1
|
Msaad H, Lamsaadi N, Farssi O, Oubenali A, Lahmaoui S, Boulli A, Ghoulam C, El Moukhtari A, Farissi M. Biofertilizer and biostimulant potentials of phosphate-solubilizing Bacillus subtilis subsp. subtilis M1 strain and silicon in improving low phosphorus availability tolerance in rosemary. Lett Appl Microbiol 2024; 77:ovae072. [PMID: 39066498 DOI: 10.1093/lambio/ovae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/08/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
The present study aimed to evaluate the single and combined effects of Si exogenous treatment and Bacillus subtilis subsp. subtilis M1 strain inoculation on rosemary tolerance to low phosphorus (P) availability. Hence, rosemary plants were fertilized with 250 µmol Ca3HPO4 (stressed plants) or 250 µmol KH2PO4 (control plants) under Si treatment and B. subtilis M1 strain inoculation. P starvation negatively affected rosemary growth and its P nutrition. However, exogenous Si supply or B. subtilis M1 strain inoculation significantly (P < 0.001) alleviated the deficiency-induced effects and significantly improved rhizogenesis, acid phosphatase activity, P uptake, and eventually dry weight of shoot and root. Moreover, Si-treatment and/or B. subtilis M1 strain inoculation significantly (P < 0.001) reduced the oxidative damage, in terms of malondialdehyde and hydrogen peroxide accumulation. This was found positively correlated with the higher superoxide dismutase activity, and the elevated non-enzymatic antioxidant molecules accumulation, including total polyphenols in Si-treated and inoculated P-deficient plants. Taken together, Si supplementation and/or B. subtilis M1 strain inoculation could be a good strategy to sustain rosemary plant growth under P starvation conditions.
Collapse
Affiliation(s)
- Hamid Msaad
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Nadia Lamsaadi
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Omar Farssi
- Polyvalent Unit on Research and Development, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Aziz Oubenali
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Soukaina Lahmaoui
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Abdelali Boulli
- Ecology and Sustainable Development Team, Faculty of Sciences and Technology, University Sultan Moulay Slimane, Mghila, PO Box. 523, Beni Mellal 23000, Morocco
| | - Cherki Ghoulam
- Centre of Agrobiotechnology and Bioengineering, Research Unit Labeled CNRST, Cadi Ayyad University, PO Box. 549, St. Abdelkarim Elkhattabi, Gueliz Marrakesh, Morocco
- CAES, Agrobiosciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Ahmed El Moukhtari
- Laboratory of Ecology and Environment, Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, PO Box. 7955 Sidi Othman, Casablanca, Morocco
| | - Mohamed Farissi
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| |
Collapse
|
2
|
Hafez EM, Gao Y, Alharbi K, Chen W, Elhawat N, Alshaal T, Osman HS. Antioxidative and Metabolic Responses in Canola: Strategies with Wood Distillate and Sugarcane Bagasse Ash for Improved Growth under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2152. [PMID: 39124270 PMCID: PMC11313884 DOI: 10.3390/plants13152152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
In the context of increasing agricultural challenges posed by soil salinity and drought stress, the main importance of the present study was to evaluate some novel treatments for improving canola productivity and resilience by applying wood distillate (WD) in combination with bagasse ash (SBA). A two-year field experiment using a split plot design was conducted and evaluated several physiological and biochemical parameters under different irrigation regimes conducted at 80% and 50% field capacity. While there were considerable moderation effects of SBA and WD on soil salinity, expressed as exchangeable sodium percentage (ESP), under both well-irrigated and drought conditions, more importantly, the ESP was reduced to 31% under drought stress with combined WD and SBA applications over any single factor. WD and SBA treatments of canola leaves showed reduced Na content with increased K levels, and the plants maintained physiological attributes-chlorophyll content, stomatal conductance, and relative water content-to the level of controls of well-irrigation. Besides, they significantly alleviated oxidative stress by decreasing the hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL) levels and increasing the activities of antioxidant enzymes like superoxide dismutase (SOD) and ascorbate peroxidase (APX). Nonenzymatic antioxidants such as total soluble sugars (TSS), total soluble proteins (TSP), total phenolic content (TPC), and total flavonoid content (TFC) were significantly increased under stress conditions with a special accent on combined treatment, whereas the levels of proline and GB that increased in alignment with drought reduced under the combined application. Various growth parameters of plants like plant height, number of branches, and siliques per plant were significantly improved with WD and SBA under drought stress. Principal component analysis (PCA) and Pearson correlation further confirmed the relationships among these parameters and thus underpinned that WD and SBA can evoke a synergistic effect to enhance growth promotion and stress tolerance in canola. This, therefore, infers that the combined application of WD and SBA can be key, offering very high potential as viable options to better canola productivity under adverse environmental conditions.
Collapse
Affiliation(s)
- Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Key Laboratory of Agro-Environment Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Nanjing 210014, China
| | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Key Laboratory of Agro-Environment Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Nanjing 210014, China
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Wei Chen
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Key Laboratory of Agro-Environment Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Nanjing 210014, China
| | - Nevien Elhawat
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, 4032 Debrecen, Hungary;
- Faculty of Agriculture (Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Tarek Alshaal
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, 4032 Debrecen, Hungary;
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt;
| |
Collapse
|
3
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
4
|
Raletsena MV, Mongalo NI. The possible application of fly ash (FA) to ameliorate acid mine water (AMD) for irrigation of potato ( Solanum tuberosum L.). Heliyon 2024; 10:e32079. [PMID: 38947476 PMCID: PMC11214446 DOI: 10.1016/j.heliyon.2024.e32079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Some areas in Johannesburg abounds with mine wastes namely, acid mine drainage (AMD) as well as fly ash (FA), which are by-products of gold mining and coal burning, respectively. Studies show that a solution formed through mixing these wastes neutralises the acidity of AMD and is an alternative source of irrigation. While studies show improved growth and yield of plants irrigated with fly ash-amended AMD, there are rarely sufficient studies conducted in South Africa showing evidence of altered pH of AMD and that food crops irrigated with fly ash-amended AMD exhibit improved concentration of essential nutrient elements. In this study, AMD was sourced from a gold mine in Johannesburg and fly ash collected from a coal-burning power station in the Mpumalanga Province, mixed at 1:0, 1:1, and 3:1 (w/v) of fly ash to AMD and used to irrigate potatoes. The objective was to assess whether the solutions of FA-amended AMD alter the pH of the AMD and to evaluate if irrigating potatoes with the aforementioned improve the concentration of essential nutrient elements and heavy metals in the tubers. Results show that the pH of AMD was increased in the 1:0 and 1:1 solutions but decreased in the 3:1 solution. The concentrations of Pb and Co were decreased in tubers irrigated with the 50 % AMD and 75 % AMD while that of Ni and Cd were markedly increased in tubers irrigated with solutions of fly ash-amended AMD. In the main, the potato tubers exhibited significantly higher concentrations of Al, Mo, Cu, Ca, Mg, and Zn when irrigated with fly-ash-amended AMD. The pH range levels from FA-AMD treated samples were within the acceptable pH range (5.5-6.5) which is acceptable for water that could be used for irrigation of crops. Also, the decreased Co and Pb and improved concentration of essential nutrient elements indicate that the constituents absorbed large quantities of the heavy metals while releasing the nutrients. In conclusion, the selected fly ash has proven as an alternative low-cost readily-available, affordable, and accessible adsorbent that neutralize the acidity of AMD, decrease the concentration of heavy metals, and increase the concentration of essential nutrient elements. Importantly, the liming potential among other traits of the fly ash improved the quality of the AMD such that the wastes were proven in this study suitable to irrigate potatoes.
Collapse
Affiliation(s)
- Maropeng Vellry Raletsena
- College of Agriculture and Environmental Sciences, Department of Agriculture and Animal Health, CAES Laboratories, Private Bag X6, Florida, 1710, South Africa
| | - Nkoana Ishmael Mongalo
- College of Agriculture and Environmental Sciences, Department of Agriculture and Animal Health, CAES Laboratories, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
5
|
Rachappanavar V, Kumar M, Negi N, Chowdhury S, Kapoor M, Singh S, Rustagi S, Rai AK, Shreaz S, Negi R, Yadav AN. Silicon derived benefits to combat biotic and abiotic stresses in fruit crops: Current research and future challenges. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108680. [PMID: 38701606 DOI: 10.1016/j.plaphy.2024.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India; Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India.
| | - Manish Kumar
- Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Narender Negi
- ICAR-National Bureau of Plant Genetic Resources-Regional Station, Shimla, Phagli Shimla, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India.
| |
Collapse
|
6
|
Al-Tabbal J, Al-Harahsheh M, Al-Zou'by JY. Silica nanoparticles as a waste product to alleviate the harmful effects of water stress in wheat. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1626-1642. [PMID: 38644591 DOI: 10.1080/15226514.2024.2342631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Drought is a threat to food security and agricultural sustainability in arid and semi-arid countries. Using wasted silica nanoparticles could minimize water scarcity. A controlled study investigated wheat plant physiological and morphological growth under tap-water irrigation (80-100, 60-80, and 40-60% field capacity). The benefits of S1: 0%, S2: 5%, and S3: 10% nanoparticle silica soil additions were studied. Our research reveals that water stress damages the physiological and functional growth of wheat plants. Plant height decreased by 8.9%, grain yield by 5.4%, and biological yield by 19.2%. These effects were observed when plants were irrigated to 40-60% field capacity vs. control. In plants under substantial water stress (40-60% of field capacity), chlorophyll a (8.04 mg g-1), b (1.5 mg g-1), total chlorophyll (9.55 mg g-1), carotenoids (2.44 mg g-1), and relative water content (54%), Electrolyte leakage (59%), total soluble sugar (1.79 mg g-1 fw), and proline (80.3 mol g-1) were highest. Plants cultivated with silica nanoparticles exhibit better morphological and physiological growth than controls. The largest effect came from maximum silica nanoparticle loading. Silica nanoparticles may increase drought-stressed plant growth and production.
Collapse
Affiliation(s)
- Jalal Al-Tabbal
- Department of Nutrition and Food Processing, Al‑Huson University College, Al-Balqa Applied University, Irbid, Jordan
| | - Mohammad Al-Harahsheh
- Department of Chemical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Jehad Y Al-Zou'by
- Department of Environmental Engineering, Al‑Huson University College, Al-Balqa Applied University, Irbid, Jordan
| |
Collapse
|
7
|
Walche A, Haile W, Kiflu A, Tsegaye D. Elucidating Amendment Resources for Reclaiming Efficacy of Sodic Soils around Abaya and Chamo Lakes, South Ethiopia Rift Valley. TOXICS 2024; 12:265. [PMID: 38668488 PMCID: PMC11053919 DOI: 10.3390/toxics12040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Sodic soils are harmful to agricultural and natural environments in Ethiopia's semi-arid and arid regions, leading to soil degradation and reduced productivity. This study investigated how amendment resources could help improve the chemical properties of sodic soils around the Abaya and Chamo Lakes in the South Ethiopia Rift Valley. METHODS A factorial experiment was conducted to study the effects of gypsum (GYP) and farmyard manure (FYM) on sodic soil reclamation. The experiment had four levels of GYP (0, 50, 100, and 150%) and four levels of FYM (0, 10, 20, and 30 tons ha-1), with three replications. The pots were incubated for three months and leached for one month, after which soil samples were collected and analyzed for chemical properties. ANOVA was performed to determine the optimal amendment level for sodic soil reclamation. RESULTS The study found that applying 10 ton FYM ha-1 and gypsum at 100% gypsum required (GR) rate resulted in a 99.8% decrease in exchangeable sodium percentages (ESP) compared to untreated composite sodic soil and a 1.31% reduction over the control (GYP 0% + FYM 0 ton ha-1). As a result, this leads to a decrease in soil electrical conductivity, exchangeable sodium (Ex. Na), and ESP values. The results were confirmed by the LSD test at 0.05. It is fascinating to see how different treatments can have such a significant impact on soil properties. The prediction models indicate that ESP's sodic soil treatment effect (R2 = 0.95) determines the optimal amendment level for displacing Ex. Na from the exchange site. The best estimator models for ESP using sodic soil treatment levels were ESP = 1.65-0.33 GYP for sole gypsum application and ESP = 1.65-0.33 GYP + 0.28 FYM for combined GYP and FYM application, respectively. CONCLUSION The study found that combined GYP and FYM applications reduced ESP to less than 10% in agriculture, but further research is needed to determine their effectiveness at the field level.
Collapse
Affiliation(s)
- Azmera Walche
- College of Agricultural Sciences, Arba Minch University, Arba Minch P.O. Box 21, Ethiopia;
- College of Agriculture, Hawassa University, Hawassa P.O. Box 05, Ethiopia; (W.H.); (A.K.)
| | - Wassie Haile
- College of Agriculture, Hawassa University, Hawassa P.O. Box 05, Ethiopia; (W.H.); (A.K.)
| | - Alemayehu Kiflu
- College of Agriculture, Hawassa University, Hawassa P.O. Box 05, Ethiopia; (W.H.); (A.K.)
| | - Dereje Tsegaye
- College of Agricultural Sciences, Arba Minch University, Arba Minch P.O. Box 21, Ethiopia;
| |
Collapse
|
8
|
Mohammed KAS, Hussein HM, Elshamly AMS. Monitoring plant responses in field-grown peanuts exposed to exogenously applied chitosan under full and limited irrigation levels. Sci Rep 2024; 14:6244. [PMID: 38485993 PMCID: PMC10940646 DOI: 10.1038/s41598-024-56573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
In recent decades, numerous studies have examined the effects of climate change on the responses of plants. These studies have primarily examined the effects of solitary stress on plants, neglecting the simultaneous effects of mixed stress, which are anticipated to transpire frequently as a result of the extreme climatic fluctuations. Therefore, this study investigated the impact of applied chitosan on boosting the resistance responses of peanuts to alkali and mixed drought-alkali stresses. Peanuts were grown in mid-alkaline soil and irrigated with full irrigation water requirements (100%IR), represented alkali condition (100% IR × alkali soil) and stress conditions (70% IR × alkali soil-represented mixed drought-alkali conditions). Additionally, the plants were either untreated or treated with foliar chitosan. The study evaluated various plant physio-chemical characteristics, including element contents (leaves and roots), seed yield, and irrigation water use efficiency (IWUE). Plants that experienced solitary alkali stress were found to be more vulnerable. However, chitosan applications were effective for reducing (soil pH and sodium absorption), alongside promoting examined physio-chemical measurements, yield traits, and IWUE. Importantly, when chitosan was applied under alkali conditions, the accumulations of (phosphorus, calcium, iron, manganese, zinc, and copper) in leaves and roots were maximized. Under mixed drought-alkali stresses, the results revealed a reduction in yield, reaching about 5.1 and 5.8% lower than under (100% IR × alkali), in the first and second seasons, respectively. Interestingly, treated plants under mixed drought-alkali stresses with chitosan recorded highest values of relative water content, proline, yield, IWUE, and nutrient uptake of (nitrogen, potassium, and magnesium) as well as the lowest sodium content in leaves and roots. Enhances the accumulation of (N, K, and Mg) instead of (phosphorus, calcium, iron, manganese, zinc, and copper) was the primary plant response to chitosan applications, which averted severe damage caused by mixed drought-alkali conditions, over time. These findings provide a framework of the nutrient homeostasis changes induced by chitosan under mixed stresses. Based on the findings, it is recommended under mixed drought-alkali conditions to treat plants with chitosan. This approach offers a promising perspective for achieving optimal yield with reduced water usage.
Collapse
Affiliation(s)
- Kassem A S Mohammed
- Institute of African and Nile Basin Countries Research and Studies, Aswan University, Aswan, Egypt
| | - Hussein Mohamed Hussein
- Institute of African and Nile Basin Countries Research and Studies, Aswan University, Aswan, Egypt
- Water Studies and Research Complex. National Water Research Center, Cairo, Egypt
| | - Ayman M S Elshamly
- Water Studies and Research Complex. National Water Research Center, Cairo, Egypt.
| |
Collapse
|
9
|
Rehman A, Khan S, Sun F, Peng Z, Feng K, Wang N, Jia Y, Pan Z, He S, Wang L, Qayyum A, Du X, Li H. Exploring the nano-wonders: unveiling the role of Nanoparticles in enhancing salinity and drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1324176. [PMID: 38304455 PMCID: PMC10831664 DOI: 10.3389/fpls.2023.1324176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
Plants experience diverse abiotic stresses, encompassing low or high temperature, drought, water logging and salinity. The challenge of maintaining worldwide crop cultivation and food sustenance becomes particularly serious due to drought and salinity stress. Sustainable agriculture has significant promise with the use of nano-biotechnology. Nanoparticles (NPs) have evolved into remarkable assets to improve agricultural productivity under the robust climate alteration and increasing drought and salinity stress severity. Drought and salinity stress adversely impact plant development, and physiological and metabolic pathways, leading to disturbances in cell membranes, antioxidant activities, photosynthetic system, and nutrient uptake. NPs protect the membrane and photosynthetic apparatus, enhance photosynthetic efficiency, optimize hormone and phenolic levels, boost nutrient intake and antioxidant activities, and regulate gene expression, thereby strengthening plant's resilience to drought and salinity stress. In this paper, we explored the classification of NPs and their biological effects, nanoparticle absorption, plant toxicity, the relationship between NPs and genetic engineering, their molecular pathways, impact of NPs in salinity and drought stress tolerance because the effects of NPs vary with size, shape, structure, and concentration. We emphasized several areas of research that need to be addressed in future investigations. This comprehensive review will be a valuable resource for upcoming researchers who wish to embrace nanotechnology as an environmentally friendly approach for enhancing drought and salinity tolerance.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Fenlei Sun
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yinhua Jia
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Supercomputer Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Lidong Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
10
|
Iqbal S, Hussain M, Sadiq S, Seleiman MF, Sarkhosh A, Chater JM, Shahid MA. Silicon nanoparticles confer hypoxia tolerance in citrus rootstocks by modulating antioxidant activities and carbohydrate metabolism. Heliyon 2024; 10:e22960. [PMID: 38163208 PMCID: PMC10756966 DOI: 10.1016/j.heliyon.2023.e22960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Citrus is a remarkable fruit crop, extremely sensitive to flooding conditions, which frequently trigger hypoxia stress and cause severe damage to citrus plants. Silicon nanoparticles (SiNPs) are beneficial and have the potential to overcome this problem. Therefore, the present study aimed to investigate the effect of silicon nanoparticles to overcome hypoxia stress through modulating antioxidant enzyme activity and carbohydrate metabolism. Three citrus rootstocks (Carrizo citrange, Roubidoux, and Rich 16-6) were exposed to flooding (with and without oxygen) through different SiNP treatments via foliar and root zone. SiNPs applied treatment plants showed a significant increase in photosynthesis, leaf greenness, antioxidant enzymes, and carbohydrate metabolic activities, besides the higher accumulation of proline and glycine betaine. The rate of lipid peroxidation was drastically higher in flooded plants; however, SiNPs application reduced it significantly, ultimately reducing oxidative damage. Overall, Rich16-6 rootstock showed good performance via root zone application compared to other rootstocks, possibly due to genotypical variation in silicon uptake. Our outcomes demonstrate that SiNPs significantly affect plant growth during hypoxia stress conditions, and their use is an optimal strategy to overcome this issue. This study laid the foundation for future research to use at the commercial level to overcome hypoxia stress and a potential platform for future research.
Collapse
Affiliation(s)
- Shahid Iqbal
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, 32351, USA
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, 32351, USA
| | - Saleha Sadiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Mahmoud F. Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O.Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - John M. Chater
- Horticultural Science Department, Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, 32351, USA
| |
Collapse
|
11
|
Gebru M, Alemayehu G, Bitew Y. Yield and lodging response of tef [ Eragrostis tef (Zucc) trotter] varieties to nitrogen and silicon application rates. Heliyon 2023; 9:e22576. [PMID: 38125445 PMCID: PMC10731001 DOI: 10.1016/j.heliyon.2023.e22576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Lodging, poor crop varieties and nitrogen management are among the main tef cultivation problems in acidic soils of northwestern Ethiopia. Though Si has been shown to improve crop yield and lodging resistance, knowledge of its effect on tef, along genotypes and nitrogen, is yet to be uncovered. Therefore, a 4 × 2 × 2 factorial field experiment was conducted on fixed experimental plot at the Koga irrigation scheme to assess yield and lodging responses of tef varieties to nitrogen and silicon fertilizer rates during two consecutive years of 2021 and 2022. The experiment comprised four nitrogen levels: 0 (N1), 23 (N2), 46 (N3), and 92 kg N ha-1(N4), two Si levels: 0 (Si1) and 485 (Si2) kg ha-1, and two improved varieties: Hiber-1 (V1) and Quncho (V2) treatment combinations, which were replicated four times. Results showed that regardless of silicon supply and variety, nitrogen had a significant effect (p < .0001) on agronomic attributes of tef grain yield, biomass yield, harvest index, chlorophyll content, plant height, panicle length, leaf area index, and the number of plants m-2 over the two years. Application of N4, N3, and N2 improved grain yield by 166.9, 126.2, and 75.2 % over N1, respectively. The harvest index showed a declining trend with nitrogen rates, which ranged from 36.1 to 26.5 %. Hiber-1 showed a significantly (p < .01) higher panicle length than Quncho. The interaction of nitrogen, silicon, and variety significantly (p < .001) affected lodging index, with a minimum lodging index of 0 % from V1Si1N1 and a maximum lodging index (71.9 %) from V2Si1N4. Maximum net return (2552.6 USD) was obtained from V1Si1N4, while the marginal rate of return (6961.7 %) from V1Si1N3. Therefore, it can be concluded that genotype and optimum nitrogen can maximize yield and lodging resistance of tef, while silicon in the form of carbonized rice husk results no significant effect on tef lodging.
Collapse
Affiliation(s)
- Mekonnen Gebru
- Wolkite University, Horticulture Department, P.O.Box 07, Wolkite, Ethiopia
- Bahir Dar University, Plant Sciences, Bahir Dar, Amhara, Ethiopia, P.O. Box 79
| | - Getachew Alemayehu
- Bahir Dar University, Plant Sciences, Bahir Dar, Amhara, Ethiopia, P.O. Box 79
| | - Yayeh Bitew
- Bahir Dar University, College of Agriculture and Environmental Sciences, Plant Sciences, P.O. Box 5501, Bahir Dar, Ethiopia
| |
Collapse
|
12
|
Eevera T, Kumaran S, Djanaguiraman M, Thirumaran T, Le QH, Pugazhendhi A. Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming. ENVIRONMENTAL RESEARCH 2023; 236:116849. [PMID: 37558116 DOI: 10.1016/j.envres.2023.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
The foremost challenge in farming is the storage of seeds after harvest and maintaining seed quality during storage. In agriculture, studies showed positive impacts of nanotechnology on plant development, seed storage, endurance under various types of stress, detection of seed damages, and seed quality. Seed's response varies with different types of nanoparticles depending on its physical and biochemical properties and plant species. Herein, we aim to cover the impact of nanoparticles on seed coating, dormancy, germination, seedling, nutrition, plant growth, stress conditions protection, and storage. Although the seed treatment by nanopriming has been shown to improve seed germination, seedling development, stress tolerance, and seedling growth, their full potential was not realized at the field level. Sustainable nano-agrochemicals and technology could provide good seed quality with less environmental toxicity. The present review critically discusses eco-friendly strategies that can be employed for the nanomaterial seed treatment and seed enhancement process to increase seedling vigor under different conditions. Also, an integrated approach involving four innovative concepts, namely green co-priming, nano-recycling of agricultural wastes, nano-pairing, and customized nanocontainer storage, has been proposed to acclimatize nanotechnology in farming.
Collapse
Affiliation(s)
- Tamilmani Eevera
- Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Shanmugam Kumaran
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur, 613 403, Tamil Nadu, India
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Thanabalu Thirumaran
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
13
|
Ahmed T, Noman M, Qi Y, Xu S, Yao Y, Masood HA, Manzoor N, Rizwan M, Li B, Qi X. Dynamic crosstalk between silicon nanomaterials and potentially toxic trace elements in plant-soil systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115422. [PMID: 37660529 DOI: 10.1016/j.ecoenv.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Agricultural soil pollution with potentially toxic trace elements (PTEs) has emerged as a significant environmental concern, jeopardizing food safety and human health. Although, conventional remediation approaches have been used for PTEs-contaminated soils treatment; however, these techniques are toxic, expensive, harmful to human health, and can lead to environmental contamination. Nano-enabled agriculture has gained significant attention as a sustainable approach to improve crop production and food security. Silicon nanomaterials (SiNMs) have emerged as a promising alternative for PTEs-contaminated soils remediation. SiNMs have unique characteristics, such as higher chemical reactivity, higher stability, greater surface area to volume ratio and smaller size that make them effective in removing PTEs from the environment. The review discusses the recent advancements and developments in SiNMs for the sustainable remediation of PTEs in agricultural soils. The article covers various synthesis methods, characterization techniques, and the potential mechanisms of SiNMs to alleviate PTEs toxicity in plant-soil systems. Additionally, we highlight the potential benefits and limitations of SiNMs and discusses future directions for research and development. Overall, the use of SiNMs for PTEs remediation offers a sustainable platform for the protection of agricultural soils and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China
| | | | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.
| | | |
Collapse
|
14
|
Hyder S, Ul-Nisa M, Shahzadi, Shahid H, Gohar F, Gondal AS, Riaz N, Younas A, Santos-Villalobos SDL, Montoya-Martínez AC, Sehar A, Latif F, Rizvi ZF, Iqbal R. Recent trends and perspectives in the application of metal and metal oxide nanomaterials for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107960. [PMID: 37591032 DOI: 10.1016/j.plaphy.2023.107960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Sustainable ecosystem management leads to the use of eco-friendly agricultural techniques for crop production. One of them is the use of metal and metal oxide nanomaterials and nanoparticles, which have proven to be a valuable option for the improvement of agricultural food systems. Moreover, the biological synthesis of these nanoparticles, from plants, bacteria, and fungi, also contributes to their eco-friendly and sustainable characteristics. Nanoparticles, which vary in size from 1 to 100 nm have a variety of mechanisms that are safer and more efficient than conventional fertilizers. Their usage as fertilizers and insecticides in agriculture is gaining favor in the scientific community to maximize crop output. More studies in this field will increase our understanding of this new technology and its broad acceptance in terms of performance, affordability, and environmental protection, as certain nanoparticles may outperform conventional fertilizers and insecticides. Accordingly, to the information gathered in this review, nanoparticles show remarkable potential for enhancing crop production, improving soil quality, and protecting the environment, however, metal and metal oxide NPs are not widely employed in agriculture. Many features of nanoparticles are yet left over, and it is necessary to uncover them. In this sense, this review article provides an overview of various types of metal and metal oxide nanoparticles used in agriculture, their characterization and synthesis, the recent research on them, and their possible application for the improvement of crop productivity in a sustainable manner.
Collapse
Affiliation(s)
- Sajjad Hyder
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Mushfaq Ul-Nisa
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Shahzadi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Humaira Shahid
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Faryal Gohar
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Nadia Riaz
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | | | - Amelia C Montoya-Martínez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, SO, Mexico.
| | - Anam Sehar
- Student Affairs and Counselling Office, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan.
| | - Fariha Latif
- Institute of Zoology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
15
|
Mahawar L, Ramasamy KP, Suhel M, Prasad SM, Živčák M, Brestic M, Rastogi A, Skalicky M. Silicon nanoparticles: Comprehensive review on biogenic synthesis and applications in agriculture. ENVIRONMENTAL RESEARCH 2023:116292. [PMID: 37276972 DOI: 10.1016/j.envres.2023.116292] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Recent advancements in nanotechnology have opened new advances in agriculture. Among other nanoparticles, silicon nanoparticles (SiNPs), due to their unique physiological characteristics and structural properties, offer a significant advantage as nanofertilizers, nanopesticides, nanozeolite and targeted delivery systems in agriculture. Silicon nanoparticles are well known to improve plant growth under normal and stressful environments. Nanosilicon has been reported to enhance plant stress tolerance against various environmental stress and is considered a non-toxic and proficient alternative to control plant diseases. However, a few studies depicted the phytotoxic effects of SiNPs on specific plants. Therefore, there is a need for comprehensive research, mainly on the interaction mechanism between NPs and host plants to unravel the hidden facts about silicon nanoparticles in agriculture. The present review illustrates the potential role of silicon nanoparticles in improving plant resistance to combat different environmental (abiotic and biotic) stresses and the underlying mechanisms involved. Furthermore, our review focuses on providing the overview of various methods exploited in the biogenic synthesis of silicon nanoparticles. However, certain limitations exist in synthesizing the well-characterized SiNPs on a laboratory scale. To bridge this gap, in the last section of the review, we discussed the possible use of the machine learning approach in future as an effective, less labour-intensive and time-consuming method for silicon nanoparticle synthesis. The existing research gaps from our perspective and future research directions for utilizing SiNPs in sustainable agriculture development have also been highlighted.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | | | - Mohammad Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Marek Živčák
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
16
|
Upadhayay VK, Chitara MK, Mishra D, Jha MN, Jaiswal A, Kumari G, Ghosh S, Patel VK, Naitam MG, Singh AK, Pareek N, Taj G, Maithani D, Kumar A, Dasila H, Sharma A. Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability. Front Microbiol 2023; 14:1133968. [PMID: 37206335 PMCID: PMC10189066 DOI: 10.3389/fmicb.2023.1133968] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023] Open
Abstract
Modern agriculture is primarily focused on the massive production of cereals and other food-based crops in a sustainable manner in order to fulfill the food demands of an ever-increasing global population. However, intensive agricultural practices, rampant use of agrochemicals, and other environmental factors result in soil fertility degradation, environmental pollution, disruption of soil biodiversity, pest resistance, and a decline in crop yields. Thus, experts are shifting their focus to other eco-friendly and safer methods of fertilization in order to ensure agricultural sustainability. Indeed, the importance of plant growth-promoting microorganisms, also determined as "plant probiotics (PPs)," has gained widespread recognition, and their usage as biofertilizers is being actively promoted as a means of mitigating the harmful effects of agrochemicals. As bio-elicitors, PPs promote plant growth and colonize soil or plant tissues when administered in soil, seeds, or plant surface and are used as an alternative means to avoid heavy use of agrochemicals. In the past few years, the use of nanotechnology has also brought a revolution in agriculture due to the application of various nanomaterials (NMs) or nano-based fertilizers to increase crop productivity. Given the beneficial properties of PPs and NMs, these two can be used in tandem to maximize benefits. However, the use of combinations of NMs and PPs, or their synergistic use, is in its infancy but has exhibited better crop-modulating effects in terms of improvement in crop productivity, mitigation of environmental stress (drought, salinity, etc.), restoration of soil fertility, and strengthening of the bioeconomy. In addition, a proper assessment of nanomaterials is necessary before their application, and a safer dose of NMs should be applicable without showing any toxic impact on the environment and soil microbial communities. The combo of NMs and PPs can also be encapsulated within a suitable carrier, and this method aids in the controlled and targeted delivery of entrapped components and also increases the shelf life of PPs. However, this review highlights the functional annotation of the combined impact of NMs and PPs on sustainable agricultural production in an eco-friendly manner.
Collapse
Affiliation(s)
- Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, A.N.D University of Agriculture and Technology, Ayodhya, Uttar Pradesh, India
| | - Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Manindra Nath Jha
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Aman Jaiswal
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Geeta Kumari
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Saipayan Ghosh
- Department of Horticulture, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Vivek Kumar Patel
- Department of Plant Pathology, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Mayur G. Naitam
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Ashish Kumar Singh
- Department of Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, India
| | - Navneet Pareek
- Department of Soil Science, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Gohar Taj
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences and Humanities, GBPUA&; T, Pantnagar, Uttarakhand, India
| | | | - Ankit Kumar
- Department of Horticulture, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Adita Sharma
- College of Fisheries, Dholi, Dr. Rajendra Prasad Central Agricultural University, Muzaffarpur, Bihar, India
| |
Collapse
|
17
|
Mohammed N, El-Hendawy S, Alsamin B, Mubushar M, Dewir YH. Integrating Application Methods and Concentrations of Salicylic Acid as an Avenue to Enhance Growth, Production, and Water Use Efficiency of Wheat under Full and Deficit Irrigation in Arid Countries. PLANTS (BASEL, SWITZERLAND) 2023; 12:1019. [PMID: 36903881 PMCID: PMC10005395 DOI: 10.3390/plants12051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
As water deficit in arid countries has already become the norm rather than the exception, water conservation in crop production processes has become very critical. Therefore, it is urgent to develop feasible strategies to achieve this goal. Exogenous application of salicylic acid (SA) has been proposed as one of the effective and economical strategies for mitigating water deficit in plants. However, the recommendations concerning the proper application methods (AMs) and the optimal concentrations (Cons) of SA under field conditions seem contradictory. Here, a two-year field study was conducted to compare the effects of twelve combinations of AMs and Cons on the vegetative growth, physiological parameters, yield, and irrigation water use efficiency (IWUE) of wheat under full (FL) and limited (LM) irrigation regimes. These combinations included seed soaking in purified water (S0), 0.5 mM SA (S1), and 1.0 mM SA (S2); foliar spray of SA at concentrations of 1.0 mM (F1), 2.0 mM (F2), and 3.0 mM (F3); and combinations of S1 and S2 with F1 (S1F1 and S2F1), F2 (S1F2 and S2F2), and F3 (S1F3 and S2F3). The results showed that the LM regime caused a significant reduction in all vegetative growth, physiological, and yield parameters, while it led to an increase in IWUE. The application of SA through seed soaking, foliar application, and a combination of both methods increased all of the studied parameters in all the evaluated times, resulting in higher values for all parameters than the treatment without SA (S0). The multivariate analyses, including principal component analysis and heatmapping, identified the foliar application method with 1-3 mM SA alone or in combination with seed soaking with 0.5 mM SA as the best treatments for the optimal performance of wheat under both irrigation regimes. Overall, our results indicated that exogenous application of SA has the potential to greatly improve growth, yield, and IWUE under limited water application, while optimal coupling combinations of AMs and Cons were required for positive effects in field conditions.
Collapse
Affiliation(s)
- Nabil Mohammed
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural, Faculty of Agriculture and Veterinary Medicine, Thamar University, Thamar 87246, Yemen
| | - Salah El-Hendawy
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Bazel Alsamin
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Mubushar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yaser Hassan Dewir
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| |
Collapse
|
18
|
Alharbi K, Osman HS, Rashwan E, Hafez EM, Omara AED. Stimulating the Growth, Anabolism, Antioxidants, and Yield of Rice Plants Grown under Salt Stress by Combined Application of Bacterial Inoculants and Nano-Silicon. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243431. [PMID: 36559542 PMCID: PMC9787420 DOI: 10.3390/plants11243431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
The growth and development of rice face many issues, including its exposure to high soil salinity. This issue can be alleviated using new approaches to overwhelm the factors that restrict rice productivity. The objective of our investigation was the usage of the rhizobacteria (Pseudomonas koreensis and Bacillus coagulans) as plant growth-promoting rhizobacteria (PGPRs) and nano-silicon, which could be a positive technology to cope with the problems raised by soil salinity in addition to improvement the morpho-physiological properties, and productivity of two rice varieties (i.e., Giza 177 as salt-sensitive and Giza 179 as salt-tolerant). The findings stated that the application of combined PGPRs and nano-Si resulted in the highest soil enzymes activity (dehydrogenase and urease), root length, leaf area index, photosynthesis pigments, K+ ions, relative water content (RWC), and stomatal conductance (gs) while resulted in the reduction of Na+, electrolyte leakage (EL), and proline content. All these improvements are due to increased antioxidant enzymes activity such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), which decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) under soil salinity in rice plants compared to the other treatments. Combined application of PGPRs and nano-Si to Giza 177 significantly surpassed Giza 179, which was neither treated with PGPR nor nano-Si in the main yield components (number of grains/panicles, 1000 grain weight, and grain yield as well as nutrient uptake. In conclusion, both PGPRs and nano-Si had stimulating effects that mitigated the salinity-deleterious effects and encouraged plant growth, and, therefore, enhanced the grain yield.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| |
Collapse
|
19
|
Van PTH, Ngoc LS, Hung TN, Manh TD. Effects of chitosan and nano-SiO2 concentrations on the quality of postharvest guavas (Psidium guajava L.). INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Guava (Psidium guajava L.) is a perishable fruit susceptible to postharvest losses at tropical ambient temperature. Therefore, the development of green storage solution such as biodegradable film could be an alternative to increase guavas’ shelf life. The primary objective of the present work was to explore the effects of combining chitosan and nano-SiO2 coating at different concentrations on the external and internal quality parameters of guavas during 12-d storage at 15°C, and 8-d storage at 30°C. Weight loss, skin colour, firmness, ascorbic acid content, total soluble solids (TSS), decay incidence, and sensory taste score during storage were also analysed. Guavas coated with 2% chitosan and 0.02% nano-SiO2 film were economically optimum to maintain the tested postharvest quality parameters, including better skin colour, higher TSS, fruit firmness, ascorbic acid content, and good taste scores, while keeping lower weight loss and decay incidence when compared with those of other treatments at both tested temperatures. Therefore, chitosan and nano-SiO2 as a coating is a promising strategy for improving the postharvest quality of guavas.
Collapse
|
20
|
Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Aslam MT, Negm S, Moustafa M, Hassan MU, Wu Z. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:976179. [PMID: 36507430 PMCID: PMC9730289 DOI: 10.3389/fpls.2022.976179] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Drought stress (DS) is a serious challenge for sustaining global crop production and food security. Nanoparticles (NPs) have emerged as an excellent tool to enhance crop production under current rapid climate change and increasing drought intensity. DS negatively affects plant growth, physiological and metabolic processes, and disturbs cellular membranes, nutrient and water uptake, photosynthetic apparatus, and antioxidant activities. The application of NPs protects the membranes, maintains water relationship, and enhances nutrient and water uptake, leading to an appreciable increase in plant growth under DS. NPs protect the photosynthetic apparatus and improve photosynthetic efficiency, accumulation of osmolytes, hormones, and phenolics, antioxidant activities, and gene expression, thus providing better resistance to plants against DS. In this review, we discuss the role of different metal-based NPs to mitigate DS in plants. We also highlighted various research gaps that should be filled in future research studies. This detailed review will be an excellent source of information for future researchers to adopt nanotechnology as an eco-friendly technique to improve drought tolerance.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huijie Li
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Humanity and Public Administration, Jiangxi Agricultural University, Nanchang, China
| | - Majid M Tahir
- Department of Soil and Environmental Sciences, Faculty of Agriculture, University of Poonch, Rawalakot, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Muhammad Talha Aslam
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sally Negm
- Life Sciences Department, College of Science and Art, King Khalid University, Mohail, Saudi Arabia
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Sharkia, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ziming Wu
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Alharbi K, Hafez E, Omara AED, Awadalla A, Nehela Y. Plant Growth Promoting Rhizobacteria and Silica Nanoparticles Stimulate Sugar Beet Resilience to Irrigation with Saline Water in Salt-Affected Soils. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223117. [PMID: 36432846 PMCID: PMC9694940 DOI: 10.3390/plants11223117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/27/2023]
Abstract
Combined stressors (high soil salinity and saline water irrigation) severely reduce plant growth and sugar beet yield. Seed inoculation with plant growth-promoting rhizobacteria (PGPR) and/or foliar spraying with silica nanoparticles (Si-NP) is deemed one of the most promising new strategies that have the potential to inhibit abiotic stress. Herein, sugar beet (Beta vulgaris) plants were treated with two PGPR (Pseudomonas koreensis MG209738 and Bacillus coagulans NCAIM B.01123) and/or Si-NP, during two successive seasons 2019/2020 and 2020/2021 to examine the vital role of PGPR, Si-NP, and their combination in improving growth characteristics, and production in sugar beet plants exposed to two watering treatments (fresh water and saline water) in salt-affected soil. The results revealed that combined stressors (high soil salinity and saline water irrigation) increased ion imbalance (K+/Na+ ratio; from 1.54 ± 0.11 to 1.00 ± 0.15) and declined the relative water content (RWC; from 86.76 ± 4.70 to 74.30 ± 3.20%), relative membrane stability index (RMSI), stomatal conductance (gs), and chlorophyll content, which negatively affected on the crop productivity. Nevertheless, the application of combined PGPR and Si-NP decreased oxidative stress indicators (hydrogen peroxide and lipid peroxidation) and sodium ions while increasing activities of superoxide dismutase (SOD; up to 1.9-folds), catalase (CAT; up to 1.4-folds), and peroxidase (POX; up to 2.5-folds) enzymes, and potassium ions resulting in physiological processes, root yield, and sugar yield compared to non-treated controls under combined stressors (high soil salinity and saline water irrigation). It is worth mentioning that the singular application of PGPR improved root length, diameter, and yield greater than Si-NP alone and it was comparable to the combined treatment (PGPR+Si-NP). It was concluded that the combined application of PGPR and Si-NP has valuable impacts on the growth and yield of sugar beet growing under combined stressors of high soil salinity and saline water irrigation.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Emad Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dien Omara
- Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt
| | - Abdelmoniem Awadalla
- Department of Agronomy, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
22
|
Alharbi K, Rashwan E, Hafez E, Omara AED, Mohamed HH, Alshaal T. Potassium Humate and Plant Growth-Promoting Microbes Jointly Mitigate Water Deficit Stress in Soybean Cultivated in Salt-Affected Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:3016. [PMID: 36432745 PMCID: PMC9698740 DOI: 10.3390/plants11223016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Lack of high-quality irrigation water and soil salinity are two main environmental factors that affect plant development. When both stressors are combined, the soil becomes sterile and constrains plant productivity. Consequently, two field trials were designed to assess whether plant growth-promoting microbes (PGPMs; Bradyrhizobium japonicum (USDA 110) and Trichoderma harzianum) and potassium humate (K-humate) can stimulate soybean growth, productivity, and seed quality under two different watering regimes as follows: (i) well-watered (WW), where plants were irrigated at 12-day intervals (recommended), and (ii) water stress (WS), where plants were irrigated at the 18-day intervals in salt-affected soil during 2020 and 2021 seasons. Results revealed that coupled application of PGPMs and K-humate resulted in a substantial improvement in K+ levels in the leaves compared to Na+ levels, which has a direct positive impact on an enhancement in the antioxidants defense system (CAT, POX, SOD), which caused the decline of the oxidative stress indicators (H2O2, MDA, and EL%) as well as proline content under water stress in salt-affected soil. Hence, a significant increase in root length, nodule weight, soybean relative water content (RWC), stomatal conductance, photosynthetic pigments, net photosynthetic rate, soluble protein, seed carbohydrate content as well as the number of pods plant-1 and seed yield was reported. In conclusion, the combined application of PGPMs and K-humate might be recommended to maximize the soybean growth and productivity under harsh growth conditions (e.g., water stress and soil salinity).
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Emad Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Agricultural Research Center, Microbiology, Soils, Water Environment Research Institute, Giza 12112, Egypt
| | - Hossam Hussein Mohamed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 13625, Egypt
| | - Tarek Alshaal
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Department of Applied Plant Biology, Institute of Crop Sciences, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| |
Collapse
|
23
|
Mousavi SS, Karami A, Maggi F. Photosynthesis and chlorophyll fluorescence of Iranian licorice ( Glycyrrhiza glabra l.) accessions under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:984944. [PMID: 36275588 PMCID: PMC9585319 DOI: 10.3389/fpls.2022.984944] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
While salinity is increasingly becoming a prominent concern in arable farms around the globe, various treatments can be used for the mitigation of salt stress. Here, the effective presence of Azotobacter sp. inoculation (A1) and absence of inoculation (A0) was evaluated on Iranian licorice plants under NaCl stress (0 and 200 mM) (S0 and S1, respectively). In this regard, 16 Iranian licorice (Glycyrrhiza glabra L.) accessions were evaluated for the effects on photosynthesis and chlorophyll fluorescence. Leaf samples were measured for photosynthetic pigments (via a spectrophotometer), stomatal and trichome-related features (via SEM), along with several other morphological and biochemical features. The results revealed an increase in the amount of carotenoids that was caused by bacterial inoculation, which was 28.3% higher than the non-inoculated treatment. Maximum initial fluorescence intensity (F0) (86.7) was observed in the 'Bardsir' accession. Meanwhile, the highest variable fluorescence (Fv), maximal fluorescence intensity (Fm), and maximum quantum yield (Fv/Fm) (0.3, 0.4, and 0.8, respectively) were observed in the 'Eghlid' accession. Regarding anatomical observations of the leaf structure, salinity reduced stomatal density but increased trichome density. Under the effect of bacterial inoculation, salinity stress was mitigated. With the effect of bacterial inoculation under salinity stress, stomatal length and width increased, compared to the condition of no bacterial inoculation. Minimum malondialdehyde content was observed in 'Mahabad' accession (17.8 μmol/g FW). Principle component analysis (PCA) showed that 'Kashmar', 'Sepidan', 'Bajgah', 'Kermanshah', and 'Taft' accessions were categorized in the same group while being characterized by better performance in the aerial parts of plants. Taken together, the present results generally indicated that selecting the best genotypes, along with exogenous applications of Azotobacter, can improve the outcomes of licorice cultivation for industrial purposes under harsh environments.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
24
|
Bora KA, Hashmi S, Zulfiqar F, Abideen Z, Ali H, Siddiqui ZS, Siddique KHM. Recent progress in bio-mediated synthesis and applications of engineered nanomaterials for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:999505. [PMID: 36262650 PMCID: PMC9574372 DOI: 10.3389/fpls.2022.999505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing demand for agricultural food products, medicine, and other commercial sectors requires new technologies for agricultural practices and promoting the optimum utilization of natural resources. The application of engineered nanomaterials (ENMs) enhance the biomass production and yield of food crop while resisting harmful environmental stresses. Bio-mediated synthesis of ENMs are time-efficient, low-cost, environmentally friendly, green technology. The precedence of using a bio-mediated route over conventional precursors for ENM synthesis is non-toxic and readily available. It possesses many active agents that can facilitate the reduction and stabilization processes during nanoparticle formation. This review presents recent developments in bio-mediated ENMs and green synthesis techniques using plants, algae, fungi, and bacteria, including significant contributions to identifying major ENM applications in agriculture with potential impacts on sustainability, such as the role of different ENMs in agriculture and their impact on different plant species. The review also covers the advantages and disadvantages of different ENMs and potential future research in this field.
Collapse
Affiliation(s)
- Kainat Amin Bora
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
| | - Saud Hashmi
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Haibat Ali
- Department of Environmental Sciences, Karakorum International University, Gilgit, Pakistan
| | | | | |
Collapse
|
25
|
Application of Silica Nanoparticles in Combination with Two Bacterial Strains Improves the Growth, Antioxidant Capacity and Production of Barley Irrigated with Saline Water in Salt-Affected Soil. PLANTS 2022; 11:plants11152026. [PMID: 35956503 PMCID: PMC9370161 DOI: 10.3390/plants11152026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/24/2023]
Abstract
Exploitation of low-quality water or irrigation of field crops with saline water in salt-affected soil is a critical worldwide challenge that rigorously influences agricultural productivity and sustainability, especially in arid and semiarid zones with limited freshwater resources. Therefore, we investigated a synergistic amendment strategy for salt-affected soil using a singular and combined application of plant growth-promoting rhizobacteria (PGPR at 950 g ha−1; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) and silica nanoparticles (SiNPs) at 500 mg L−1 to mitigate the detrimental impacts of irrigation with saline water on the growth, physiology, and productivity of barley (Hordum vulgare L.), along with soil attributes and nutrient uptake during 2019/2020 and 2020/2021. Our field trials showed that the combined application of PGPR and SiNPs significantly improved the soil physicochemical properties, mainly by reducing the soil exchangeable sodium percentage. Additionally, it considerably enhanced the microbiological counts (i.e., bacteria, azotobacter, and bacillus) and soil enzyme activity (i.e., urease and dehydrogenase) in both growing seasons compared with the control. The combined application of PGPR and SiNPs alleviated the detrimental impacts of saline water on barley plants grown in salt-affected soil compared to the single application of PGPR or SiNPs. The marked improvement was due to the combined application of PGPR and SiNPs, which enhanced the physiological properties (e.g., relative chlorophyll content (SPAD), relative water content (RWC), stomatal conductance, and K/Na ratio), enzyme activity (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX)), and yield and yield-related traits and nutrient uptake (N, P, and K) of barley plants. Moreover, the Na+ content, hydrogen peroxide (H2O2) content, lipid peroxidation (MDA), electrolyte leakage (EL), and proline content were reduced upon the application of PGPR + SiNPs. These results could be important information for cultivating barley and other cereal crops in salt-affected soil under irrigation with saline water.
Collapse
|
26
|
Aridity and High Salinity, Rather Than Soil Nutrients, Regulate Nitrogen and Phosphorus Stoichiometry in Desert Plants from the Individual to the Community Level. FORESTS 2022. [DOI: 10.3390/f13060890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stoichiometric characteristics of plant nitrogen (N) and phosphorus (P) and their correlations with soil properties are regarded as key for exploring plant physiological and ecological processes and predicting ecosystem functions. However, quantitative studies on the relative contributions of water–salt gradients and nutrient gradients to plant stoichiometry are limited. In addition, previous studies have been conducted at the plant species and individual levels, meaning that how community-scale stoichiometry responds to soil properties is still unclear. Therefore, we selected typical sample strips from 13 sampling sites in arid regions to assess the leaf N and P levels of 23 species of desert plants and measure the corresponding soil water content, total salt content, total nitrogen content, and total phosphorus content. The aim was to elucidate the main soil properties that influence the stoichiometric characteristics of desert plants and compare the individual and community responses to those soil properties. Our results indicated that the growth of desert plants is mainly limited by nitrogen, with individual plant leaf nitrogen and phosphorus concentrations ranging from 4.08 to 31.39 mg g−1 and 0.48 to 3.78 mg g−1, respectively. Community stoichiometry was significantly lower than that of individual plants. A significant correlation was observed between the mean N concentration, P concentration, and N:P ratio of plant leaves. At the individual plant scale, aridity significantly reduced leaf N and P concentrations, while high salt content significantly increased leaf N concentrations. At the community scale, aridity had no significant effects on leaf nitrogen or phosphorus stoichiometry, while high salinity significantly increased the leaf N:P ratio and there were no significant interactions between the aridity and salinity conditions. No significant effects of soil nutrient gradients were observed on plant N and P stoichiometric characteristics at the individual or community levels. These results suggest that individual desert plants have lower leaf N and P concentrations to adapt to extreme drought and only adapt to salt stress through higher leaf N concentrations. The N and P stoichiometric characteristics of desert plant communities are not sensitive to variations in aridity and salinity in this extreme habitat. The results of this study could enhance our perceptions of plant adaptation mechanisms to extreme habitats within terrestrial ecosystems.
Collapse
|
27
|
Omara AED, Hafez EM, Osman HS, Rashwan E, El-Said MAA, Alharbi K, Abd El-Moneim D, Gowayed SM. Collaborative Impact of Compost and Beneficial Rhizobacteria on Soil Properties, Physiological Attributes, and Productivity of Wheat Subjected to Deficit Irrigation in Salt Affected Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070877. [PMID: 35406858 PMCID: PMC9002696 DOI: 10.3390/plants11070877] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
Plant growth and crop productivity under unfavorable environmental challenges require a unique strategy to scavenge the severely negative impacts of these challenges such as soil salinity and water stress. Compost and plant growth-promoting rhizobacteria (PGPR) have many beneficial impacts, particularly in plants exposed to different types of stress. Therefore, a field experiment during two successive seasons was conducted to investigate the impact of compost and PGPR either separately or in a combination on exchangeable sodium percentage (ESP), soil enzymes (urease and dehydrogenase), wheat physiology, antioxidant defense system, growth, and productivity under deficient irrigation and soil salinity conditions. Our findings showed that exposure of wheat plants to deficit irrigation in salt-affected soil inhibited wheat growth and development, and eventually reduced crop productivity. However, these injurious impacts were diminished after soil amendment using the combined application of compost and PGPR. This combined application enhanced soil urease and dehydrogenase, ion selectivity, chlorophylls, carotenoids, stomatal conductance, and the relative water content (RWC) whilst reducing ESP, proline content, which eventually increased the yield-related traits of wheat plants under deficient irrigation conditions. Moreover, the coupled application of compost and PGPR reduced the uptake of Na and resulted in an increment in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) activities that lessened oxidative damage and improved the nutrient uptake (N, P, and K) of deficiently irrigated wheat plants under soil salinity. It was concluded that to protect wheat plants from environmental stressors, such as water stress and soil salinity, co-application of compost with PGPR was found to be effective.
Collapse
Affiliation(s)
- Alaa El-Dein Omara
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Mohamed A. A. El-Said
- Department of Agronomy, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt;
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt;
| | - Salah M. Gowayed
- Department of Botany, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
28
|
Akhtar N, Ilyas N, Meraj TA, Pour-Aboughadareh A, Sayyed RZ, Mashwani ZUR, Poczai P. Improvement of Plant Responses by Nanobiofertilizer: A Step towards Sustainable Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:965. [PMID: 35335778 PMCID: PMC8949119 DOI: 10.3390/nano12060965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Drastic changes in the climate and ecosystem due to natural or anthropogenic activities have severely affected crop production globally. This concern has raised the need to develop environmentally friendly and cost-effective strategies, particularly for keeping pace with the demands of the growing population. The use of nanobiofertilizers in agriculture opens a new chapter in the sustainable production of crops. The application of nanoparticles improves the growth and stress tolerance in plants. Inoculation of biofertilizers is another strategy explored in agriculture. The combination of nanoparticles and biofertilizers produces nanobiofertilizers, which are cost-effective and more potent and eco-friendly than nanoparticles or biofertilizers alone. Nanobiofertilizers consist of biofertilizers encapsulated in nanoparticles. Biofertilizers are the preparations of plant-based carriers having beneficial microbial cells, while nanoparticles are microscopic (1-100 nm) particles that possess numerous advantages. Silicon, zinc, copper, iron, and silver are the commonly used nanoparticles for the formulation of nanobiofertilizer. The green synthesis of these nanoparticles enhances their performance and characteristics. The use of nanobiofertilizers is more effective than other traditional strategies. They also perform their role better than the common salts previously used in agriculture to enhance the production of crops. Nanobiofertilizer gives better and more long-lasting results as compared to traditional chemical fertilizers. It improves the structure and function of soil and the morphological, physiological, biochemical, and yield attributes of plants. The formation and application of nanobiofertilizer is a practical step toward smart fertilizer that enhances growth and augments the yield of crops. The literature on the formulation and application of nanobiofertilizer at the field level is scarce. This product requires attention, as it can reduce the use of chemical fertilizer and make the soil and crops healthy. This review highlights the formulation and application of nanobiofertilizer on various plant species and explains how nanobiofertilizer improves the growth and development of plants. It covers the role and status of nanobiofertilizer in agriculture. The limitations of and future strategies for formulating effective nanobiofertilizer are mentioned.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.A.); (Z.-u.-R.M.)
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.A.); (Z.-u.-R.M.)
| | | | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 3183964653, Iran;
| | - R. Z. Sayyed
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent Region, Tashkent 111208, Uzbekistan;
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.A.); (Z.-u.-R.M.)
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
29
|
Goswami P, Mathur J. Application of agro-waste-mediated silica nanoparticles to sustainable agriculture. BIORESOUR BIOPROCESS 2022; 9:9. [PMID: 38647762 PMCID: PMC10992809 DOI: 10.1186/s40643-022-00496-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/15/2022] [Indexed: 11/10/2022] Open
Abstract
Use of green agronomic techniques for plant development and crop protection is essential for environmental sustainability. The current research investigates a more efficient and long-term technique of manufacturing silica nanoparticles (SiO2 NPs) from agricultural waste (sugarcane bagasse and corn cob). SiO2 NPs were synthesized by calcinations of waste residues in muffle furnace with varying temperatures (400-1000 °C)/2 h in the present of static air. Field emission scanning electron microscopy (FESEM), Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX) were used to characterize SiO2 NPs and assessed for their antifungal activity simultaneously investigated the effects of various concentrations of produced SiO2 NPs on Eruca sativa (E. sativa) physiological and biochemical. With SiO2 NPs treatment at 1000 µg L-1 concentration, the seed germination rate was found to be up to 95.5%, and growth characteristics were enhanced compared to control. Accordingly, the ones treated with SiO2 NPs grew better than the control ones. The treatment of plant with SiO2 NPs (500 μg L-1) increased the protein content by 14.8 mg g-1, and chlorophyll level was also increased by 4.08 mg g-1 in leaves compared to untreated plant. Disc diffusion experiment was conducted to test the efficiency of SiO2 NPs against Fusarium oxysporum and Aspergillus niger for antifungal activities. Highest mycelia growth inhibition was obtained with 73.42% and 58.92% for F. oxysporum and A. niger, respectively. The result shows that the SiO2 NPs have a favorable effect on E. sativa growth and germination, enhancing plant production which helps to improve the sustainable agriculture farming and acting as a possible antifungal agent against plant pathogenic fungi.
Collapse
Affiliation(s)
- Pooja Goswami
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali Tonk, 304022, Rajasthan, India
| | - Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali Tonk, 304022, Rajasthan, India.
| |
Collapse
|
30
|
Bello AS, Ben-Hamadou R, Hamdi H, Saadaoui I, Ahmed T. Application of Cyanobacteria ( Roholtiella sp.) Liquid Extract for the Alleviation of Salt Stress in Bell Pepper ( Capsicum annuum L.) Plants Grown in a Soilless System. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010104. [PMID: 35009109 PMCID: PMC8747557 DOI: 10.3390/plants11010104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 05/17/2023]
Abstract
Salinity is one of the abiotic stresses that affect crop growth and productivity in arid and semi-arid regions. Unfortunately, there are few known methods to mitigate the deleterious impacts of salt stress on the development and yield of vegetable crops. Blue-green algae (cyanobacteria) are endowed with the potential to curb the negative impacts of salt stress as they are characterized by biostimulant properties. The present work aimed to investigate the effects of Roholtiella sp. as a foliar extract on the growth characteristics, physiological and biochemical responses of bell pepper (Capsicum annuum L.) plants under varying levels of salinity conditions. A soilless water experiment was carried out in a greenhouse where bell pepper seedlings were grown under five salt concentrations (0, 50, 200, 150, and 200 mM of NaCl). Growth characteristics, pigments content, relative water content, and antioxidant activity (CAT) were determined. Our results showed that growth parameters, relative water content (RWC), chlorophyll a & b concentrations under salinity conditions were negatively affected at the highest concentration (200 mM). Interestingly, the application of Roholtiella sp. foliar extract enhanced the plant growth characteristics as shoot length increased by 17.014%, fresh weight by 39.15%, dry and weight by 31.02%, at various salt treatments. Moreover, chlorophyll a and b increased significantly compared with seedlings sprayed with water. Similarly, RWC exhibited a significant increase (92.05%) compared with plants sprayed with water. In addition, antioxidants activities and accumulation of proline were improved in Roholtella sp. extract foliar sprayed seedlings compared to the plants foliar sprayed with water. Conclusively, at the expiration of our study, the Rohotiella sp. extract-treated plants were found to be more efficient in mitigating the deleterious effects caused by the salinity conditions which is an indication of an enhancement potential of tolerating salt-stressed plants when compared to the control group.
Collapse
Affiliation(s)
- Adewale Suraj Bello
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.B.); (R.B.-H.)
| | - Radhouane Ben-Hamadou
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.B.); (R.B.-H.)
| | - Helmi Hamdi
- Center for Sustainable Development, Qatar University, Doha P.O. Box 2713, Qatar; (H.H.); (I.S.)
| | - Imen Saadaoui
- Center for Sustainable Development, Qatar University, Doha P.O. Box 2713, Qatar; (H.H.); (I.S.)
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: ; Tel.: +974-44034563
| |
Collapse
|
31
|
Ullah S, Ali S, Binte Abid A, Nafees M. Modulating response of Zea mays to induced salinity stress through application of nitrate mediated silver nanoparticles and indole acetic acid. Microsc Res Tech 2021; 85:1135-1145. [PMID: 34775653 DOI: 10.1002/jemt.23982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022]
Abstract
Nanotechnology has been amplified in different areas of science as well as agriculture in the present era. So, the present work was designed to evaluate the result of nitrate mediated silver nanoparticles (Nit-AgNPs) and indole acetic acid (IAA) on physio-biochemical features of the selected maize variety (Pahari white) under 40 and 80 mM salinity induction. Seeds were propagated in triplicates in earthen pots (18 cm inferior and superior inside diameter, 20 cm stature, and 2 cm breadth) filled with silt and soil (1:2) having 3.09-5.12 Electrical conductivity (EC), 6.8-7.3 pH, and 4-16% moisture contents. Scanning electron microscopy results showed the average particle size around 90 nm indicating a high surface area suitable for adsorption properties, agglomerated, roughly spherical, and were uniformly dispersed. Elemental quantification of biosynthesized AgNPs analyzed via energy dispersive X-ray spectroscopy showed a strong peak at 3.0 KeV along with the presence of elements K, N, O, and C. Results of Thermo-gravimetric Analysis (TGA)/Differential Thermal Analysis (DTA) showed endothermic major decline at 150-300°C, while exothermic peak at 300-400°C. The growth responses at 40 mM salinity concentration have been reduced representing from the least boundary of chlorophyll "a," "b," and peroxidase content, whereas; this adverse effect has been reduced by operation of Nit-AgNPs as separate treatment and in combination with IAA. From the current study, it has been concluded that salinity concentration at 80 mM adversely affected the values of osmolytes, protein, and superoxide dismutase whereas the maximum amplitude of proline reduced by the application of Nit-AgNPs as distinct treatment indicating that the plant behaves normal with the combined application of nanoparticles and IAA.
Collapse
Affiliation(s)
- Sami Ullah
- Plant Physiology Lab., Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Sara Ali
- Plant Physiology Lab., Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Afroz Binte Abid
- Plant Physiology Lab., Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Nafees
- Plant Physiology Lab., Department of Botany, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
32
|
The Combined Effect of Pseudomonas stutzeri and Biochar on the Growth Dynamics and Tolerance of Lettuce Plants (Lactuca sativa) to Cadmium Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Agricultural activities lead to the accumulation of cadmium (Cd) in the soil. It is necessary to identify effective and economical ways to reduce the soil Cd bioavailability. To achieve this, three bacterial strains, Pseudomonas stutzeri, P. koreensis, and P. fluorescens, were tested for tolerance and biosorption of different concentrations of Cd (0, 5, 10, 15, 20, and 25 mg L−1). During the 2020 and 2021 seasons, a pot experiment was conducted using four different soil amendments (control, biochar, P. stutzeri, and a combination) under four levels of Cd (0, 40, 80, and 120 mg kg−1) and assessing the effect on growth parameters, physiological modifications, antioxidant enzymes, and Cd accumulation in lettuce plants (Lactuca sativa cv. Balady). In vitro, the results showed that P. stutzeri was the most tolerant of Cd. Our findings in pot trials showed that T4 (biochar + P. stutzeri) was a more efficient treatment in terms of the growth parameters, with 452.00 g plant−1 was recorded for fresh weight, 40.10 g plant−1 for dry weight, 18.89 cm plant−1 for plant height, 6.03 cm2 for leaf area, and 20.48 for the number of leaves plant−1, while in terms of physiological characteristics, we recorded 1.29 mg g−1 FW, 0.35 μg g−1 FW, and 3.69 μg g−1 FW for total chlorophyll, carotenoids, and total soluble sugar, respectively; this was also reflected in the number of antioxidant enzymes and intensity of soil biological activities in soil treated with 120 mg kg−1 Cd compared with the control and other treatments in the first season. A similar trend was observed in the second season. Additionally, significantly lower Cd was observed in both the root (67%) and shoots (78%). Therefore, a combined application of biochar and P. stutzeri could be used as an alternative to mitigate Cd toxicity.
Collapse
|
33
|
Helal M, Sami R, Khojah E, Elhakem A, Benajiba N, Al-Mushhin AAM, Fouda N. Evaluating the coating process of titanium dioxide nanoparticles and sodium tripolyphosphate on cucumbers under chilling condition to extend the shelf-life. Sci Rep 2021; 11:20312. [PMID: 34645839 PMCID: PMC8514431 DOI: 10.1038/s41598-021-99023-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
Cucumber is a highly perishable fruit, that can easily suffer from water loss, condensation, shriveling, yellowing and decay. The present investigation aim was to extending the shelf-life of cucumber using eco-friendly sodium tripolyphosphate and nano-material. Decay; hardness; succinate dehydrogenase activity (SDH); condensation and shriveling rates; and visual quality assessments of cucumbers fruits were evaluated during 21 days of storage period at 10 °C. There was a slight incidence of decay among (Chitosan/Titanium Dioxide Nanoparticles) CS-TiO2 and (Chitosan/Titanium Dioxide Nanoparticles/Sodium Tripolyphosphate) CS-TiO2-STP samples, which reported the lowest decay incidence 2.21% in CS-TiO2, while CS-TiO2-STP did not show any decay at end of storage period. CS-TiO2-STP recorded the lowest value in SDH activity 0.08 ∆OD min−1 mg protein−1. Very slight hardness, water condensation, and shriveling were detected in CS-TiO2 samples, while CS-TiO2-STP was the lowest compared with other SC samples and control. In general, CS-TiO2-STP treatment was found most potential to enhance the postharvest shelf life of cucumber throughout the storage period up to 21 day.
Collapse
Affiliation(s)
- Mahmoud Helal
- Department of Mechanical Engineering, Faculty of Engineering, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia.
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Abeer Elhakem
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Amina A M Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - N Fouda
- Production & Mechanical Design Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
34
|
Salt Stress Amelioration in Maize Plants through Phosphogypsum Application and Bacterial Inoculation. PLANTS 2021; 10:plants10102024. [PMID: 34685833 PMCID: PMC8540408 DOI: 10.3390/plants10102024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
The use of phosphogypsum (PG) and plant growth-promoting rhizobacteria (PGPR) for agricultural purposes are good options to improve soil properties and increase crop yield. The objective of this study was to investigate the effect of different rates of PG (ton ha−1; 0 (PG1), 3 (PG2), 6 (PG3), and 9 (PG4)) combined with PGPR inoculation (Azospirillum lipoferum (control, T1), A. lipoferum + Bacillus coagulans (T2), A. lipoferum + B. circulance (T3), and A. lipoferum + B. subtilis (T4)) on soil properties, plant physiology, antioxidant enzymes, nutrient uptake, and yield of maize plants (Zea mays L., cv. HSC 10) grown in salt-affected soil. Over two growing seasons, 2019 and 2020, field experiments were conducted as a split-plot design with triplicates. The results show that applying PG (9 ton ha−1) and co-inoculation (A. lipoferum + B. circulance) treatment significantly increased chlorophyll and carotenoids content, antioxidant enzymes, microbial communities, soil enzymes activity, and nutrient contents, and showed inhibitory impacts on proline content and pH, as well as EC and ESP, thus improving the productivity of maize plant compared to the control treatment. It could be concluded that PG, along with microbial inoculation, may be an important approach for ameliorating the negative impacts of salinity on maize plants.
Collapse
|
35
|
Nehela Y, Mazrou YSA, Alshaal T, Rady AMS, El-Sherif AMA, Omara AED, Abd El-Monem AM, Hafez EM. The Integrated Amendment of Sodic-Saline Soils Using Biochar and Plant Growth-Promoting Rhizobacteria Enhances Maize ( Zea mays L.) Resilience to Water Salinity. PLANTS (BASEL, SWITZERLAND) 2021; 10:1960. [PMID: 34579492 PMCID: PMC8466265 DOI: 10.3390/plants10091960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
The utilization of low-quality water or slightly saline water in sodic-saline soil is a major global conundrum that severely impacts agricultural productivity and sustainability, particularly in arid and semiarid regions with limited freshwater resources. Herein, we proposed an integrated amendment strategy for sodic-saline soil using biochar and/or plant growth-promoting rhizobacteria (PGPR; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) to alleviate the adverse impacts of saline water on the growth, physiology, and productivity of maize (Zea mays L.), as well as the soil properties and nutrient uptake during two successive seasons (2018 and 2019). Our field experiments revealed that the combined application of PGPR and biochar (PGPR + biochar) significantly improved the soil ecosystem and physicochemical properties and K+, Ca2+, and Mg2+ contents but reduced the soil exchangeable sodium percentage and Na+ content. Likewise, it significantly increased the activity of soil urease (158.14 ± 2.37 and 165.51 ± 3.05 mg NH4+ g-1 dry soil d-1) and dehydrogenase (117.89 ± 1.86 and 121.44 ± 1.00 mg TPF g-1 dry soil d-1) in 2018 and 2019, respectively, upon irrigation with saline water compared with non-treated control. PGPR + biochar supplementation mitigated the hazardous impacts of saline water on maize plants grown in sodic-saline soil better than biochar or PGPR individually (PGPR + biochar > biochar > PGPR). The highest values of leaf area index, total chlorophyll, carotenoids, total soluble sugar (TSS), relative water content, K+ and K+/Na+ of maize plants corresponded to PGPR + biochar treatment. These findings could be guidelines for cultivating not only maize but other cereal crops particularly in salt-affected soil and sodic-saline soil.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| | - Yasser S. A. Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; or
- Department of Agriculture Economic, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Tarek Alshaal
- Agricultural Botany, Plant Physiology and Biotechnology Department, University of Debrecen, AGTC, 4032 Debrecen, Hungary; or
- Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Asmaa M. S. Rady
- Crop Science Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Ahmed M. A. El-Sherif
- Department of Agronomy, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Ahmed M. Abd El-Monem
- Department of Agronomy, Faculty of Agriculture, New Valley University, New Valley, Elkharrga 72511, Egypt;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; or
| |
Collapse
|
36
|
Osman HS, Gowayed SM, Elbagory M, Omara AED, El-Monem AMA, Abd El-Razek UA, Hafez EM. Interactive Impacts of Beneficial Microbes and Si-Zn Nanocomposite on Growth and Productivity of Soybean Subjected to Water Deficit under Salt-Affected Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:1396. [PMID: 34371599 PMCID: PMC8309357 DOI: 10.3390/plants10071396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 01/23/2023]
Abstract
Water stress or soil salinity is considered the major environmental factor affecting plant growth. When both challenges are present, the soil becomes infertile, limiting plant productivity. In this work a field experiment was conducted during the summer 2019 and 2020 seasons to evaluate whether plant growth-promoting microbes (PGPMs) and nanoparticles (Si-ZnNPs) have the potential to maintain soybean growth, productivity, and seed quality under different watering intervals (every 11 (IW0), 15 (IW1) and 19 (IW2) days) in salt-affected soil. The most extended watering intervals (IW1 and IW2) caused significant increases in Na+ content, and oxidative damage indicators (malondialdehyde (MDA) and electrolyte leakage (EL%)), which led to significant reductions in soybean relative water content (RWC), stomatal conductance, leaf K+, photosynthetic pigments, soluble protein. Subsequently reduced the vegetative growth (root length, nodules dry weight, and total leaves area) and seeds yield. However, there was an enhancement in the antioxidants defense system (enzymatic and non-enzymatic antioxidant). The individual application of PGPMs or Si-ZnNPs significantly improved leaf K+ content, photosynthetic pigments, RWC, stomatal conductance, total soluble sugars (TSS), CAT, POD, SOD, number of pods plant-1, and seed yield through decreasing the leaf Na+ content, MDA, and EL%. The combined application of PGPMs and Si-ZnNPs minimized the adverse impact of water stress and soil salinity by maximizing the root length, heavier nodules dry weight, leaves area, TSS and the activity of antioxidant enzymes, which resulted in higher soybean growth and productivity, which suggests their use under harsh growing conditions.
Collapse
Affiliation(s)
- Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt;
| | - Salah M. Gowayed
- Department of Botany, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohssen Elbagory
- Department of Biology, Faculty of Science and Arts, King Khalid University, Mohail Assir 61321, Saudi Arabia;
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Ahmed M. Abd El-Monem
- Department of Agronomy, Faculty of Agriculture, New Valley University, New Valley, Elkharrga 72511, Egypt;
| | | | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
37
|
Integrated Application of Composted Agricultural Wastes, Chemical Fertilizers and Biofertilizers as an Avenue to Promote Growth, Yield and Quality of Maize in an Arid Agro-Ecosystem. SUSTAINABILITY 2021. [DOI: 10.3390/su13137439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Formulating new integrated plant nutrient management (IPNM) strategies in order to sustain crop production and protect the environment has become an important issue in the present agricultural system. Therefore, a field study was carried out in the two seasons 2016 and 2017 to formulate the best IPNM strategies for improving the growth, yield, and quality of maize grown in an arid agro-ecosystem. The IPNM comprised full-dose NPK (T1); composted agricultural wastes based on cow manure (T2), poultry manure (T3), and a mixture of sheep and camel manure (T4) as activators at the rate of 5 t ha−1 for each; half-dose NPK was combined with the mixture of the three types of composted agricultural wastes at the rate of 5 t ha−1 (T5) or 10 t ha−1 (T6), and a mixture of the three types of composted agricultural wastes at the rate of 10 t ha−1 (T7), 15 t ha−1 (T8), or 20 t ha−1 (T9), either with or without biofertilizers. The results showed that, as compared to T1, T6 or T9 significantly increased different growth, yield, and quality parameters of maize by 11.4–27.3%, 0.8–31.8%, and 4.6–17.2%, while T2 significantly decreased these parameters by 2.2–17.8%, 3.5–16.7%, and 4.5–9.4%, respectively. Seed inoculation with biofertilizers significantly increased different parameters of maize by 1.8–12.9%, compared to that of the non-inoculation seed treatment. Principal component analysis showed a strong relationship between different parameters of maize and treatments T5, T6, T8, and T9 with seed inoculation. Further, a significant and linear relationship was observed between different parameters of maize and the amount of N (R2 = 0.65–0.77), P (R2 = 0.58–0.71), and K (R2 = 0.63–0.73). These results indicated that any IPNM strategies that manage the NPK status and dynamics in the soil are a promising avenue for improving the growth and productivity of maize grown in the arid agro-ecosystem.
Collapse
|
38
|
Hafez EM, Osman HS, El-Razek UAA, Elbagory M, Omara AED, Eid MA, Gowayed SM. Foliar-Applied Potassium Silicate Coupled with Plant Growth-Promoting Rhizobacteria Improves Growth, Physiology, Nutrient Uptake and Productivity of Faba Bean ( Vicia faba L.) Irrigated with Saline Water in Salt-Affected Soil. PLANTS 2021; 10:plants10050894. [PMID: 33925247 PMCID: PMC8146160 DOI: 10.3390/plants10050894] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant−1, number of seeds pod−1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.
Collapse
Affiliation(s)
- Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence:
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, P.O. Box 68, Cairo 11241, Egypt;
| | | | - Mohssen Elbagory
- Department of Biology, Faculty of Science and Arts, King Khalid University, Mohail Assir 61321, Saudi Arabia;
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Mohamed A. Eid
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Salah M. Gowayed
- Department of Botany, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
- Department of Biology, College of Sciences, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
39
|
Performance Study of Nano/SiO2 Films and the Antimicrobial Application on Cantaloupe Fruit Shelf-Life. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the current study, novel films with chitosan/nano/SiO2/nisin films and their antimicrobial application on cantaloupe fruit shelf-life have been studied. Novel films were prepared by the addition of 1% chitosan, 1% nano silicon dioxide, and 1% nisin and freeze-dried for the performance study. Physicochemical properties such as tensile strength, optical, and thermal properties with the performance characteristics of the novel films were measured. Coated and uncoated cantaloupes with various coating solutions were stored and chilled at 4 °C in a relative humidity of 70% for up to nine days. The microbial population measurements have been detected every three days. Results show that the fourier transform infrared intensity (FTIR) of nano/SiO2 and with the addition of nisin (nano/SiO2/n) were higher than chitosan (CH) film except in the wavenumber (3150–3750 cm−1) films peaks. Novel nanofilms enhanced tensile strength as well as optical and thermal properties. XRD analysis reported two distinct peak values of 32.08 and 45.99 to correspond to nano/SiO2/n film orientation (7095) and (3316), respectively. Zeta potential values and turbidity were increased, while nano/SiO2 films decreased the hydrophobicity of the film surface by 80.07°. The coating treatments with nano/SiO2 and nano/SiO2/n both reduced the yeast and mold counts 2.49 and 1.92 log CFU/g, respectively, on day nine. In summary, chitosan/nano/SiO2/n novel film improved the functional properties of coating films, and those bio-nanocomposites are effective in food packaging.
Collapse
|