100 Nuoro, Italy; (S.G.); (F.C.); (D.B.); (E.B.)
| | - Diego Brundu
- Diagnostic Laboratories, Istituto Zooprofilattico Sperimentale della Sardegna, 08100 Nuoro, Italy; (S.G.); (F.C.); (D.B.); (E.B.)
| | - Giulia Franzoni
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | | | - Paolo Tolu
- Azienda Sanitaria Locale della Sardegna, 08100 Nuoro, Italy; (G.M.Z.); (P.T.)
| | - Ennio Bandino
- Diagnostic Laboratories, Istituto Zooprofilattico Sperimentale della Sardegna, 08100 Nuoro, Italy; (S.G.); (F.C.); (D.B.); (E.B.)
| | - Stefano Cappai
- Osservatorio Epidemiologico Veterinario Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy;
| | - Annalisa Oggiano
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| |
Collapse
|
21
|
Pegu SR, Sonowal J, Deb R, Das PJ, Sengar GS, Rajkhowa S, Gupta VK. Clinicopathological and ultrastructural study of African swine fever outbreak in North-East India. Microb Pathog 2023; 185:106452. [PMID: 37972743 DOI: 10.1016/j.micpath.2023.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/01/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The present investigation focuses on examining the clinical, histopathological, and ultrastructural changes that occurred in pig, during an outbreak of African swine fever (ASF) in 2022 in Assam, India. The disease initially manifested as a per-acute case with high mortality but without any evident clinical signs. Subsequently, some animals exhibited an acute form of the disease characterized by high fever (104-106 °F), anorexia, vomiting, respiratory distress, and bleeding from the anal and nasal orifices. During acute African swine fever virus (ASFV) infections, elevated levels of pro-inflammatory IL-1α, IL-1β, IL-6, TNF, CCL2, CCL5, and CXCL10 were detected in the palatine tonsil, lymph nodes, spleen, and kidney using qPCR assay. These molecular changes were associated with haemorrhages, edemas, and lymphoid depletion. Postmortem examinations revealed prominent features such as splenomegaly with haemorrhages, haemorrhagic lymphadenitis, severe petechial haemorrhage in the kidney, pneumonia in the lungs, and necrotic palatine tonsil. Histopathological analysis demonstrated lymphocyte depletion in lymphoid organs, multi-organ haemorrhages, and interstitial pneumonia in the lungs. Scanning electron microscopy (SEM) further confirmed lymphocyte depletion in lymphoid organs through lymphocyte apoptosis and kidney damage with distorted tubules due to red blood cell destruction. Transmission electron microscopy reaffirmed lymphocyte apoptosis by observing chromatin condensation and nucleus margination in lymphocytes of lymphoid organs. These findings provide comprehensive insights into the clinical, histopathological, and ultrastructural aspects of ASF outbreak in pigs. Understanding the pathological changes associated with ASF can contribute to improved diagnosis, prevention, and control measures for this highly contagious and economically devastating viral disease.
Collapse
Affiliation(s)
| | | | - Rajib Deb
- ICAR-NRC on Pig, Rani, Guwahati, 781131, India
| | | | | | | | | |
Collapse
|
22
|
Olesen AS, Lohse L, Johnston CM, Rasmussen TB, Bøtner A, Belsham GJ. Increased Presence of Circulating Cell-Free, Fragmented, Host DNA in Pigs Infected with Virulent African Swine Fever Virus. Viruses 2023; 15:2133. [PMID: 37896910 PMCID: PMC10612093 DOI: 10.3390/v15102133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
African swine fever virus (ASFV) causes severe hemorrhagic disease in domestic pigs and wild boar, often with high case fatality rates. The virus replicates in the circulating cells of the monocyte-macrophage lineage and within lymphoid tissues. The infection leads to high fever and a variety of clinical signs. In this study, it was observed that ASFV infection in pigs resulted in a >1000-fold increase in the level of circulating cell-free DNA (cfDNA), derived from the nuclei of host cells in the serum. This change occurred in parallel with the increase in circulating ASFV DNA. In addition, elevated levels (about 30-fold higher) of host mitochondrial DNA (mtDNA) were detected in the serum from ASFV-infected pigs. For comparison, the release of the cellular enzyme, lactate dehydrogenase (LDH), a commonly used marker of cellular damage, was also found to be elevated during ASFV infection, but later and less consistently. The sera from pigs infected with classical swine fever virus (CSFV), which causes a clinically similar disease to ASFV, were also tested but, surprisingly, this infection did not result in the release of cfDNA, mtDNA, or LDH. It was concluded that the level of cfDNA in the serum is a sensitive host marker of virulent ASFV infection.
Collapse
Affiliation(s)
- Ann Sofie Olesen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark; (L.L.); (C.M.J.); (T.B.R.)
| | - Louise Lohse
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark; (L.L.); (C.M.J.); (T.B.R.)
| | - Camille Melissa Johnston
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark; (L.L.); (C.M.J.); (T.B.R.)
| | - Thomas Bruun Rasmussen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark; (L.L.); (C.M.J.); (T.B.R.)
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Denmark;
| | - Graham J. Belsham
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Denmark;
| |
Collapse
|
23
|
Feng W, Zhou L, Du H, Okoth E, Mrode R, Jin W, Hu Z, Liu JF. Transcriptome analysis reveals gene expression changes of pigs infected with non-lethal African swine fever virus. Genet Mol Biol 2023; 46:e20230037. [PMID: 37844188 PMCID: PMC10578457 DOI: 10.1590/1678-4685-gmb-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/14/2023] [Indexed: 10/18/2023] Open
Abstract
African swine fever (ASF) is an important viral disease of swine caused by the African swine fever virus (ASFV), which threatens swine production profoundly. To better understand the gene expression changes when pig infected with ASFV, RNA sequencing was performed to characterize differentially expressed genes (DEGs) of six tissues from Kenya domestic pigs and Landrace × Yorkshire (L/Y) pigs infected with ASFV Kenya1033 in vivo. As results, a total of 209, 522, 34, 505, 634 and 138 DEGs (q-value < 0.05 and |Log2foldchange| values >2) were detected in the kidney, liver, mesenteric lymph node, peripheral blood mononuclear cell, submandibular lymph node and spleen, respectively. The expression profiles of DEGs shared in the multiple tissues illustrated variation in regulation function in the different tissues. Functional annotation analysis and interaction of proteins encoded by DEGs revealed that genes including IFIT1, IFITM1, MX1, OASL, ISG15, SAMHD1, IFINA1, S100A12 and S100A8 enriched in the immune and antivirus pathways were significantly changed when the hosts were infected with ASFV. The genes mentioned could play crucial roles in the process of the reaction to non-lethal ASF infection, which may will help to improve the ASF tolerance in the pig population through molecular breeding strategies.
Collapse
Affiliation(s)
- Wen Feng
- State Key Laboratory of Animal Biotech Breeding, Beijing, China
- Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing, China
- China Agricultural University, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing, China
- China Agricultural University, College of Animal Science and Technology, Beijing, China
- Yulin University, College of Life Sciences, Shaanxi, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, Beijing, China
- Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing, China
- China Agricultural University, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing, China
- China Agricultural University, College of Animal Science and Technology, Beijing, China
| | - Heng Du
- State Key Laboratory of Animal Biotech Breeding, Beijing, China
- Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing, China
- China Agricultural University, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing, China
- China Agricultural University, College of Animal Science and Technology, Beijing, China
| | - Edward Okoth
- International Livestock Research Institute, Nairobi, Kenya
| | - Raphael Mrode
- International Livestock Research Institute, Nairobi, Kenya
| | - Wenjiao Jin
- State Key Laboratory of Animal Biotech Breeding, Beijing, China
- Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing, China
- China Agricultural University, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing, China
- China Agricultural University, College of Animal Science and Technology, Beijing, China
| | - Zhengzheng Hu
- State Key Laboratory of Animal Biotech Breeding, Beijing, China
- Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing, China
- China Agricultural University, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing, China
- China Agricultural University, College of Animal Science and Technology, Beijing, China
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, Beijing, China
- Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing, China
- China Agricultural University, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing, China
- China Agricultural University, College of Animal Science and Technology, Beijing, China
| |
Collapse
|
24
|
Truong QL, Wang L, Nguyen TA, Nguyen HT, Tran SD, Vu AT, Le AD, Nguyen VG, Hoang PT, Nguyen YT, Le TL, Van TN, Huynh TML, Lai HTL, Madera R, Li Y, Shi J, Nguyen LT. A Cell-Adapted Live-Attenuated Vaccine Candidate Protects Pigs against the Homologous Strain VNUA-ASFV-05L1, a Representative Strain of the Contemporary Pandemic African Swine Fever Virus. Viruses 2023; 15:2089. [PMID: 37896866 PMCID: PMC10612049 DOI: 10.3390/v15102089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
African swine fever (ASF) is a lethal and highly contagious transboundary animal disease with the potential for rapid international spread. Currently, there is no ASF vaccine commercially available. All infected animals must be isolated and culled immediately upon the confirmation of the presence of the virus. Studies leading to the rational development of protective ASF vaccines are urgently needed. Here, we generated a safe and efficacious live-attenuated vaccine (LAV) VNUA-ASFV-LAVL2 by serially passaging a field isolate (VNUA-ASFV-05L1, genotype II) in porcine alveolar macrophages (PAMs, 65 passages) and an immortalized porcine alveolar macrophage cell line (3D4/21, 55 passages). VNUA-ASFV-LAVL2 can efficiently replicate in both PAMs and 3D4/21 cells. It provides 100% protection, even with the low dose of 102 HAD50, to the vaccinated pigs against the challenge of contemporary pandemic ASFV field isolate. Pigs vaccinated with this LAV in a dose range of 102 to 105 HAD50 remained clinically healthy during both the 28-day observation period of immunization and the 28-day observation period of challenge. VNUA-ASFV-LAVL2 was eliminated from blood by 28 days post-inoculation (DPI), and from feces or oral fluids by 17 DPI. Although the vaccine strain in serum remained a safe and attenuated phenotype after five passages in swine, a reversion-to-virulence study using blood or tissue homogenates at peak viremia will be conducted in the future. ASFV-specific IgG antibodies and significant cellular immunity were detected in vaccinated pigs before the ASFV challenge. These results indicate that the VNUA-ASFV-LAVL2 strain is a safe and efficacious LAV against the genotype II ASFV strain responsible for current ASF outbreaks in Asia.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Lihua Wang
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Tuan Anh Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Son Danh Tran
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Anh Thi Vu
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Anh Dao Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Van Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (V.G.N.); (T.M.L.H.)
| | - Phuong Thi Hoang
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Yen Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Thi Luyen Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Thang Nguyen Van
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Thi My Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (V.G.N.); (T.M.L.H.)
| | - Huong Thi Lan Lai
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Rachel Madera
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Yuzhen Li
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Jishu Shi
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| |
Collapse
|
25
|
Xu L, Hao F, Jeong DG, Chen R, Gan Y, Zhang L, Yeom M, Lim JW, Yu Y, Bai Y, Zeng Z, Liu Y, Xiong Q, Shao G, Wu Y, Feng Z, Song D, Xie X. Mucosal and cellular immune responses elicited by nasal and intramuscular inoculation with ASFV candidate immunogens. Front Immunol 2023; 14:1200297. [PMID: 37720232 PMCID: PMC10502713 DOI: 10.3389/fimmu.2023.1200297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
African swine fever (ASF) is an infectious disease caused by African swine fever virus (ASFV) that is highly contagious and has an extremely high mortality rate (infected by virulent strains) among domestic and wild pigs, causing huge economic losses to the pig industry globally. In this study, SDS-PAGE gel bands hybridized with ASFV whole virus protein combined with ASFV-convalescent and ASFV-positive pig serum were identified by mass spectrometry. Six antigens were detected by positive serum reaction bands, and eight antigens were detected in ASFV-convalescent serum. In combination with previous literature reports and proteins corresponding to MHC-II presenting peptides screened from ASFV-positive pig urine conducted in our lab, seven candidate antigens, including KP177R (p22), K78R (p10), CP204L (p30), E183L (p54), B602L (B602L), EP402R-N (CD2V-N) and F317L (F317L), were selected. Subunit-Group 1 was prepared by mixing above-mentioned seven ASFV recombinant proteins with MONTANIDETM1313 VG N mucosal adjuvant and immunizing pigs intranasally and intramuscularly. Subunit-Group 2 was prepared by mixing four ASFV recombinant proteins (p22, p54, CD2V-N1, B602L) with Montanide ISA 51 VG adjuvant and immunizing pigs by intramuscular injection. Anticoagulated whole blood, serum, and oral fluid were collected during immunization for flow cytometry, serum IgG as well as secretory sIgA antibody secretion, and cytokine expression testing to conduct a comprehensive immunogenicity assessment. Both immunogen groups can effectively stimulate the host to produce ideal humoral, mucosal, and cellular immune responses, providing a theoretical basis for subsequent functional studies, such as immunogens challenge protection and elucidation of the pathogenic mechanism of ASFV.
Collapse
Affiliation(s)
- Lulu Xu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rong Chen
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Lei Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Minjoo Yeom
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jong-Woo Lim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Yanfei Yu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yun Bai
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Guoqing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yuzi Wu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhixin Feng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Daesub Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Xing Xie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
26
|
Ekakoro JE, Nawatti M, Singler DF, Ochoa K, Kizza R, Ndoboli D, Ndumu DB, Wampande EM, Havas KA. A survey of biosecurity practices of pig farmers in selected districts affected by African swine fever in Uganda. Front Vet Sci 2023; 10:1245754. [PMID: 37662985 PMCID: PMC10469975 DOI: 10.3389/fvets.2023.1245754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction In Uganda, pig production is an important source of livelihood for many people and contributes to food security. African swine fever (ASF) is a major constraint to pig production in Uganda, threatening the food supply and sustainable livelihoods. Prevention of ASF primarily relies on good biosecurity practices along the pig value chain. Previous studies showed that biosecurity along the pig value chain and on farms in Uganda is poor. However, the biosecurity practices of pig farmers in ASF affected areas of Uganda and their opinions on on-farm ASF morbidity and mortality were previously not comprehensively characterized. The objectives of this study were to document pig farmers' experiences with ASF in their farms and to describe the pig biosecurity practices in districts of Uganda that were highly affected by ASF. Methods A total of 99 farmers were interviewed in five districts. Data were collected by way of triangulation through farmer interviews, field observations during the farmer interviews, and a survey of key informants. However, farmer interviews were considered the primary source of data for this study. Farmers' biosecurity practices were scored using a biosecurity scoring algorithm. Results Forty-one out of 96 (42.7%) farmers reported having pigs with ASF in the past 12 months. The level of pig farming experience (p = 0.0083) and herd size (p < 0.0001) were significantly associated with the reported occurrence of ASF. Overall, the biosecurity scores for the respondents were considered poor with 99% (98/99) scoring <70% and just one farmer obtaining a fair score of 72.2%. District (p = 0.0481), type of husbandry system (p = 0.014), and type of pig breed raised (p = 0.004) were significantly associated with farmer's biosecurity score. Conclusion Continued farmer education on ASF and the importance of good biosecurity practices is necessary. More in-depth scientific inquiry into the factors influencing the biosecurity practices among pig farmers in Uganda is necessary.
Collapse
Affiliation(s)
- John E. Ekakoro
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Margaret Nawatti
- Department of Political Science and Public Administration, College of Humanities and Social Sciences, Makerere University, Kampala, Uganda
| | - David F. Singler
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Krista Ochoa
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Robinah Kizza
- Central Diagnostic Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Dickson Ndoboli
- Central Diagnostic Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Deo B. Ndumu
- Department of Animal Health, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe, Uganda
| | - Eddie M. Wampande
- Central Diagnostic Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Karyn A. Havas
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
27
|
Yang J, Zhu R, Zhang Y, Fan J, Zhou X, Yue H, Li Q, Miao F, Chen T, Mi L, Zhang F, Zhang S, Qian A, Hu R. SY18ΔL60L: a new recombinant live attenuated African swine fever virus with protection against homologous challenge. Front Microbiol 2023; 14:1225469. [PMID: 37621401 PMCID: PMC10445127 DOI: 10.3389/fmicb.2023.1225469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction African swine fever (ASF) is an acute and highly contagious disease and its pathogen, the African swine fever virus (ASFV), threatens the global pig industry. At present, management of ASF epidemic mainly relies on biological prevention and control methods. Moreover, due to the large genome of ASFV, only half of its genes have been characterized in terms of function. Methods Here, we evaluated a previously uncharacterized viral gene, L60L. To assess the function of this gene, we constructed a deletion strain (SY18ΔL60L) by knocking out the L60L gene of the SY18 strain. To evaluate the growth characteristics and safety of the SY18ΔL60L, experiments were conducted on primary macrophages and pigs, respectively. Results The results revealed that the growth trend of the recombinant strain was slower than that of the parent strain in vitro. Additionally, 3/5 (60%) pigs intramuscularly immunized with a 105 50% tissue culture infectious dose (TCID50) of SY18ΔL60L survived the 21-day observation period. The surviving pigs were able to protect against the homologous lethal strain SY18 and survive. Importantly, there were no obvious clinical symptoms or viremia. Discussion These results suggest that L60L could serve as a virulence- and replication-related gene. Moreover, the SY18ΔL60L strain represents a new recombinant live-attenuated ASFV that can be employed in the development of additional candidate vaccine strains and in the elucidation of the mechanisms associated with ASF infection.
Collapse
Affiliation(s)
- Jinjin Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Rongnian Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Yanyan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Jiaqi Fan
- Life Science College, Ningxia University, Yinchuan, China
| | - Xintao Zhou
- Life Science College, Ningxia University, Yinchuan, China
| | - Huixian Yue
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Qixuan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Faming Miao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Teng Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Lijuan Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Fei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Aidong Qian
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| |
Collapse
|
28
|
Han S, Oh D, Xie J, Nauwynck HJ. Susceptibility of perivenous macrophages to PRRSV-1 subtype 1 LV and PRRSV-1 subtype 3 Lena using a new vein explant model. Front Cell Infect Microbiol 2023; 13:1223530. [PMID: 37554354 PMCID: PMC10406384 DOI: 10.3389/fcimb.2023.1223530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Vessel pathology such as increased permeability and blue discoloration is frequently observed with highly pathogenic PRRSV strains. However, data concerning the viral replication in the environment of blood vessels are absent. In the present study, ex vivo models with swine ear and hind leg vein explants were established to study the interaction of PRRSV-1 subtype 1 reference strain LV and highly pathogenic subtype 3 strain Lena with perivenous macrophages. The replication characteristics of these two strains were compared in vein explants by immunofluorescence analysis. The explants maintained a good viability during 48 hours of in vitro culture. We found that CD163-positive macrophages were mainly present around the veins and their number gradually decreased with increasing distance from the veins and longer incubation time. More CD163+Sn- cells than CD163+Sn+ cells (6.6 times more) were observed in the vein explants. The Lena strain demonstrated a higher replication level than the LV strain, with approximately 1.4-fold more infected cells in the surrounding areas of the ear vein and 1.1-fold more infected cells in the leg vein explants at 48 hours post inoculation. In both LV and Lena inoculated vein explants, most infected cells were identified as CD163+Sn+ (> 94%). In this study, an ex vivo vein model was successfully established, and our findings will contribute to a better understanding of the vein pathology during viral infections (e.g., PRRS, classical and African swine fever).
Collapse
Affiliation(s)
- Shaojie Han
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | |
Collapse
|
29
|
Zajac MD, Trujillo JD, Yao J, Kumar R, Sangewar N, Lokhandwala S, Sang H, Mallen K, McCall J, Burton L, Kumar D, Heitmann E, Burnum T, Waghela SD, Almes K, Richt J, Kim T, Mwangi W. Immunization of pigs with replication-incompetent adenovirus-vectored African swine fever virus multi-antigens induced humoral immune responses but no protection following contact challenge. Front Vet Sci 2023; 10:1208275. [PMID: 37404778 PMCID: PMC10316028 DOI: 10.3389/fvets.2023.1208275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction African swine fever virus (ASFV) is a pathogen of great economic importance given that continues to threaten the pork industry worldwide, but there is no safe vaccine or treatment available. Development of a vaccine is feasible as immunization of pigs with some live attenuated ASFV vaccine candidates can confer protection, but safety concerns and virus scalability are challenges that must to be addressed. Identification of protective ASFV antigens is needed to inform the development of efficacious subunit vaccines. Methods In this study, replication-incompetent adenovirus-vectored multicistronic ASFV antigen expression constructs that covered nearly 100% of the ASFV proteome were generated and validated using ASFV convalescent serum. Swine were immunized with a cocktail of the expression constructs, designated Ad5-ASFV, alone or formulated with either Montanide ISA-201™ (ASFV-ISA-201) or BioMize® adjuvant (ASFV-BioMize). Results These constructs primed strong B cell responses as judged by anti-pp62-specific IgG responses. Notably, the Ad5-ASFV and the Ad5-ASFV ISA-201, but not the Ad5-ASFV BioMize®, immunogens primed significantly (p < 0.0001) higher anti-pp62-specific IgG responses compared with Ad5-Luciferase formulated with Montanide ISA-201™ adjuvant (Luc-ISA-201). The anti-pp62-specific IgG responses underwent significant (p < 0.0001) recall in all the vaccinees after boosting and the induced antibodies strongly recognized ASFV (Georgia 2007/1)-infected primary swine cells. However, following challenge by contact spreaders, only one pig nearly immunized with the Ad5-ASFV cocktail survived. The survivor had no typical clinical symptoms, but had viral loads and lesions consistent with chronic ASF. Discussion Besides the limited sample size used, the outcome suggests that in vivo antigen expression, but not the antigen content, might be the limitation of this immunization approach as the replication-incompetent adenovirus does not amplify in vivo to effectively prime and expand protective immunity or directly mimic the gene transcription mechanisms of attenuated ASFV. Addressing the in vivo antigen delivery limitations may yield promising outcomes.
Collapse
Affiliation(s)
- Michelle D. Zajac
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jianxiu Yao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Rakshith Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Kylynn Mallen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jayden McCall
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Leeanna Burton
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Emily Heitmann
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tristan Burnum
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Kelli Almes
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Juergen Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tae Kim
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
30
|
Watanabe M, Kitamura T, Nagata K, Ikezawa M, Kameyama KI, Masujin K, Kokuho T. Development of a Novel Indirect ELISA for the Serological Diagnosis of African Swine Fever Using p11.5 Protein as a Target Antigen. Pathogens 2023; 12:774. [PMID: 37375464 DOI: 10.3390/pathogens12060774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
African swine fever is a hemorrhagic viral disease with a mortality rate of nearly 100% in pigs. Hence, it is classified as a notifiable disease by the World Organization for Animal Health. Because no field-available vaccine exists, African swine fever virus (ASFV) control and eradication solely depend on good farm biosecurity management and rapid and accurate diagnosis. In this study, we developed a new indirect serological enzyme-linked immunosorbent assay (ELISA) using recombinant p11.5 protein from ASFV as a solid-phase target antigen. The cutoffs were determined by receiver operating curve analysis performed with serum samples obtained from naïve and infected pigs. Based on the results of a commercially available serological ELISA, the relative sensitivity and specificity of our assay were 93.4% and 94.4% (N = 166; area under the curve = 0.991; 95% confidence interval = 0.982-0.999), respectively. Furthermore, to compare the performance of the serological ELISAs, we conducted the assays on a panel of sera collected from pigs and boars experimentally infected with different ASFV isolates. The results indicated the greater sensitivity of the newly developed assay and its ability to detect anti-ASFV antibodies earlier after virus inoculation.
Collapse
Affiliation(s)
- Mizuki Watanabe
- Nippon Institute for Biological Science, Tokyo 198-0024, Japan
- Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tokyo 187-0022, Japan
| | - Tomoya Kitamura
- Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tokyo 187-0022, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Mitsutaka Ikezawa
- Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tokyo 187-0022, Japan
| | - Ken-Ichiro Kameyama
- Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tokyo 187-0022, Japan
| | - Kentaro Masujin
- Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tokyo 187-0022, Japan
| | - Takehiro Kokuho
- Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tokyo 187-0022, Japan
| |
Collapse
|
31
|
Ko YS, Tark D, Moon SH, Kim DM, Lee TG, Bae DY, Sunwoo SY, Oh Y, Cho HS. Alteration of the Gut Microbiota in Pigs Infected with African Swine Fever Virus. Vet Sci 2023; 10:vetsci10050360. [PMID: 37235443 DOI: 10.3390/vetsci10050360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The factors that influence the pathogenicity of African swine fever (ASF) are still poorly understood, and the host's immune response has been indicated as crucial. Although an increasing number of studies have shown that gut microbiota can control the progression of diseases caused by viral infections, it has not been characterized how the ASF virus (ASFV) changes a pig's gut microbiome. This study analyzed the dynamic changes in the intestinal microbiome of pigs experimentally infected with the high-virulence ASFV genotype II strain (N = 4) or mock strain (N = 3). Daily fecal samples were collected from the pigs and distributed into the four phases (before infection, primary phase, clinical phase, and terminal phase) of ASF based on the individual clinical features of the pigs. The total DNA was extracted and the V4 region of the 16 s rRNA gene was amplified and sequenced on the Illumina platform. Richness indices (ACE and Chao1) were significantly decreased in the terminal phase of ASF infection. The relative abundances of short-chain-fatty-acids-producing bacteria, such as Ruminococcaceae, Roseburia, and Blautia, were decreased during ASFV infection. On the other hand, the abundance of Proteobacteria and Spirochaetes increased. Furthermore, predicted functional analysis using PICRUSt resulted in a significantly reduced abundance of 15 immune-related pathways in the ASFV-infected pigs. This study provides evidence for further understanding the ASFV-pig interaction and suggests that changes in gut microbiome composition during ASFV infection may be associated with the status of immunosuppression.
Collapse
Affiliation(s)
- Young-Seung Ko
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Sung-Hyun Moon
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Dae-Min Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Taek Geun Lee
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Da-Yun Bae
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - Yeonsu Oh
- Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho-Seong Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
32
|
Yu Z, Xie L, Shuai P, Zhang J, An W, Yang M, Zheng J, Lin H. New perspective on African swine fever: a bibliometrics study and visualization analysis. Front Vet Sci 2023; 10:1085473. [PMID: 37266383 PMCID: PMC10229902 DOI: 10.3389/fvets.2023.1085473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction African swine fever (ASF) is a contagious viral disease that can have devastating effects on domestic pigs and wild boars. Over the past decade, there has been a new wave of this ancient disease spreading around the world, prompting many scholars to dedicate themselves to researching this disease. This research aims to use bibliometric methods to organize, analyze and summarize the scientific publications on ASF that have been amassed in the past two decades. Methods This paper used VOSviewer, CiteSpace, and a bibliometric online analysis platform to conduct performance analysis and visualization studies on 1,885 academic papers about ASF in the Web of Science from January 2003 to December 2022. Results The amount of literature published on ASF has increased exponentially in recent years, and the development trend of related research is good. A group of representative scholars have appeared in this research field, and some cooperative networks have been formed. Transboundary and Emerging Diseases is the journal with the most publications in this field, while Virus Research is the journal with the most citation per article. High-productivity countries are led by China in terms of the number of articles published followed by the United States and Spain. In regard to the average number of citations, the scholars in the UK are in the lead. The institution with the most articles was the Chinese Academy of Agricultural Sciences. The analysis of high-frequency keywords showed that the pathogens and epidemiology of ASF were the research hotspots in this field, and the research content was closely related to molecular biology and immunology. The burst keywords "transmission", "identification", "virulence", "replication", and "gene" reflects the research frontier. In addition, by collating and analyzing highly cited journals and highly co-cited references, we explored the knowledge structure and theoretical basis of this field. Discussion This is the first bibliometric analysis report on ASF research, which highlights the key characteristics of ASF research and presents the research status and evolution trend in this field from a new perspective. It provides a valuable reference for further research.
Collapse
Affiliation(s)
- Zhengyu Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Xie
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Peiqiang Shuai
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Jing Zhang
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Wei An
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Miao Yang
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Jing Zheng
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Hua Lin
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| |
Collapse
|
33
|
Urbaniak K, Meekins DA, Davis AS, Richt JA, Trujillo JD. Development of a sensitive, high-throughput extraction protocol for qPCR detection of African swine fever virus in formalin-fixed, paraffin-embedded tissues. J Vet Diagn Invest 2023; 35:284-288. [PMID: 36908192 PMCID: PMC10185996 DOI: 10.1177/10406387231158534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
African swine fever (ASF) causes fatal disease in pigs and is an escalating threat to the global swine industry. ASF has re-emerged from Africa as a transcontinental epidemic spreading through the Caucasus into Europe, Russia, China, numerous Asian countries, and the Caribbean. ASF virus (ASFV) is a U.S. select agent requiring handling in high-containment biosafety level 3 (BSL-3) laboratories for pathogen work. Formalin-fixation eliminates infectivity and preserves the genome, providing noninfectious specimens for BSL-2 work. Recovery of DNA from formalin-fixed, paraffin-embedded tissue (FFPET) is challenging and cumbersome. A reliable and easy-to-perform method for DNA recovery from FFPET would facilitate surveillance. To meet this objective, we developed a high-throughput protocol for the recovery of ASFV DNA from FFPET. Deparaffinization, tissue lysis, and reversal of cross-linking were performed in a single tube, followed by DNA purification via automated magnetic bead extraction. Quantitative PCR (qPCR) detection was used to determine the copy number of the B646L gene that encodes for the ASFV p72 protein in tissues (5 pigs, 4 tissues) from pigs with lesions consistent with acute ASF. Copy numbers obtained from FFPET were within one log of copy numbers obtained from fresh tissue, thus enabling ASF qPCR surveillance from formalin-inactivated and preserved tissues at BSL-2 at diagnostic sensitivity similar to fresh tissues tested at BSL-3.
Collapse
Affiliation(s)
- Kinga Urbaniak
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - A. Sally Davis
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
34
|
Ambagala A, Goonewardene K, Lamboo L, Goolia M, Erdelyan C, Fisher M, Handel K, Lung O, Blome S, King J, Forth JH, Calvelage S, Spinard E, Gladue DP, Masembe C, Adedeji AJ, Olubade T, Maurice NA, Ularamu HG, Luka PD. Characterization of a Novel African Swine Fever Virus p72 Genotype II from Nigeria. Viruses 2023; 15:v15040915. [PMID: 37112895 PMCID: PMC10146018 DOI: 10.3390/v15040915] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
African swine fever (ASF) is a high-consequence transboundary hemorrhagic fever of swine. It continues to spread across the globe causing socio-economic issues and threatening food security and biodiversity. In 2020, Nigeria reported a major ASF outbreak, killing close to half a million pigs. Based on the partial sequences of the genes B646L (p72) and E183L (p54), the virus responsible for the outbreak was identified as an African swine fever virus (ASFV) p72 genotype II. Here, we report further characterization of ASFV RV502, one of the isolates obtained during the outbreak. The whole genome sequence of this virus revealed a deletion of 6535 bp between the nucleotide positions 11,760–18,295 of the genome, and an apparent reverse complement duplication of the 5′ end of the genome at the 3′ end. Phylogenetically, ASFV RV502 clustered together with ASFV MAL/19/Karonga and ASFV Tanzania/Rukwa/2017/1 suggesting that the virus responsible for the 2020 outbreak in Nigeria has a South-eastern African origin.
Collapse
Affiliation(s)
- Aruna Ambagala
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kalhari Goonewardene
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Lindsey Lamboo
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Cassidy Erdelyan
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Mathew Fisher
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Katherine Handel
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Germany
| | - Jan Hendrik Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Germany
| | - Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Germany
| | - Edward Spinard
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Charles Masembe
- College of Natural Resources (CoNAS), Makerere University, Kampala P.O Box 7062, Uganda
| | | | - Toyin Olubade
- National Veterinary Research Institute, Vom 930103, Nigeria
| | | | | | - Pam D. Luka
- National Veterinary Research Institute, Vom 930103, Nigeria
| |
Collapse
|
35
|
Pathological Characteristics of Domestic Pigs Orally Infected with the Virus Strain Causing the First Reported African Swine Fever Outbreaks in Vietnam. Pathogens 2023; 12:pathogens12030393. [PMID: 36986314 PMCID: PMC10058432 DOI: 10.3390/pathogens12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
African swine fever (ASF) is currently Vietnam’s most economically significant swine disease. The first ASF outbreak in Vietnam was reported in February 2019. In this study, VNUA/HY/ASF1 strain isolated from the first ASF outbreak was used to infect 10 eight-week-old pigs orally with 103 HAD50 per animal. The pigs were observed daily for clinical signs, and whole blood samples were collected from each animal for viremia detection. Dead pigs were subjected to full post-mortem analyses. All 10 pigs displayed acute or subacute clinical signs and succumbed to the infection between 10 to 27 (19.8 ± 4.66) days post-inoculation (dpi). The onset of clinical signs started around 4–14 dpi. Viremia was observed in pigs from 6–16 dpi (11.2 ± 3.55). Enlarged, hyperemic, and hemorrhagic lymph nodes, enlarged spleen, pneumonia, and hydropericardium were observed at post-mortem examinations.
Collapse
|
36
|
Buragohain L, Barman NN, Sen S, Bharali A, Dutta B, Choudhury B, Suresh KP, Gaurav S, Kumar R, Ali S, Kumar S, Singh Malik Y. Transmission of African Swine Fever Virus to the Wild Boars of Northeast India. Vet Q 2023; 43:1-10. [PMID: 36786106 PMCID: PMC10124978 DOI: 10.1080/01652176.2023.2178689] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND India recorded the first outbreak of African swine fever (ASF) in North-eastern region (NER) in the year 2020. AIM The current study was undertaken to investigate the transmission of African swine fever virus (ASFV) in the wild boars of Northeast India, particularly of Assam. MATERIAL AND METHODS ASF suspected mortal tissue remains and blood samples of wild boars collected from different locations of Assam were screened for molecular detection of swine viruses which includes Classical swine fever virus, Porcine Circovirus 2, Porcine reproductive and respiratory syndrome virus and ASFV. RESULTS One sample each from Manas and Nameri National Parks were detected positive for ASFV. Besides this, one of the samples was positive for CSFV and one of the ASFV positive samples was also positive for PCV2. Several striking gross and microscopic alterations were noticed in different organs of ASFV infected animals. Sequencing and phylogenetic analysis of B646L gene confirmed the presence of ASFV genotype-II in wild boars. Circulation of similar genotype in domestic pigs of NER in the contemporary period as well as locations near to the aforementioned national parks indicates the transmission of ASFV from domestic to wild boars. CLINICAL RELEVANCE The detection of ASFV in the wild boars of Assam is alarming as it is an impending threat to pig population and other endangered species (particularly Pygmy hog), making it increasingly daunting to control the disease. CONCLUSION Chances are high for ASFV to become endemic in Assam region if stringent measures are not taken at proper time.
Collapse
Affiliation(s)
- Lukumoni Buragohain
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Nagendra Nath Barman
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Suparna Sen
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Arpita Bharali
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Biswajit Dutta
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | | | | | | | - Rakesh Kumar
- Indian Institute of Technology, Guwahati, Assam, India
| | - Samsul Ali
- Wildlife Trust of India, CWRC, Kaziranga, Assam, India
| | - Sachin Kumar
- Indian Institute of Technology, Guwahati, Assam, India
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
37
|
Millar J, Morais O, Da Silva H, Hick P, Foster A, Jong JBDC, Pereira A, Ting S, da Conceição F, Toribio JALML. Community engagement strengthens pig disease knowledge and passive surveillance in Timor-Leste. Front Vet Sci 2023; 9:1024094. [PMID: 36713866 PMCID: PMC9878314 DOI: 10.3389/fvets.2022.1024094] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023] Open
Abstract
Smallholder pig production in Timor-Leste is culturally and economically important for most households. However, regular and ongoing disease surveillance and pig husbandry training for farmers are limited. This article describes collaborative social and diagnostic research followed by a pilot community engagement program to improve farmer and technician knowledge, skills, and working relationships. There were three phases: (1) A qualitative study in 2020 to explore the experiences and knowledge of 133 pig farmers, 6 village leaders, and 16 district veterinary technicians on pig diseases and reporting, treatment methods, and access to information or assistance. (2) A pilot community engagement program in 3 villages in 2021 with the diagnostic investigation with samples analyzed from 27 dead pigs, and (3) Evaluation of community engagement and training outcomes. Results of the qualitative study revealed limited reporting of sick or dead pigs by farmers to veterinary technicians due to a lack of trust in the veterinary diagnostic system. Most technicians lacked experience with sampling or post-mortems so diagnostic training was undertaken for the pilot disease investigation. Evaluation results showed improved knowledge, motivation, and confidence of government staff and farmers. The credibility of veterinary technicians improved and gave them more confidence to work with communities. Farmers felt supported because all aspects of pig husbandry were addressed, and they were more willing to report dead or sick pigs. The project indicates that improved passive disease surveillance can be achieved by engaging communities in smallholder pig farming in Timor-Leste. Further research and testing of the approach in other districts and countries is recommended.
Collapse
Affiliation(s)
- Joanne Millar
- Gulbali Institute, Charles Sturt University, Albury, NSW, Australia,*Correspondence: Joanne Millar ✉
| | - Olavio Morais
- National Directorate of Veterinary, Ministry of Agriculture and Fisheries, Dili, Timor-Leste
| | | | - Paul Hick
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Ayrial Foster
- Berrimah Veterinary Laboratory, Department of Primary Industry and Resources, Northern Territory Government, Darwin, NT, Australia
| | | | - Abrao Pereira
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Shawn Ting
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Felisiano da Conceição
- National Directorate of Veterinary, Ministry of Agriculture and Fisheries, Dili, Timor-Leste
| | - Jenny-Ann L. M. L. Toribio
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
38
|
McDowell CD, Bold D, Trujillo JD, Meekins DA, Keating C, Cool K, Kwon T, Madden DW, Artiaga BL, Balaraman V, Ankhanbaatar U, Zayat B, Retallick J, Dodd K, Chung CJ, Morozov I, Gaudreault NN, Souza-Neto JA, Richt JA. Experimental Infection of Domestic Pigs with African Swine Fever Virus Isolated in 2019 in Mongolia. Viruses 2022; 14:v14122698. [PMID: 36560702 PMCID: PMC9781604 DOI: 10.3390/v14122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
African swine fever (ASF) is an infectious viral disease caused by African swine fever virus (ASFV), that causes high mortality in domestic swine and wild boar (Sus scrofa). Currently, outbreaks are mitigated through strict quarantine measures and the culling of affected herds, resulting in massive economic losses to the global pork industry. In 2019, an ASFV outbreak was reported in Mongolia, describing a rapidly progressing clinical disease and gross lesions consistent with the acute form of ASF; the virus was identified as a genotype II virus. Due to the limited information on clinical disease and viral dynamics within hosts available from field observations of the Mongolian isolates, we conducted the present study to further evaluate the progression of clinical disease, virulence, and pathology of an ASFV Mongolia/2019 field isolate (ASFV-MNG19), by experimental infection of domestic pigs. Intramuscular inoculation of domestic pigs with ASFV-MNG19 resulted in clinical signs and viremia at 3 days post challenge (DPC). Clinical disease rapidly progressed, resulting in the humane euthanasia of all pigs by 7 DPC. ASFV-MNG19 infected pigs had viremic titers of 108 TCID50/mL by 5 DPC and shed virus in oral secretions late in disease, as determined from oropharyngeal swabs. Whole-genome sequencing confirmed that the ASFV-MNG19 strain used in this study was a genotype II strain highly similar to other regional strains. In conclusion, we demonstrate that ASFV-MNG19 is a virulent genotype II ASFV strain that causes acute ASF in domestic swine.
Collapse
Affiliation(s)
- Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Cassidy Keating
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Bianca L. Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Batsukh Zayat
- Institute of Veterinary Medicine, Mongolian University of Life Science, Ulaanbaatar 17024, Mongolia
| | - Jamie Retallick
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Kimberly Dodd
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI 48824, USA
| | - Chungwon J. Chung
- Proficiency and Validation Service Section, Foreign Animal Disease Diagnostic Laboratory, Animal and Plant Health Inspection Services, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jayme A. Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jürgen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence:
| |
Collapse
|
39
|
African Swine Fever Vaccinology: The Biological Challenges from Immunological Perspectives. Viruses 2022; 14:v14092021. [PMID: 36146827 PMCID: PMC9505361 DOI: 10.3390/v14092021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
African swine fever virus (ASFV), a nucleocytoplasmic large DNA virus (NCLDV), causes African swine fever (ASF), an acute hemorrhagic disease with mortality rates up to 100% in domestic pigs. ASF is currently epidemic or endemic in many countries and threatening the global swine industry. Extensive ASF vaccine research has been conducted since the 1920s. Like inactivated viruses of other NCLDVs, such as vaccinia virus, inactivated ASFV vaccine candidates did not induce protective immunity. However, inactivated lumpy skin disease virus (poxvirus) vaccines are protective in cattle. Unlike some experimental poxvirus subunit vaccines that induced protection, ASF subunit vaccine candidates implemented with various platforms containing several ASFV structural genes or proteins failed to protect pigs effectively. Only some live attenuated viruses (LAVs) are able to protect pigs with high degrees of efficacy. There are currently several LAV ASF vaccine candidates. Only one commercial LAV vaccine is approved for use in Vietnam. LAVs, as ASF vaccines, have not yet been widely tested. Reports thus far show that the onset and duration of protection induced by the LAVs are late and short, respectively, compared to LAV vaccines for other diseases. In this review, the biological challenges in the development of ASF vaccines, especially subunit platforms, are discussed from immunological perspectives based on several unusual ASFV characteristics shared with HIV and poxviruses. These characteristics, including multiple distinct infectious virions, extremely high glycosylation and low antigen surface density of envelope proteins, immune evasion, and possible apoptotic mimicry, could pose enormous challenges to the development of ASF vaccines, especially subunit platforms designed to induce humoral immunity.
Collapse
|
40
|
Examination of immunogenic properties of recombinant antigens based on p22 protein from African swine fever virus. J Vet Res 2022; 66:297-304. [PMID: 36349136 PMCID: PMC9597933 DOI: 10.2478/jvetres-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
The single member of the Asfarviridae family is African swine fever virus (ASFV). This double-stranded DNA virus infects wild and farmed swine and loses the pig industry large sums of money. An inner envelope, capsid, and outer envelope are parts of the ASFV particle containing structural proteins playing different roles in the process of infection or host immune defence evasion. When expressed by the baculovirus system, the p22 protein from the inner envelope was found to induce partial protection against a virulent virus strain. This study aimed to express a part of this protein in a different system and evaluate its immunogenicity.
Material and Methods
We designed two proteins, the extracellular (C terminal) part of the p22 protein (p22Ct) and its fusion with the heat-labile enterotoxin B subunit from Escherichia coli (LTB-p22Ct), which is supposed to be a potent enhancer of the immune response. Both proteins were produced in the E. coli expression system and subsequently used for mice immunisation to analyse their safety and immunogenicity.
Results
The protein fused with LTB did not show the expected adjuvant properties and did not prove safe, because abscess formation was observed after immunisation. In contrast, immunisation with the p22Ct protein alone induced a higher antibody titre but caused no adverse symptoms.
Conclusion
These results show the high potential of the p22Ct region as an immunogenic protein for ASFV serological detection purposes.
Collapse
|
41
|
Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel) 2022; 12:1255. [PMID: 36013434 PMCID: PMC9409812 DOI: 10.3390/life12081255] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.
Collapse
Affiliation(s)
- Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zilong Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
42
|
The study of antigen carrying and lesions observed in pigs that survived post African swine fever virus infection. Trop Anim Health Prod 2022; 54:264. [PMID: 35960359 PMCID: PMC9372933 DOI: 10.1007/s11250-022-03229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022]
Abstract
African swine fever (ASF) is a dangerous infectious disease of domestic pigs and wild boar caused by African swine fever virus (ASFV). In Vietnam, the ASF epidemic is gradually turning into an endemic status with several recovered pigs post infection, but there were not many studies evaluating the role of these pigs in the epidemiological context in Vietnam. The aim of this study was to evaluate the viral antigen distribution and lesions in recovered pigs post ASFV infection. Ten pigs recovered from ASF at 6 weeks of age were monitored and assessed for anti-ASFV antibodies and viremia until slaughter. The five major organs (lung, liver, spleen, kidney, and lymph nodes) of these pigs were evaluated for microscopic lesions and viral antigen distribution. Anti-ASFV antibody was consistently observed to be high (S/P% ≥ 80) until slaughter, while viremia levels were very high (7 log10 copies/mL) at 6 weeks of age and gradually decreased to undetectable levels at 12 weeks of age (6th week post-infection). At slaughter, the ASFV-associated lesions in the organs of these pigs were mild and nonspecific. Seven out of ten pigs recovering from ASF still carried the virus in surveyed organ tissues, although not in the serum. These findings suggest that ASF-recovered pigs may be potential carriers of the virus, contributing to the increased complexity in the current endemic status in Vietnam.
Collapse
|
43
|
Rademacher C, Brown J, Karriker L. Impact of human behavior on the spread of African swine fever virus: what every veterinarian should know. J Am Vet Med Assoc 2022; 260:1413-1417. [PMID: 35905149 DOI: 10.2460/javma.22.06.0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
African swine fever virus was first identified and characterized in Africa in the early 1900s, but it has spread exponentially in Europe, Asia, and the Caribbean since 2018. While it is a disease that exclusively affects swine, thus posing no infectious risk to human health, the virus's resiliency and human behavior have facilitated the rapid global dissemination of the virus over the past 4 years. In this Currents in One Health, we will review its epidemiology, viral characteristics, host range, and current prevention strategies; the current perspective on what a response would look like and who would be affected; and if the virus was ever found in the US. Due to the fact that the virus affects all breeds of Sus scrofa, including those used for food and companionship, it is vital for all veterinarians to work together to keep the virus out of the US. It is only through the collaborative efforts of multiple disciplines working locally, nationally, and globally that we can contain the spread of this virus.
Collapse
|
44
|
Duan X, Ru Y, Yang W, Ren J, Hao R, Qin X, Li D, Zheng H. Research progress on the proteins involved in African swine fever virus infection and replication. Front Immunol 2022; 13:947180. [PMID: 35935977 PMCID: PMC9353306 DOI: 10.3389/fimmu.2022.947180] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), which infects domestic pigs or wild boars. It is characterized by short course of disease, high fever and hemorrhagic lesions, with mortality of up to 100% from acute infection. Up to now, the lack of commercial vaccines and effective drugs has seriously threatened the healthy economic development of the global pig industry. ASFV is a double-stranded DNA virus and genome varies between about 170-194 kb, which encodes 150-200 viral proteins, including 68 structural proteins and more than 100 non-structural proteins. In recent years, although the research on structure and function of ASFV-encoded proteins has been deepened, the structure and infection process of ASFV are still not clear. This review summarizes the main process of ASFV infection, replication and functions of related viral proteins to provide scientific basis and theoretical basis for ASFV research and vaccine development.
Collapse
Affiliation(s)
- Xianghan Duan
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongzeng Hao
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Haixue Zheng,
| |
Collapse
|
45
|
Changes in Estimating the Wild Boar Carcasses Sampling Effort: Applying the EFSA ASF Exit Strategy by Means of the WBC-Counter Tool. Viruses 2022; 14:v14071424. [PMID: 35891404 PMCID: PMC9319840 DOI: 10.3390/v14071424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
African swine fever (ASF) is a devastating disease, resulting in the high mortality of domestic and wild pigs, spreading quickly around the world. Ensuring the prevention and early detection of the disease is even more crucial given the absence of licensed vaccines. As suggested by the European Commission, those countries which intend to provide evidence of freedom need to speed up passive surveillance of their wild boar populations. If this kind of surveillance is well-regulated in domestic pig farms, the country-specific activities to be put in place for wild populations need to be set based on wild boar density, hunting bags, the environment, and financial resources. Following the indications of the official EFSA opinion 2021, a practical interpretation of the strategy was implemented based on the failure probabilities of wrongly declaring the freedom of an area even if the disease is still present but undetected. This work aimed at providing a valid, applicative example of an exit strategy based on two different approaches: the first uses the wild boar density to estimate the number of carcasses need to complete the exit strategy, while the second estimates it from the number of wild boar hunted and tested. A practical free access tool, named WBC-Counter, was developed to automatically calculate the number of needed carcasses. The practical example was developed using the ASF data from Sardinia (Italian island). Sardinia is ASF endemic from 43 years, but the last ASFV detection dates back to 2019. The island is under consideration for ASF eradication declaration. The subsequent results provide a practical example for other countries in approaching the EFSA exit strategy in the best choices for its on-field application.
Collapse
|
46
|
Canter JA, Aponte T, Ramirez-Medina E, Pruitt S, Gladue DP, Borca MV, Zhu JJ. Serum Neutralizing and Enhancing Effects on African Swine Fever Virus Infectivity in Adherent Pig PBMC. Viruses 2022; 14:v14061249. [PMID: 35746720 PMCID: PMC9229155 DOI: 10.3390/v14061249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022] Open
Abstract
African swine fever virus (ASFV) causes hemorrhagic fever with mortality rates of up to 100% in domestic pigs. Currently, there are no commercial vaccines for the disease. Only some live-attenuated viruses have been able to protect pigs from ASFV infection. The immune mechanisms involved in the protection are unclear. Immune sera can neutralize ASFV but incompletely. The mechanisms involved are not fully understood. Currently, there is no standardized protocol for ASFV neutralization assays. In this study, a flow cytometry-based ASFV neutralization assay was developed and tested in pig adherent PBMC using a virulent ASFV containing a fluorescent protein gene as a substrate for neutralization. As with previous studies, the percentage of infected macrophages was approximately five time higher than that of infected monocytes, and nearly all infected cells displayed no staining with anti-CD16 antibodies. Sera from naïve pigs and pigs immunized with a live-attenuated ASFV and fully protected against parental virus were used in the assay. The sera displayed incomplete neutralization with MOI-dependent neutralizing efficacies. Extracellular, but not intracellular, virions suspended in naïve serum were more infectious than those in the culture medium, as reported for some enveloped viruses, suggesting a novel mechanism of ASFV infection in macrophages. Both the intracellular and extracellular virions could not be completely neutralized.
Collapse
Affiliation(s)
- Jessica A. Canter
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Theresa Aponte
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Elizabeth Ramirez-Medina
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
| | - Sarah Pruitt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
| | - Douglas P. Gladue
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Correspondence: (D.P.G.); (M.V.B.); (J.J.Z.); Tel.: +1-631-323-3131 (D.P.G.); +1-631-323-3035 (M.V.B.); +1-631-323-3186 (J.J.Z.)
| | - Manuel V. Borca
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Correspondence: (D.P.G.); (M.V.B.); (J.J.Z.); Tel.: +1-631-323-3131 (D.P.G.); +1-631-323-3035 (M.V.B.); +1-631-323-3186 (J.J.Z.)
| | - James J. Zhu
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Correspondence: (D.P.G.); (M.V.B.); (J.J.Z.); Tel.: +1-631-323-3131 (D.P.G.); +1-631-323-3035 (M.V.B.); +1-631-323-3186 (J.J.Z.)
| |
Collapse
|
47
|
Zajac MD, Sangewar N, Lokhandwala S, Bray J, Sang H, McCall J, Bishop RP, Waghela SD, Kumar R, Kim T, Mwangi W. Adenovirus-Vectored African Swine Fever Virus pp220 Induces Robust Antibody, IFN-γ, and CTL Responses in Pigs. Front Vet Sci 2022; 9:921481. [PMID: 35711803 PMCID: PMC9195138 DOI: 10.3389/fvets.2022.921481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
African Swine Fever Virus (ASFV) poses a serious threat to the pork industry worldwide; however, there is no safe vaccine or treatment available. The development of an efficacious subunit vaccine will require the identification of protective antigens. The ASFV pp220 polyprotein is essential for virus structural integrity. This polyprotein is processed to generate p5, p34, p14, p37, and p150 individual proteins. Immunization of pigs with a cocktail of adenoviruses expressing the proteins induced significant IgG, IFN-γ-secreting cells, and cytotoxic T lymphocyte responses. Four predicted SLA-I binding nonamer peptides, namely p34161−169, p37859−867, p1501363−1371, and p1501463−1471, recalled strong IFN-γ+ PBMC and splenocyte responses. Notably, peptide p34161−169 was recognized by PBMCs isolated from 7/10 pigs and by splenocytes isolated from 8/10 pigs. Peptides p37859−867 and p1501363−1371 stimulated recall IFN-γ+ responses in PBMCs and splenocytes isolated from 8/10 pigs, whereas peptide p1501463−1471 recalled responses in PBMCs and splenocytes isolated from 7/10 to 9/10 pigs, respectively. The results demonstrate that the pp220 polyprotein contains multiple epitopes that induce robust immune responses in pigs. Importantly, these epitopes are 100% conserved among different ASFV genotypes and were predicted to bind multiple SLA-I alleles. The outcomes suggest that pp220 is a promising candidate for inclusion in a prototype subunit vaccine.
Collapse
Affiliation(s)
- Michelle D. Zajac
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Michelle D. Zajac
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyne Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jayden McCall
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rakshith Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tae Kim
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- Waithaka Mwangi
| |
Collapse
|
48
|
Wang C, Qiu S, Xiao Y, Yu H, Li H, Wu S, Feng C, Lin X. Development of a Blocking ELISA Kit for Detection of ASFV Antibody Based on a Monoclonal Antibody against Full Length p72. J AOAC Int 2022; 105:1428-1436. [PMID: 35595230 DOI: 10.1093/jaoacint/qsac050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/26/2022] [Accepted: 04/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND African swine fever virus (ASFV) is the etiologic agent of African swine fever (ASF), a disease of highly contagious and significant threat to pork production. At present, the sensitive detection methods are the keys to the disease control. OBJECTIVE Full length p72 is produced by eukaryotic system and its monoclonal antibody (mAb) 34C10 is subsequently recovered. A blocking ELISA kit for detection of ASFV antibody is developed based on p72 trimers and 34C10. METHODS Full length p72 is expressed and is used as immunogen to prepare a panel of monoclonal antibodies. The mAb 34C10 is verified by immunofluorescent and tested by ELISAs with positive serums. The constant affinity of 34C10 is then confirmed. A blocking ELISA kit is further developed and is compared with two commercial kits. RESULTS The mAb 34C10 is specifically bound to p72 protein, and it exhibits blocking affection to positive serum. IFA experiment shows that 34C10 could bind to p72 expressed by baculoviruses and the binding affinity of 34C10 is found to be as high as 1.85 × 1011 L/mol. The blocking ELISA kit shows high coincidence with a commercial ELISA kit. The sensitivity between these two kits is 97.6% (95%, CI: 90.65-99.58) and the specificity between them is 100% (95%, CI: 98.34-100). CONCLUSION The blocking ELISA developed in this study may have great potential for diagnosis of ASF. The structure of the antigen p72 is found to be a key factor for the performance of the kit. HIGHLIGHTS For the first time, the eukaryotic expressed full-length p72 protein is utilized to recover the monoclonal antibody and it is coated as antigen during the development of the blocking ELISA kit. This study sheds new light on the development of the blocking ELISA kits, especially for the development of diagnostic kit for the contagious virus with bio-safety problems.
Collapse
Affiliation(s)
- Caixia Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Songyin Qiu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Ying Xiao
- Chongqing Animal Disease Control Center, Chongqing, 401120 China
| | - Haoyang Yu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Haoxuan Li
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Shaoqiang Wu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Chunyan Feng
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Xiangmei Lin
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| |
Collapse
|
49
|
Meloni D, Franzoni G, Oggiano A. Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update. Vaccines (Basel) 2022; 10:707. [PMID: 35632463 PMCID: PMC9144233 DOI: 10.3390/vaccines10050707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly lethal disease in both domestic and wild pigs. The virus has rapidly spread worldwide and has no available licensed vaccine. An obstacle to the construction of a safe and efficient vaccine is the lack of a suitable cell line for ASFV isolation and propagation. Macrophages are the main targets for ASFV, and they have been widely used to study virus-host interactions; nevertheless, obtaining these cells is time-consuming and expensive, and they are not ethically suitable for the production of large-scale vaccines. To overcome these issues, different virulent field isolates have been adapted on monkey or human continuous cells lines; however, several culture passages often lead to significant genetic modifications and the loss of immunogenicity of the adapted strain. Thus, several groups have attempted to establish a porcine cell line able to sustain ASFV growth. Preliminary data suggested that some porcine continuous cell lines might be an alternative to primary macrophages for ASFV research and for large-scale vaccine production, although further studies are still needed. In this review, we summarize the research to investigate the most suitable cell line for ASFV isolation and propagation.
Collapse
Affiliation(s)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (D.M.); (A.O.)
| | | |
Collapse
|
50
|
Nguyen HN, Nguyen QT, Nguyen BTP, Tran THA, Do DT, Hoang HT. Detection of African swine fever virus in neonatal piglets with congenital tremors. Arch Virol 2022; 167:1131-1135. [PMID: 35174413 DOI: 10.1007/s00705-022-05378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
African swine fever virus (ASF) has circulated in Vietnam since 2018, causing significant losses to the pig industry. Quick, accurate diagnosis of African swine fever virus (ASFV) infection is crucial for controlling the disease. The detection of the virus in piglets with congenital tremors is described in this paper. ASFV was detected in brain tissues by polymerase chain reaction (PCR) and immunohistochemistry. Classical swine fever virus, porcine parvovirus, porcine reproductive and respiratory syndrome virus, and pseudorabies virus were not detected by PCR, suggesting that the ASFV was the cause of these neurological signs.
Collapse
Affiliation(s)
- Hai Ngoc Nguyen
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nonglam University, Thu Duc district, Hochiminh City, Vietnam. .,HanViet Veterinary Diagnostic Lab, Faculty of Animal Science and Veterinary Medicine, Nonglam University, Thu Duc district, Hochiminh City, Vietnam.
| | - Quan T Nguyen
- HanViet Veterinary Diagnostic Lab, Faculty of Animal Science and Veterinary Medicine, Nonglam University, Thu Duc district, Hochiminh City, Vietnam
| | - Binh T P Nguyen
- HanViet Veterinary Diagnostic Lab, Faculty of Animal Science and Veterinary Medicine, Nonglam University, Thu Duc district, Hochiminh City, Vietnam
| | - Thu H A Tran
- HanViet Veterinary Diagnostic Lab, Faculty of Animal Science and Veterinary Medicine, Nonglam University, Thu Duc district, Hochiminh City, Vietnam
| | - Duy T Do
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nonglam University, Thu Duc district, Hochiminh City, Vietnam
| | - Hai Thanh Hoang
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nonglam University, Thu Duc district, Hochiminh City, Vietnam.
| |
Collapse
|