1
|
Li XY, Gu XY, Li XM, Yan JG, Mao XL, Yu Q, Du YL, Kurihara H, Yan CY, Li WX. Supplementation with carnosine, a food-derived bioactive dipeptide, alleviates dexamethasone-induced oxidative stress and bone impairment via the NRF2 signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1091-1104. [PMID: 39291490 DOI: 10.1002/jsfa.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/07/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Carnosine, a natural bioactive dipeptide derived from meat muscle, possesses strong antioxidant properties. Dexamethasone, widely employed for treating various inflammatory diseases, raises concerns regarding its detrimental effects on bone health. This study aimed to investigate the protective effects of carnosine against dexamethasone-induced oxidative stress and bone impairment, along with its underlying mechanisms, utilizing chick embryos and a zebrafish model in vivo, as well as MC3T3-E1 cells in vitro. RESULTS Our findings revealed that carnosine effectively mitigated bone injury in dexamethasone-exposed chick embryos, accompanied by reduced oxidative stress. Further investigation demonstrated that carnosine alleviated impaired osteoblastic differentiation in MC3T3-E1 cells and zebrafish by suppressing the excessive production of reactive oxygen species (ROS) and enhancing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, mechanistic studies elucidated that carnosine promoted the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), thereby facilitating the transcription of its downstream antioxidant response elements, including heme oxyense-1 (HO-1), glutamate cysteine ligase modifier (GCLM), and glutamate cysteine ligase catalytic (GCLC) to counteract dexamethasone-induced oxidative stress. CONCLUSION Overall, this study underscores the potential therapeutic efficacy of carnosine in mitigating oxidative stress and bone damage induced by dexamethasone exposure, shedding light on its underlying mechanism of action by activating the NRF2 signaling pathway. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi-You Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Yuan Gu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Min Li
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Jian-Gang Yan
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Xin-Liang Mao
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Qin Yu
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Yu-Lan Du
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Hiroshi Kurihara
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Xi Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Harikrishnan S, Kaushik D, Kumar M, Kaur J, Oz E, Proestos C, Elobeid T, Karakullukcu OF, Oz F. Vitamin B12: prevention of human beings from lethal diseases and its food application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:10-18. [PMID: 38922926 DOI: 10.1002/jsfa.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Vitamin B12, a water-soluble essential micronutrient, plays a pivotal role in numerous physiological processes in the human body. This review meticulously examines the structural complexity and the diverse mechanisms through which vitamin B12 exerts its preventive effects against a spectrum of health conditions, including pernicious anaemia, neurological disorders, obesity, diabetes, dyslipidaemia and complications in foetal development. The selection of articles for this review was conducted through a systematic search across multiple scientific databases, including PubMed, Scopus and Web of Science. Criteria for inclusion encompassed relevance to the biochemical impact of vitamin B12 on health, peer-reviewed status and publication within the last decade. Exclusion criteria were non-English articles and studies lacking empirical evidence. This stringent selection process ensured a comprehensive analysis of vitamin B12's multifaceted impact on health, covering its structure, bioavailable forms and mechanisms of action. Clinical studies highlighting its therapeutic potential, applications in food fortification and other utilizations are also discussed, underscoring the nutrient's versatility. This synthesis aims to provide a clear understanding of the integral role of vitamin B12 in maintaining human health and its potential in clinical and nutritional applications. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- S Harikrishnan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Jasjit Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, Athens, Greece
| | - Tahra Elobeid
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Omur Fatih Karakullukcu
- Republic of Türkiye, Ministry National Education, General Directorate of Support Services, Ankara, Turkey
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
3
|
Xu YW, Yao CH, Gao XM, Wang L, Zhang MX, Yang XD, Li J, Dai WL, Yang MQ, Cai M. BAK ameliorated cerebral infarction/ischemia-reperfusion injury by activating AMPK/Nrf2 to inhibit TXNIP/NLRP3/caspase-1 axis. Neurosci Lett 2025; 844:138037. [PMID: 39515657 DOI: 10.1016/j.neulet.2024.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury is a serious vascular disease with extremely high mortality and disability rate. Bakuchiol (BAK) was found in leaves and seeds of Psoralea corylifolia Linn and has been shown to decrease inflammation and reduce oxidative stress, while the mechanism of BAK in ameliorating cerebral I/R injury remains unclear. METHODS Middle cerebral artery occlusion reperfusion (MACO/R) was used to establish mouse model. The protective effect of BAK in MCAO/R mices was detected by performing neurological deficit testing, TTC staining, and H&E staining. Oxygen/glucose deprivation and reperfusion (OGD/R) was used to stimulate SH-SY5Y cells in vitro. Protein expression was detected by western blotting, gene expression was detected by quantitative real-time polymerase chain reaction and apoptosis was detected by immunofluorescence. RESULTS Our study indicated that BAK protected ischemia-reperfusion injury in MACO/R mice, and upregulated superoxide dismutase (SOD) and the catalase (CAT) enzyme activity. BAK also inhibited the expression of TNF-α, IL-1β, IL-6, and IL-18 and suppressed apoptosis and pyroptosis both in MACO/R mice and in OGD/R SH-SY5Y cells. Further results showed that BAK could suppress TXNIP, ASC, NLRP3, and caspase-1 mRNA levels to reverse assembly of inflammasome. And BAK could also upregulate the expression of phosphorylated AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor (Nrf2). In addition, Nrf2 inhibitor ML385 reversed the BAK induced reduction of TXNIP, ASC, NLRP3, and the AMPK inhibitor also abolished BAK' the effect on the regulation of Nrf2, TXNIP, ASC, NLRP3, caspase-1, and pro-inflammatory cytokines. In conclusion, BAK, found in leaves and seeds of Psoralea corylifolia Linn, could ameliorated cerebral I/R injury through activating AMPK/Nrf2 to inhibit NLRP3 inflammasome, which might present new therapeutic strategy for cerebral I/R injury.
Collapse
Affiliation(s)
- Yue-Wei Xu
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Chang-Heng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao-Ming Gao
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Li Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Meng-Xiang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Xiao-Dan Yang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Jing Li
- Shuguang Hospital Anhui Branch Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei, Anhui 230061, China
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Man-Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China.
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China.
| |
Collapse
|
4
|
Liu X, Zhang X, Ma L, Qiang N, Wang J, Huang Y, Yuan X, Lu C, Cao Y, Xu J. 1,25-Dihydroxyvitamin D 3 protects against placental inflammation by suppressing NLRP3-mediated IL-1β production via Nrf2 signaling pathway in preeclampsia. Metabolism 2025; 162:156058. [PMID: 39488297 DOI: 10.1016/j.metabol.2024.156058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Maternal vitamin D deficiency is associated with an increased risk of preeclampsia, a potentially life-threatening multi-system disorder specific to human pregnancy. Placental trophoblast dysfunction is a key factor in the development of preeclampsia, and the activation of NOD-like receptor protein 3 (NLRP3) inflammasome may play a crucial role in this process. Previous studies have suggested that vitamin D can exert beneficial effects by suppressing inflammasome activation, but the underlying mechanism has not been fully elucidated. This study aims to explore the protective effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on the placenta and to investigate the mechanisms by which 1,25(OH)2D3 attenuates NLRP3 inflammasome activation in a rat model of preeclampsia and hypoxia-cultured placental trophoblast cells. RESULTS Our findings demonstrated that supplementation of rats with 1,25(OH)2D3 mitigated placental inflammation and prevented multi-organ dysfunction associated with preeclampsia. Treatment with 1,25(OH)2D3 inhibited inflammasome-mediated inflammation in trophoblast cells via its receptor VDR by reducing the expression of NLRP3, caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), decreasing IL-1β production, reducing mitochondrial reactive oxygen species generation, and enhancing the expression and enzymatic activity of Cu/Zn-superoxide dismutase (SOD). Mechanistically, 1,25(OH)2D3 upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, subsequently suppressing NLRP3-mediated IL-1β overproduction in trophoblast cells. CONCLUSIONS Our study indicates that 1,25(OH)2D3 inhibits NLRP3-mediated inflammation in trophoblast cells during preeclampsia by stimulating the Nrf2 signaling pathway and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Xueqing Liu
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Xinyu Zhang
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Linlin Ma
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Na Qiang
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Jiao Wang
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Yujia Huang
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Xiaolei Yuan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, P.R. China
| | - Chunmei Lu
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Yang Cao
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China.
| | - Jie Xu
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China.
| |
Collapse
|
5
|
El Sayed S, Macri VI, Singh B, Segars JH, Islam MS. Beneficial Effects of Pomegranate Extracts for Benign Gynecologic Disorders. Reprod Sci 2024:10.1007/s43032-024-01776-5. [PMID: 39733205 DOI: 10.1007/s43032-024-01776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
Pomegranate (Punica granatum) is a widely cultivated fruit historically recognized for its health benefits and is regarded as a nutritional powerhouse. Pomegranate has a unique composition of bioactive compounds including hydrolysable tannins, anthocyanins, and other polyphenolic components. Of those, punicalagin and its subsequent metabolites are the most extensively studied, demonstrating antioxidant, anti-inflammatory, anti-cancer, and anti-nociceptive activity. The compounds possess promising therapeutic potential for many diseases, including conditions affecting the female reproductive system. This scoping review examines the pharmacodynamics of pomegranate's bioactive compounds and synthesizes the current literature concerning the role in benign gynecological disorders. Pomegranate extract decreased testosterone levels, levels of oxidative stress and inflammation biomarkers in women with polycystic ovary syndrome, erstwhile favorably impacting some cardiovascular risk factors in women. Pomegranate supplementation improved menopause specific health-related quality of life in women. In a pre-clinical murine model following ovariectomy, improved bone formation and reduced vaginal atrophy were associated with pomegranate treatment. Existing data suggests that additional research on the beneficial antioxidant, anti-inflammatory, anti-proliferative, and anti-nociceptive effects of pomegranate extracts for benign gynecologic conditions is warranted.
Collapse
Affiliation(s)
- Samya El Sayed
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Valeria I Macri
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Nguyen BQH, Le NTH, Nguyen TYN, Nguyen HKT, Yen CH, Nguyen MH. Hybridisation of in silico and in vitro bioassays for studying the activation of Nrf2 by natural compounds. Sci Rep 2024; 14:31222. [PMID: 39732775 DOI: 10.1038/s41598-024-82559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Oxidative stress, characterized by the damaging accumulation of free radicals, is associated with various diseases, including cardiovascular, neurodegenerative, and metabolic disorders. The transcription factor Nrf2 is pivotal in cellular defense against oxidative stress by regulating genes that detoxify free radicals, thus maintaining redox homeostasis and preventing cellular aging. Keap1 plays a regulatory role through its interaction with Nrf2, ensuring Nrf2 degradation under homeostatic conditions and facilitating its stabilization and nuclear translocation during oxidative stress. In the initial stage of our study, we conducted in vitro assays on HaCaT cells, a human keratinocyte cell line, to measure the expression levels of Nrf2 to reveal the activity of promising medicinal plants, which were then selected for further evaluation. Subsequently, this study leverages in silico techniques, integrating machine learning with molecular docking and dynamics, to screen natural compounds that potentially activate Nrf2. Data from the ChEMBL database were categorized into active and inactive compounds and used for training different machine-learning models to predict potential Nrf2 activators. The best-performing model was used to select compounds for further evaluation via molecular docking and dynamics, assessing their interactions with Keap1/Nrf2. The LC-MS/MS-based chemical profiles also validated the presence of these chemical compounds. This approach underscores the synergy between in vitro bioassays and in silico approaches in identifying Nrf2 activators, offering a cost-effective strategy for drug development.
Collapse
Affiliation(s)
- Bui Quoc Huy Nguyen
- Institute for Research and Executive Education, The University of Danang-VN-UK, 41 Le Duan Street, Hai Chau 1 ward, Hai Chau District, Danang city, 50000, Vietnam
| | - Nguyen Thien Han Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Vietnam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Vietnam
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 70000, Vietnam
| | - Hoang Khue Tu Nguyen
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 70000, Vietnam
- School of Biotechnology, Ho Chi Minh City International University, National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 70000, Vietnam
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Vietnam.
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 70000, Vietnam.
| |
Collapse
|
7
|
Li Y, Zhang L, Xu G, Xu G, Chen J, Zhao K, Li M, Jin J, Peng C, Wang K, Pan S, Zhu K. Exploration and validation of a novel reactive oxygen species-related signature for predicting the prognosis and chemotherapy response of patients with bladder cancer. Front Immunol 2024; 15:1493528. [PMID: 39749345 PMCID: PMC11693660 DOI: 10.3389/fimmu.2024.1493528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Background Reactive Oxygen Species (ROS), a hallmark of cancer, is related to prognosis, tumor progression, and treatment response. Nevertheless, the correlation of ROS-based molecular signature with clinical outcome and immune cell infiltration has not been thoroughly studied in bladder cancer (BLCA). Accordingly, we aimed to thoroughly examine the role and prognostic value of ROS-related genes in BLCA. Methods We obtained RNA sequencing and clinical data from The Cancer Genome Atlas (TCGA) for bladder cancer (BLCA) patients and identified ROS-associated genes using the GeneCards and Molecular Signatures Database (MSigDB). We then analyzed differential gene expression between BLCA and normal tissues and explored the functions of these ROS-related genes through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analysis. Prognostic ROS-related genes were identified using Univariate Cox regression (UCR) and LASSO analyses, which were further refined in a Multivariate Cox Regression (MCR) analysis to develop a Prognostic Signature (PS). This PS was validated in the GSE13507 cohort, assessing its predictive power with Kaplan-Meier survival and time-dependent ROC curves. To forecast BLCA outcomes, we constructed a nomogram integrating the PS with clinical variables. We also investigated the signature's molecular characteristics through Gene Set Enrichment Analysis (GSEA), Immune Cell Infiltration (ICI), and Tumor Mutational Burden (TMB) analyses. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to predict chemotherapy responses based on the PS. Additionally, we screened for Small-Molecule Drugs (SMDs) targeting ROS-related genes using the CMAP database. Finally, we validated our findings by checking protein levels of the signature genes in the Human Protein Atlas (HPA) and confirmed the role of Aldo-keto reductase family 1 member B1 (AKR1B1) through in vitro experiments. Results The constructed and validated PS that comprised 17 ROS-related genes exhibited good performance in predicting overall survival (OS), constituting an independent prognostic biomarker in BLCA patients. Additionally, we successfully established a nomogram with superior predictive capacity, as indicated by the calibration plots. The bioinformatics analysis findings showcased the implication of PS in several oncogenic pathways besides tumor ICI regulation. The PS was negatively associated with the TMB. The high-risk group patients had greater chemotherapy sensitivity in comparison to low-risk group patients. Further, 11 candidate SMDs were identified for treating BLCA. The majority of gene expression exhibited a correlation with the protein expression. In addition, the expression of most genes was consistent with protein expression. Furthermore, to test the gene reliability we constructed, AKR1B1, one of the seventeen genes identified, was used for in-depth validation. In vitro experiments indicate that siRNA-mediated AKR1B1 silencing impeded BLCA cell viability, migration, and proliferation. Conclusions We identified a PS based on 17 ROS-related genes that represented independent OS prognostic factors and 11 candidate SMDs for BLCA treatment, which may contribute to the development of effective individualized therapies for BLCA.
Collapse
Affiliation(s)
- Yulei Li
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Lulu Zhang
- Medical Research Center, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Gang Xu
- Department of Urology, Nanchang People’s Hospital, Nanchang, China
| | - Gang Xu
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Jiajun Chen
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Keyuan Zhao
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Mengyao Li
- Department of Pathology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Jing Jin
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Chao Peng
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Kaifang Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| | - Shouhua Pan
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Ke Zhu
- Department of Urology, Nanchang People’s Hospital, Nanchang, China
| |
Collapse
|
8
|
Hou WW, Chang YT, Yang WC, Gong HY, Pan YJ, Hsu TH, Huang CW. Enhancing the color and stress tolerance of cherry shrimp (Neocaridina davidi var. red) using astaxanthin and Bidens Pilosa. PLoS One 2024; 19:e0315585. [PMID: 39700112 DOI: 10.1371/journal.pone.0315585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
This study aimed to evaluate the effects of different concentrations of astaxanthin and Bidens Pilosa compound feed additives on the color and hypoxia tolerance of cherry shrimp (Neocaridina davidi var. red). Color parameters were assessed using CIELAB color space, and differential gene expression related to color and stress was analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR) to understand the gene regulatory mechanisms affecting color expression and stability. Over a 56-day rearing period, the feed additives AX100 (astaxanthin 100 mg/kg) and AX100+BP (astaxanthin 100 mg/kg + B. pilosa 5 g/kg) significantly reduced the color difference values compared to the standard sample (ΔE*ab), indicating notable color boosting effects. This included a reduction in lightness (L*), a decrease in color hue angle (h*) with AX100, and an increase in redness (a*) and chroma (C*) with AX100+BP. We further designed 22 color-related gene primers, 16 of which amplified the target fragment. Six gene sets exhibited significant differences among all feed treatment groups and were correlated with color expression. After 9 hours of hypoxic stress, body color remained stable in the feed additive groups, especially in the AX100 + BP and AX200 + BP (astaxanthin 200 mg/kg + B. pilosa 5 g/kg) groups, with color differences before and after hypoxic stress remaining below the discernible threshold of the human eye, indicating optimal color stability. Additionally, the CAT gene, among the stress-related genes that successfully amplified, showed significant differences among feed treatment groups and correlated with color stability based on color difference values. In conclusion, the composite addition of 100 mg/kg astaxanthin and 5 g/kg Bidens pilosa (AX100 + BP) was identified as the most effective treatment. This formulation significantly enhanced cherry shrimp color, evidenced by improved parameters such as decreased lightness and increased redness. Moreover, AX100 + BP demonstrated superior color stability under hypoxic conditions, with ΔE*ab values remaining below the discernible threshold of the human eye, highlighting its potential for maintaining optimal color during transportation. Offering a basis for enhancing the commercial value and reducing the sale risks of cherry shrimp.
Collapse
Affiliation(s)
- Wei-Wei Hou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Tzi Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Yen-Ju Pan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
9
|
Thuy PT, Ha NX. Theoretical studies on the antioxidant activity of potential marine xanthones. Free Radic Res 2024:1-15. [PMID: 39676294 DOI: 10.1080/10715762.2024.2438918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
In this study, a quantum chemical exploration was conducted to assess the antioxidant activity of xanthones isolated from marine sources, focusing on thermodynamics and kinetics within simulated physiological environments. DFT analysis revealed that xanthones such as 1,4,7-trihydroxy-6-methylxanthone (1), 1,4,5-trihydroxy-2-methylxanthone (2), arthone C (3), 2,3,4,6,8-pentahydroxy-1-methylxanthone (4), sterigmatocystin (5), oxisterigmatocystin C (6), and oxisterigmatocystin D (7) favor the SPLET pathway in water and the FHT pathway in lipid environments. The kinetic study of these xanthones reacting with the hydroperoxyl radical (HOO•) was conducted using the formal hydrogen atom transfer (FHT) mechanism and the single electron transfer (SET) mechanism. The results showed that compounds 1-4 exhibited antioxidant activities in aqueous environments surpassing that of the reference compound Trolox, with rate constants ranging from 2.02 x 105 to 9.44 x 107 M-1·s-1. In lipid environments, compounds 1 and 2 also demonstrated higher rate constants than Trolox. Additionally, molecular docking and molecular dynamics analysis suggested that xanthones 1-7 potentially inhibit the pro-oxidant effect of the Keap1 enzyme, highlighting their promise as both antiradicals and enzyme inhibitors.
Collapse
Affiliation(s)
- Phan Thi Thuy
- Department of Chemistry, Vinh University, Vinh, Vietnam
| | - Nguyen Xuan Ha
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
10
|
Ji H, Zhu X, Qiu J, Zhang S, Li J, Liu L, Li X, Muneeb M. Milk fat globule membranes ameliorate diet-induced obesity in mice by modulating glucolipid metabolism, body inflammation, and oxidative stress. Food Funct 2024; 15:11903-11917. [PMID: 39584542 DOI: 10.1039/d4fo04072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
This study aimed to explore the lipid-lowering effect and the mechanism of action of the milk fat globule membrane (MFGM) in obese mice. All findings indicated that MFGM supplementation impeded weight gain in mice with obesity. qPCR and western blot analysis further revealed that MFGM could reduce lipid deposition and improve lipid metabolism by downregulating the expression levels of Fas, Scd1, PPARγ, and Srebp-1c and increasing the expression levels of Mcad, Cpt-1c, and PPAR-α. MFGM also reduced glucose metabolism disorders by downregulating the expression levels of Pepck and G6pase and upregulating the expression levels of PK and GK. MFGM can reduce the expression levels of TNF-α, IL-6, and IL-1β, thus reducing inflammation in the body. In addition, MFGM also increased the expression of the Nrf2 gene, strengthening the antioxidant enzymes' (GSH, CAT, and SOD) vitality, which strengthened the body's defenses against oxidative stress. In summary, our experiment demonstrated that the MFGM has the potential to treat obesity by controlling the metabolism of fat and glucose, thereby reducing oxidative stress and inflammation, which provides a theoretical foundation for the development of products related to the treatment of obesity.
Collapse
Affiliation(s)
- Haowen Ji
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Xiaojun Zhu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Jiaxin Qiu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Shouwen Zhang
- Postdoctoral Research Station of Heilongjiang Yaolan Dairy Technology Stock Company Ltd, 150010, Harbin, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, 150010, Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Muhammad Muneeb
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| |
Collapse
|
11
|
Kaufmann WE, Luu S, Budimirovic DB. Drug Treatments for Neurodevelopmental Disorders: Targeting Signaling Pathways and Homeostasis. Curr Neurol Neurosci Rep 2024; 25:7. [PMID: 39641900 DOI: 10.1007/s11910-024-01394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF THE REVIEW Preclinical and clinical evidence support the notion that neurodevelopmental disorders (NDDs) are synaptic disorders, characterized by excitatory-inhibitory imbalance. Despite this, NDD drug development programs targeting glutamate or gamma-aminobutyric acid (GABA) receptors have been largely unsuccessful. Nonetheless, recent drug trials in Rett syndrome (RTT), fragile X syndrome (FXS), and other NDDs targeting other mechanisms have met their endpoints. The purpose of this review is to identify the basis of these successful studies. RECENT FINDINGS Despite increasing evidence of disruption in synaptic homeostasis, most genetic variants associated with NDDs implicate proteins involved in cell regulation and not in neurotransmission. Metabolic processes, in particular mitochondrial function, appear to play a role in NDD pathophysiology. NDDs are also characterized by distinctive cell signaling abnormalities, which link cellular and synaptic homeostasis. Recent successful trials in NDDs, including those of trofinetide, the first drug specifically approved for one of these disorders (i.e., RTT), implicate the targeting of downstream processes (i.e., signaling pathways) rather than neurotransmitter receptors. Recent positive drug studies in NDDs and their underlying mechanisms, in conjunction with new knowledge on the pathophysiology of these disorders, support the concept that targeting signaling and cellular and synaptic homeostasis may be a preferred approach for ameliorating synaptic abnormalities in many NDDs.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Boston Children's Hospital, Boston, MA, 02115, USA.
- Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Skylar Luu
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dejan B Budimirovic
- Kennedy Krieger Institute and Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Chuang YF, Cheng L, Chang WH, Yu SY, Hsu HT, An LM, Yen CH, Chang FR, Lo YC. Spatheliachromen mitigates methylglyoxal-induced myotube atrophy by activating Nrf2, inhibiting ubiquitin-mediated protein degradation, and restoring mitochondrial function. Eur J Pharmacol 2024; 984:177070. [PMID: 39442745 DOI: 10.1016/j.ejphar.2024.177070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Methylglyoxal (MGO) is a potent precursor of glycative stress that leads to oxidative stress and muscle atrophy in diabetes. Spatheliachromen (FPATM-20), derived from Ficus pumila var. awkeotsang, exhibited potential antioxidant activity. PURPOSE This study aimed to evaluate the potential impact and underlying mechanisms of FPATM-20 on MGO-induced myotube atrophy and mitochondrial dysfunction in mouse skeletal C2C12 myotubes. METHODS Atrophic and antioxidant factors were evaluated using immunofluorescence, enzyme-linked immunosorbent assay, and western blotting. Mitochondrial function was assessed using the ATP assay and Seahorse Cell Mito Stress Test. The glycogen content was determined using periodic acid-Schiff staining. Molecular docking was performed to determine the interaction between FPATM-20 and Keap1. RESULTS In myotubes treated with MGO, FPATM-20 activated the Nrf2 pathway, reduced ROS levels, enhanced antioxidant defense, and increased glycogen content. FPATM-20 improved myotube viability and size, upregulated myosin heavy chain (MyHC) expression, modulated ubiquitin-proteasome molecules (nuclear FoxO3a, atrogin-1, MuRF-1, and p62/SQSTM1), and inhibited apoptosis (Bax/Bcl-2 ratio and cleaved caspase 3). Moreover, FPATM-20 restored mitochondrial function, including mitochondrial membrane potential, mitochondrial oxygen consumption rate, and mitochondrial biogenesis pathway (nuclear PGC-1α/TFAM/FNDC5). The inhibition of Nrf2 with ML385 reversed the effects of FPATM-20 on MGO. Furthermore, molecular docking confirmed the binding of FPATM-20 to Keap1, a suppressor of Nrf2, showing the crucial role of Nrf2 in protective effects. CONCLUSIONS FPATM-20 protects myotubes from MGO toxicity by activating the Nrf2 antioxidant defense, reducing protein degradation and apoptosis, and enhancing mitochondrial function. Thus, FPATM-20 may be a novel agent for preventing skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Cheng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Hung-Te Hsu
- Department of Anesthesia, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan; Faculty of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Mei An
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Saveleva L, Cervena T, Mengoni C, Sima M, Krejcik Z, Vrbova K, Sikorova J, Mussalo L, de Crom TOE, Šímová Z, Ivanova M, Shahbaz MA, Penttilä E, Löppönen H, Koivisto AM, Ikram MA, Jalava PI, Malm T, Chew S, Vojtisek-Lom M, Topinka J, Giugno R, Rössner P, Kanninen KM. Transcriptomic and epigenomic profiling reveals altered responses to diesel emissions in Alzheimer's disease both in vitro and in population-based data. Alzheimers Dement 2024; 20:8825-8843. [PMID: 39579047 DOI: 10.1002/alz.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/15/2024] [Accepted: 09/21/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Studies have correlated living close to major roads with Alzheimer's disease (AD) risk. However, the mechanisms responsible for this link remain unclear. METHODS We exposed olfactory mucosa (OM) cells of healthy individuals and AD patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA, miRNA expression, and DNA methylation analyses were performed. The discovered altered pathways were validated using data from the human population-based Rotterdam Study. RESULTS DE exposure resulted in an almost four-fold higher response in AD OM cells, indicating increased susceptibility to DE effects. Methylation analysis detected different DNA methylation patterns, revealing new exposure targets. Findings were validated by analyzing data from the Rotterdam Study cohort and demonstrated a key role of nuclear factor erythroid 2-related factor 2 signaling in responses to air pollutants. DISCUSSION This study identifies air pollution exposure biomarkers and pinpoints key pathways activated by exposure. The data suggest that AD individuals may face heightened risks due to impaired cellular defenses. HIGHLIGHTS Healthy and AD olfactory cells respond differently to DE exposure. AD cells are highly susceptible to DE exposure. The NRF2 oxidative stress response is highly activated upon air pollution exposure. DE-exposed AD cells activate the unfolded protein response pathway. Key findings are also confirmed in a population-based study.
Collapse
Affiliation(s)
- Liudmila Saveleva
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tereza Cervena
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Claudia Mengoni
- Department of Computer Science, University of Verona, Verona, Italy
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Krejcik
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Sikorova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tosca O E de Crom
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Zuzana Šímová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mariia Ivanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anne M Koivisto
- Department Driving Assessment, Neuro Centre, Kuopio University Hospital, Kuopio, Finland
- Department of Geriatrics, Helsinki University Hospital, Helsinki, Finland
- Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michal Vojtisek-Lom
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Mechatronics and Computer Engineering, the Technical University of Liberec, Liberec, Czech Republic
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Pavel Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
Nagy AM, Abdelhameed MF, Rihan S, Diab KA, El-Saied M, Mohamed SS, El-Nattat WS, Hammam AMM. Rosemary officinalis extract mitigates potassium dichromate-induced testicular degeneration in male rats: Insights from the Nrf2 and its target genes signaling pathway. Toxicol Rep 2024; 13:101700. [PMID: 39165924 PMCID: PMC11334654 DOI: 10.1016/j.toxrep.2024.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
This study aimed to investigate the protective effects of Rosemary ethanol extract (ROEE) on testicular damage induced by potassium Dichromate (PDC) in male rats regarding the signaling pathway of Nrf2 and its target genes and proteins. A total of 28 male rats were divided into four groups: control, PDC only (15 mg/kg b.w. orally), PDC + low dose ROEE (220 mg/kg b.w.), and PDC + high dose ROEE (440 mg/kg b.w.). After 28 days of consecutive treatment, the rats were sacrificed for histological, immunohistochemistry, and biochemical analyses. The results revealed that the ROEE treatment up-regulated the Nrf2 and its target genes (NQO1, HO-1) mRNA expressions compared to the PDC group. correspondingly, the protein levels of GCLM, GSH, SOD, and catalase were significantly increased in the ROEE-treated animals compared to the PDC-treated animals. Furthermore, ROEE administration led to increased serum levels of testosterone (T4) and decreased levels of estrogen (E2) compared to the PDC group. Semen analysis and histopathology demonstrated that ROEE administration significantly improved spermatological impairment caused by PDC. The immunoexpression of cytoplasmic HSP-90 was reduced in the ROEE-treated groups, while the expression of androgen receptor (AR) was markedly improved. ROEE exhibited protective effects against PDC-induced testicular damage, likely due to its antioxidant properties. However, further investigation is required to elucidate the underlying mechanisms of action.
Collapse
Affiliation(s)
- Ahmed M. Nagy
- Department of Animal Reproduction &AI, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed F. Abdelhameed
- Pharmacology Department, Medical research and clinical studies institute, National Research Centre, Cairo, Egypt
| | - Shaimaa Rihan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Kawthar A. Diab
- Department of Genetics and Cytology, National Research Centre, Cairo, Egypt
| | - Mohamed El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shereif S. Mohamed
- Nutrition and Food Science Department, National Research Centre, Cairo, Egypt
| | - Walid S. El-Nattat
- Department of Animal Reproduction &AI, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Mohsen M. Hammam
- Department of Animal Reproduction &AI, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
15
|
You YL, Byun HJ, Lee JS, Choi HS, Youk JS. Euonymus alatus and its compounds suppress hydrogen peroxide-induced oxidative stress in HT22 cells. Food Sci Biotechnol 2024; 33:3567-3577. [PMID: 39493395 PMCID: PMC11525359 DOI: 10.1007/s10068-024-01601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 11/05/2024] Open
Abstract
This study aimed to explore the protective effects of Euonymus alatus (EA) leaves and its compounds on hydrogen peroxide (H2O2)-induced neuronal cell death. EA effectively reversed the H2O2-induced decrease in HT22 cell viability. Anti-apoptotic marker poly(ADP-ribose) polymerase significantly increased with EA treatment, whereas BAX/BCL2 and cleaved caspase-3/procaspase-3 ratios, which represent apoptotic markers, were dose-dependently decreased by EA treatment. Additionally, EA effectively decreased β-secretase production, acetylcholine esterase activity, and Tau phosphorylation, pathological features observed in Alzheimer's disease. Furthermore, EA significantly increased the protein levels of NRF2 and HO-1, as well as the gene expression of antioxidant enzymes, including catalase, superoxide dismutase 1, and glutathione peroxidase. LC-MS/MS and HPLC analyses revealed the presence of chlorogenic acid and leucosides in EA. Both chlorogenic acid and leucosides showed protective effects against H2O2-induced neuronal cell death. This study highlights the potential of EA and its compounds as functional edible agents for neuroprotection against oxidative stress. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01601-4.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul, 03016 Republic of Korea
| | - Ha-Jun Byun
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul, 03016 Republic of Korea
| | - Jeong Soon Lee
- Forest Environment Research Institute of Gyeongsangbuk-do, Gyeongju, 38174 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul, 03016 Republic of Korea
| | - Jin-Soo Youk
- Department of Food & Beverage Management, Hanyang Women’s University, 200, Salgoji-gil, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
16
|
Milan KL, Gayatri V, Kriya K, Sanjushree N, Vishwanathan Palanivel S, Anuradha M, Ramkumar KM. MiR-142-5p mediated Nrf2 dysregulation in gestational diabetes mellitus and its impact on placental angiogenesis. Placenta 2024; 158:192-199. [PMID: 39488088 DOI: 10.1016/j.placenta.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) presents significant risks during pregnancy, including adverse perinatal outcomes and placental dysfunction. Impaired angiogenesis, involving crucial factors like Vascular Endothelial Growth Factor (VEGF), contributes to these complications. The Nrf2/Keap1 pathway, crucial for vascular redox homeostasis, has been linked to GDM-associated angiogenesis dysregulation. METHODS This study aimed to investigate the molecular mechanisms underlying placental Nrf2 regulation, focusing on angiomiRs, key regulators of angiogenesis in GDM. Computational analysis identified miR-142-5p targeting Nrf2 mRNA. Expression levels of miR-142-5p were assessed in GDM placenta and correlated with Nrf2 expression. Experimental validation utilized human trophoblastic cell lines (BeWo) exposed to hyperglycemic conditions, assessing the effects of anti-miR-142 transfection on Nrf2 expression and angiogenic marker levels. RESULTS miR-142-5p expression was significantly downregulated in GDM placenta, correlating positively with Nrf2 expression. In BeWo cells exposed to hyperglycemia, anti-miR-142 transfection notably increased Nrf2 expression alongside angiogenic marker levels, confirming the computational predictions. DISCUSSION Our findings highlight the pivotal role of miRNAs in GDM-associated impaired angiogenesis by modulating Nrf2 expression. Understanding these molecular mechanisms provides insights into potential therapeutic targets for improving pregnancy outcomes in GDM cases.
Collapse
Affiliation(s)
- K L Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - V Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kumaran Kriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - N Sanjushree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Sri Vishwanathan Palanivel
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - M Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur, 603203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
17
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
18
|
Tabandeh MR, Davoodi E, Bayati V, Dayer D. Betaine regulates steroidogenesis, endoplasmic reticulum stress response and Nrf2/HO-1 antioxidant pathways in mouse Leydig cells under hyperglycaemia condition. Arch Physiol Biochem 2024; 130:768-778. [PMID: 37870938 DOI: 10.1080/13813455.2023.2272588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
We studied the effects of betaine on steroidogenesis, endoplasmic reticulum stress and Nrf2 antioxidant pathways of mice Leydig cells under hyperglycaemia conditions. Leydig cells were grown in low and high glucose concentrations (5 mM and 30 mM) in the presence of 5 mM of betaine for 24 h. Gene expression was determined using a real-time PCR method. The protein levels were determined by Western blot analysis. The testosterone production was evaluated by the ELISA method. Cellular contents of reduced and oxidised glutathione were measured by colorimetric method. Hyperglycaemia caused impaired steroidogenesis and ERS in Leydig cells associated with the down-regulation of 3β-HSD, StAR, P450scc, LH receptor and increased expression of GRP78, CHOP, ATF6 and IRE1. Betaine could improve cell viability, attenuate the ERS, and restore testosterone production in Leydig cells under hyperglycaemia conditions. Betaine can protect Leydig cells against the adverse effects of hyperglycaemia by regulating steroidogenesis, antioxidants, and ERS.
Collapse
Affiliation(s)
- Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Davoodi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomy, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Lin T, Zhang Y, Wei Q, Huang Z. GLP-1 receptor agonist liraglutide alleviates kidney injury by regulating nuclear translocation of NRF2 in diabetic nephropathy. Clin Exp Pharmacol Physiol 2024; 51:e70003. [PMID: 39477212 DOI: 10.1111/1440-1681.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Diabetic nephropathy (DN) is a severe renal disorder that arises as a complication of diabetes. Liraglutide, an analogue of a glucagon-like peptide 1 (GLP-1) receptor agonist, has been shown to decrease diabetes-caused renal damage. Nevertheless, the complete understanding of the roles and mechanism remains unclear. In our study, diabetic rat models were created through a single intraperitoneal injection of streptozotocin (STZ). The level of fasting blood glucose, 24-h urine protein, serum creatinine (Scr) and blood urea nitrogen (BUN) were assessed. Periodic acid-Schiff (PAS) staining was applied to examine the pathological changes in renal tissues. Reactive oxygen species (ROS) formation was measured via dichloro-dihydro-fluorescein diacetate (DCFH-DA) probes. Western blot was conducted to examine the levels of oxidative stress-related and extracellular matrix (ECM)-associated proteins. The nuclear translocation of NRF2 was investigated through immunofluorescence and Western blot assays. We demonstrated that liraglutide attenuated DN-induced oxidative stress and ECM deposition in vitro and in vivo. Liraglutide exerted a reno-protective effect by promoting nuclear translocation of NRF2 in mesangial cells. ML385, an NRF2 inhibitor, counteracted the beneficial impact of liraglutide.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Yuze Zhang
- Department of Cardiovascular Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Qifeng Wei
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Zugui Huang
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| |
Collapse
|
20
|
Rodrigues JA, Pires BRB, de Amorim ISS, Siqueira PB, de Sousa Rodrigues MM, de Souza da Fonseca A, Panis C, Mencalha AL. STAT3 Regulates the Redox Profile in MDA-MB-231 Breast Cancer Cells. Cell Biochem Biophys 2024; 82:3507-3516. [PMID: 39033092 DOI: 10.1007/s12013-024-01439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Unbalanced redox status and constitutive STAT3 activation are related to several aspects of tumor biology and poor prognosis, including metastasis and drug resistance. The triple-negative breast cancer (TNBC) is listed as the most aggressive and exhibits the worst prognosis among the breast cancer subtypes. Although the mechanism of reactive oxygen species (ROS) generation led to STAT3 activation is described, there is no data concerning the STAT3 influence on redox homeostasis in TNBC. To address the role of STAT3 signaling in redox balance, we inhibited STAT3 in TNBC cells and investigated its impact on total ROS levels, contents of hydroperoxides, nitric oxide (NO), and total glutathione (GSH), as well as the expression levels of 3-nitrotyrosine (3NT), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nuclear factor kappa B (NF-κB)/p65. Our results indicate that ROS levels depend on the STAT3 activation, while the hydroperoxide level remained unchanged, and NO and 3NT expression increased. Furthermore, GSH levels, Nrf2, and NF-κB/p65 protein levels are decreased in the STAT3-inhibited cells. Accordingly, TNBC patients' data from TCGA demonstrated that both STAT3 mRNA levels and STAT3 signature are correlated to NF-κB/p65 and Nrf2 signatures. Our findings implicate STAT3 in controlling redox balance and regulating redox-related genes' expression in triple-negative breast cancer.
Collapse
Affiliation(s)
- Juliana Alves Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Isis Salviano Soares de Amorim
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, UNIOESTE, Francisco Beltrão, Paraná, 85605-010, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
21
|
Jain R, Aishwarya D, Wankhade S, Anupriya, Kumarasamy M, Peraman R. Identification and in vitro genotoxicity assessment of forced degradation products of glimepiride and glyburide using HEK cell-based COMET assay. Biomed Chromatogr 2024; 38:e6025. [PMID: 39385663 DOI: 10.1002/bmc.6025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
This study focuses on characterizing the forced degradation products of antidiabetic drugs glimepiride (GMD) and glyburide (GBD), with previously unexplored genotoxicity. Drugs underwent stress induced by acid, base, and hydrogen peroxide. For GMD, impurities were profiled and isolated using Hypersil Gold C8 (250 × 10 mm, 5 μ) through semi-preparative HPLC with a fraction collector. For GBD, impurity profiling was performed using semi-preparative HPLC (Hypersil GOLD C18, 250 × 10 mm, 5 μ), and reverse-phase flash chromatography (FP ECOFLEX C18 4 g column) for isolation. Although five GMD and three GBD impurities were detected, only three GMD and two GBD impurities were separated and assessed for purity using analytical RP-HPLC with the purity percentages ranging from 96.6% to 99.9%. LC-Orbitrap MS was used to identify these three GMD impurities (m/z: 408.122, 338.340, 381.160) and two GBD impurities (m/z: 369.065, 325.283). ProTox-II in silico predictions classified all impurities as class 4 and 5, with no positive genotoxicity indications. In vitro comet assays, using HEK cells, indicated that for GMD, impurity 2 and impurity 5 were less genotoxic, whereas impurity 4 exhibited genotoxicity. For GBD, both impurities 1 and 3 were found to be genotoxic, with impurity 3 showing a higher level of genotoxicity than impurity 1.
Collapse
Affiliation(s)
- Riya Jain
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar, India
| | - Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar, India
| | - Shrutika Wankhade
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar, India
| | - Anupriya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar, India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar, India
| |
Collapse
|
22
|
Berzosa C, Bascuas PJ, Piedrafita E. Effects of Melatonin Administration on Physical Performance and Biochemical Responses Following Exhaustive Treadmill Exercise. Curr Issues Mol Biol 2024; 46:13647-13661. [PMID: 39727943 DOI: 10.3390/cimb46120815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Exercise, despite being a beneficial activity for health, can also be a source of oxidative imbalance, which can lead to a decrease in performance. Furthermore, melatonin is an endogenous molecule that may counteract exercise-induced oxidative stress. The aim of this study was to evaluate the potential ergogenic and antioxidant capacity of melatonin administered for a maximal effort test. A total of 30 rats were divided into three groups-control, exercise, and exercise + melatonin (intraperitoneal administration of 10 mg/kg)-to assess the effects of an exhaustive incremental protocol in the two exercise groups (with and without melatonin) on the treadmill-running performance (final speed reached), lipid and protein oxidation markers (malondialdehyde + 4-hidroxyalkenals and carbonyl content, respectively), and cellular and mitochondrial membranes' fluidity in skeletal muscle, brain, and liver tissues. Our results show an ergogenic effect of melatonin (31 ± 4 vs. 36 ± 4 cm/s), which may be due to its antioxidant properties being significantly stronger than its protective effect when performing increasing exercise on a treadmill until exhaustion. Melatonin reverted the membrane rigidity in the brain caused by exercise (with no effect on muscle or liver), prevented lipid oxidation in muscle, and prevented lipid and protein oxidation in the liver. Differences between tissues' responses to exercise and melatonin need to be investigated in the future to elucidate other possible mechanisms that explain melatonin's ergogenic effect.
Collapse
Affiliation(s)
- César Berzosa
- Faculty of Health Sciences, Universidad San Jorge, Autov. A-23 Zaragoza-Huesca Km. 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Pablo Jesús Bascuas
- Faculty of Health Sciences, Universidad San Jorge, Autov. A-23 Zaragoza-Huesca Km. 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Eduardo Piedrafita
- Faculty of Health Sciences, Universidad San Jorge, Autov. A-23 Zaragoza-Huesca Km. 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
23
|
Yankuzo HM, Sulaiman I, Muhammad SA, Raji AA, Uthman YA, Imam MU. Brown rice attenuates iron-induced Parkinson's disease phenotypes in male wild-type drosophila: insights into antioxidant and iron metabolism modulation. Appl Physiol Nutr Metab 2024. [PMID: 39588846 DOI: 10.1139/apnm-2024-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Parkinson's disease (PD) is a progressive movement disorder associated with brain iron (Fe) accumulation and free radicals. Brown rice (BR) is antioxidant-rich and has been shown to ameliorate oxidative stress-induced damage. The aim of this study was to investigate the effects of BR compared to white rice (WR) on Fe-induced PD in a fruit fly model. Three-day-old male adult flies were divided into two groups: one on a normal diet and the other on Fe-diet (1 mmol/L) for 10 days to induce PD. After 10 days, the Fe-fed flies were redistributed into four groups: one on normal diet (Fe group), while the others were treated with BR (Fe + BR group), WR (Fe + WR group), or L-3,4-dihydroxyphenylalanine (L-dopa) (Fe + L-dopa group) for 5 days. Similarly, the flies initially on a normal diet were separated into four groups: one on normal diet (Control group), while the others were treated with BR (BR group), WR (WR group), or L-dopa (L-dopa group) for 5 days. Finally, Fe levels, dopamine, malonaldehyde (MDA), and antioxidant enzymes were measured, and the mRNA levels of antioxidant and Fe metabolism genes were assessed. BR significantly improved motor and cognitive functions, decreased fly head MDA and Fe levels, and increased antioxidant enzyme levels in comparison to the Fe and WR groups. Similarly, BR upregulated the mRNA levels of antioxidant genes: catalase, GPx, Nrf2, and DJ-1. The results suggest that BR could potentially reduce morbidities associated with PD possibly due to its bioactive compounds compared to WR.
Collapse
Affiliation(s)
- Hassan Muhammad Yankuzo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Ismail Sulaiman
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Suleiman Alhaji Muhammad
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Abdullahi Abdullahi Raji
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Yaaqub Abiodun Uthman
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Mustapha Umar Imam
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
| |
Collapse
|
24
|
Elizalde-Velázquez GA, Gómora-Martínez O, Raldua D, Herrera-Vázquez SE, Gómez-Oliván LM. Understanding the impact of environmentally relevant alkyl C12-16 dimethylbenzyl ammonium chloride concentrations on zebrafish health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175984. [PMID: 39244042 DOI: 10.1016/j.scitotenv.2024.175984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alkyldimethylbenzylammonium chlorides (ADBACs), classified as second-generation quaternary ammonium compounds, are extensively employed across various sectors, encompassing veterinary medicine, food production, pharmaceuticals, cosmetics, ophthalmology, and agriculture. Consequently, significant volumes of ADBAC C12-C16 are discharged into the environment, posing a threat to aquatic organisms. Regrettably, comprehensive data regarding the toxicological characteristics of these compounds remain scarce. This research aimed to determine whether or not ADBAC C12-C16, at environmentally relevant concentrations (0.4, 0.8, and 1.6 μg/L), may instigate oxidative stress and alter the expression of apoptosis-related genes in the liver, brain, gut, and gills of Danio rerio adults (5-6 months). The findings revealed that ADBAC C12-C16 elicited an oxidative stress response across all examined organs following 96 h of exposure. Nonetheless, the magnitude of this response varied among organs, with the gills exhibiting the highest degree of susceptibility, followed by the gut, liver, and brain, in descending order. Only the gut and gills of the examined organs displayed a concentration-dependent reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Akin to the oxidative stress response, all organs exhibited a marked increase in bax, blc2, casp3, and p53 expression levels. However, the gills and gut manifested a distinctive suppression in the expression of nrf1 and nrf2. Our Principal Component Analysis (PCA) confirmed that SOD, CAT, nrf1, and nrf2 were negatively correlated to oxidative damage biomarkers and apoptosis-related genes in the gills and gut; meanwhile, in the remaining organs, all biomarkers were extensively correlated. From the above, it can be concluded that ADBAC C12-C16 in low and environmental concentrations may threaten the health of freshwater fish.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Omar Gómora-Martínez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Demetrio Raldua
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
25
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
MESH Headings
- Naphthoquinones/administration & dosage
- Naphthoquinones/pharmacology
- Animals
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Mice
- Administration, Oral
- Mice, Inbred mdx
- Oxidation-Reduction/drug effects
- Signal Transduction/drug effects
- Disease Models, Animal
- Drosophila melanogaster
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Oxidative Stress/drug effects
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Male
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
26
|
Han X, Zhang B, Gong Q, Liu T, Wang C, Sun Y, Jia H, Pu Y, Hou Q, Yang X. The tolerable upper intake level of manganese alleviates Parkinson-like motor performance and neuronal loss by activating mitophagy. Free Radic Biol Med 2024; 225:665-676. [PMID: 39401732 DOI: 10.1016/j.freeradbiomed.2024.10.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Manganese (Mn2+) is among the indispensable trace elements required by the human body, but high-dose Mn2+ exposure can lead to Mn poisoning. Therefore, the tolerable upper intake level (UL) for Mn2+ has been established for normal individuals in different countries. However, whether the UL of Mn2+ is suitable for the patients of Parkinson's disease (PD) is unclear. Here, we found unexpectedly that the dietary UL of Mn2+ supplement enhanced mitophagy through the PINK1/Parkin-mediated ubiquitin-dependent pathway in MPTP- induced mice and cells. Mn2+ promoted mitochondrial biogenesis and dynamics, thereby increased the activity of the mitochondrial respiratory chain with restored mitochondrial function. Additionally, Mn2+ directly elevated the activity of mitochondrial superoxide dismutase (MnSOD), which contributed to the clearance of reactive oxygen species (ROS), restored dopaminergic and motor functions in the MPTP-induced PD mouse model. Similar results were also observed in SH-SY5Y cells, whereas knockdown parkin using siRNA or application of mitophagy inhibitors (Mdivi-1 or Cyclosporine A), abolished the neuroprotective effects of Mn2+. These findings demonstrate that the dietary UL of Mn2+ is protective for the MPTP-induced Parkinson-like lesions with the mechanisms involving the activation of mitophagy, suggesting potential intervention of PD by moderately increasing dietary Mn2+ intake.
Collapse
Affiliation(s)
- Xiao Han
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Bingge Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qichao Gong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tiansu Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuguo Sun
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hongyi Jia
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Jinan University College of Pharmacy, Guangzhou, China
| | - Yinyan Pu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Department of Preventive Medicine, School of public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinghua Hou
- The Clinical Neuroscience Center, Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, China.
| | - Xifei Yang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| |
Collapse
|
27
|
Gao Y, Li S, Zhang S, Zhang Y, Zhang J, Zhao Y, Chang C, Gao X, Chen L, Yang G. Atractylenolide-I Attenuates MPTP/MPP +‑Mediated Oxidative Stress in Parkinson's Disease Through SIRT1/PGC‑1α/Nrf2 Axis. Neurochem Res 2024; 50:18. [PMID: 39556135 DOI: 10.1007/s11064-024-04258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is typically marked by motor dysfunction accompanied by loss of dopaminergic (DA) neurons and aggravated oxidative stress in the substantia nigra pars compacta (SNpc). Atractylenolide-I (ATR-I) is a potent antioxidant sesquiterpene with neuroprotective properties. However, whether ATR-I plays a neuroprotective role against oxidative stress in PD remains unclear. The objective of this study was to explore the mechanism of antioxidant action of ATR-I in PD models both in vivo and in vitro. Here, we show that ATR-I alleviated motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice. Moreover, ATR-I treatment effectively reduced DA neuron loss and increased tyrosine hydroxylase expression in the SNpc of MPTP-induced mice. Additionally, ATR-I inhibited oxidative stress (as manifested by elevated superoxide dismutase and glutathione peroxidase activities, and reduced malondialdehyde content) in MPTP-induced mice and attenuated reactive oxygen species levels in 1-methyl-4-phenylpyridinum (MPP+)-treated SH-SY5Y cells. Finally, ATR-I upregulated expressions of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), NF-E2-related factor-2 (Nrf2), and heme oxygenase-1 in MPTP-induced mice and MPP+-treated SH-SY5Y cells, but had little effect on these factors in the presence of the SIRT1 inhibitor EX527. Taken together, these findings indicated that the important antioxidant role of ATR-I in MPTP/MPP+-mediated oxidative stress and the pathogenesis of PD through the SIRT1/PGC-1α/Nrf2 axis, highlighting its potential as a therapeutic option for PD.
Collapse
Affiliation(s)
- Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shuyue Li
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shuming Zhang
- Department of Internal Medicine, Fuping County Hospital, Baoding, Hebei, 073200, China
| | - Yidan Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jian Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Cui Chang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xuan Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Ling Chen
- Department of Neurological Rehabilitation, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
28
|
Varone M, Scavo G, Colardo M, Martella N, Pensabene D, Bisesto E, Del Busso A, Segatto M. p75NTR Modulation Reduces Oxidative Stress and the Expression of Pro-Inflammatory Mediators in a Cell Model of Rett Syndrome. Biomedicines 2024; 12:2624. [PMID: 39595188 PMCID: PMC11592079 DOI: 10.3390/biomedicines12112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Rett syndrome (RTT) is an early-onset neurological disorder primarily affecting females, leading to severe cognitive and physical disabilities. Recent studies indicate that an imbalance of redox homeostasis and exacerbated inflammatory responses are key players in the clinical manifestations of the disease. Emerging evidence highlights that the p75 neurotrophin receptor (p75NTR) is implicated in the regulation of oxidative stress (OS) and inflammation. Thus, this study is aimed at investigating the effects of p75NTR modulation by LM11A-31 on fibroblasts derived from RTT donors. Methods: RTT cells were treated with 0.1 µM of LM11A-31 for 24 h, and results were obtained using qPCR, immunofluorescence, ELISA, and Western blot techniques. Results: Our findings demonstrate that LM11A-31 reduces OS markers in RTT fibroblasts. Specifically, p75NTR modulation by LM11A-31 restores protein glutathionylation and reduces the expression of the pro-oxidant enzyme NOX4. Additionally, LM11A-31 significantly decreases the expression of the pro-inflammatory mediators interleukin-6 and interleukin-8. Additionally, LM11A-31 normalizes the expression levels of transcription factors involved in the regulation of the antioxidant response and inflammation. Conclusions: Collectively, these data suggest that p75NTR modulation may represent an effective therapeutic target to improve redox balance and reduce inflammation in RTT.
Collapse
Affiliation(s)
- Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Giuseppe Scavo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | - Emanuele Bisesto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Andrea Del Busso
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| |
Collapse
|
29
|
Anilkumar S A, Dutta S, Aboo S, Ismail A. Vitamin D as a modulator of molecular pathways involved in CVDs: Evidence from preclinical studies. Life Sci 2024; 357:123062. [PMID: 39288869 DOI: 10.1016/j.lfs.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Vitamin D deficiency (VDD) is a widespread global health issue, affecting nearly a billion individuals worldwide, and mounting evidence links it to an increased risk of cardiovascular diseases like hypertension, atherosclerosis, and heart failure. The discovery of vitamin D receptors and metabolizing enzymes in cardiac and vascular cells, coupled with experimental studies, underscores the complex relationship between vitamin D and cardiovascular health. This review aims to synthesize and critically evaluate the preclinical evidence elucidating the role of vitamin D in cardiovascular health. We examined diverse preclinical in vitro (cardiomyocyte cell line) models and in vivo models, including knockout mice, diet-induced deficiency, and disease-specific animal models (hypertension, hypertrophy and myocardial infarction). These studies reveal that vitamin D modulates vascular tone, and prevents fibrosis and hypertrophy through effects on major signal transduction pathways (NF-kB, Nrf2, PI3K/AKT/mTOR, Calcineurin/NFAT, TGF-β/Smad, AMPK) and influences epigenetic mechanisms governing inflammation, oxidative stress, and pathological remodeling. In vitro studies elucidate vitamin D's capacity to promote cardiomyocyte differentiation and inhibit pathological remodeling. In vivo studies further uncovered detrimental cardiac effects of VDD, while supplementation with vitamin D in cardiovascular disease (CVD) models demonstrated its protective effects by decreasing inflammation, attenuating hypertrophy, reduction in plaque formation, and improving cardiac function. Hence, this comprehensive review emphasizes the critical role of vitamin D in cardiovascular health and its potential as a preventive/therapeutic strategy in CVDs. However, further research is needed to translate these findings into clinical applications as there are discrepancies between preclinical and clinical studies.
Collapse
Affiliation(s)
- Athira Anilkumar S
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Soumam Dutta
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Shabna Aboo
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
30
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
31
|
Park JH, Wandless TJ. p53 engagement is a hallmark of an unfolded protein response in the nucleus of mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622663. [PMID: 39574672 PMCID: PMC11581032 DOI: 10.1101/2024.11.08.622663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Exposure to exogenous and endogenous stress is associated with the intracellular accumulation of aberrant unfolded and misfolded proteins. In eukaryotic cells, protein homeostasis within membrane-bound organelles is regulated by specialized signaling pathways, with the unfolded protein response in the endoplasmic reticulum serving as a foundational example. Yet, it is unclear if a similar surveillance mechanism exists in the nucleus. Here we leveraged engineered proteins called destabilizing domains to acutely expose mammalian cells to nuclear- or cytosolic- localized unfolded protein. We show that the appearance of unfolded protein in either compartment engages a common transcriptional response associated with the transcription factors Nrf1 and Nrf2. Uniquely, only in the nucleus does unfolded protein activate a robust p53-driven transcriptional response and a transient p53-independent cell cycle delay. These studies highlight the distinct effects of localized protein folding stress and the unique protein quality control environment of the nucleus.
Collapse
|
32
|
Nazari A, Osati P, Seifollahy Fakhr S, Faghihkhorasani F, Ghanaatian M, Faghihkhorasani F, Rezaei-Tazangi F, Pazhouhesh Far N, Shourideh A, Ebrahimi N, Aref AR. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer. Antioxid Redox Signal 2024. [PMID: 39506926 DOI: 10.1089/ars.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Background: Resistance to standard therapeutic methods, including chemotherapy, immunotherapy, and targeted therapy, remains a critical challenge in effective cancer treatment. Redox homeostasis modification has emerged as a promising approach to address medication resistance. Objective: This review aims to explore the mechanisms of redox alterations and signaling pathways contributing to treatment resistance in cancer. Methods: In this study, a comprehensive review of the molecular mechanisms underlying drug resistance governed by redox signaling was conducted. Emphasis was placed on understanding how tumor cells manage increased reactive oxygen species (ROS) levels through upregulated antioxidant systems, enabling resistance across multiple therapeutic pathways. Results: Key mechanisms identified include alterations in drug efflux, target modifications, metabolic changes, enhanced DNA damage repair, stemness preservation, and tumor microenvironment remodeling. These pathways collectively facilitate tumor cells' adaptive response and resistance to various cancer treatments. Conclusion: Developing a detailed understanding of the interrelationships between these redox-regulated mechanisms and therapeutic resistance holds potential to improve treatment effectiveness, offering valuable insights for both fundamental and clinical cancer research. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Parisa Osati
- Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Norway
| | - Ferdos Faghihkhorasani
- Department of Cardiology, Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, 710061, China
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fereshteh Faghihkhorasani
- General Physician in Medicine Program,General Doctorate Degree of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Amir Shourideh
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Pal S, Firdous SM. Unraveling the role of heavy metals xenobiotics in cancer: a critical review. Discov Oncol 2024; 15:615. [PMID: 39495398 PMCID: PMC11535144 DOI: 10.1007/s12672-024-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer is a multifaceted disease characterized by the gradual accumulation of genetic and epigenetic alterations within cells, leading to uncontrolled cell growth and invasive behavior. The intricate interplay between environmental factors, such as exposure to carcinogens, and the molecular cascades governing cell growth, differentiation, and survival contributes to cancer's development and progression. This review offers a comprehensive overview of key molecular targets and their roles in cancer development. Peroxisome proliferator-activated receptors are implicated in various cancers due to their role in regulating lipid metabolism, inflammation, and cell proliferation. Nuclear factor erythroid 2-related factor 2 protects cells from oxidative damage but can also promote tumor cell survival. Cytochrome P450 1B1 metabolizes exogenous and endogenous substances, and its increased expression is observed in several cancers. The constitutive androstane receptor regulates gene expression, and its dysregulation can lead to liver cancer. Transforming growth factor-beta 2 is involved in the development and progression of various cancers by dysregulating cell proliferation, differentiation, and migration. Chelation treatment has been investigated for removing heavy metals, while genetically altered immune cells show promise in treating specific cancers. Metal-organic frameworks and fibronectin targeting represent new directions in cancer treatment. While some heavy metals, such as arsenic, chromium, nickel, and cadmium, are known to have carcinogenic properties, others, like zinc, Copper, gold, bismuth, and silver, have many uses that highlight their potential as effective cancer control tactics. There are a variety of heavy metal-based technologies that show potential for improving cancer treatment methods, including targeted drug delivery, improved radiation, and diagnostic tools.
Collapse
Affiliation(s)
- Sourav Pal
- Department of Pharmacology, Seacom Pharmacy College, Jaladhulagori, Sankrail, Howrah, West Bengal, 711302, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
34
|
Saha S, Sachivkina N, Kuznetsova O, Neborak E, Zhabo N. Advance in Nrf2 Signaling Pathway in Leishmaniasis. Biomedicines 2024; 12:2525. [PMID: 39595091 PMCID: PMC11591928 DOI: 10.3390/biomedicines12112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
One of the main components of innate defense against invasive parasites is oxidative stress, which is brought on by reactive oxygen species (ROS). On the other hand, oxidative stressors serve two purposes: free radicals aid in the elimination of pathogens, but they can also set off inflammation, which leads to tissue damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that controls the expression of numerous genes involved in the body's defense against oxidative stress brought on by aging, inflammation, tissue damage, and other pathological consequences. From cutaneous to visceral forms, Leishmania parasites invade macrophages and cause a wide range of human pathologies. Leishmania parasites have a wide range of adaptive mechanisms that disrupt several macrophage functions by altering host signaling pathways. An increasing amount of data are corroborating the idea that one of the primary antioxidant routes to counteract this oxidative burst against parasites is NRF2 signaling, which also interferes with immune responses. The nature and potency of the host immune response, as well as interactions between the invading Leishmania spp., will ascertain the course of infection and the parasites' eventual survival or eradication. The molecular processes via which Nrf2 coordinates such intricate networks comprising various pathways remain to be completely understood. In light of NRF2's significant contribution to oxidative stress, we examine the NRF2 antioxidant pathway's activation mechanism in Leishmania infection in this review. Thus, this review will examine the relationship between Nrf2 signaling and leishmaniasis, as well as explore potential therapeutic strategies for modifying this system.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Olga Kuznetsova
- Department of Biochemistry T.T. Berezov, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (O.K.); (E.N.)
| | - Ekaterina Neborak
- Department of Biochemistry T.T. Berezov, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (O.K.); (E.N.)
| | - Natallia Zhabo
- Department of Foreign Languages, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| |
Collapse
|
35
|
Moustakli E, Zikopoulos A, Skentou C, Katopodis P, Domali E, Potiris A, Stavros S, Zachariou A. Impact of Reductive Stress on Human Infertility: Underlying Mechanisms and Perspectives. Int J Mol Sci 2024; 25:11802. [PMID: 39519353 PMCID: PMC11547078 DOI: 10.3390/ijms252111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Antioxidants have a well-established effect on general health and are essential in preventing oxidative damage to cells by scavenging free radicals. Free radicals are thought to be neutralized by these substances, which include polyphenols, β-carotene, and vitamins C and E, reducing cellular damage. On the other hand, recent data indicates that consuming excessive amounts of antioxidants may have side effects. Apoptosis and cell signaling are two beneficial physiological processes that are affected by excessive supplementation. Other negative effects include paradoxical enhancement of oxidative stress and unbalanced cellular redox potential. Overdosing on particular antioxidants has been associated with increased medication interactions, cancer progression, and fatality risks. Additionally, the complex impacts they may have on fertility might be both useful and adverse, depending on the quantity and duration of usage. This review delves into the dual role of antioxidants and emphasizes the importance of employing antioxidants in moderation. Antioxidant overconsumption may disrupt the oxidative balance necessary for normal sperm and oocyte function, which is one of the potential negative effects of antioxidants on fertility in both males and females that are also investigated. Although modest usage of antioxidants is generally safe and useful, high levels of antioxidants can upset hormonal balance, impair sperm motility, and negatively impact the outcomes of assisted reproductive technologies (ART). The findings emphasize the need to use antioxidant supplements in a balanced way, the importance of further research to optimize their use in fertility treatments, and the importance of supporting reproductive health to avoid adverse effects.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital Barrack Rd, Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Periklis Katopodis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
36
|
Poleto KH, Janner DE, Dahleh MMM, Poetini MR, Fernandes EJ, Musachio EAS, de Almeida FP, Amador ECDM, Reginaldo JC, Carriço MRS, Roehrs R, Prigol M, Guerra GP. p-Coumaric acid potential in restoring neuromotor function and oxidative balance through the Parkin pathway in a Parkinson disease-like model in Drosophila melanogaster. Food Chem Toxicol 2024; 193:115002. [PMID: 39276910 DOI: 10.1016/j.fct.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
p-Coumaric acid is a significant phenolic compound known for its potent antioxidant activity. Thus, this study investigated the effects of p-coumaric acid on the behavioral and neurochemical changes induced in Drosophila melanogaster by exposure to rotenone in a Parkinson disease (PD)-like model. The flies were divided into four groups and maintained for seven days on different diets: a standard diet (control), a diet containing rotenone (500 μM), a control diet to which p-coumaric acid was added on the fourth day (0.3 μM), and a diet initially containing rotenone (500 μM) with p-coumaric acid added on the fourth day (0.3 μM). Exposure to p-coumaric acid ameliorated locomotor impairment and reduced mortality induced by rotenone. Moreover, p-coumaric acid normalized oxidative stress markers (ROS, TBARS, SOD, CAT, GST, and NPSH), mitigated oxidative damage, and reflected in the recovery of dopamine levels, AChE activity, and cellular viability post-rotenone exposure. Additionally, p-coumaric acid restored the immunoreactivity of Parkin and Nrf2. The results affirm that p-coumaric acid effectively mitigates PD-like model-induced damage, underscoring its antioxidant potency and potential neuroprotective effect.
Collapse
Affiliation(s)
- Kétnne Hanna Poleto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Francielli Polet de Almeida
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Elen Caroline de Matos Amador
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil
| | - Jocemara Corrêa Reginaldo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil
| | - Murilo Ricardo Sigal Carriço
- Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil; Environmental and Toxicological Chemical Analysis Laboratory, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Rafael Roehrs
- Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil; Environmental and Toxicological Chemical Analysis Laboratory, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
37
|
Kang W, Ha Y, Jung Y, Lee H, Park T. Nerol mitigates dexamethasone-induced skin aging by activating the Nrf2 signaling pathway in human dermal fibroblasts. Life Sci 2024; 356:123034. [PMID: 39236900 DOI: 10.1016/j.lfs.2024.123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Collagen and hyaluronic acid are essential components of the dermis that collaborate to maintain skin elasticity and hydration due to their unique biochemical properties and interactions within the extracellular matrix. Prolonged exposure to glucocorticoids can induce skin aging, which manifests as diminished collagen content and hyaluronic acid levels in the dermis. Nerol, a monoterpene alcohol found in essential oils, was examined in this study for its potential to counteract glucocorticoid-induced skin aging and the underlying mechanism behind its effects. Our findings reveal that non-toxic concentrations of nerol treatment can reinstate collagen content and hyaluronic acid levels in human dermal fibroblasts treated with dexamethasone. Mechanistically, nerol mitigates dexamethasone-induced oxidative stress by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The protective effects of nerol were significantly abrogated when the Nrf2 pathway was inhibited using the specific inhibitor ML385. In conclusion, nerol protects human dermal fibroblasts against glucocorticoid-induced skin aging by ameliorating oxidative stress via activation of the Nrf2 pathway, thereby highlighting its potential as a therapeutic agent for preventing and treating glucocorticoid-induced skin aging.
Collapse
Affiliation(s)
- Wesuk Kang
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yoojeong Ha
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yearim Jung
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunbin Lee
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
38
|
Lovin LM, Langan LM, Scarlett KR, Taylor RB, Kim S, Kevin Chambliss C, Chatterjee S, Thad Scott J, Brooks BW. (+) Anatoxin-a elicits differential survival, photolocomotor behavior, and gene expression in two alternative vertebrate models. ENVIRONMENT INTERNATIONAL 2024; 193:109045. [PMID: 39442322 DOI: 10.1016/j.envint.2024.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Anatoxin-a is a globally occurring, yet understudied, chiral cyanobacterial toxin that threatens public health and the environment. It has led to numerous dog. livestock and bird poisonings and although it has been studied in rodent models, comparatively little research has occurred in aquatic species. To advance a comparative toxicology understanding of this toxin in alternative vertebrate models, developing zebrafish and fathead minnow were exposed to environmentally relevant and elevated levels (13-4400 μg/L) of (+) anatoxin-a to examine potential mortality and sublethal effects, including photolocomotor behavior and gene expression responses. We observed significantly higher mortality (p < 0.05) in fathead minnows exposed to ≥ 1400 μg/L (65 - 83 % survival versus 97 % in controls). Locomotor response profiles for zebrafish typically displayed hypoactivity after exposure to (+) anatoxin-a in both light and dark periods, while hyperactivity of fathead minnows was observed at the lowest treatment level, but only in light conditions. Gene expression in zebrafish was significantly (p < 0.05) downregulated for mbp, which is associated with myelin sheath formation, and elavl3, which is involved in neurogenesis, along with cyp3a65 and gst, two genes related to phase I and II metabolism. However, no significant (p > 0.05) transcriptional changes were observed in the fathead minnow model. These differential responses between commonly employed species employed as alternative vertebrate models in toxicology research and chemicals risk assessments highlight the need for more comparative studies to understand sensitivities and variations in organismal response. Furthermore, we identified higher mortality, refractory behavioral effects, and gene expression in (+) anatoxin-a exposed fish when compared to previously reported (±) anatoxin-a (racemic 50:50 enantiomer mixture) studies, which is frequently used as a surrogate chemical for experimental work. Our findings identify the importance of understanding species and enantiomer specific effects of natural toxins.
Collapse
Affiliation(s)
- Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - Kendall R Scarlett
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - Raegyn B Taylor
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA; Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - C Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA; Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Department of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA.
| |
Collapse
|
39
|
Lv R, Cao H, Zhong M, Wu J, Lin S, Li B, Chen D, Zhang Z, Zhang K, Gao Y. Polygala fallax Hemsl polysaccharides alleviated alcoholic fatty liver disease by modifying lipid metabolism via AMPK. Int J Biol Macromol 2024; 279:135565. [PMID: 39270893 DOI: 10.1016/j.ijbiomac.2024.135565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Alcoholic fatty liver disease (AFLD) is characterized by excessive lipid accumulation in the liver. This study aimed to investigate the protective effects and mechanisms of Polygala fallax Hemsl polysaccharides (PFPs) on AFLD. PFPs were purified and structurally characterized. An AFLD model was established in mice using alcohol and a high-fat diet. A significant reduction in hepatic steatosis was observed following PFPs treatment, evidenced by decreased fat deposition in liver tissues. Additionally, PFPs reduced various liver injury markers, increased levels of antioxidant enzymes, and improved significantly liver function. RNA sequencing revealed that PFPs improved lipid and CYP450 metabolic pathway abnormalities in AFLD mice. Furthermore, PFPs activated the AMPK pathway, reducing lipid accumulation and enhancing lipid metabolism. A HepG2 cell model treated with ethanol and oleic acid showed significant biochemical improvements with PFPs pretreatment, including reduced lipid accumulation and lower reactive oxygen species (ROS) levels. To further elucidate the AMPK and PFPs correlation in AFLD, an AMPK inhibitor (compound C) was used. In vitro and in vivo qRT-PCR and Western blot results confirmed that PFPs protected against AFLD by activating AMPK phosphorylation, regulating lipid synthesis, and inhibiting lipid accumulation. PFPs also modulated CYP2E1 and oxidative stress-related gene expression, affecting liver metabolism.
Collapse
Affiliation(s)
- Rui Lv
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Shiyuan Lin
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Dongyu Chen
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Zhiyuan Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China.
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
40
|
Kunwar A, Aishwarya J. "Reductive stress" the overlooked side of cellular redox modulation in cancer: opportunity for design of next generation redox chemotherapeutics. Free Radic Res 2024; 58:782-795. [PMID: 39604822 DOI: 10.1080/10715762.2024.2433988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The last three decades of redox biology research have been dominated by the term "oxidative stress" since it was first coined by Helmut Sies to represent a form of cellular redox modulation characterized by redox imbalance toward overproduction of oxidants. Almost every pathological condition, including cancer, has been linked with oxidative stress and so forth; targeting oxidative stress became the strategy for the new drug discovery with anticancer drugs aiming to selectively induce oxidative stress in cancerous cells while antioxidants aiming to prevent carcinogenesis as prophylactic agents. Time has now come to realize, how harmful the other side of the cellular redox spectrum, "reductive stress," characterized by redox imbalance toward the accumulation of reducing equivalents, maybe during carcinogenesis, and to tap its potential for the design of next-generation chemotherapeutic agents. Adjuvants-causing reductive stress may also work synergistically with radiation therapy under hypoxia to achieve better tumor control. Keeping this evolving field into account, the present review provides a current understating of the role of reductive stress in carcinogenesis, the status of reductive stress-based chemotherapeutic agents with particular emphasis on sulfhydryl and selenium-containing compounds and the gap areas that need to be addressed in future.
Collapse
Affiliation(s)
- Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| |
Collapse
|
41
|
Karimi A, Dalir Abdollahinia E, Ostadrahimi S, Vajdi M, Mobasseri M, Bahrami A, Tutunchi H, Najafipour F. Effects of hydroalcoholic extract of Fumaria parviflora Lam on gene expression and serum levels of inflammatory and oxidative stress parameters in patients with type 2 diabetes: A randomized controlled clinical trial. J Funct Foods 2024; 122:106528. [DOI: 10.1016/j.jff.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
42
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024; 44:430-456. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
43
|
Giannotti L, Stanca E, Di Chiara Stanca B, Spedicato F, Massaro M, Quarta S, Del Rio D, Mena P, Siculella L, Damiano F. Coffee Bioactive N-Methylpyridinium: Unveiling Its Antilipogenic Effects by Targeting De Novo Lipogenesis in Human Hepatocytes. Mol Nutr Food Res 2024; 68:e2400338. [PMID: 39370560 DOI: 10.1002/mnfr.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
SCOPE Type 2 diabetes and nonalcoholic fatty liver diseases (NAFLDs) are promoted by insulin resistance (IR), which alters lipid homeostasis in the liver. This study aims to investigate the effect of N-methylpyridinium (NMP), a bioactive alkaloid of coffee brew, on lipid metabolism in hepatocytes. METHODS AND RESULTS The effect of NMP in modulating lipid metabolism is evaluated at physiological concentrations in a diabetes cell model represented by HepG2 cells cultured in a high-glucose medium. Hyperglycemia triggers lipid droplet accumulation in cells and enhances the lipogenic gene expression, which is transactivated by sterol regulatory element binding protein-1 (SREBP-1). Lipid droplet accumulation alters the redox status and endoplasmic reticulum (ER) stress, leading to the activation of the unfolded protein response and antioxidative pathways by X-Box Binding Protein 1(XBP-1)/eukaryotic Initiation Factor 2 alpha (eIF2α) Protein Kinase RNA-Like ER Kinase and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. NMP induces the phosphorylation of AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase α (ACACA), and improves the redox status and ER homeostasis, essential steps to reduce lipogenesis and lipid droplet accumulation. CONCLUSION These results suggest that NMP may be beneficial for the management of T2D and NAFLD by ameliorating the cell oxidative and ER homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | | | - Francesco Spedicato
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| |
Collapse
|
44
|
Dilshan MAH, Omeka WKM, Udayantha HMV, Liyanage DS, Rodrigo DCG, Warnakula WADLR, Hanchapola HACR, Kodagoda YK, Ganepola GANP, Kim J, Kim G, Lee J, Jeong T, Lee S, Wan Q, Lee J. Insights into the functional properties of thioredoxin domain-containing protein 12 (TXNDC12): Antioxidant activity, immunological expression, and wound-healing effect in yellowtail clownfish (Amphiprion clarkii). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109939. [PMID: 39366647 DOI: 10.1016/j.fsi.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Thioredoxin domain-containing protein 12 (TXNDC12) is a member of the thioredoxin-like superfamily that contributes to various thiol-dependent metabolic activities in all living organisms. In this research, the TXNDC12 gene from yellowtail clownfish (Amphiprion clarkii) was structurally characterized using in silico tools, assessed for immunological expression, and evaluated for biological activity using recombinant protein and cellular overexpression. The deduced coding sequence of AcTXNDC12 comprised a 522-bp nucleotide, encoding 173 amino acids with a predicted molecular mass of 19.198 kDa. The AcTXNDC12 protein consists of a66WCGAC70 active motif and a170GDEL173 signature. The highest tissue-specific expression of AcTXNDC12 was observed in the brain tissue, with significant modulation observed in the blood and gill tissues following stimulation of polyinosinic: polycytidylic acid, lipopolysaccharides (LPS), and Vibrio harveyi. In functional assays, recombinant AcTXNDC12 protein (rAcTXNDC12) showed insulin disulfide reduction activity, 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) decolorization antioxidant capacity, and ferric (Fe3+) reducing antioxidant potential. Additionally, a significant reduction in nitric oxide production was observed in AcTXNDC12-overexpressed RAW 264.7 cells upon LPS stimulation. Furthermore, genes associated with the regulation of oxidative stress, including nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (Cat), peroxiredoxin 1 (Prx1), and ribonucleotide reductase catalytic subunit M1 (Rrm1) were significantly upregulated in fathead minnow cells overexpressing AcTXNDC12 in response to H2O2 treatment. The scratch wound healing assay demonstrated tissue regeneration and cell proliferation ability upon AcTXNDC12 overexpression. Altogether, the current study elucidated the antioxidant activity, immunological importance, and wound-healing effect of the AcTXNDC12 gene in yellowtail clownfish, providing valuable insights for advancing the aquaculture of A. clarkii fish.
Collapse
Affiliation(s)
- M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - G A N P Ganepola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
45
|
Han C, Zhai C, Li A, Ma Y, Hallajzadeh J. Exercise mediates myocardial infarction via non-coding RNAs. Front Cardiovasc Med 2024; 11:1432468. [PMID: 39553846 PMCID: PMC11563808 DOI: 10.3389/fcvm.2024.1432468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/29/2024] [Indexed: 11/19/2024] Open
Abstract
Myocardial infarction (MI), a widespread cardiovascular issue, mainly occurs due to blood clot formation in the coronary arteries, which reduces blood flow to the heart muscle and leads to cell death. Incorporating exercise into a lifestyle can significantly benefit recovery and reduce the risk of future cardiac events for MI patients. Non-coding RNAs (ncRNAs) play various roles in the effects of exercise on myocardial infarction (MI). ncRNAs regulate gene expression, influence cardiac remodeling, angiogenesis, inflammation, oxidative stress, apoptosis, cardioprotection, and cardiac electrophysiology. The expression of specific ncRNAs is altered by exercise, leading to beneficial changes in heart structure, function, and recovery after MI. These ncRNAs modulate molecular pathways that contribute to improved cardiac health, including reducing inflammation, enhancing angiogenesis, promoting cell survival, and mitigating oxidative stress. Furthermore, they are involved in regulating changes in cardiac remodeling, such as hypertrophy and fibrosis, and can influence the electrical properties of the heart, thereby decreasing the risk of arrhythmias. Knowledge on MI has entered a new phase, with investigations of ncRNAs in physical exercise yielding invaluable insights into the impact of this therapeutic modality. This review compiled research on ncRNAs in MI, with an emphasis on their applicability to physical activity.
Collapse
Affiliation(s)
| | - Cuili Zhai
- College of Chinese Martial Arts, Beijing Sport University, Beijing, China
| | - Ailing Li
- City University of Malyasia, Kuala Lumpur, Malaysia
| | - Yongzhi Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
46
|
Hesari M, Mohammadi P, Moradi M, Shackebaei D, Yarmohammadi F. Molecular mechanisms involved in therapeutic effects of natural compounds against cisplatin-induced cardiotoxicity: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8367-8381. [PMID: 38850306 DOI: 10.1007/s00210-024-03207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Cisplatin is a widely used chemotherapeutic agent for the treatment of various cancers. However, the clinical use of cisplatin is limited by its cardiotoxic side effects. The primary mechanisms implicated in this cardiotoxicity include mitochondrial dysfunction, oxidative stress, inflammation, and apoptotic. Numerous natural compounds (NCs) have been introduced as promising protective factors against cisplatin-mediated cardiac damage. The current review summarized the potential of various NCs as cardioprotective agents at the molecular levels. These compounds exhibited potent antioxidant and anti-inflammatory effects by interaction with the PI3K/AKT, AMPK, Nrf2, NF-κB, and NLRP3/caspase-1/GSDMD pathways. Generally, the modulation of these signaling pathways by NCs represents a promising strategy for improving the therapeutic index of cisplatin by reducing its cardiac side effects.
Collapse
Affiliation(s)
- Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Moradi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
47
|
Seale B, Slotabec L, Nguyen JD, Wang H, Patterson C, Filho F, Rouhi N, Adenawoola MI, Li J. Sestrin2 serves as a scaffold protein to maintain cardiac energy and metabolic homeostasis during pathological stress. FASEB J 2024; 38:e70106. [PMID: 39404019 DOI: 10.1096/fj.202401404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality worldwide. Metabolic imbalances and pathological stress often contribute to increased mortality. Sestrin2 (Sesn2) is a stress-inducible protein crucial in maintaining cardiac energy and metabolic homeostasis under pathological conditions. Sesn2 is upregulated in response to various stressors, including oxidative stress, hypoxia, and energy depletion, and mediates multiple cellular pathways to enhance antioxidant defenses, promote autophagy, and inhibit inflammation. This review explores the mechanisms through which Sesn2 regulates these pathways, focusing on the AMPK-mTORC1, Sesn2-Nrf2, and HIF1α-Sesn2 pathways, among others. We can identify the potential therapeutic targets for treating CVDs and related metabolic disorders by comprehending these complex mechanisms. Sesn2's unique ability to respond thoroughly to metabolic challenges, oxidative stress, and inflammation makes it a promising prospect for enhancing cardiac health and resilience against pathological stress.
Collapse
Affiliation(s)
- Blaise Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Jennie D Nguyen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Cory Patterson
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
48
|
Xiang F, Zhang Z, Li Y, Li M, Xie J, Sun M, Peng Q, Lin L. Research progress in the treatment of schistosomiasis with traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118501. [PMID: 38944361 DOI: 10.1016/j.jep.2024.118501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schistosomiasis, caused by infection with organisms of the Schistoma genus, is a parasitic and infectious disease that poses a significant risk to human health. Schistosomiasis has been a widespread issue in China for at least 2000 years. Traditional Chinese medicine (TCM) has a rich history of treating this disease, and the significant theoretical and practical knowledge attained therein may be useful in modern practice. AIM OF THE STUDY To comprehensively review TCM for the treatment of schistosomiasis, summarize the molecular basis, mechanism of action, active ingredients and formulas of TCM, and clarify the value of TCM for expanding drug options for the clinical treatment of schistosomiasis. MATERIALS AND METHODS In PubMed, Web of Science, ScienceDirect, Google Scholar and CNKI databases, "Schistosomiasis", "Schistosoma mansoni", "Schistosoma japonicum", "Liver fibrosis" and "Granuloma" were used as the key words. Information related to in vivo animal studies and clinical studies of TCM for the treatment of schistosomiasis in the past 25 years was retrieved, and the inclusion criteria focused on medicinal plants that had a history of use in China. RESULTS In this study, we collected and organized a large amount of literature on the treatment of schistosomiasis by TCM. TCM exerts therapeutic effects through antischistosomal and immunomodulatory effects, suppresses HSC activation and proliferation, reduces ECM deposition, and inhibits oxidative stress and other activities. The treatment of schistosomiasis by TCM has a unique advantage, especially for the treatment of schistosomal liver fibrosis, and the treatment of schistosomiasis with TCM in combination with praziquantel is superior to monotherapy. CONCLUSION Schistosomiasis remains a global public health problem, and TCM has made significant progress in the prevention and treatment of schistosomiasis and is a potential source of drugs for the treatment of schistosomiasis. However, research on drug screening and the mechanism of action of TCM for the treatment of schistosomiasis is lacking, and further studies and research are needed.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Miao Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Qinghua Peng
- Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| |
Collapse
|
49
|
Lin YJ, Li XN, Chen XM, Chen JM, Jin XY, Sun JX, Niu XT, Kong YD, Li M, Wang GQ. γ-Aminobutyric Acid Effectively Modulate Growth Performance, Physiological Response of Largemouth Bass ( Micropterus Salmoides) Under Combined Stress of Flow Velocity and Density. AQUACULTURE NUTRITION 2024; 2024:9180554. [PMID: 39555528 PMCID: PMC11527523 DOI: 10.1155/2024/9180554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/24/2024] [Indexed: 11/19/2024]
Abstract
The circular aquaculture model of largemouth bass pond engineering has the characteristics of high yield and efficiency, but it is prone to stress caused by flow velocity and density, which affects the yield of largemouth bass (Micropterus salmoides). γ-Aminobutyric acid (GABA) is believed to have the effect of improving growth and stress tolerance. We divided the largemouth bass into three groups: a control group, a flow rate and density combined stress group, and a combined stress feed supplemented with GABA (0.9%) group, and conducted a 60-day aquaculture experiment. The results showed that the final weight, weight gain rate (WGR), specific growth rate (SGR), and feed efficiency (FE) of largemouth bass significantly decreased in the combined stress group (P < 0.05). The serum aspartate aminotransferase (AST), alanine transaminase (ALT) activity, and glucose (GLU), malondialdehyde (MDA) level of largemouth bass significantly higher than the control group, and the serum lysozyme (LZM) activity and total antioxidant capacity (T-AOC) were significantly lower than the control group (P < 0.05). After adding GABA, the final weight, WGR, SGR, and FE decreased, and the serum GLU levels, AST, ALT activity, and MDA levels were downregulated, and the serum LZM activity and T-AOC of largemouth bass were upregulated. But most of the above are still at the level of the control group. Under combined stress, the messenger ribonucleic acid (mRNA) expression levels of growth hormone (GH), insulin-like growth factor-Ⅰ (IGF-I), B-cell lymphoma-2 (Blc2), nuclear transcription factor E2-related factor 2 (Nrf2), catalase (CAT), and superoxide dismutase (SOD) genes were significantly reduced (P < 0.05), while the mRNA expression levels of heat stress protein 70 (HSP70), heat stress protein 90 (HSP90), nuclear factor kappa-B (NF-κB), interleukin-1β (IL-1β), Bax and keap1 genes were significantly increased (P < 0.05). After the exogenous addition of GABA, all the above genes have a certain degree of callback, but GH, HSP70, HSP90, IL-1β, Bax, Nrf2, CAT, and SOD have not yet reached the level of the control group. These results indicate that adding GABA to feed can alleviate the adverse effects of combined stress of flow rate and density to a certain extent and provide insights for solving the problems in the circular aquaculture model of largemouth bass.
Collapse
Affiliation(s)
- Yun-Jie Lin
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Xu-Nan Li
- Testing Center of Quality and Safety in Aquatic Product, 777 CaiYu Road, Changchun, Jilin, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Jian-Ming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Ministry of Agriculture and Rural Affairs, Huzhou 313001, China
| | - Xiao-Yan Jin
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Jia-Xin Sun
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Yi-Di Kong
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| |
Collapse
|
50
|
Martins-Gomes C, Nunes FM, Silva AM. Thymus spp. Aqueous Extracts and Their Constituent Salvianolic Acid A Induce Nrf2-Dependent Cellular Antioxidant Protection Against Oxidative Stress in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1287. [PMID: 39594429 PMCID: PMC11591053 DOI: 10.3390/antiox13111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
The increasing incidence of colorectal cancer and inflammatory diseases poses a major health concern, with oxidative stress playing a significant role in the onset of these pathologies. Factors such as excessive consumption of sugar-rich and fatty foods, synthetic food additives, pesticides, alcohol, and tobacco contribute to oxidative stress and disrupt intestinal homeostasis. Functional foods arise as a potential tool to regulate redox balance in the intestinal tract. Herbs (such as Thymus spp.) have long been screened for their antioxidant properties, but their use as antioxidants for medicinal purposes requires validation in biological models. In this study, we addressed the potential antioxidant protection and preventive effects of extracts from two thyme species at the intestinal level, as well as their molecular mechanisms of action. Caco-2 cells were pre-exposed (4 h) to aqueous (AD) and hydroethanolic (HE) extracts of Thymus carnosus and Thymus capitellatus, followed by a recovery period in culture medium (16 h), and then treated with tert-butyl-hydroperoxide (TBHP; 4 h), before analyzing cell viability. The effect of the extracts' main components was also analysed. Cellular oxidative stress, cell-death markers, and the expression of antioxidant-related proteins were evaluated using flow cytometry on cells pre-exposed to the AD extracts and salvianolic acid A (SAA). Results showed that pre-exposure to AD extracts or SAA reduced TBHP-induced oxidative stress and cell death, mediated by increased levels of nuclear factor erythroid 2-related factor 2 (Nrf2) protein. The protective activity of T. capitellatus AD extract was shown to be dependent on NAD(P)H quinone dehydrogenase 1 (NQO1) protein expression and on increased glutathione (GSH) content. Furthermore, ursolic acid induced cytotoxicity and low cellular antioxidant activity, and thus the presence of this triterpenoid impaired the antioxidant effect of HE extracts. Thus, AD extracts show high potential as prophylactic dietary agents, while HE extracts arise as a source of nutraceuticals with antioxidant potential.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|