1
|
Sharifuzzaman M, Mun HS, Ampode KMB, Lagua EB, Park HR, Kim YH, Hasan MK, Yang CJ. Optimizing broiler growth, health, and meat quality with citric acid- assessing the optimal dose and environmental impact: Citric acid in Broiler Health and Production. Poult Sci 2024; 104:104668. [PMID: 39705837 PMCID: PMC11728898 DOI: 10.1016/j.psj.2024.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
The need for sustainable and safe alternatives to antibiotic growth promoters has driven researchers to explore organic acids (OAs) inclusion in broiler diets. Citric acid (CA), a notable OA, has emerged as a promising alternative due to its various physiological benefits, including improved nutrient digestibility, antioxidant properties, and enhanced weight gain. Despite the improved growth performance, the feed conversion ratio (FCR) does not seem to be consistently affected by CA inclusion. A considerable number of research papers suggest that CA can replace antibiotic growth promoters and has proved to be more effective when combined with other additives like probiotics and microbial phytase. However, despite numerous trials, the near-accurate dose remains in doubt. Dietary addition between 1.65 % and 2.65 % seems to positively affect broiler performance. Being an organic acid, CA brings no risk to the environment and does not economically burden producers. It has the capability to enhance certain meat qualities and extend shelf life. However, there is a risk of acidic stress and liver damage with excessive inclusion. This review study seeks to offer a thorough and all-encompassing summary of the present level of understanding regarding the use of CA supplementation in broiler diets by describing its impacts on growth efficiency, nutrient utilization, intestinal condition, immune response, meat quality, optimal dose, and environmental sustainability. Further research focused on determining precise dosage levels and understanding the synergistic or antagonistic effects of citric acid when combined with other feed additives is essential for optimizing broiler performance.
Collapse
Affiliation(s)
- Md Sharifuzzaman
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Animal Science and Veterinary Medicine, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hong-Seok Mun
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Multimedia Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Keiven Mark B Ampode
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Animal Science, College of Agriculture, Sultan Kudarat State University, Tacurong 9800, Philippines
| | - Eddiemar B Lagua
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hae-Rang Park
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Young-Hwa Kim
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Kamrul Hasan
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Poultry Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Chul-Ju Yang
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
2
|
Toschi A, Yu LE, Bialkowski S, Schlitzkus L, Grilli E, Li Y. Dietary supplementation of microencapsulated botanicals and organic acids enhances the expression and function of intestine epithelial digestive enzymes and nutrient transporters in broiler chickens. Poult Sci 2024; 103:104237. [PMID: 39217663 PMCID: PMC11402617 DOI: 10.1016/j.psj.2024.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Organic acids and botanicals have shown protective effects on gut barrier and against inflammation in broilers. However, their effects on intestinal digestive enzymes and nutrients transporters expression and functions have not been fully studied. The objective of this study was to understand how a microencapsulated blend of botanicals and organic acids affected intestinal enzyme activities and nutrient transporters expression and functions in broilers. A total of 288 birds were assigned to a commercial control diet or diet supplemented with 500 g/MT (metric ton) of the microencapsulated additive. Growth performance was recorded weekly. At d 21 and d 42, jejunum and ileum were isolated for enzyme (maltase, sucrase, and aminopeptidase) and transporter (SGLT1, GLUT2, GLUT1, EAAT3, B0AT1, and PepT1) analyses. Jejunum specific nutrients (glucose, alanine, and glutamate) transport activities were evaluated by Ussing chamber. Protein expression of nutrient transporters in small intestine were measured in mucosa and brush-border membrane (BBM) samples by western blot. Intestinal gene expression of the transporters was determined by RT-PCR. Statistical analysis was performed using Student's t-test comparing the supplemented diet to the control. The feed efficiency was significantly improved through the study period in the supplemented group (P ≤ 0.05). Significant changes of intestinal histology were shown in both jejunum (P ≤ 0.10) and ileum (P ≤ 0.05) after 21 d of treatment. At d21, jejunal maltase activity was upregulated (P ≤ 0.10). The Ussing chamber transport of glucose and alanine was increased, which was in line with increased gene expression (GLUT2, GLUT1, EAAT3, and B0AT1) (P ≤ 0.10 and P ≤ 0.05, respectively) and BBMV protein levels (B0AT1, P < 0.10). At d21, ileal sucrase and maltase activities were upregulated (P ≤ 0.05). Increased expressions of GLUT1, EAAT3, and B0AT1 were observed in both mRNA and protein levels (P ≤ 0.05). Similar pattern of changes was also shown at d42 of age. Our results suggest that feeding microencapsulated additives improves intestinal nutrient digestion and transporter expression and function in broilers, thereby enhancing feed efficiency.
Collapse
Affiliation(s)
| | - Liang-En Yu
- Department of Animal and Food Sciences, University of Delaware, 19716 Newark, DE, USA
| | - Sofia Bialkowski
- Department of Animal and Food Sciences, University of Delaware, 19716 Newark, DE, USA
| | - Lydia Schlitzkus
- Department of Animal and Food Sciences, University of Delaware, 19716 Newark, DE, USA
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy; Vetagro Inc., 60603 Chicago, IL, USA
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, 19716 Newark, DE, USA.
| |
Collapse
|
3
|
Perry F, Johnson CN, Lahaye L, Santin E, Korver DR, Kogut MH, Arsenault RJ. Protected biofactors and antioxidants reduce the negative consequences of virus and cold challenge by modulating immunometabolism via changes in the interleukin-6 receptor signaling cascade in the liver. Poult Sci 2024; 103:104044. [PMID: 39043025 PMCID: PMC11325367 DOI: 10.1016/j.psj.2024.104044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Protected biofactors and antioxidants (PBA), and protected biofactors and antioxidants with protected organic acids and essential oils (PBA+POAEO) have been shown to have benefits in stressed or challenged birds. Here, we describe the immunometabolic changes observed in the liver of Ross 308 broilers during feed supplementation and brief physiological stress. These studied additives contain protected essential oils, organic acids, and vitamins which may have protective effects on the liver. Thus, we aimed to determine the signaling changes induced by these supplements and the resultant immunometabolic effects in the liver. All birds received a 2X dose of live bronchitis vaccine at d 0 and a 48-h cold challenge by reducing the temperature from 30 to 32°C, to 20 to 23°C on d 3 to 5. Control birds were fed a standard diet without supplementation. Liver samples were collected to evaluate the effects of these treatments on cytokine gene expression and protein phosphorylation via kinome peptide array. ANOVA was used for statistical analysis of the gene expression data (significance at a p-value of 0.05), and PIIKA2 was used for statistical evaluation and comparative analysis of the kinome peptide array data. At d 15, the kinome peptide array analysis and gene expression data showed stimulation of the interleukin 6 receptor (IL-6R) signal transduction for host protection via heightened immune response while inducing immune modulation and reducing inflammation in both supplement treated groups. Significant changes were observed via IL-6R signaling in the metabolic profiles of both groups compared to control and no significant differences when compared to each other. In the liver, these 2 feed additives induced immunometabolic changes predominantly via the IL-6 receptor family signaling cascade. Differences between the 2 treated groups were predominantly in the metabolic pathways, centered around the mTOR pathway and the proteins AMPK, mTOR and S6K, with a more anabolic phenotype following the addition of essential oils.
Collapse
Affiliation(s)
- F Perry
- Department of Animal and Food Sciences, University of Delaware, DE, USA
| | - C N Johnson
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - L Lahaye
- Jefo Nutrition Inc., Saint-Hyacinthe, Quebec, Canada
| | - E Santin
- I See Inside Institute, Curitiba, Paraná , Brazil
| | - D R Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - M H Kogut
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - R J Arsenault
- Department of Animal and Food Sciences, University of Delaware, DE, USA.
| |
Collapse
|
4
|
Wódz K, Chodkowska KA, Iwiński H, Różański H, Wojciechowski J. In Vitro Evaluation of Phytobiotic Mixture Antibacterial Potential against Enterococcus spp. Strains Isolated from Broiler Chicken. Int J Mol Sci 2024; 25:4797. [PMID: 38732016 PMCID: PMC11084370 DOI: 10.3390/ijms25094797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens.
Collapse
Affiliation(s)
- Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland;
| | | | - Hubert Iwiński
- AdiFeed Sp. z o.o., Chrzanowska 15, 05-825 Grodzisk Mazowiecki, Poland; (H.I.); (H.R.)
| | - Henryk Różański
- AdiFeed Sp. z o.o., Chrzanowska 15, 05-825 Grodzisk Mazowiecki, Poland; (H.I.); (H.R.)
- Laboratory of Industrial and Experimental Biology, Institute for Health and Economics, Carpathian State College in Krosno, Rynek 1, 38-400 Krosno, Poland
| | - Jakub Wojciechowski
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland;
| |
Collapse
|
5
|
Al-Ghamdi ES. Growth performance, carcass characteristics, and blood biochemical indices of broilers affected by dietary organic acids blend's supplementation. Anim Biotechnol 2023; 34:2059-2064. [PMID: 35499521 DOI: 10.1080/10495398.2022.2068025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The objective of the present study was to explore the influence of organic acids cocktail (lactic-L plus formic-F acid, LF) in broiler diets on feed utilization, growth rate, blood indices and carcass traits. A total of 300 chicks were used and allotted to five treatment groups. The rations contained 0 additives (negative control-NC), basal diet + 0.5 g Colistin® (positive control-PC); LF2, LF4 and LF6: basal diet + 2, 4 and 6 cm3 LF/kg diet, respectively. There were no differences in feed consumption and feed conversion due to LF treatments at all ages except FI at 1-2 wks of age which was significantly affected by gradual levels of LF (p < 0.05). All carcass traits were statistically significant (p < 0.05) differed due to LF treatments. The alterations in urea, creatinine total protein, globulin and albumin in addition to the activity of alanine aminotransferase and aspartate aminotransferase in broiler chicks were significantly different when compared to controls. Malondialdehyde (MDA) slightly decreased with an increase in the level of formic plus lactic. Based on our results, the highest and middle levels (6 and 4 cm3 LF/kg diet) are recommended for the best performance and health aspects of broilers.
Collapse
Affiliation(s)
- Etab Saleh Al-Ghamdi
- Department of Food and Nutrition, College of Human Sciences and Design, King Abdualziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Qin Q, Li Z, Zhang M, Dai Y, Li S, Wu H, Zhang Z, Chen P. Effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in heat-stressed quails. Poult Sci 2023; 102:102713. [PMID: 37540950 PMCID: PMC10407909 DOI: 10.1016/j.psj.2023.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 08/06/2023] Open
Abstract
The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Min Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Yaqi Dai
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Shuohan Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China.
| |
Collapse
|
7
|
Li L, Chen X, Zhang K, Tian G, Ding X, Bai S, Zeng Q. Effects of Thymol and Carvacrol Eutectic on Growth Performance, Serum Biochemical Parameters, and Intestinal Health in Broiler Chickens. Animals (Basel) 2023; 13:2242. [PMID: 37444040 DOI: 10.3390/ani13132242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to evaluate the effect of diets supplementing with various levels of thymol and carvacrol eutectic (TCE) on growth performance, serum biochemical parameters, intestinal morphology, and the expression of intestinal nutrient absorption, barrier function- and inflammation-related genes in broiler chickens. A total of 640 one-day-old Arbor Acres male broilers with similar body weights were randomly divided into four groups (8 replicates/group, 20 broilers/replicate). Birds in the four experimental groups were fed a basal diet with TCE at 0, 30, 60, or 120 mg/kg. The results showed that the growth performance of birds during 22-42 d or 1-42 d, serum IgE and IgG content at 21 d of age, jejunal and ileal morphology, ileal MUC2, OCLN, and IL-10 mRNA expression were significantly increased compared with the control group (p < 0.05), and the ileal IL-6 mRNA expression quadratically decreased (p < 0.05) with increasing dietary TCE supplemented dosage, and its expression showed a linear downward trend (0.05 < p < 0.1). Meanwhile, compared with the other three groups, birds fed diets with 30 mg/kg TCE presented better (p < 0.05) growth performance, intestinal morphology, and function. These results indicated that the optimal supplementation amount of TCE in the broiler diets was 30 mg/kg.
Collapse
Affiliation(s)
- Lixuan Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaochun Chen
- Institute of Animal Science, Chengdu Agricultural College, Chengdu 611130, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Pham VH, Abbas W, Huang J, Guo F, Zhang K, Kong L, Zhen W, Guo Y, Wang Z. Dietary coated essential oil and organic acid mixture supplementation improves health of broilers infected with avian pathogenic Escherichia coli. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:245-262. [PMID: 36712401 PMCID: PMC9868345 DOI: 10.1016/j.aninu.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023]
Abstract
Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is a very prevalent disease in poultry farms in China. The exploration of effective non-antibiotic substances is of great significance for the control of APEC infections. This experiment evaluated the efficacy of coated essential oil and organic acid (EOA) supplementation to prevent E. coli O78 infection in broiler chickens. A total of 288 one-day-old male broiler chicks were randomly distributed into 4 groups with 6 replicates per group. Chickens were fed a diet either supplemented with EOA (500 mg/kg feed) or not, and either uninfected or infected with E. coli O78 intratracheally. Results showed that E. coli O78 infection reduced body weight gain, increased mortality and the ratio of feed to gain along with cecal and liver E. coli load, damaged gut mucosa, induced local and systemic inflammation, and altered cecal microbial composition, diversity and function (P < 0.05). Supplemental EOA improved feed conversion efficiency, lowered gross lesion scores and cecal E. coli population, enhanced intestinal goblet cells and serum IgG concentration, and tended to decrease serum IL-12 production (P < 0.05). Essential oil and organic acid addition downregulated IFN-γ mRNA, tended to decrease mucin-2 mRNA levels while upregulating IL-10 mRNA, and tended to increase ZO-1 gene expression in the jejuna of infected birds at 7 d after E. coli O78 challenge (P < 0.05). The 16S rRNA gene sequencing indicated that both EOA addition and E. coli O78 challenge altered the diversity and composition of the cecal microbiota community. Furthermore, infected birds fed EOA showed decreased Bacteroidetes and genus Lactobacillus abundance compared with the infected control. LEfSe analysis showed that Firmicutes, Ruminococcaceae, Clostridiales, Clostridia, Lactobacillus, Lactobacilaceae, and cc-115 were enriched in the non-infected but EOA-treated group (P < 0.05). Collectively, dietary EOA supplementation could mildly alleviate E. coli-induced gut injury and inflammation.
Collapse
Affiliation(s)
- Van Hieu Pham
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China,Faculty of Animal Science and Veterinary Medicine, Thai Nguyen University Agriculture and Forestry, Thai Nguyen, Viet Nam
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinyu Huang
- Menon Animal Nutrition Technology Co. Ltd., Shanghai, 201807, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kaichen Zhang
- Tengzhou Heyi Food Co. Ltd., Zaozhuang, 277000, China
| | - Linhua Kong
- Tengzhou Heyi Food Co. Ltd., Zaozhuang, 277000, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China,Corresponding author.
| |
Collapse
|
9
|
A High-Performance Day-Age Classification and Detection Model for Chick Based on Attention Encoder and Convolutional Neural Network. Animals (Basel) 2022; 12:ani12182425. [PMID: 36139285 PMCID: PMC9495009 DOI: 10.3390/ani12182425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/15/2023] Open
Abstract
Thanks to the boom of computer vision techniques and artificial intelligence algorithms, it is more available to achieve artificial rearing for animals in real production scenarios. Improving the accuracy of chicken day-age detection is one of the instances, which is of great importance for chicken rearing. To solve this problem, we proposed an attention encoder structure to extract chicken image features, trying to improve the detection accuracy. To cope with the imbalance of the dataset, various data enhancement schemes such as Cutout, CutMix, and MixUp were proposed to verify the effectiveness of the proposed attention encoder. This paper put the structure into various mainstream CNN networks for comparison and multiple ablation experiments. The final experimental results show that by applying the attention encoder structure, ResNet-50 can improve the accuracy of chicken age detection to 95.2%. Finally, this paper also designed a complete image acquisition system for chicken houses and a detection application configured for mobile devices.
Collapse
|
10
|
García Beltrán JM, Esteban MÁ. Nature-identical compounds as feed additives in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2022; 123:409-416. [PMID: 35331881 DOI: 10.1016/j.fsi.2022.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Aquaculture sustainable development is necessary since it is categorized as the most important source of aquatic products for human consumption and it is expected to keep growing shortly. For this reason, the addition of natural immunostimulants to fish diet to improve fish health and to preserve the environment have great importance in aquaculture. In this sense, new biotechnological tools as nature-identical compounds are now being used as feed additives to strengthen and stimulate the fish immune system to prevent and/or control diseases due to their lesser cost and higher availability than plant compounds. This review aims to present the most recent studies in which nature-identical compounds have been used in the fish diet to establish their possible use in aquaculture. Nature-identical compounds can be considered a promising alternative to be added to fish diets to promote growth performance, manipulate the gut microbiota, and improve the immune and oxidative status of fish as wells as control bacterial infections in this important aquatic industry.
Collapse
Affiliation(s)
- José María García Beltrán
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
11
|
Pham VH, Abbas W, Huang J, He Q, Zhen W, Guo Y, Wang Z. Effect of blending encapsulated essential oils and organic acids as an antibiotic growth promoter alternative on growth performance and intestinal health in broilers with necrotic enteritis. Poult Sci 2022; 101:101563. [PMID: 34823183 PMCID: PMC8628017 DOI: 10.1016/j.psj.2021.101563] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
The effects of a blend of encapsulated organic acids with essential oils (EOA) as an alternative to antimicrobial growth promoter (AGP) on growth performance and gut health of Eimeria spp./Clostridium perfringens (C. perfringens) in chickens infected with necrotic enteritis (NE) broilers was investigated. A total of 432 male Arbor Acres broilers (1-day-old) were randomly distributed into 6 treatment groups, namely noninfected negative control (A); NE-infected positive control (D); NE-infected broiler chickens fed a basal diet supplemented with 250 mg/kg bacitracin methylene disalicylate (BMD) plus 90 mg/kg monensin; and NE-infected broiler chicken fed 200; 500; and 800 mg/kg EOA (E, F, G, and H group). Feeding EOA at 200 and 500 mg/kg considerably improved the feed conversion ratio, reduced gut lesions, serum fluorescein isothiocyanate dextran level, and C. perfringens load in the caecum and liver of the NE-infected broiler chickens. This feed was similar to AGP. Furthermore, the increased villous height-to-crypt depth ratio and goblet cells counts, upregulated claudin-1, glucagon-like peptide-2 (GLP-2), insulin-like growth factor-2 (IGF-2) mRNA gene expression, downregulated occludin, zonula occludens-1 (ZO-1), toll-like receptor (TLR-4), interleukin (IL-1β), interferon γ (IFN-γ), TNF receptor-associated factor 6 (TRAF-6), tumor necrosis factor superfamily member 15 (TNFSF15), and Toll-interacting protein (Tollip) genes expression in the jejunum were observed in the NE-infected broiler chickens that received EOA at 200 and 500 mg/kg compared with those of the single NE-challenged groups without EOA supplementations (P < 0.05). The 16S analysis revealed that EOA supplemented with 200 or 500 mg/kg enriched relative abundance of Lactobacillus, unclassified_Lachnospiraceae, and Enterococcus, and carbohydrate metabolic pathways but suppressed unclassified_Erysipelotrichacease and organismal systems involved in the immune system (P < 0.05). Feeding EOA could alleviate NE-induced gut impairment and growth depression and modulate cecal microbiota composition, which has potential as antimicrobial alternatives.
Collapse
Affiliation(s)
- Van Hieu Pham
- Faculty of Animal Science and Veterinary Medicine, Thai Nguyen University Agriculture and Forestry, Thai Nguyen, Vietnam; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinyu Huang
- Menon Animal Nutrition Technology Co. Ltd., Shanghai, China
| | - Qiang He
- Menon Animal Nutrition Technology Co. Ltd., Shanghai, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals (Basel) 2021; 11:ani11123471. [PMID: 34944248 PMCID: PMC8698016 DOI: 10.3390/ani11123471] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Plant secondary metabolites and essential oils also known as phytogenics are biologically active compounds that have recently attracted increased interest as feed additives in poultry production, due to their ability to promote feed efficiency by enhancing the production of digestive secretions and nutrient absorption, reduce pathogenic load in the gut, exert antioxidant properties and decrease the microbial burden on the animal’s immune status. However, the mechanisms are far from being fully elucidated. Better understanding the interaction of phytogenics with gastrointestinal function and health as well as other feed ingredients/additives is crucial to design potentially cost-effective blends. Abstract Phytogenic feed additives have been largely tested in poultry production with the aim to identify their effects on the gastrointestinal function and health, and their implications on the birds’ systemic health and welfare, the production efficiency of flocks, food safety, and environmental impact. These feed additives originating from plants, and consisting of herbs, spices, fruit, and other plant parts, include many different bioactive ingredients. Reviewing published documents about the supplementation of phytogenic feed additives reveals contradictory results regarding their effectiveness in poultry production. This indicates that more effort is still needed to determine the appropriate inclusion levels and fully elucidate their mode of actions. In this frame, this review aimed to sum up the current trends in the use of phytogenic feed additives in poultry with a special focus on their interaction with gut ecosystem, gut function, in vivo oxidative status and immune system as well as other feed additives, especially organic acids.
Collapse
|
13
|
Supplementation of Mixed Organic Acids Improves Growth Performance, Meat Quality, Gut Morphology and Volatile Fatty Acids of Broiler Chicken. Animals (Basel) 2021; 11:ani11113020. [PMID: 34827753 PMCID: PMC8614297 DOI: 10.3390/ani11113020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Organic acid as a green feed additive is increasingly favoured by enterprises and scholars, but little emphasis has been placed on the effect of organic acids on broiler meat quality and lipid profile. Therefore, this study observed that mixed organic acids improve broiler growth performance, meat quality as well as muscle lipid profile, which suggests that mixed organic acids can be an effective measure to prevent meat quality decline in chicken meat. Abstract Background: Organic acid as a green feed additive is increasingly favoured by enterprises and scholars, but little emphasis has been placed on the effect of organic acids on broiler meat quality. Methods: A total of 192 male chicks (one-day-old, weighted 48.40 ± 0.64 g) were selected to investigate the effect of mixed organic acids (MOA) on growth performance, meat quality as well as fatty acids profile. Chicks were randomly allocated to three treatments with eight replicates and eight chicks per replicate, including a corn–soybean basal diet with 0 (CON), 3000 mg/kg (low MOA; LMOA), and 6000 mg/kg (high MOA; HMOA) MOA. The experiment was divided into starter (d 1–d 21) and grower (d 22–d 42) phases. Results: Broilers supplemented with LMOA and HMOA enhanced (p < 0.05) the final body weight and average daily gain in the grower and overall phases. An improved (p < 0.05) feed conversion ratio in the grower and overall phases was observed in broilers supplemented with LMOA. The breast and thigh muscles pH24h were higher (p < 0.05) in broilers fed with HMOA and the redness in thigh meat was also improved (p < 0.05). Additionally, supplementing LMOA increased (p < 0.05) the saturated fatty acids, unsaturated fatty acids and the ratio of polyunsaturated fatty acids to saturated fatty acids in breast meat. A positive effect occurred (p < 0.05) on jejunal villus height and ileal crypt depth in 21 d broilers supplemented with HMOA. Conclusion: Our findings indicated that dietary supplementation of MOA could improve the growth performance, meat quality, and fatty acids profile, as well as intestinal morphology. Furthermore, diets supplemented with mixed organic acids at 3000 mg/kg may be more desirable, considering the overall experimental results in broilers.
Collapse
|
14
|
Zhang Y, Mahmood T, Tang Z, Wu Y, Yuan J. Effects of naturally oxidized corn oil on inflammatory reaction and intestinal health of broilers. Poult Sci 2021; 101:101541. [PMID: 34788712 PMCID: PMC8605181 DOI: 10.1016/j.psj.2021.101541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to investigate the effects of naturally oxidized corn oil on the inflammatory reaction and intestinal health of broilers. Total 450, one-day-old Arbor Acres male broilers were randomly divided into 5 treatments with 6 replicate cages (15 birds in each replicate cage). The dietary treatment array consisted of the varying ratio of nonoxidized corn oil to naturally oxidized corn oil from 0:100, 25:75, 50:50, 75:25, and 100:0, respectively. The experimental period was 42 d. Serum, jejunum, and contents of cecum samples were taken at the age of 42 d of broilers. The results showed no significant difference in the body weight gain (BWG) with a different proportion of oxidized corn oil compared with the 0% oxidized oil group on d 42. The feed intake (FI), the concentration of immunoglobulin G (IgG), interferon-γ (IFN-γ), and interleukin-10 (IL10) in serum showed a significant quadratic response with the increase of oxidized oil concentration on d 42. The serum's concentration of IgG, IFN-γ, and IL-10 reached the highest value at 75% oxidized corn oil. In addition, the mRNA expression levels of interleukin-1β (IL-1β), IFN-γ, nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), and myeloid differentiation factor-88 (MyD88) in the jejunum were significantly affected by different proportions of oxidized corn oil, and the gene expression levels were highest at 75% oxidized corn oil on d 42. The mRNA expression of Bcl2-associated X (Bax) in the jejunum showed a significantly quadratic curve with the increase of oxidized oil concentration, and its gene expression was the highest after adding 50% oxidized corn oil according to the regression equation on d 42. The villus height/crypt depth and goblet cells of jejunum decreased linearly with the increasing proportion of oxidized corn oil and reached the lowest point after adding 100% oxidized corn oil on d 42. The β diversity showed the remarkable differentiation of microbial communities among 5 groups, and the microbial community of the 0% oxidized oil group was significantly separated from that of 75 and 100% oxidized oil groups in the cecum. Taken together, these results showed that a low dose of naturally oxidized corn oil is not harmful to the growth of broilers, while a high dose of oxidized corn oil will trigger the inflammatory response and adversely affect the gut health of broilers.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tahir Mahmood
- Adisseo Animal Nutrition, Dubai 00000, United Arab Emirates
| | - Zhenhai Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Melaku M, Zhong R, Han H, Wan F, Yi B, Zhang H. Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota. Int J Mol Sci 2021; 22:10392. [PMID: 34638730 PMCID: PMC8508690 DOI: 10.3390/ijms221910392] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Intestinal dysfunction of farm animals, such as intestinal inflammation and altered gut microbiota, is the critical problem affecting animal welfare, performance and farm profitability. China has prohibited the use of antibiotics to improve feed efficiency and growth performance for farm animals, including poultry, in 2020. With the advantages of maintaining gut homeostasis, enhancing digestion, and absorption and modulating gut microbiota, organic acids are regarded as promising antibiotic alternatives. Butyric and citric acids as presentative organic acids positively impact growth performance, welfare, and intestinal health of livestock mainly by reducing pathogenic bacteria and maintaining the gastrointestinal tract (GIT) pH. This review summarizes the discovery of butyric acid (BA), citric acid (CA) and their salt forms, molecular structure and properties, metabolism, biological functions and their applications in poultry nutrition. The research findings about BA, CA and their salts on rats, pigs and humans are also briefly reviewed. Therefore, this review will fill the knowledge gaps of the scientific community and may be of great interest for poultry nutritionists, researchers and feed manufacturers about these two weak organic acids and their effects on intestinal health and gut microbiota community, with the hope of providing safe, healthy and nutrient-rich poultry products to consumers.
Collapse
Affiliation(s)
- Mebratu Melaku
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
- Department of Animal Production and Technology, College of Agriculture, Woldia University, Woldia P.O. Box 400, Ethiopia
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| |
Collapse
|
16
|
Stamilla A, Ruiz-Ruiz S, Artacho A, Pons J, Messina A, Lucia Randazzo C, Caggia C, Lanza M, Moya A. Analysis of the Microbial Intestinal Tract in Broiler Chickens during the Rearing Period. BIOLOGY 2021; 10:biology10090942. [PMID: 34571819 PMCID: PMC8469170 DOI: 10.3390/biology10090942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Gut microbiota contributes to animal health. However, identifying which microorganisms or associated functions are involved remains, still, difficult to assess. In the present study, the microbiota of healthy broiler chickens, under controlled diet and farm conditions, was investigated by 16S rRNA gene sequencing in four intestine segments and at four ages. In detail, 210 Ross-308 male chickens were raised according to the EU guidelines and fed on a commercial diet. The duodenum, jejunum, ileum, and caecum microbiota were analyzed at 11, 24, 35, and 46 days of life. Although the microbial composition was revealed as homogeneous 11 days after chicks hatched, it was found to be similar in the proximal intestine segments and different in ileum and caecum, where almost the same genera and species were detected with different relative abundances. Although changes during the later growth stage were revealed, each genus remained relatively unchanged. Lactobacillus mostly colonized the upper tract of the intestine, whereas the Escherichia/Shigella genus the ileum. Clostridium and Bacteroides genera were predominant in the caecum, where the highest richness of bacterial taxa was observed. We also analyze and discuss the predicted role of the microbiota for each intestine segment and its potential involvement in nutrient digestion and absorption.
Collapse
Affiliation(s)
- Alessandro Stamilla
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, 95123 Catania, Italy; (A.S.); (C.L.R.); (C.C.); (M.L.)
| | - Susana Ruiz-Ruiz
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), 46020 València, Spain; (A.A.); (J.P.)
- Correspondence: (S.R.-R.); (A.M.)
| | - Alejandro Artacho
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), 46020 València, Spain; (A.A.); (J.P.)
| | - Javier Pons
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), 46020 València, Spain; (A.A.); (J.P.)
| | | | - Cinzia Lucia Randazzo
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, 95123 Catania, Italy; (A.S.); (C.L.R.); (C.C.); (M.L.)
| | - Cinzia Caggia
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, 95123 Catania, Italy; (A.S.); (C.L.R.); (C.C.); (M.L.)
| | - Massimiliano Lanza
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, 95123 Catania, Italy; (A.S.); (C.L.R.); (C.C.); (M.L.)
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), 46020 València, Spain; (A.A.); (J.P.)
- Instituto de Biología Integrativa de Sistemas (I2Sysbio), Universitat de València and Consejo Superior de Investigaciones Científicas (CSIC), 46980 València, Spain
- Correspondence: (S.R.-R.); (A.M.)
| |
Collapse
|
17
|
Arslan C, Pirinç A, Eker N, Sur E, Ündağ İ, Kuşat T. Dietary encapsulated essential oil mixture influence on apparent nutrient digestibility, serum metabolic profile, lymphocyte histochemistry and intestinal morphology of laying hens. Anim Biosci 2021; 35:740-751. [PMID: 34530506 PMCID: PMC9065788 DOI: 10.5713/ab.21.0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/27/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The study aimed to evaluate the effects of a mixture of encapsulated essential oils (EOs) addition on nutrient digestion, serum biochemical parameters, peripheral blood alpha-naphthyl acetate esterase (ANAE), and acid phosphatase (ACP-ase) positive lymphocyte ratios and intestinal morphology in laying hens. Methods A total of 320 laying hens of 48-wk-old were randomly allotted into 4 treatment groups with 10 replicates of 8 birds in each replicate. The birds were fed a basal diet (control) or the diet added with mixture of EOs (which consist of eugenol, nerolidol, piperine, thymol, linalool, and geraniol) at 50, 100, and 200 mg/kg for period of 84 days. Results The addition of EOs at 100 or 200 mg/kg increased the dry matter, organic matter, and crude protein digestion as compared to control. The addition of all doses of EOs did not affect serum gamma glutamyl transferase, alanine aminotransferase, and P but increased serum asparate aminotransferase (AST) concentration. The addition of 200 mg/kg EOs increased serum creatinine, while 100 mg/kg decreased Ca concentration. The addition of 100 and 200 mg/kg EOs generally improved ANAE and ACP-ase positive peripheral blood lymphocyte ratios and intestinal morphology. Conclusion It can be concluded that, the addition of 100 or 200 mg/kg encapsulated EOs generally increased apparent nutrient digestion and serum AST concentration, improved ANAE and ACP-ase positive peripheral blood lymphocytes and intestinal morphology in laying hens.
Collapse
Affiliation(s)
- Cavit Arslan
- Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Selcuk University, 42100 Campus, Selcuklu, Konya, Turkey
| | - Abdurrahman Pirinç
- Healty Science Institute, Selcuk University, 42100 Campus, Selcuklu, Konya, Turkey
| | - Nizamettin Eker
- Healty Science Institute, Selcuk University, 42100 Campus, Selcuklu, Konya, Turkey
| | - Emrah Sur
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selcuk University, 42100 Campus, Selcuklu, Konya, Turkey
| | - İlknur Ündağ
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selcuk University, 42100 Campus, Selcuklu, Konya, Turkey
| | - Tansu Kuşat
- Healty Science Institute, Selcuk University, 42100 Campus, Selcuklu, Konya, Turkey
| |
Collapse
|
18
|
Ma J, Mahfuz S, Wang J, Piao X. Effect of Dietary Supplementation With Mixed Organic Acids on Immune Function, Antioxidative Characteristics, Digestive Enzymes Activity, and Intestinal Health in Broiler Chickens. Front Nutr 2021; 8:673316. [PMID: 34422878 PMCID: PMC8374430 DOI: 10.3389/fnut.2021.673316] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to explore the effect of dietary supplementation with mixed organic acids on intestinal health, enzyme activity, and antioxidative characteristics in broilers. A total of 192 1-day-old chicks were evenly allocated to three experimental groups with eight replicates, a basal diet with 0 (Control), 3,000 mg/kg (LMOA), 6,000 mg/kg (HMOA) mixed organic acid. The tissue and serum samples were gathered on 21 and 42 d of the experiment. An increased (P < 0.05) concentration of IgA, D-lactate (D-LA), and interleukin-10 (IL-10) in the serum of broilers diets with HMOA was observed. The levels of total antioxidant capacity (T-AOC) and catalase activity (CAT) in serum were enhanced (P < 0.05) with dietary and mixed organic acid, respectively, and increased (P < 0.05) content of superoxide dismutase (SOD) and CAT in the duodenum of broilers diets with LMOA was noticed. Also, LMOA decreased (P < 0.05) the pH value of the duodenum and enhanced (P < 0.05) the amylase activity of the pancreas, the tight junction protein (mainly Claudin-1, Claudin-2, and ZO-1) in the duodenum of broilers fed with mixed organic acid were promoted (P < 0.05), and the LMOA group performed better in the small intestine. In cecum microbiota, LMOA and HMOA modulated the structure of microbiota and mainly reduced the relative abundance of Escherichia coli. In brief, dietary supplemented mixed organic acid improved the health status of broilers by promoting the immune function, enhancing the antioxidative characteristics and tight junction proteins expression as well as cecum microbiota. However, LMOA groups may be a better fit considering the comprehensive effects of experiments and economic costs.
Collapse
Affiliation(s)
| | | | | | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Rathnayake D, Mun HS, Dilawar MA, Baek KS, Yang CJ. Time for a Paradigm Shift in Animal Nutrition Metabolic Pathway: Dietary Inclusion of Organic Acids on the Production Parameters, Nutrient Digestibility, and Meat Quality Traits of Swine and Broilers. Life (Basel) 2021; 11:life11060476. [PMID: 34073875 PMCID: PMC8225189 DOI: 10.3390/life11060476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Because the application of antibiotic growth promoters (AGP) causes accelerated adverse effects on the animal diet, the scientific community has taken progressive steps to enhance sustainable animal productivity without using AGP in animal nutrition. Organic acids (OAs) are non-antibiotic feed additives and a promising feeding strategy in the swine and broiler industry. Mechanistically, OAs improve productivity through multiple and diverse pathways in: (a) reduction of pathogenic bacteria in the gastro-intestinal tract (GIT) by reducing the gut pH; (b) boosting the digestibility of nutrients by facilitating digestive enzyme secretion and increasing feed retention time in the gut system; and (c) having a positive impact and preventing meat quality deterioration without leaving any chemical residues. Recent studies have reported the effectiveness of using encapsulated OAs and synergistic mechanisms of OAs combinations in swine and broiler productivity. On the other hand, the synergistic mechanisms of OAs and the optimal combination of OAs in the animal diet are not completely understood, and further intensive scientific explorations are needed. Moreover, the ultimate production parameters are not similar owing to the type of OAs, concentration level, growth phase, health status of animals, hygienic standards, and environmental factors. Thus, those factors need to be considered before implementing OAs in feeding practices. In conclusion, the current review evaluates the basics of OAs, mode of action, novel strategies to enhance utilization, influence on growth performances, nutrient digestibility, and meat quality traits of swine and broilers and their potential concerns regarding utilization.
Collapse
Affiliation(s)
- Dhanushka Rathnayake
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (D.R.); (H.S.M.); (M.A.D.)
| | - Hong Seok Mun
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (D.R.); (H.S.M.); (M.A.D.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 PLUS), Sunchon National University, Suncheon 57922, Korea;
| | - Muhammad Ammar Dilawar
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (D.R.); (H.S.M.); (M.A.D.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 PLUS), Sunchon National University, Suncheon 57922, Korea;
| | - Kwang Soo Baek
- Interdisciplinary Program in IT-Bio Convergence System (BK21 PLUS), Sunchon National University, Suncheon 57922, Korea;
| | - Chul Ju Yang
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (D.R.); (H.S.M.); (M.A.D.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 PLUS), Sunchon National University, Suncheon 57922, Korea;
- Correspondence: ; Tel.: +82-61-750-3235
| |
Collapse
|
20
|
Ibrahim D, Abdelfattah-Hassan A, Badawi M, Ismail TA, Bendary MM, Abdelaziz AM, Mosbah RA, Mohamed DI, Arisha AH, El-Hamid MIA. Thymol nanoemulsion promoted broiler chicken's growth, gastrointestinal barrier and bacterial community and conferred protection against Salmonella Typhimurium. Sci Rep 2021; 11:7742. [PMID: 33833292 PMCID: PMC8032708 DOI: 10.1038/s41598-021-86990-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
The present study involved in vivo evaluation of the growth promoting effects of thymol and thymol nanoemulsion and their protection against Salmonella Typhimurium infection in broilers. One-day old 2400 chicks were randomly divided into eight groups; negative and positive control groups fed basal diet without additives and thymol and thymol nanoemulsion groups (0.25, 0.5 and 1% each). At d 23, all chicks except negative control were challenged with S. Typhimurium. Over the total growing period, birds fed 1% thymol nanoemulsion showed better growth performance even after S. Typhimurium challenge, which came parallel with upregulation of digestive enzyme genes (AMY2A, PNLIP and CCK). Additionally, higher levels of thymol nanoemulsion upregulated the expression of MUC-2, FABP2, IL-10, IgA and tight junction proteins genes and downregulated IL-2 and IL-6 genes expression. Moreover, 1% thymol nanoemulsion, and to lesser extent 0.5% thymol nanoemulsion and 1% thymol, corrected the histological alterations of cecum and liver postinfection. Finally, supplementation of 1% thymol, 0.5 and 1% thymol nanoemulsion led to increased Lactobacilli counts and decreased S. Typhimurium populations and downregulated invA gene expression postinfection. This first report of supplying thymol nanoemulsion in broiler diets proved that 1% nano-thymol is a potential growth promoting and antibacterial agent.
Collapse
Affiliation(s)
- Doaa Ibrahim
- grid.31451.320000 0001 2158 2757Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- grid.31451.320000 0001 2158 2757Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt ,grid.440881.10000 0004 0576 5483Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, October Gardens, 6th of October, Giza, 12578 Egypt
| | - M. Badawi
- grid.31451.320000 0001 2158 2757Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer Ahmed Ismail
- grid.412895.30000 0004 0419 5255Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Mahmoud M. Bendary
- grid.440879.60000 0004 0578 4430Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said Governorate, Egypt
| | - Adel M. Abdelaziz
- grid.31451.320000 0001 2158 2757Faculty of Veterinary Medicine, Veterinary Educational Hospital, Zagazig University, Zagazig, Egypt
| | - Rasha A. Mosbah
- grid.31451.320000 0001 2158 2757Zagazig University Hospital, Zagazig, Egypt
| | - Dalia Ibrahim Mohamed
- Department of Biochemistry, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig, Egypt
| | - Ahmed H. Arisha
- grid.507995.70000 0004 6073 8904Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt ,grid.31451.320000 0001 2158 2757Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa I. Abd El-Hamid
- grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Mahfuz S, Shang Q, Piao X. Phenolic compounds as natural feed additives in poultry and swine diets: a review. J Anim Sci Biotechnol 2021; 12:48. [PMID: 33823919 PMCID: PMC8025492 DOI: 10.1186/s40104-021-00565-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Due to ban on using antibiotics in feed industry, awareness of using natural feed additives have led to a great demand. The interest of plants phenolic compounds as a potential natural antioxidant source has been considered in research community due to their predictable potential role as feed additives in poultry and swine production. However, the mode of action for their functional role and dosage recommendation in animal diets are still remain indistinct. Taking into account, the present review study highlights an outline about the mode of action of phenolic compound and their experimental uses in poultry and swine focusing on the growth performance, antioxidant function, immune function, antimicrobial role and overall health status, justified with the past findings till to date. Finally, the present review study concluded that supplementation of phenolic compounds as natural feed additives may have a role on the antioxidant, immunity, antimicrobial and overall production performance in poultry and swine.
Collapse
Affiliation(s)
- Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Palhares Campolina J, Gesteira Coelho S, Belli AL, Samarini Machado F, R. Pereira LG, R. Tomich T, A. Carvalho W, S. Silva RO, L. Voorsluys A, V. Jacob D, Magalhães Campos M. Effects of a blend of essential oils in milk replacer on performance, rumen fermentation, blood parameters, and health scores of dairy heifers. PLoS One 2021; 16:e0231068. [PMID: 33705410 PMCID: PMC7951862 DOI: 10.1371/journal.pone.0231068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 02/18/2021] [Indexed: 01/23/2023] Open
Abstract
The aim of this study was to evaluate how the inclusion of a blend of essential oils in milk replacer (MR) affects different outcomes of dairy heifers. The outcomes evaluated: feed intake, performance, body development, blood cells and metabolites, insulin-like growth factor-1 (IGF-1), rumen fermentation, fecal scores, and respiratory scores. All outcomes were evaluated during pre-weaning (4–60 d of age), and carry-over effects during post-weaning (61–90 d of age) periods. The experimental units utilized were 29 newborn Holstein × Gyr crossbred dairy heifers, with genetic composition of 5/8 or more Holstein and 3/8 or less Gyr and body weight (BW) at birth of 32.2 ± 5.2 kg. Experimental units were assigned to either a control (CON, n = 15) or a blend of essential oil supplementation (BEO, n = 14) treatment, maintaining a balance of genetic composition. The BEO was supplemented in the MR with 1 g/d/calf of a blend of essential oils (Apex Calf, Adisseo, China) composed by plant extracts derived from anise, cinnamon, garlic, rosemary, and thyme. During the pre-weaning phase, all heifers were fed 5 L of MR/d reconstituted to 15% (dry matter basis), divided into two equal meals. Water and starter were provided ad libitum. During the post-weaning, animals received a maximum of 3 kg of starter/d, and ad libitum corn silage, divided into two meals. Feed intake, fecal and respiratory scores were evaluated daily. The BW was measured every three days, while body development was recorded weekly. Blood samples were collected on 0, 30, and 60 d of age for total blood cell count, weekly and on the weaning day to determinate ß-hydroxybutyrate, urea and glucose, and biweekly for IGF-1. Ruminal parameters (pH, volatile fatty acids, ammonia-N, and acetate:propionate proportion—C2:C3) were measured on days 14, 28, 42, 60, 74 and 90. A randomized complete block design with an interaction between treatment and week was the experimental method of choice to test the hypothesis of the BEO’s effect on all outcomes. An ANOVA procedure was used for continuous outcomes, and a non-parametric test was used for the ordered categorical outcomes, both adopting a CI = 95%. Results indicated that there was not enough evidence to accept the alternative hypothesis of the effect of BEO in MR on feed intake, performance, body development, and blood metabolites during both pre-weaning and post-weaning periods. However, results indicated that the inclusion of BEO in MR significantly affects the proportion of C2:C3 during pre- and post-weaning (P = 0.05). Similarly, the effect was significant for basophil (P ≤ 0.001), and platelet (P = 0.04) counts pre-weaning. The interaction between week and treatment was also significant for lymphocytes (P ≤ 0.001), revealing a cumulative effect. Lastly, fecal scores were also significant (P = 0.04) during pre-weaning, with lower values for BEO. The BEO contributed to ruminal manipulation in pre-weaning and carry-over effects in post-weaning, immunity improvement, and decreased morbidity of neonatal diarrhea in the pre-weaning phase.
Collapse
Affiliation(s)
- Joana Palhares Campolina
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra Gesteira Coelho
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Luiza Belli
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Samarini Machado
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Luiz Gustavo R. Pereira
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Thierry R. Tomich
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Wanessa A. Carvalho
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Rodrigo Otávio S. Silva
- Department of Veterinary Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Mariana Magalhães Campos
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
23
|
Bassiony SS, Al-Sagheer AA, El-Kholy MS, Elwakeel EA, Helal AA, Alagawany M. Evaluation of Enterococcus faecium NCIMB 11181 and Clostridium butyricum probiotic supplements in post-weaning rabbits reared under thermal stress conditions. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1941334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Samar S. Bassiony
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Adham A. Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed S. El-Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Eman A. Elwakeel
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Amera A. Helal
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
24
|
Bendary MM, Ibrahim D, Mosbah RA, Mosallam F, Hegazy WAH, Awad NFS, Alshareef WA, Alomar SY, Zaitone SA, Abd El-Hamid MI. Thymol Nanoemulsion: A New Therapeutic Option for Extensively Drug Resistant Foodborne Pathogens. Antibiotics (Basel) 2020; 10:25. [PMID: 33396722 PMCID: PMC7823989 DOI: 10.3390/antibiotics10010025] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 12/30/2022] Open
Abstract
Foodborne pathogens have been associated with severe and complicated diseases. Therefore, these types of infections are a concern for public health officials and food and dairy industries. Regarding the wide-spread multidrug resistant (MDR) and extensively drug resistant (XDR) foodborne pathogens such as Salmonella Enteritidis (S. Enteritidis), new and alternative therapeutic approaches are urgently needed. Therefore, we investigated the antimicrobial, anti-virulence, and immunostimulant activities of a stable formulation of thymol as thymol nanoemulsion in an in vivo approach. Notably, treatment with 2.25% thymol nanoemulsion led to a pronounced improvement in the body weight gain and feed conversion ratio in addition to decreases in the severity of clinical findings and mortality percentages of challenged chickens with XDR S. Enteritidis confirming its pronounced antimicrobial activities. Moreover, thymol nanoemulsion, at this dose, had protective effects through up-regulation of the protective cytokines and down-regulation of XDR S. Enteritidis sopB virulence gene and interleukins (IL)-4 and IL-10 cytokines as those hinder the host defenses. Furthermore, it enhanced the growth of gut Bifidobacteria species, which increases the strength of the immune system. For that, we suggested the therapeutic use of thymol nanoemulsion against resistant foodborne pathogens. Finally, we recommended the use of 2.25% thymol nanoemulsion as a feed additive for immunocompromised individuals as well as in the veterinary fields.
Collapse
Affiliation(s)
- Mahmoud M. Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Rasha A. Mosbah
- Infection Control Unit, Zagazig University Hospital, Zagazig 44511, Egypt;
| | - Farag Mosallam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11865, Egypt;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt;
| | - Naglaa F. S. Awad
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Walaa A. Alshareef
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University, 6th of October 12566, Egypt;
| | - Suliman Y. Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismalia 41522, Egypt;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
25
|
Pliego AB, Tavakoli M, Khusro A, Seidavi A, Elghandour MMMY, Salem AZM, Márquez-Molina O, Rene Rivas-Caceres R. Beneficial and adverse effects of medicinal plants as feed supplements in poultry nutrition: a review. Anim Biotechnol 2020; 33:369-391. [DOI: 10.1080/10495398.2020.1798973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alberto Barbabosa Pliego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Masoomeh Tavakoli
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mona M. M. Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Ofelia Márquez-Molina
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Amecameca, México
| | | |
Collapse
|
26
|
Effects of Microencapsulated Blend of Organic Acids and Essential Oils as a Feed Additive on Quality of Chicken Breast Meat. Animals (Basel) 2020; 10:ani10040640. [PMID: 32272803 PMCID: PMC7222737 DOI: 10.3390/ani10040640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aims to investigate the effect of dietary supplementation based on a blend of microencapsulated organic acids (sorbic and citric) and essential oils (thymol and vanillin) on chicken meat quality. A total of 420 male Ross 308 chicks were randomly assigned to two dietary treatments: the control group was fed with conventional diet (CON), while the other group received the control diet supplemented with 0.5% of a microencapsulated blend of organic acids and essential oils (AVI). In breast meat samples, intramuscular fat content and saturated/polyunsaturated fatty acids ratio were reduced by AVI supplementation (p < 0.05). Moreover, atherogenic (p < 0.01) and thrombogenic (p < 0.05) indices were lower in AVI than CON treatment. AVI raw meat showed a lower density of psychrotrophic bacteria (p < 0.05) at an initial time, and higher loads of enterococci after 4 days of refrigerated storage (p < 0.05). No contamination of Listeria spp., Campylobacter spp., and Clostridium spp. was found. TBARS values of the cooked meat were lower in the AVI treatment compared to CON (p < 0.01). Among colour parameters, a*, b* and C* values increased between 4 and 7 days of storage in AVI cooked meat (p < 0.05). Overall, organic acids and essential oils could improve the quality and shelf-life of poultry meat.
Collapse
|