1
|
Farha AK, Habimana O, Corke H. Guanabenz acetate, an antihypertensive drug repurposed as an inhibitor of Escherichia coli biofilm. Microbiol Spectr 2024; 12:e0073824. [PMID: 39311590 PMCID: PMC11537090 DOI: 10.1128/spectrum.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/09/2024] [Indexed: 11/07/2024] Open
Abstract
Biofilms formed by Escherichia coli are composed of amyloid curli and cellulose and have been shown to be linked to pathogenicity, antibiotic resistance, and chronic infections. Guanabenz acetate (GABE), an antihypertensive drug, was identified as a potential strategic repurposing drug due to its biofilm inhibitory properties following an extensive antimicrobial screening assay of 2,202 Food and Drug Administration-approved non-antibiotic agents. The results of this study provide insights into the effectiveness of GABE as a therapeutic alternative against E. coli biofilm-associated infectious diseases. IMPORTANCE Biofilm-associated bacterial infections are one of the major problems in medical settings. There are currently limited biofilm inhibitors available for clinical use. Guanabenz acetate, a drug used to treat high blood pressure, was found to be an effective anti-biofilm agent against Escherichia coli. Our results show that this drug can inhibit the production of cellulose and curli amyloid protein, which are the two main components of E. coli biofilms. Our findings highlight the possibility of repurposing a drug to prevent E. coli biofilm formation.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Biotechnology and Food Engineering Program; and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Olivier Habimana
- Biotechnology and Food Engineering Program; and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Harold Corke
- Biotechnology and Food Engineering Program; and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Borges KCM, Costa VAF, Neves B, Kipnis A, Junqueira-Kipnis AP. New antibacterial candidates against Acinetobacter baumannii discovered by in silico-driven chemogenomics repurposing. PLoS One 2024; 19:e0307913. [PMID: 39325805 PMCID: PMC11426455 DOI: 10.1371/journal.pone.0307913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/14/2024] [Indexed: 09/28/2024] Open
Abstract
Acinetobacter baumannii is a worldwide Gram-negative bacterium with a high resistance rate, responsible for a broad spectrum of hospital-acquired infections. A computational chemogenomics framework was applied to investigate the repurposing of approved drugs to target A. baumannii. This comprehensive approach involved compiling and preparing proteomic data, identifying homologous proteins in drug-target databases, evaluating the evolutionary conservation of targets, and conducting molecular docking studies and in vitro assays. Seven drugs were selected for experimental assays. Among them, tavaborole exhibited the most promising antimicrobial activity with a minimum inhibitory concentration (MIC) value of 2 μg/ml, potent activity against several clinically relevant strains, and robust efficacy against biofilms from multidrug-resistant strains at a concentration of 16 μg/ml. Molecular docking studies elucidated the binding modes of tavaborole in the editing and active domains of leucyl-tRNA synthetase, providing insights into its structural basis for antimicrobial activity. Tavaborole shows promise as an antimicrobial agent for combating A. baumannii infections and warrants further investigation in preclinical studies.
Collapse
Affiliation(s)
- Kellen Christina Malheiros Borges
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Microbiology Laboratory, Department of Biology, Academic Areas, Federal Institute of Goiás, Anápolis, Goiás, Brazil
| | | | - Bruno Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - André Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
3
|
Vlajić Tovilović T, Petrović S, Lazarević M, Pavić A, Plačkić N, Milovanović A, Milošević M, Miletic V, Veljović D, Radunović M. Effect of Acetylsalicylic Acid on Biological Properties of Novel Cement Based on Calcium Phosphate Doped with Ions of Strontium, Copper, and Zinc. Int J Mol Sci 2024; 25:7940. [PMID: 39063181 PMCID: PMC11276672 DOI: 10.3390/ijms25147940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to compare the biological properties of newly synthesized cements based on calcium phosphate with a commercially used cement, mineral trioxide aggregate (MTA). Strontium (Sr)-, Copper (Cu)-, and Zinc (Zn)-doped hydroxyapatite (miHAp) powder was obtained through hydrothermal synthesis and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDX). Calcium phosphate cement (CPC) was produced by mixing miHAp powder with a 20 wt.% citric acid solution, followed by the assessment of its compressive strength, setting time, and in vitro bioactivity. Acetylsalicylic acid (ASA) was added to the CPC, resulting in CPCA. Biological tests were conducted on CPC, CPCA, and MTA. The biocompatibility of the cement extracts was evaluated in vitro using human dental pulp stem cells (hDPSCs) and in vivo using a zebrafish model. Antibiofilm and antimicrobial effect (quantified by CFUs/mL) were assessed against Streptococcus mutans and Lactobacillus rhamnosus. None of the tested materials showed toxicity, while CPCA even increased hDPSCs proliferation. CPCA showed a better safety profile than MTA and CPC, and no toxic or immunomodulatory effects on the zebrafish model. CPCA exhibited similar antibiofilm effects against S. mutans and L. rhamnosus to MTA.
Collapse
Affiliation(s)
- Tamara Vlajić Tovilović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Sanja Petrović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Miloš Lazarević
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.P.); (N.P.)
| | - Nikola Plačkić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.P.); (N.P.)
| | - Aleksa Milovanović
- Faculty of Mechanical Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.); (M.M.)
| | - Miloš Milošević
- Faculty of Mechanical Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.); (M.M.)
| | - Vesna Miletic
- Faculty of Medicine and Health, Sydney Dental School, University of Sydney, Surry Hills, NSW 2010, Australia;
| | - Djordje Veljović
- Faculty of Technology and Metallurgy, University of Belgrade, 11 000 Belgrade, Serbia
| | - Milena Radunović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| |
Collapse
|
4
|
Di Bonaventura G, Lupetti V, Pompilio A. Impact of Growth Conditions on High-Throughput Identification of Repurposing Drugs for Pseudomonas aeruginosa Cystic Fibrosis Lung Infections. Antibiotics (Basel) 2024; 13:642. [PMID: 39061324 PMCID: PMC11273527 DOI: 10.3390/antibiotics13070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients represent a therapeutic challenge due to antibiotic resistance. Repurposing existing drugs is a promising approach for identifying new antimicrobials. A crucial factor in successful drug repurposing is using assay conditions that mirror the site of infection. Here, the impact of growth conditions on the anti-P. aeruginosa activity of a library of 3386 compounds was evaluated. To this, after 24 h exposure, the survival rate of CF P. aeruginosa RP73 planktonic cells was assessed spectrophotometrically under "CF-like" (artificial CF sputum, pH 6.8, 5% CO2) and enriched (Tryptone Soya Broth, pH 7.2, and aerobiosis) conditions. Among non-antibiotic compounds (n = 3127), 13.4% were active regardless of growth conditions, although only 3.2% had comparable activity; 4% and 6.2% were more active under CF-like or enriched conditions, respectively. Interestingly, 22.1% and 26.6% were active exclusively under CF-like and enriched conditions, respectively. Notably, 7 and 12 hits caused 100% killing under CF-like and enriched conditions, respectively. Among antibiotics (n = 234), 42.3% were active under both conditions, although only 18.4% showed comparable activity; 9.4% and 14.5% were more active under CF-like and enriched conditions, respectively. Interestingly, 23% and 16.6% were active exclusively under CF-like and enriched conditions, respectively. Sulphonamides showed higher activity under CF-like conditions, whereas tetracyclines, fluoroquinolones, and macrolides were more effective under enriched settings. Our findings indicated that growth conditions significantly affect the anti-P. aeruginosa activity of antibiotics and non-antibiotic drugs. Consequently, repurposing studies and susceptibility tests should be performed under physicochemical conditions that the pathogen tackles at the site of infection.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.L.); (A.P.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Veronica Lupetti
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.L.); (A.P.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.L.); (A.P.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Niazy AA, Lambarte RNA, Sumague TS, Vigilla MGB, Bin Shwish NM, Kamalan R, Daeab EK, Aljehani NM. FTY720 Reduces the Biomass of Biofilms in Pseudomonas aeruginosa in a Dose-Dependent Manner. Antibiotics (Basel) 2024; 13:621. [PMID: 39061303 PMCID: PMC11273553 DOI: 10.3390/antibiotics13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa, a nosocomial pathogen, has strong biofilm capabilities, representing the main source of infection in the human body. Repurposing existing drugs has been explored as an alternative strategy to combat emerging antibiotic-resistant pathogens. Fingolimod hydrochloride (FTY720), an immunomodulatory drug for multiple sclerosis, has shown promising antimicrobial effects against some ESKAPE pathogens. Therefore, the effects of FTY720 on the biofilm capabilities of Pseudomonas aeruginosa were investigated in this study. It was determined that FTY720 inhibited the growth of P. aeruginosa PAO1 at 100 µM. The significant reduction in PAO1 cell viability was observed to be dose-dependent. Additional cytotoxicity analysis on human cell lines showed that FTY720 significantly reduced viabilities at sub-inhibitory concentrations of 25-50 µM. Microtiter assays and confocal analysis confirmed reductions in biofilm mass and thickness and the cell survivability ratio in the presence of FTY720. Similarly, virulence production and biofilm-related gene expression (rhlA, rhlB, pilA, pilI, fliC, fliD and algR) were determined. The results demonstrate that pigment production was affected and quantitative real-time PCR analysis showed a variable degree of reduced gene expression in response to FTY720 at 12.5-50 µM. These findings suggest that FTY720 could be repurposed as an alternative antibiofilm agent against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Rhodanne Nicole A. Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Terrence S. Sumague
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Mary Grace B. Vigilla
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Najla M. Bin Shwish
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Ranan Kamalan
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eid Khulaif Daeab
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Nami M. Aljehani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
6
|
Gómez-Gaviria M, Contreras-López LM, Aguilera-Domínguez JI, Mora-Montes HM. Strategies of Pharmacological Repositioning for the Treatment of Medically Relevant Mycoses. Infect Drug Resist 2024; 17:2641-2658. [PMID: 38947372 PMCID: PMC11214559 DOI: 10.2147/idr.s466336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Fungal infections represent a worldwide concern for public health, due to their prevalence and significant increase in cases each year. Among the most frequent mycoses are those caused by members of the genera Candida, Cryptococcus, Aspergillus, Histoplasma, Pneumocystis, Mucor, and Sporothrix, which have been treated for years with conventional antifungal drugs, such as flucytosine, azoles, polyenes, and echinocandins. However, these microorganisms have acquired the ability to evade the mechanisms of action of these drugs, thus hindering their treatment. Among the most common evasion mechanisms are alterations in sterol biosynthesis, modifications of drug transport through the cell wall and membrane, alterations of drug targets, phenotypic plasticity, horizontal gene transfer, and chromosomal aneuploidies. Taking into account these problems, some research groups have sought new therapeutic alternatives based on drug repositioning. Through repositioning, it is possible to use existing pharmacological compounds for which their mechanism of action is already established for other diseases, and thus exploit their potential antifungal activity. The advantage offered by these drugs is that they may be less prone to resistance. In this article, a comprehensive review was carried out to highlight the most relevant repositioning drugs to treat fungal infections. These include antibiotics, antivirals, anthelmintics, statins, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Luisa M Contreras-López
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Julieta I Aguilera-Domínguez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
7
|
Glajzner P, Bernat A, Jasińska-Stroschein M. Improving the treatment of bacterial infections caused by multidrug-resistant bacteria through drug repositioning. Front Pharmacol 2024; 15:1397602. [PMID: 38910882 PMCID: PMC11193365 DOI: 10.3389/fphar.2024.1397602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Drug repurposing (repositioning) is a dynamically-developing area in the search for effective therapy of infectious diseases. Repositioning existing drugs with a well-known pharmacological and toxicological profile is an attractive method for quickly discovering new therapeutic indications. The off-label use of drugs for infectious diseases requires much less capital and time, and can hasten progress in the development of new antimicrobial drugs, including antibiotics. The use of drug repositioning in searching for new therapeutic options has brought promising results for many viral infectious diseases, such as Ebola, ZIKA, Dengue, and HCV. This review describes the most favorable results for repositioned drugs for the treatment of bacterial infections. It comprises publications from various databases including PubMed and Web of Science published from 2015 to 2023. The following search keywords/strings were used: drug repositioning and/or repurposing and/or antibacterial activity and/or infectious diseases. Treatment options for infections caused by multidrug-resistant bacteria were taken into account, including methicillin-resistant staphylococci, multidrug-resistant Mycobacterium tuberculosis, or carbapenem-resistant bacteria from the Enterobacteriaceae family. It analyses the safety profiles of the included drugs and their synergistic combinations with antibiotics and discusses the potential of antibacterial drugs with antiparasitic, anticancer, antipsychotic effects, and those used in metabolic diseases. Drug repositioning may be an effective response to public health threats related to the spread of multidrug-resistant bacterial strains and the growing antibiotic resistance of microorganisms.
Collapse
Affiliation(s)
- Paulina Glajzner
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lodz, Łódź, Poland
| | | | | |
Collapse
|
8
|
Hossain S, Rafi RH, Ripa FA, Khan MRI, Hosen ME, Molla MKI, Faruqe MO, Al-Bari MAA, Das S. Modulating the antibacterial effect of the existing antibiotics along with repurposing drug metformin. Arch Microbiol 2024; 206:190. [PMID: 38519821 DOI: 10.1007/s00203-024-03917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Owing to the extensive prevalence of resistant bacteria to numerous antibiotic classes, antimicrobial resistance (AMR) poses a well-known hazard to world health. As an alternate approach in the field of antimicrobial drug discovery, repurposing the available medications which are also called antibiotic resistance breakers has been pursued for the treatment of infections with antimicrobial resistance pathogens. In this study, we used Haloperidol, Metformin and Hydroxychloroquine as repurposing drugs in in vitro (Antibacterial Antibiotic Sensitivity Test and Minimum Inhibitory Concentration-MIC) and in vivo (Shigellosis in Swiss albino mice) tests in combination with traditional antibiotics (Oxytetracycline, Erythromycin, Doxycycline, Gentamicin, Ampicillin, Chloramphenicol, and Penicillin) against a group of AMR resistance bacteria (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Shigella boydii). After observing the results of the conducted in vitro experiments we studied the effects of the above non antibiotic drugs in combination with the said antibiotics. As an repurposing adjuvant antibiotic drug, Metformin exhibited noteworthy activity in almost all in vitro, in vivo and in silico tests (Zone of inhibition for 30 to 43 mm for E.coli in combination with Doxycycline; MIC value decreased 50 µM to 0.781 µM with Doxycycline on S. boydii).In rodents Doxycycline and Metformin showed prominent against Shigellosis in White blood cell count (6.47 ± 0.152 thousand/mm3) and Erythrocyte sedimentation rate (10.5 ± 1.73 mm/hr). Our findings indicated that Metformin and Doxycycline combination has a crucial impact on Shigellosis. The molecular docking study was performed targeting the Acriflavine resistance protein B (AcrB) (PDB ID: 4CDI) and MexA protein (PDB ID: 6IOK) protein with Metformin (met8) drug which showed the highest binding energy with - 6.4 kcal/mol and - 5.5 kcal/mol respectively. Further, molecular dynamics simulation revealed that the docked complexes were relatively stable during the 100 ns simulation period. This study suggest Metformin and other experimented drugs can be used as adjuvants boost up antibiosis but further study is needed to find out the safety and efficacy of this non-antibiotic drug as potent antibiotic adjuvant.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Somlal Das
- University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
9
|
Svedholm E, Bruce B, Parcell BJ, Coote PJ. Repurposing Mitomycin C in Combination with Pentamidine or Gentamicin to Treat Infections with Multi-Drug-Resistant (MDR) Pseudomonas aeruginosa. Antibiotics (Basel) 2024; 13:177. [PMID: 38391563 PMCID: PMC10886254 DOI: 10.3390/antibiotics13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The aims of this study were (i) to determine if the combination of mitomycin C with pentamidine or existing antibiotics resulted in enhanced efficacy versus infections with MDR P. aeruginosa in vivo; and (ii) to determine if the doses of mitomycin C and pentamidine in combination can be reduced to levels that are non-toxic in humans but still retain antibacterial activity. Resistant clinical isolates of P. aeruginosa, a mutant strain over-expressing the MexAB-OprM resistance nodulation division (RND) efflux pump and a strain with three RND pumps deleted, were used. MIC assays indicated that all strains were sensitive to mitomycin C, but deletion of three RND pumps resulted in hypersensitivity and over-expression of MexAB-OprM caused some resistance. These results imply that mitomycin C is a substrate of the RND efflux pumps. Mitomycin C monotherapy successfully treated infected Galleria mellonella larvae, albeit at doses too high for human administration. Checkerboard and time-kill assays showed that the combination of mitomycin C with pentamidine, or the antibiotic gentamicin, resulted in synergistic inhibition of most P. aeruginosa strains in vitro. In vivo, administration of a combination therapy of mitomycin C with pentamidine, or gentamicin, to G. mellonella larvae infected with P. aeruginosa resulted in enhanced efficacy compared with monotherapies for the majority of MDR clinical isolates. Notably, the therapeutic benefit conferred by the combination therapy occurred with doses of mitomycin C close to those used in human medicine. Thus, repurposing mitomycin C in combination therapies to target MDR P. aeruginosa infections merits further investigation.
Collapse
Affiliation(s)
- Elin Svedholm
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Benjamin Bruce
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Benjamin J Parcell
- NHS Tayside, Medical Microbiology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Peter J Coote
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
10
|
Sekar A, Gil D, Tierney P, McCanne M, Daesety V, Trendafilova D, Muratoglu OK, Oral E. Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. J Transl Med 2024; 22:102. [PMID: 38273276 PMCID: PMC10809490 DOI: 10.1186/s12967-024-04871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. METHODS Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of Staphylococcus aureus and Staphylococcus epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6 h) and established (24 h) biofilms were grown on 316L stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, minimum biofilm eradication concentration (MBEC) measurement for GS, visualization by live/dead imaging, scanning electron microscopy, gene expression of biofilm-associated genes, and bacterial membrane fluidity assessment. RESULTS Gentamicin-ketorolac (GS-KT) combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. CONCLUSION The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Peyton Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Vikram Daesety
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | | | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA.
| |
Collapse
|
11
|
Kaushik A, Kest H, Sood M, Steussy BW, Thieman C, Gupta S. Biofilm Producing Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Humans: Clinical Implications and Management. Pathogens 2024; 13:76. [PMID: 38251383 PMCID: PMC10819455 DOI: 10.3390/pathogens13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Since its initial description in the 1960s, methicillin-resistant Staphylococcus aureus (MRSA) has developed multiple mechanisms for antimicrobial resistance and evading the immune system, including biofilm production. MRSA is now a widespread pathogen, causing a spectrum of infections ranging from superficial skin issues to severe conditions like osteoarticular infections and endocarditis, leading to high morbidity and mortality. Biofilm production is a key aspect of MRSA's ability to invade, spread, and resist antimicrobial treatments. Environmental factors, such as suboptimal antibiotics, pH, temperature, and tissue oxygen levels, enhance biofilm formation. Biofilms are intricate bacterial structures with dense organisms embedded in polysaccharides, promoting their resilience. The process involves stages of attachment, expansion, maturation, and eventually disassembly or dispersion. MRSA's biofilm formation has a complex molecular foundation, involving genes like icaADBC, fnbA, fnbB, clfA, clfB, atl, agr, sarA, sarZ, sigB, sarX, psm, icaR, and srtA. Recognizing pivotal genes for biofilm formation has led to potential therapeutic strategies targeting elemental and enzymatic properties to combat MRSA biofilms. This review provides a practical approach for healthcare practitioners, addressing biofilm pathogenesis, disease spectrum, and management guidelines, including advances in treatment. Effective management involves appropriate antimicrobial therapy, surgical interventions, foreign body removal, and robust infection control practices to curtail spread within healthcare environments.
Collapse
Affiliation(s)
- Ashlesha Kaushik
- Division of Pediatric Infectious Diseases, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Master of Science, Healthcare Quality and Safety, Harvard Medical School, Boston, MA 02115, USA
| | - Helen Kest
- Division of Pediatric Infectious Diseases, St. Joseph’s Children’s Hospital, 703 Main Street, Paterson, NJ 07503, USA;
| | - Mangla Sood
- Department of Pediatrics, Indira Gandhi Medical College, Shimla 171006, India;
| | - Bryan W. Steussy
- Division of Microbiology, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA;
| | - Corey Thieman
- Division of Pharmacology, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA;
| | - Sandeep Gupta
- Division of Pulmonary and Critical Care, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA;
| |
Collapse
|
12
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Barbarossa A, Rosato A, Carrieri A, Tardugno R, Corbo F, Clodoveo ML, Fracchiolla G, Carocci A. Antifungal Biofilm Inhibitory Effects of Combinations of Diclofenac and Essential Oils. Antibiotics (Basel) 2023; 12:1673. [PMID: 38136707 PMCID: PMC10740460 DOI: 10.3390/antibiotics12121673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Systemic fungal infections have risen in recent decades and most of them are caused by Candida species, which are becoming increasingly resistant to conventional antifungal drugs. Biofilm production has been considered the most common growth form of Candida cells and is associated with a high level of antifungal resistance. At present, international research reports on the antifungal activity of non-traditional antimicrobial drugs and their potential use against life-threatening resistant fungal infections. Indeed, drug repurposing has led to the consideration of well-known compounds as a last-line therapy. The goal of this work is to evaluate the potential synergistic antifungal biofilm activity of new combinations between diclofenac sodium salt (DSS), a widely used non-steroidal anti-inflammatory drug (NSAID), with the essential oils (EOs) of Mentha piperita, Pelargonium graveolens, and Melaleuca alternifolia, whose antifungal activity has been well documented over the years. The in vitro antifungal activity of DSS and EOs was determined on different Candida strains. Susceptibility testing and the synergism of DSS and EOs versus biofilm cells was performed by using the broth microdilution assay and checkerboard methods. Minimum inhibitory concentrations (sMIC50) of DSS alone ranged from 1.25 to 2.05 mg/mL for all the strains considered. These values significantly decreased when the drug was used in combination with the EOs. The fractional inhibitory concentration index (FICI) was lower than 0.5 for almost all the associations, thus indicating a significant synergism, particularly for the DSS-Pelargonium graveolens combination towards the Candida strains examined. These preliminary results show that the combination of the EOs with DSS improves the antifungal activity on all the tested Candida strains, significantly lowering the concentrations of the components used and thus allowing any toxic effects to be overcome.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.); (R.T.); (F.C.); (A.C.)
| | - Antonio Rosato
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.); (R.T.); (F.C.); (A.C.)
| | - Antonio Carrieri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.); (R.T.); (F.C.); (A.C.)
| | - Roberta Tardugno
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.); (R.T.); (F.C.); (A.C.)
| | - Filomena Corbo
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.); (R.T.); (F.C.); (A.C.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.); (R.T.); (F.C.); (A.C.)
| | - Alessia Carocci
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.); (R.T.); (F.C.); (A.C.)
| |
Collapse
|
14
|
Barbarossa A, Ceramella J, Carocci A, Iacopetta D, Rosato A, Limongelli F, Carrieri A, Bonofiglio D, Sinicropi MS. Benzothiazole-Phthalimide Hybrids as Anti-Breast Cancer and Antimicrobial Agents. Antibiotics (Basel) 2023; 12:1651. [PMID: 38136685 PMCID: PMC10740580 DOI: 10.3390/antibiotics12121651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The benzothiazole nucleus is a major heterocyclic scaffold whose therapeutic potential has been thoroughly explored due to its structural simplicity and ease of synthesis. In fact, several benzothiazole derivatives have been synthesized over time, demonstrating numerous pharmacological properties such as anticancer, antimicrobial, anti-inflammatory, and antioxidant activities. Herein, we propose a new series of benzothiazole-phthalimide hybrids obtained by linking the phthalimide moiety to differently substituted benzothiazole nuclei through the N atom. These compounds have been screened for their anticancer properties against two human breast cancer cell lines. Furthermore, we delved into the mechanism of action of the most active hybrid, compound 3h, by assessing its capability to damage the nuclear DNA, trigger the apoptotic process in the high metastatic MDA-MB-231 cells, and prevent cellular migration. Moreover, in view of the documented antimicrobial activities of the two scaffolds involved, we explored the antibacterial and antifungal effects of the studied compounds by means of the broth microdilution method. Among the studied compounds, 3h showed the highest antimicrobial activity, both against gram-positive and gram-negative bacterial strains belonging to the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and against fungal strains of the Candida species with MICs values ranging from 16 to 32 µg/mL.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (F.L.); (A.C.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.B.); (M.S.S.)
| | - Alessia Carocci
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (F.L.); (A.C.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.B.); (M.S.S.)
| | - Antonio Rosato
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (F.L.); (A.C.)
| | - Francesco Limongelli
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (F.L.); (A.C.)
| | - Antonio Carrieri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.); (F.L.); (A.C.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.B.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.B.); (M.S.S.)
| |
Collapse
|
15
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
16
|
Rodrigues DS, Cabral VP, Barbosa AD, Valente Sá LG, Silva CR, Moreira LE, Neto JB, Silva J, Santos HS, Marinho ES, Cavalcanti BC, Moraes MO, Nobre Júnior HV. Sertraline has fungicidal activity against Candida spp. and acts by inhibiting membrane and cell wall biosynthesis. Future Microbiol 2023; 18:1025-1039. [PMID: 37540066 DOI: 10.2217/fmb-2022-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Aim: Our study evaluated the activity of sertraline (SER) alone and associated with antifungal drugs in planktonic Candida spp. strains, and investigated its mechanism of action. Materials & methods: Broth microdilution method and minimum fungicidal concentration/MIC ratio were used to assess SER anticandidal activity, and the interaction with antifungals was determined by fractional inhibitory concentration index. The mechanism of action was investigated by flow cytometry and in silico tests. Results: SER inhibited Candida spp. strains at low concentrations by the fungicidal effect and showed no loss of effectiveness when combined. Its action seemed to be related to the membrane and cell wall biosynthesis inhibition. Conclusion: SER has activity against Candida spp. isolated and associated with antifungals, and acts by causing cell wall and membrane damage.
Collapse
Affiliation(s)
- Daniel S Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Vitória Pf Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Amanda D Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Lívia Ga Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Cecília R Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Lara Ea Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Joao Ba Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 930-000, Brazil
| | - Hélcio S Santos
- Science and Technology Center, Chemistry Course, Vale do Acaraú State University, CE, 040-370, Sobral
| | - Emmanuel S Marinho
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 930-000, Brazil
| | - Bruno C Cavalcanti
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Manoel O Moraes
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Hélio V Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| |
Collapse
|
17
|
Sekar A, Gil D, Tierney PA, McCanne M, Daesety V, Trendafilova D, Muratoglu OK, Oral E. Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. RESEARCH SQUARE 2023:rs.3.rs-3471646. [PMID: 37961705 PMCID: PMC10635368 DOI: 10.21203/rs.3.rs-3471646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. Methods Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of S. aureus and S. epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6hr) and established (24hr) biofilms were grown on 316 stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, MBEC measurement for GS, gene expression of biofilm-associated genes, visualization by live/dead imaging, scanning electron microscopy, and bacterial membrane fluidity assessment. Results Gentamicin-ketorolac combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. Conclusion The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Peyton Anne Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Vikram Daesety
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Darina Trendafilova
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| |
Collapse
|
18
|
Di Bonaventura G, Lupetti V, Di Giulio A, Muzzi M, Piccirilli A, Cariani L, Pompilio A. Repurposing High-Throughput Screening Identifies Unconventional Drugs with Antibacterial and Antibiofilm Activities against Pseudomonas aeruginosa under Experimental Conditions Relevant to Cystic Fibrosis. Microbiol Spectr 2023; 11:e0035223. [PMID: 37306577 PMCID: PMC10433973 DOI: 10.1128/spectrum.00352-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/13/2023] [Indexed: 06/13/2023] Open
Abstract
Pseudomonas aeruginosa is the most common pathogen infecting cystic fibrosis (CF) lungs, causing acute and chronic infections. Intrinsic and acquired antibiotic resistance allow P. aeruginosa to colonize and persist despite antibiotic treatment, making new therapeutic approaches necessary. Combining high-throughput screening and drug repurposing is an effective way to develop new therapeutic uses for drugs. This study screened a drug library of 3,386 drugs, mostly FDA approved, to identify antimicrobials against P. aeruginosa under physicochemical conditions relevant to CF-infected lungs. Based on the antibacterial activity, assessed spectrophotometrically against the prototype RP73 strain and 10 other CF virulent strains, and the toxic potential evaluated toward CF IB3-1 bronchial epithelial cells, five potential hits were selected for further analysis: the anti-inflammatory and antioxidant ebselen, the anticancer drugs tirapazamine, carmofur, and 5-fluorouracil, and the antifungal tavaborole. A time-kill assay showed that ebselen has the potential to cause rapid and dose-dependent bactericidal activity. The antibiofilm activity was evaluated by viable cell count and crystal violet assays, revealing carmofur and 5-fluorouracil as the most active drugs in preventing biofilm formation regardless of the concentration. In contrast, tirapazamine and tavaborole were the only drugs actively dispersing preformed biofilms. Tavaborole was the most active drug against CF pathogens other than P. aeruginosa, especially against Burkholderia cepacia and Acinetobacter baumannii, while carmofur, ebselen, and tirapazamine were particularly active against Staphylococcus aureus and B. cepacia. Electron microscopy and propidium iodide uptake assay revealed that ebselen, carmofur, and tirapazamine significantly damage cell membranes, with leakage and cytoplasm loss, by increasing membrane permeability. IMPORTANCE Antibiotic resistance makes it urgent to design new strategies for treating pulmonary infections in CF patients. The repurposing approach accelerates drug discovery and development, as the drugs' general pharmacological, pharmacokinetic, and toxicological properties are already well known. In the present study, for the first time, a high-throughput compound library screening was performed under experimental conditions relevant to CF-infected lungs. Among 3,386 drugs screened, the clinically used drugs from outside infection treatment ebselen, tirapazamine, carmofur, 5-fluorouracil, and tavaborole showed, although to different extents, anti-P. aeruginosa activity against planktonic and biofilm cells and broad-spectrum activity against other CF pathogens at concentrations not toxic to bronchial epithelial cells. The mode-of-action studies revealed ebselen, carmofur, and tirapazamine targeted the cell membrane, increasing its permeability with subsequent cell lysis. These drugs are strong candidates for repurposing for treating CF lung P. aeruginosa infections.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronica Lupetti
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L’Aquila, Italy
| | - Lisa Cariani
- Microbiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
19
|
Lu W, Lu H, Wang C, Wang G, Dong W, Tan C. Effectors of the Type VI Secretion System Have the Potential to Be Modified into Antimicrobial Peptides. Microbiol Spectr 2023; 11:e0030823. [PMID: 37470717 PMCID: PMC10434152 DOI: 10.1128/spectrum.00308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 07/21/2023] Open
Abstract
The use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, and there is an urgent need to find alternative treatments to alleviate this pressure. The type VI secretion system (T6SS) is a protein delivery system present in bacterial cells that secretes effectors that participate in bacterial virulence. Given the potential for the transformation of these effectors into antimicrobial peptides (AMPs), we designed T6SS effectors into AMPs that have a membrane-disrupting effect. These effectors kill bacteria by altering the membrane potential and increasing the intracellular reactive oxygen species (ROS) content. Moreover, AMPs also have a significant therapeutic effect both in vivo and in vitro. This finding suggests that it is possible to modify bacterial components of bacteria themselves to create compounds that fight bacteria. IMPORTANCE This study first identified and modified the T6SS effector into positively charged alpha-helical peptides. These peptides have good antibacterial and bactericidal effects on G+ bacteria and G- bacteria. This study broadens the source of AMPs and makes T6SS effectors more useful.
Collapse
Affiliation(s)
- Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
20
|
Harras MF, Sabour R, Farghaly TA, Ibrahim MH. Drug Repurposing Approach in Developing New Furosemide Analogs as Antimicrobial Candidates and Anti-PBP: Design, Synthesis, and Molecular Docking. Bioorg Chem 2023; 137:106585. [PMID: 37163813 DOI: 10.1016/j.bioorg.2023.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/09/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Multidrug-resistant microorganisms have become a global health problem, prompting research into new antimicrobials. Drug repurposing is a new technique in drug discovery used to improve drug development success. As a well-studied medication with a sulfonamide moiety, furosemide was chosen to study its antimicrobial effect on different microbial strains. In addition, a new family of furosemide analogs was investigated for their antimicrobial efficacy. According to the obtained results, the majority of the examined molecules exhibited potential antimicrobial activity. Compounds 3b and 4a had the best anti-MRSA results, with an MIC = 7.81 µg/mL. They also demonstrated potent anti-gram-negative activity against E. coli (MIC = 1.95 µg/mL and 3.91 µg/mL, respectively). A time-killing kinetics study against E. coli and MRSA showed bactericidal actions of 3b and 4a within 120-150 min. Moreover, an anti-PBP activity and an in vitro cytotoxicity evaluation were performed. Furosemide decreased the PBP2a levels in MRSA by 21.5% compared to the control. However, the furosemide analogs 3b and 4a demonstrated superior anti-PBP activity (55.9 and 57.1 % reduction in the expression of PBP2a, respectively). In addition, compound 4a was nearly nontoxic to normal WI-38 cells (IC50 = 248.60 μg /mL) indicating its high safety profile. Finally, the ability of furosemide and compounds 3b and 4a to bind to the target PBP2a enzyme has also been supported by molecular docking research.
Collapse
Affiliation(s)
- Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Mona H Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
21
|
Cabral VP, Rodrigues DS, Barbosa AD, Moreira LE, Sá LG, Silva CR, Neto JB, Silva J, Marinho ES, Santos HS, Cavalcanti BC, Moraes MO, Júnior HV. Antibacterial activity of paroxetine against Staphylococcus aureus and possible mechanisms of action. Future Microbiol 2023; 18:415-426. [PMID: 37213136 DOI: 10.2217/fmb-2022-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/09/2023] [Indexed: 05/23/2023] Open
Abstract
Aim: To evaluate the antibacterial activity of paroxetine alone and associated with oxacillin against isolates of methicillin-sensitive and -resistant Staphylococcus aureus. Materials & methods: The broth microdilution and checkerboard techniques were used, with investigation of possible mechanisms of action through flow cytometry, fluorescence microscopy and molecular docking, in addition to scanning electron microscopy for morphological analysis. Results: Paroxetine showed a MIC of 64 μg/ml and bactericidal activity, mostly additive interactions in combination with oxacillin, evidence of action on genetic material and membrane, morphological changes in microbial cells and influence on virulence factors. Conclusion: Paroxetine has antibacterial potential from the perspective of drug repositioning.
Collapse
Affiliation(s)
- Vitória Pf Cabral
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Daniel S Rodrigues
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Amanda D Barbosa
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Lara Ea Moreira
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Lívia Gav Sá
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
- Centro Universitário Christus (UNICHRISTUS), Fortaleza, CE, Brasil
| | - Cecília R Silva
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - João Ba Neto
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
- Centro Universitário Christus (UNICHRISTUS), Fortaleza, CE, Brasil
| | - Jacilene Silva
- Departamento de Química, Grupo de Química Teórica e Eletroquímica (GQTE), Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, CEP: 62.930-000, Brasil
| | - Emmanuel S Marinho
- Departamento de Química, Grupo de Química Teórica e Eletroquímica (GQTE), Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, CEP: 62.930-000, Brasil
| | - Hélcio S Santos
- Centro de Ciência e Tecnologia, Curso de Química, Universidade Estadual Vale do Acaraú, Sobral, CE, CEP: 62.040-370, Brasil
| | - Bruno C Cavalcanti
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Manoel O Moraes
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Hélio Vn Júnior
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| |
Collapse
|
22
|
Mao T, Chai B, Xiong Y, Wang H, Nie L, Peng R, Li P, Yu Z, Fang F, Gong X. In Vitro Inhibition of Growth, Biofilm Formation, and Persisters of Staphylococcus aureus by Pinaverium Bromide. ACS OMEGA 2023; 8:9652-9661. [PMID: 36936302 PMCID: PMC10018691 DOI: 10.1021/acsomega.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Biofilm or persister cells formed by Staphylococcus aureus are closely related to pathogenicity. However, no antimicrobials exist to inhibit biofilm formation or persister cells induced by S. aureus in clinical practice. This study found that pinaverium bromide had antibacterial activity against S. aureus, with the MIC50/MIC90 at 12.5/25 μM, respectively. Pinaverium bromide (at 4 × MIC) showed a rapid bactericidal effect on S. aureus planktonic cells, and it was more effective (at least 1-log10 cfu/mL) than linezolid, vancomycin, and ampicillin at 4 h of the time-killing test. Pinaverium bromide (at 10 × MIC) significantly inhibited the formation of S. aureus persister cells (at least 3-log10 cfu/mL) than linezolid, vancomycin, and ampicillin at 24, 48, 72, 96, and 120 h of the time-killing test. Biofilm formation and adherent cells of S. aureus isolates were significantly inhibited by pinaverium bromide (at 1/2 or 1/4 × MICs). The fluorescence intensity of the membrane polarity of S. aureus increased with the treatment of pinaverium bromide (≥1 × MIC), and the MICs of pinaverium bromide increased by 4 times with the addition of cell membrane phospholipids, phosphatidyl glycerol and cardiolipin. The cell viabilities of human hepatocellular carcinoma cells HepG2 and Huh7, mouse monocyte-macrophage cells J774, and human hepatic stellate cells LX-2 were slightly inhibited by pinaverium bromide (<50 μM). There were 54 different abundance proteins detected in the pinaverium bromide-treated S. aureus isolate by proteomics analysis, of which 33 proteins increased, whereas 21 proteins decreased. The abundance of superoxide dismutase sodM and ica locus proteins icaA and icaB decreased. While the abundance of global transcriptional regulator spxA and Gamma-hemolysin component B increased. In conclusion, pinaverium bromide had an antibacterial effect on S. aureus and significantly inhibited the formation of biofilm and persister cells of S. aureus.
Collapse
Affiliation(s)
- Ting Mao
- Hepatology
Center, Xiamen Hospital, Beijing University
of Chinese Medicine, Xiamen 361001, China
| | - Bao Chai
- Department
of Dermatology, Shenzhen Nanshan People’s
Hospital and the 6th Affiliated Hospital of Shenzhen University Medical
School, Shenzhen 518052, China
| | - Yanpeng Xiong
- Department
of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Hongyan Wang
- Department
of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Lei Nie
- Department
of Infectious Diseases and Department of General Medicine, the Key
Lab of Endogenous Infection, Shenzhen Nanshan
People’s Hospital and the 6th Affiliated Hospital of Shenzhen
University Medical School, Shenzhen 518052, China
| | - Renhai Peng
- Department
of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Peiyu Li
- Department
of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhijian Yu
- Department
of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Fang Fang
- Department
of Infectious Diseases and Department of General Medicine, the Key
Lab of Endogenous Infection, Shenzhen Nanshan
People’s Hospital and the 6th Affiliated Hospital of Shenzhen
University Medical School, Shenzhen 518052, China
| | - Xianqiong Gong
- Hepatology
Center, Xiamen Hospital, Beijing University
of Chinese Medicine, Xiamen 361001, China
| |
Collapse
|
23
|
Tilokani A, Agrawal P, Pradhan PK, Patri G, Karmakar N, Sinha Y. Comparative evaluation of antibacterial efficacy of nonsteroidal anti-inflammatory medications and proton-pump inhibitor against Enterococcus faecalis: An in vitro study. J Conserv Dent 2023; 26:79-82. [PMID: 36908739 PMCID: PMC10003294 DOI: 10.4103/jcd.jcd_419_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 12/12/2022] Open
Abstract
Aim The present in vitro experimental study was undertaken to evaluate and compare the antimicrobial activity of triple antibiotic paste (TAP), diclofenac, and proton-pump inhibitor (PPI) against the microorganism Enterococcus faecalis. Materials and Methods Three medicaments were selected for the study, TAP, diclofenac, and PPI. The experimental groups for the test were as follows: Part 1 - Group 1: TAP, Group 2: diclofenac, and Group 3: PPI; Part 2 - Group 1: TAP + PPI and Group 2: diclofenac + PPI. An agar well diffusion test was used to determine the efficacy of the experimental medicaments against E. faecalis (ATCC 29212). The diameter of inhibition zones was measured in millimeters using an inhibition zone measuring scale and the results were recorded. Statistical Analysis The statistical analysis was done using an analysis of variance and an unpaired t-test. P value was set at < 0.05. Results There was a significant difference in the diameter of growth inhibition zones, with the greatest diameter noted for TAP + PPI followed by diclofenac sodium (DS) + PPI, TAP, DS, and PPI. Conclusions The antimicrobial effectiveness of TAP + PPI was found to be superior to all other medicaments (DS + PPI, TAP, DS, and PPI).
Collapse
Affiliation(s)
- Akansha Tilokani
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratik Agrawal
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Prasanti Kumari Pradhan
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Gaurav Patri
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Nilormi Karmakar
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Yash Sinha
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
24
|
Synergistic Action of Cinnamomum verum Essential Oil with Sertraline. Antibiotics (Basel) 2022; 11:antibiotics11111617. [PMID: 36421261 PMCID: PMC9686778 DOI: 10.3390/antibiotics11111617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cinnamomum verum L. essential oil (CEO), commonly known as Ceylon cinnamon or cinnamon tree, is regarded as one of the most employed essential oils in the field of aromatherapy. It is usually applied externally as astringent, antipruritic, rubefacient, and anti-septic agent. Furthermore, both in vitro and in vivo research have demonstrated its numerous pharmacological effects, including the potentiality for treating neuralgia, myalgia, headache, and migraine. Several pieces of research also corroborated its significant antiviral and antimicrobial properties. Cinnamaldehyde, eugenol, caryophyllene, cinnamyl acetate, and cinnamic acid are the most representative compounds that are generally found in greater quantities in CEO and play a pivotal role in determining its pharmacological activities. Due to the global antibiotic resistance scenario and the dwindling amount of funding dedicated to developing new antibiotics, in recent years research has concentrated on exploring specific economic approaches against microbial infections. In this context, the purpose of this study was the investigation of the synergistic antibacterial activities of commercially available and chemically characterized CEO in combination with sertraline, a selective serotonin reuptake inhibitor (SSRI), whose repositioning as a non-antibiotic drug has been explored over the years with encouraging results. In vitro effects of the titled combination were assessed toward a wide panel of both Gram-positive and Gram-negative bacteria. The antimicrobial efficacy was investigated by using the checkerboard microdilution method. The interesting preliminary results obtained suggested a synergistic effect (fractional inhibitory index, FICI < 0.5) of sertraline in combination with CEO, leading to severe growth inhibition for all bacterial species under investigation.
Collapse
|