1
|
Barik SK, Sengupta S, Arya R, Kumar S, Kim JJ, Chaurasia R. Dietary Polyphenols as Potential Therapeutic Agents in Type 2 Diabetes Management: Advances and Opportunities. Adv Nutr 2024; 16:100346. [PMID: 39566886 PMCID: PMC11697556 DOI: 10.1016/j.advnut.2024.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
Poor dietary intake or unhealthy lifestyle contributes to various health disorders, including postprandial hyperglycemia, leading to type 2 diabetes mellitus (T2DM). Reduction of postprandial glucose concentrations through diet is a key strategy for preventing and managing T2DM. Thus, it is essential to understand how dietary components affect glycemic regulation. Dietary polyphenols (DPs), such as anthocyanins and other phenolics found in various fruits and vegetables, are often recommended for their potential health benefits, although their systemic effectiveness is subject to ongoing debate. Therefore, this review assesses the current and historical evidence of DPs bioactivities, which regulate crucial metabolic markers to lower postprandial hyperglycemia. Significant bioactivities such as modulation of glucose transporters, activation of AMP kinase, and regulation of incretins are discussed, along with prospects for diet-induced therapeutics to prevent the onset of T2DM.
Collapse
Affiliation(s)
- Sisir Kumar Barik
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom.
| | - Srabasti Sengupta
- Department of Neurosurgery, University of Florida, Gainesville, Florida, 32608, United States
| | - Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
| | - Reetika Chaurasia
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, United States.
| |
Collapse
|
2
|
Zhao X, Chai Z, Wang J, Hou D, Li B, Zhang L, Huang W. Assessment on malvidin-3-glucoside interaction with TLR4 via multi-spectroscopic analysis and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124460. [PMID: 38761477 DOI: 10.1016/j.saa.2024.124460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/31/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
As one innate immune pattern recognition receptor, Toll-like receptor 4 (TLR4) recently has been considered as a critical player in glucolipid metabolism. Blueberries contain high level of anthocyanins, especially malvidin-3-glucoside (Mv-3-glc), which contribute the anti-inflammatory, hypoglycemic, and hypolipidemic effects. It is speculated that Mv-3-glc is able to possess these functions by binding to TLR4. Here, the noncovalent interactions of Mv-3-glc and TLR4 was explored through multi-techniques including fluorescence and ultraviolet-visible (UV-Vis) absorption spectroscopy, as well as molecular docking. The results demonstrated that Mv-3-glc was able to quench TLR4 intrinsic fluorescence effectively. A stable complex was formed spontaneously and the reaction was exothermic. The degree of binding of Mv-3-glc to TLR4 showed a strong dependence on the chemical concentration, temperature, and pH values. The negative signs for enthalpy (ΔH = -69.1 ± 10.8 kJ/mol) and entropy (ΔS = -105.0 ± 12.3 J/mol/K) from the interaction of the Mv-3-glc and TLR4 shows that the major driving forces are the hydrogen bonding and van der Waals' force, which is consistent with the molecular docking results. In addition, molecular docking predicted that the active center with specific amino acid residues, Phe126, Ser127, Leu54, Ile153, and Tyr131 was responsible for the site of Mv-3-glc binding to TLR4/myeloid differentiation protein-2 (MD-2). These findings confirmed that Mv-3-glc could bind to TLR4, which would be beneficial to understand the target therapeutic effects of blueberry anthocyanins on TLR4 in regulating glucolipid metabolism.
Collapse
Affiliation(s)
- Xingyu Zhao
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhi Chai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Jing Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Dongjie Hou
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Liaoning 110866, PR China.
| | - Lixia Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
3
|
Martchenko A, Papaelias A, Bolz SS. Physiologic effects of the maqui berry ( Aristotelia chilensis): a focus on metabolic homeostasis. Food Funct 2024; 15:4724-4740. [PMID: 38618933 DOI: 10.1039/d3fo02524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The prevalence and socioeconomic impact of metabolic diseases is rapidly growing. The limited availability of effective and affordable treatments has fuelled interest in the therapeutic potential of natural compounds as they occur in selected food sources. These compounds might help to better manage the current problems of treatment availability, affordability, and adverse effects that, in combination, limit treatment duration and efficacy at present. Specifically, berries garnered interest given a strong epidemiological link between their consumption and improved metabolic functions, making the analysis of their phytochemical composition and the identification and characterization of biologically active ingredients an emerging area of research. In this regard, the present review focuses on the South American maqui berry Aristotelia chilensis, which has been extensively used by the indigenous Mapuche population for generations to treat a variety of disease conditions. An overview of the maqui plant composition precedes a review of pre-clinical and clinical studies that investigated the effects of maqui berries and their major components on metabolic homeostasis. The final part of the review highlights possible technologies to conserve maqui berry structural and functional integrity during passage through the small intestine, ultimately aiming to augment their systemic and luminal bioavailability and biological effects. The integration of the various aspects discussed herein can assist in the development of effective maqui-based therapies to benefit the growing population of metabolically compromised patients.
Collapse
Affiliation(s)
- Alexandre Martchenko
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, 661 University Avenue, 14th Floor, Toronto, M5G 1M1, Canada.
| | - Alexandra Papaelias
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, 661 University Avenue, 14th Floor, Toronto, M5G 1M1, Canada.
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, 661 University Avenue, 14th Floor, Toronto, M5G 1M1, Canada.
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Karimkhani MM, Jamshidi A, Nasrollahzadeh M, Armin M, Jafari SM, Zeinali T. Fermentation of Rubus dolichocarpus juice using Lactobacillus gasseri and Lacticaseibacillus casei and protecting phenolic compounds by Stevia extract during cold storage. Sci Rep 2024; 14:5711. [PMID: 38459201 PMCID: PMC10923800 DOI: 10.1038/s41598-024-56235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
This study aimed to investigate the biological activities of Lactobacillus gasseri SM 05 (L. gasseri) and Lacticaseibacillus casei subsp. casei PTCC 1608 (L. casei) in the black raspberry (Rubus dolichocarpus) juice (BRJ) environment, and also the anti-adhesion activity against Salmonella typhimurium (S. typhimurium) in fermented black raspberry juice (FBRJ). Results showed significant anti-adhesion activity in Caco-2 epithelial cells. In the anti-adhesion process, lactic acid bacteria (LAB) improve intestinal health by preventing the adhesion of pathogens. Adding LAB to BRJ produces metabolites with bacteriocin properties. Major findings of this research include improved intestinal health, improved antidiabetic properties, inhibition of degradation of amino acids, and increase in the nutritional value of foods that have been subjected to heat processing by preventing Maillard inhibition, and inhibition of oxidation of foodstuff by increased antioxidant activity of BRJ. Both species of Lactobacillus effectively controlled the growth of S. typhimurium during BRJ fermentation. Moreover, in all tests, as well as Maillard's and α-amylase inhibition, L. gasseri was more effective than L. casei. The phenolic and flavonoid compounds increased significantly after fermentation by both LAB (p < 0.05). Adding Stevia extract to FBRJ and performing the HHP process showed convenient protection of phenolic compounds compared to heat processing.
Collapse
Affiliation(s)
- Mohammad Mahdi Karimkhani
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammad Armin
- Department of Agronomy, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Tayebeh Zeinali
- Department of Nutrition and Food Hygiene, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
5
|
Varzaru I, Oancea AG, Vlaicu PA, Saracila M, Untea AE. Exploring the Antioxidant Potential of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol Bioaccessibility. Antioxidants (Basel) 2023; 12:2125. [PMID: 38136244 PMCID: PMC10740815 DOI: 10.3390/antiox12122125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The goal of this research was nutritional evaluation through the phytochemical analysis of blackberry and raspberry leaves, the screening of their biological activity (antioxidant capacity and inhibition of lipid peroxidation), and the investigation of the effect of in vitro gastrointestinal digestion (GID) of blackberry and raspberry leaves on the bioaccessibility of polyphenol subclasses. The concentrations of the analyzed liposoluble antioxidants were higher (p < 0.05) in blackberry leaves compared to raspberry leaves, while a significant (p < 0.05) higher content of water-soluble antioxidants was registered in raspberry leaves (with a total polyphenol content of 26.2 mg GAE/g DW of which flavonoids accounted for 10.6 mg/g DW). Blackberry leaves had the highest antioxidant capacity inhibition of the superoxide radicals (O2•-), while raspberry leaves registered the highest inhibition of hydroxyl radicals (•OH), suggesting a high biological potency in scavenging-free radicals under in vitro systems. The maximum inhibition percentage of lipid peroxidation was obtained for blackberry leaves (24.86% compared to 4.37% in raspberry leaves), suggesting its potential to limit oxidative reactions. Simulated in vitro digestion showed that hydroxybenzoic acids registered the highest bioaccessibility index in the intestinal phase of both types of leaves, with gallic acid being one of the most bioaccessible phenolics. The outcomes of this investigation reveal that the most significant release of phenolic compounds from blackberry and raspberry leaves occurs either during or after the gastric phase. Knowledge about the bioaccessibility and stability of polyphenol compounds during digestion can provide significant insights into the bioavailability of these molecules and the possible effectiveness of plant metabolites for human health.
Collapse
Affiliation(s)
- Iulia Varzaru
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| | | | | | | | - Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| |
Collapse
|
6
|
Lovell ST, Krishnaswamy K, Lin CH, Meier N, Revord RS, Thomas AL. Nuts and berries from agroforestry systems in temperate regions can form the foundation for a healthier human diet and improved outcomes from diet-related diseases. AGROFORESTRY SYSTEMS 2023:1-14. [PMID: 37363637 PMCID: PMC10249563 DOI: 10.1007/s10457-023-00858-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
Agroforestry is a specific type of agroecosystem that includes trees and shrubs with the potential to yield nutrient-rich products that contribute to human health. This paper reviews the literature on the human health benefits of tree nut and berry species commonly associated with agroforestry systems of the United States, considering their potential for preventing certain diet-related diseases. Emphasis is placed on those diseases that are most closely associated with poor outcomes from COVID-19, as they are indicators of confounding health prognoses. Results indicate that tree nuts reduce the risk of coronary heart disease, and walnuts (Juglans species) are particularly effective because of their unique fatty acid profile. Berries that are grown on shrubs have the potential to contribute to mitigation of hypertension, prevention of Type II diabetes, and reduced risk of cardiovascular disease. To optimize human health benefits, plant breeding programs can focus on the traits that enhance the naturally-occurring phytochemicals, through biofortification. Value-added processing techniques should be selected and employed to preserve the phytonutrients, so they are maintained through the point of consumption. Agroforestry systems can offer valuable human health outcomes for common diet-related diseases, in addition to providing many environmental benefits, particularly if they are purposefully designed with that goal in mind. The food system policies in the U.S. might be reoriented to prioritize these food production systems based on the health benefits.
Collapse
Affiliation(s)
- Sarah Taylor Lovell
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Kiruba Krishnaswamy
- Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO USA
| | - Chung-Ho Lin
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Nicholas Meier
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Ronald S. Revord
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Andrew L. Thomas
- Division of Plant Sciences and Technology, Southwest Research, Extension, and Education Center, University of Missouri, Mt. Vernon, MO USA
| |
Collapse
|
7
|
Venturi S, Marino M, Cioffi I, Martini D, Del Bo' C, Perna S, Riso P, Klimis-Zacas D, Porrini M. Berry Dietary Interventions in Metabolic Syndrome: New Insights. Nutrients 2023; 15:nu15081906. [PMID: 37111125 PMCID: PMC10142833 DOI: 10.3390/nu15081906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic Syndrome (MetS) is characterized by a group of dysmetabolic conditions, including abdominal obesity, dyslipidemia, glucose intolerance and/or insulin resistance, and hypertension. Generally, MetS is accompanied by an exacerbation of oxidative stress, inflammation, and vascular dysfunction. Increasing evidence suggests that berries and berry bioactives could play a potential role in the prevention and mitigation of the risk factors associated with MetS. The present systematic review summarizes the more recently available evidence deriving from human intervention studies investigating the effect of berries in subjects with at least three out of five MetS parameters. The PubMed, Scopus, and Embase databases were systematically searched from January 2010 until December 2022. A total of 17 human intervention trials met the inclusion criteria. Most of them were focused on blueberry (n = 6), cranberry (n = 3), and chokeberry (n = 3), while very few or none were available for the other berries. If considering MetS features, the main positive effects were related to lipid profile (low and high-density lipoproteins, cholesterol, and triglycerides) following blueberries and chokeberries, while conflicting results were documented for anthropometric parameters, blood pressure, and fasting blood glucose levels. Other markers analyzed within the studies included vascular function, oxidative stress, and inflammation. Here, the main positive effects were related to inflammation with a reduction in interleukin 6 and tumor necrosis factor-alpha following the intake of different berries. In conclusion, although limited, the evidence seems to support a potential role for berries in the modulation of lipid profile and inflammation in subjects with MetS. Furthermore, high-quality intervention trials are mandatory to demonstrate the role of berries in reducing risk factors for MetS and related conditions. In the future, such a demonstration could bring the adoption of berries as a potential dietary strategy to prevent/counteract MetS and related risk factors.
Collapse
Affiliation(s)
- Samuele Venturi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Iolanda Cioffi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Simone Perna
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
8
|
Liang L, Saunders C, Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci Nutr 2023; 11:1671-1704. [PMID: 37051344 PMCID: PMC10084985 DOI: 10.1002/fsn3.3229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2023] Open
Abstract
Dysfunction of gut barrier is known as "leaky gut" or increased intestinal permeability. Numerous recent scientific evidences showed the association between gut dysfunction and multiple gastrointestinal tract (GI) and non-GI diseases. Research also demonstrated that food plays a crucial role to cause or remedy gut dysfunction related to diseases. We reviewed recent articles from electronic databases, mainly PubMed. The data were based on animal models, cell models, and human research in vivo and in vitro models. In this comprehensive review, our aim focused on the relationship between dietary factors, intestinal permeability dysfunction, and related diseases. This review synthesizes currently available literature and is discussed in three parts: (a) the mechanism of gut barrier and function, (b) food and dietary supplements that may promote gut health, and food or medication that may alter gut function, and (c) a table that organizes the synthesized information by general mechanisms for diseases related to leaky gut/intestinal permeability and associated dietary influences. With future research, dietary intervention could be a new target for individualized disease prevention and management.
Collapse
Affiliation(s)
- Linda Liang
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Nerses Sanossian
- Department of NeurologyMedical School of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Considerations for Optimizing Warfighter Psychological Health with a Research-Based Flavonoid Approach: A Review. Nutrients 2023; 15:nu15051204. [PMID: 36904203 PMCID: PMC10005237 DOI: 10.3390/nu15051204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Optimal nutrition is imperative for psychological health. Oxidative stress and inflammation are underlying etiologies for alterations in psychological health. Warfighters are at risk of health concerns such as depression due to increased stress in austere environments and family separation while deployed. Over the last decade, research has demonstrated the health benefits of flavonoids found in fruits and berries. Berry flavonoids have potent antioxidant and anti-inflammatory properties by inhibiting oxidative stress and inflammation. In this review, the promising effects of various berries rich in bioactive flavonoids are examined. By inhibiting oxidative stress, berry flavonoids have the potential to modulate brain, cardiovascular, and intestinal health. There is a critical need for targeted interventions to address psychological health concerns within the warfighter population, and a berry flavonoid-rich diet and/or berry flavonoid dietary supplement intervention may prove beneficial as an adjunctive therapy. Structured searches of the literature were performed in the PubMed, CINAHL, and EMBASE databases using predetermined keywords. This review focuses on berry flavonoids' critical and fundamental bioactive properties and their potential effects on psychological health in investigations utilizing cell, animal, and human model systems.
Collapse
|
10
|
Aiguo Z, Ruiwen D, Cheng W, Cheng C, Dongmei W. Insights into the catalytic and regulatory mechanisms of dihydroflavonol 4-reductase, a key enzyme of anthocyanin synthesis in Zanthoxylum bungeanum. TREE PHYSIOLOGY 2023; 43:169-184. [PMID: 36054375 DOI: 10.1093/treephys/tpac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of anthocyanins largely determines the fruit color, and dihydroflavonol 4-reductase (DFR) is a key enzyme involved in the formation of anthocyanins. However, the catalytic and regulatory mechanisms of DFR are unclear. In this study, the gene encoding DFR from Zanthoxylum bungeanum Maxim. was cloned and ZbDFR was analyzed in detail. The ZbDFR accepted dihydrokaempferol, dihydroquercetin and dihydromyricetin as substrates. Flavonols such as myricetin, quercetin and kaempferol significantly inhibited the activity of ZbDFR, while quercitrin and isoquercitrin slightly increased the activity. Quercetin was a competitive inhibitor at low concentrations, and it had a combined effect of competitive and noncompetitive inhibition at high concentrations, which was consistent with ZbDFR having two inhibitor binding sites. In addition, the content of different types of flavonoids in Z. bungeanum peel at green, semi-red and red stage was analyzed, and the in vivo results could be explained by the regulation of ZbDFR activity in vitro. Site-directed mutagenesis combined with enzyme activity experiments showed that Ser128, Tyr163, Phe164 and Lys167 are the key catalytic amino acid residues. The Ser128, Tyr163 and Lys167 were crucial for the hydrogen transfer reaction, and mutation of these amino acids resulted in the loss of all or most of the activity. Phe164 was found to be important for the regulation of ZbDFR by flavonols. Accordingly, ZbDFR is a node at which flavonoids regulate the synthesis of anthocyanins and proanthocyanins.
Collapse
Affiliation(s)
- Zhao Aiguo
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Ding Ruiwen
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wang Cheng
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chen Cheng
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wang Dongmei
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants (Basel) 2022; 12:antiox12010048. [PMID: 36670910 PMCID: PMC9855055 DOI: 10.3390/antiox12010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, various concepts and features of anthocyanins have been comprehensively reviewed, taking the benefits of the scientific publications released mainly within the last five years. Within the paper, common topics such as anthocyanin chemistry and occurrence, including the biosynthesis of anthocyanins emphasizing the anthocyanin formation pathway, anthocyanin chemistry, and factors influencing the anthocyanins' stability, are covered in detail. By evaluating the recent in vitro and human experimental studies on the absorption and bioavailability of anthocyanins present in typical food and beverages, this review elucidates the significant variations in biokinetic parameters based on the model, anthocyanin source, and dose, allowing us to make basic assumptions about their bioavailability. Additionally, special attention is paid to other topics, such as the therapeutic effects of anthocyanins. Reviewing the recent in vitro, in vivo, and epidemiological studies on the therapeutic potential of anthocyanins against various diseases permits a demonstration of the promising efficacy of different anthocyanin sources at various levels, including the neuroprotective, cardioprotective, antidiabetic, antiobesity, and anticancer effects. Additionally, the studies on using plant-based anthocyanins as coloring food mediums are extensively investigated in this paper, revealing the successful use of anthocyanins in coloring various products, such as dietary and bakery products, mixes, juices, candies, beverages, ice cream, and jams. Lastly, the successful application of anthocyanins as prebiotic ingredients, the innovation potential of anthocyanins in industry, and sustainable sources of anthocyanins, including a quantitative research literature and database analysis, is performed.
Collapse
|
12
|
Ghalandari H, Askarpour M, Setayesh L, Ghaedi E. Effect of plum supplementation on blood pressure, weight indices, and C-reactive protein: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2022; 52:285-295. [PMID: 36513468 DOI: 10.1016/j.clnesp.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/13/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Metabolic syndrome and its components are major health concerns around the world. Among various factors, overweight/obesity, its consequent inflammation, and hypertension are of special importance. Plums are anti-oxidant-rich fruits which have long been investigated for their health benefits. In this systematic review and meta-analysis, we investigated the possible impact of plum supplementation on obesity, inflammation, and blood pressure. METHODS All of the major databases (PubMed, Scopus, Cochrane, and Web of Science, Google Scholar and EMBASE) were searched to obtain the articles eligible for the review. Relevant data was extracted for the final analysis. Weighted mean difference (WMD) was obtained using fixed and random effect models. The main outcomes included systolic and diastolic blood pressure, body weight, body mass index (BMI), body fat percentage, waist circumference (WC) and blood C-reactive protein (CRP) levels. The effect sizes were expressed as weighted mean difference (WMD) and 95% confidence intervals (CI). RESULTS Crude search provided 3121 articles, among which 11 were eligible to be included. After crude and subgroup analysis, we were unable to detect any significant impact of plum supplementation on body weight (weight mean difference (WMD) of 0.04 kg; 95% CI: -1.55, 1.63, p = 0.959), BMI (WMD 0.39 kg/m2; 95% CI: -0.11, 0.90, p = 0.125), body fat percentage (WMD = 0.59%; 95% CI: -0.41, 1.59, p = 0.249), waist circumference (WMD = 0.60 cm; 95% CI: -1.83, 3.04, p = 0.627), systolic blood pressure (WMD -1.24 mmHg; 95% CI: -3.08, 0.59, p = 0.185), diastolic blood pressure (WMD -4.32 mmHg (95% CI: -9.29, 0.65, p = 0.089), or inflammation indicated by C-reactive protein (CRP) levels (WMD = 0.23 mg/l; 95% CI: -0.27, 0.73, p = 0.371). CONCLUSION Our results show that plum supplementation has no positive effect on factors of metabolic syndrome. We recommend that further research in the form of clinical trials be conducted to make a clear conclusion as of the effectiveness of plum supplementation on parameters of metabolic syndrome.
Collapse
Affiliation(s)
- Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Setayesh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ghaedi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Xue B, Hui X, Chen X, Luo S, Dilrukshi H, Wu G, Chen C. Application, emerging health benefits, and dosage effects of blackcurrant food formats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Lv X, Mu J, Wang W, Liu Y, Lu X, Sun J, Wang J, Ma Q. Effects and mechanism of natural phenolic acids/fatty acids on copigmentation of purple sweet potato anthocyanins. Curr Res Food Sci 2022; 5:1243-1250. [PMID: 36032044 PMCID: PMC9404274 DOI: 10.1016/j.crfs.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/04/2022] Open
Abstract
Anthocyanins are attractive alternatives to colorants; however, their low color stability hinders practical application. Copigmentation can enhance both the color intensity and color stability of complexes. Herein, we report an investigation of copigmentation reactions between purple sweet potato anthocyanins (PSA1) and phenolic acids (tannic, ferulic, and caffeic acids) or fatty acids (tartaric and malic acids) at pH 3.5. The effects of the mole ratios of the copigment and the reaction temperature were examined. In addition, quantum mechanical computations were performed to investigate molecular interactions. The optimum PSA:copigment molar ratio was found to be 1:100. The strongest bathochromic and hyperchromic effects were observed for copigmentation with tannic acid (Tan), which might be attributable to the fact that its HOMO-LUMO energy gap was the smallest among the investigated copigments, and because it has a greater number of phenolic aromatic and groups to form more van der Waals and hydrogen bond interactions. However, the formation of the PSA-caffeic acid (Caf) complex was accompanied by the greatest drop in enthalpy (−33.18 kJ/mol) and entropy (−74.55 kJ/mol), and this was the most stable complex at 90 °C. Quantum mechanical calculations indicated that hydrogen bonds and van der Waals force interactions contributed to the color intensification effect of copigmentation. These findings represent an advancement in our understanding of the properties of PSA, expanding the application scope of this natural product. Anthocyanin-phenolic/fatty acid copigmentation interactions were investigated. Copigment HOMO-LUMO gaps served as a copigmentation capability guide. Color changes in the presence of the acids were associated with structural effects. Copigmentation was mainly driven by hydrogen bonding and van der Waals interactions.
Collapse
Affiliation(s)
- Xiaorui Lv
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaomin Lu
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
- Corresponding author.
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
- Corresponding author.
| |
Collapse
|
15
|
Vahapoglu B, Erskine E, Gultekin Subasi B, Capanoglu E. Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules 2021; 27:108. [PMID: 35011338 PMCID: PMC8747047 DOI: 10.3390/molecules27010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Along with the increased knowledge about the positive health effects of food bioactives, the eating habits of many individuals have changed to obtain higher nutritional benefits from foods. Fruits are among the most preferred food materials in this regard. In particular, berry fruits are important sources in the diet in terms of their high nutritional content including vitamins, minerals, and phenolic compounds. Berry fruits have remedial effects on several diseases and these health-promoting impacts are associated with their phenolic compounds which may vary depending on the type and variety of the fruit coupled with other factors including climate, agricultural conditions, etc. Most of the berries have outstanding beneficial roles in many body systems of humans such as gastrointestinal, cardiovascular, immune, and nervous systems. Furthermore, they are effective on some metabolic disorders and several types of cancer. In this review, the health-promoting effects of bioactive compounds in berry fruits are presented and the most recent in vivo, in vitro, and clinical studies are discussed from a food science and nutrition point of view.
Collapse
Affiliation(s)
- Beyza Vahapoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| | - Ezgi Erskine
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| | - Busra Gultekin Subasi
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
- Hafik Kamer Ornek Vocational School, Cumhuriyet University, Sivas 58140, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| |
Collapse
|
16
|
Yudina RS, Gordeeva EI, Shoeva OY, Tikhonova MA, Khlestkina EK. [Anthocyanins as functional food components]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:178-189. [PMID: 34901716 PMCID: PMC8627879 DOI: 10.18699/vj21.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022] Open
Abstract
Среди встречающихся в природе пигментов антоцианы являются, пожалуй, одной из наиболее изученных групп. Начиная с первых исследований о физико-химических свойствах антоцианов, проведенных еще
в XVII в. британским естествоиспытателем Р. Бойлем, наука об этих уникальных соединениях сделала огромный
шаг вперед. На сегодняшний день достаточно хорошо исследованы структура и функции антоцианов в растительных клетках, а путь их биосинтеза – один из самых полно охарактеризованных путей биосинтеза вторичных метаболитов как на биохимическом, так и на генетическом уровне. Наряду с этими фундаментальными
достижениями, мы начинаем осознавать потенциал антоцианов как соединений промышленного значения, как
пигментов самих по себе, а также в качестве компонентов функционального питания, способствующих предупреждению и снижению риска развития хронических заболеваний. Долгое время биологическая активность
антоцианов была недооценена, в частности, из-за данных об их низкой биодоступности. Однако в ходе исследований было показано, что в организме человека и животных эти соединения активно метаболизируются и
биодоступность, оцененная с учетом их метаболитов, превышала 12 %. Экспериментально подтверждено, что
антоцианы обладают антиоксидантными, противовоспалительными, гипогликемическими, антимутагенными,
антидиабетическими, противораковыми, нейропротекторными свойствами, а также полезны для здоровья
глаз. Однако проведенные исследования не всегда могут объяснить молекулярные механизмы действия антоцианов в организме человека. По некоторым данным, наблюдаемые эффекты объясняются действием не
антоцианов, а их метаболитов, которые, благодаря своей повышенной биодоступности, могут быть более биологически активными, чем исходные соединения. Высказывается также предположение о положительном эффекте на здоровье человека всего комплекса полифенольных соединений, поступающего в организм в составе
растительной пищи. В представленном обзоре суммированы результаты основных направлений исследований
антоцианов в качестве компонентов функционального питания. Отдельное внимание уделено результатам генетических исследований синтеза пигментов, данные которых приобретают особую важность в связи с актуализацией селекционных программ, направленных на повышение содержания антоцианов у культурных растений.
Ключевые слова: растения; пигменты; вторичные метаболиты; флавоноиды; антоцианы; регуляторные гены;
структурные гены; антиоксиданты; биологическая активность.
Collapse
Affiliation(s)
- R S Yudina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Gordeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O Yu Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Tikhonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - E K Khlestkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
17
|
Secci R, Hartmann A, Walter M, Grabe HJ, Van der Auwera-Palitschka S, Kowald A, Palmer D, Rimbach G, Fuellen G, Barrantes I. Biomarkers of geroprotection and cardiovascular health: An overview of omics studies and established clinical biomarkers in the context of diet. Crit Rev Food Sci Nutr 2021; 63:2426-2446. [PMID: 34648415 DOI: 10.1080/10408398.2021.1975638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The slowdown, inhibition, or reversal of age-related decline (as a composite of disease, dysfunction, and, ultimately, death) by diet or natural compounds can be defined as dietary geroprotection. While there is no single reliable biomarker to judge the effects of dietary geroprotection, biomarker signatures based on omics (epigenetics, gene expression, microbiome composition) are promising candidates. Recently, omic biomarkers started to supplement established clinical ones such as lipid profiles and inflammatory cytokines. In this review, we focus on human data. We first summarize the current take on genetic biomarkers based on epidemiological studies. However, most of the remaining biomarkers that we describe, whether omics-based or clinical, are related to intervention studies. Then, because of their promising potential in the context of dietary geroprotection, we focus on the effects of berry-based interventions, which up to now have been mostly described employing clinical markers. We provide an aggregation and tabulation of all the recent systematic reviews and meta-analyses that we could find related to this topic. Finally, we present evidence for the importance of the "nutribiography," that is, the influence that an individual's history of diet and natural compound consumption can have on the effects of dietary geroprotection.
Collapse
Affiliation(s)
- Riccardo Secci
- Junior Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Alexander Hartmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Michael Walter
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Rostock, University of Rostock, Rostock, Germany.,Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charite University Medical Center, Berlin, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera-Palitschka
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Axel Kowald
- Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Daniel Palmer
- Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Israel Barrantes
- Junior Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Analytical Methods for Exploring Nutraceuticals Based on Phenolic Acids and Polyphenols. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenolic compounds such as phenolic acids, flavonoids, and stilbenes comprise an enormous family of bioactive molecules with a range of positive properties, including antioxidant, antimicrobial, or anti-inflammatory effects. As a result, plant extracts are often purified to recover phenolic compound-enriched fractions to be used to develop nutraceutical products or dietary supplements. In this article, we review the properties of some remarkable plant-based nutraceuticals in which the active molecules are mainly polyphenols and related compounds. Methods for the characterization of these extracts, the chemical determination of the bioactivities of key molecules, and the principal applications of the resulting products are discussed in detail.
Collapse
|
19
|
Herrera-Balandrano DD, Chai Z, Hutabarat RP, Beta T, Feng J, Ma K, Li D, Huang W. Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPK activation: In vitro and in vivo studies. Redox Biol 2021; 46:102100. [PMID: 34416477 PMCID: PMC8379492 DOI: 10.1016/j.redox.2021.102100] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Blueberries are rich in bioactive anthocyanins, with a high level of malvidin, which is associated with antioxidant benefits that contribute to reducing the risk of diabetes. The objective of this study was to investigate the hypoglycemic and hypolipidemic effects of blueberry anthocyanin extract (BAE), malvidin (Mv), malvidin-3-glucoside (Mv-3-glc), and malvidin-3-galactoside (Mv-3-gal) in both human hepatocarcinoma cell line HepG2 and in a high-fat diet combining streptozotocin-induced diabetic mice. High glucose treatment significantly increased hepatic oxidative stress up to 6-fold and decreased HepG2 cell viability. Pretreatment with BAE, Mv, Mv-3-glc and Mlv-3-gal significantly mitigated these damages by lowering the reactive oxygen species (ROS) by 87, 80, 76, and 91%, and increasing cell viability by 88, 79, 73, and 98%, respectively. These pretreatments also effectively inhibited hyperglycemia and hyperlipidemia, respectively by reducing the expression levels of enzymes participating in gluconeogenesis and lipogenesis and enhancing those involved in glycogenolysis and lipolysis, via adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in HepG2 cells. To determinate the role of AMPK in BAE-induced reaction of glucose and lipid metabolism in vivo, doses of 100 mg/kg (blueberry anthocyanin extracts – low concentration, BAE-L) and 400 mg/kg (blueberry anthocyanin extracts – high concentration, BAE-H) were administrated per day to diabetic mice for 5 weeks. BAE treatments had a significant (P < 0.05) effect on body weight and increased the AMPK activity, achieving the decrease of blood- and urine-glucose, as well as triglyceride and total cholesterol. This research suggested that anthocyanins contributed to the blueberry extract-induced hypoglycemia and hypolipidemia effects in diabetes and BAE could be a promising functional food or medicine for diabetes treatment. BAE showed hypoglycemic effect on HepG2 and STZ-induced diabetic mice. BAE exhibited hypolipidemic effect on HepG2 and STZ-induced diabetic mice. BAE inhibited PEPCK and G6Pase expression. BAE activated AMPK and decreased the expressions of PGC-1α and FOXO1. BAE could be a potential functional food or nutraceutical for diabetes treatment.
Collapse
Affiliation(s)
- Daniela D Herrera-Balandrano
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhi Chai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Ruth P Hutabarat
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Trust Beta
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jin Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Kaiyang Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Dajing Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
20
|
YILDIZ E, GULDAS M, ELLERGEZEN P, ACAR AG, GURBUZ O. Obesity-associated Pathways of Anthocyanins. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.39119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Roy P, Tomassoni D, Traini E, Martinelli I, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK. Natural Antioxidant Application on Fat Accumulation: Preclinical Evidence. Antioxidants (Basel) 2021; 10:antiox10060858. [PMID: 34071903 PMCID: PMC8227384 DOI: 10.3390/antiox10060858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity represents one of the most important challenges in the contemporary world that must be overcome. Different pathological consequences of these physical conditions have been studied for more than 30 years. The most nagging effects were found early in the cardiovascular system. However, later, its negative impact was also investigated in several other organs. Damage at cellular structures due to overexpression of reactive oxygen species together with mechanisms that cause under-production of antioxidants leads to the development of obesity-related complications. In this view, the negative results of oxidant molecules due to obesity were studied in various districts of the body. In the last ten years, scientific literature has reported reasonable evidence regarding natural and synthetic compounds' supplementation, which showed benefits in reducing oxidative stress and inflammatory processes in animal models of obesity. This article attempts to clarify the role of oxidative stress due to obesity and the opposing role of antioxidants to counter it, reported in preclinical studies. This analysis aims to clear-up different mechanisms that lead to the build-up of pro-oxidants during obesity and how various molecules of different origins hinder this phenomenon, behaving as antioxidants.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Enea Traini
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
- Correspondence:
| |
Collapse
|
22
|
Noce A, Di Lauro M, Di Daniele F, Pietroboni Zaitseva A, Marrone G, Borboni P, Di Daniele N. Natural Bioactive Compounds Useful in Clinical Management of Metabolic Syndrome. Nutrients 2021; 13:630. [PMID: 33669163 PMCID: PMC7919668 DOI: 10.3390/nu13020630] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MetS) is a clinical manifestation characterized by a plethora of comorbidities, including hyperglycemia, abdominal obesity, arterial hypertension, and dyslipidemia. All MetS comorbidities participate to induce a low-grade inflammation state and oxidative stress, typical of this syndrome. MetS is related to an increased risk of cardiovascular diseases and early death, with an important impact on health-care costs. For its clinic management a poly-pharmaceutical therapy is often required, but this can cause side effects and reduce the patient's compliance. For this reason, finding a valid and alternative therapeutic strategy, natural and free of side effects, could represent a useful tool in the fight the MetS. In this context, the use of functional foods, and the assumption of natural bioactive compounds (NBCs), could exert beneficial effects on body weight, blood pressure and glucose metabolism control, on endothelial damage, on the improvement of lipid profile, on the inflammatory state, and on oxidative stress. This review focuses on the possible beneficial role of NBCs in the prevention and in the clinical management of MetS and its comorbidities.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anna Pietroboni Zaitseva
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Patrizia Borboni
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| |
Collapse
|
23
|
Tuyizere JD, Okidi L, Elolu S, Ongeng D. In vitro bioavailability-based assessment of the contribution of wild fruits and vegetables to household dietary iron requirements among rural households in a developing country setting: The case of Acholi Subregion of Uganda. Food Sci Nutr 2021; 9:625-638. [PMID: 33598148 PMCID: PMC7866616 DOI: 10.1002/fsn3.1977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Wild fruits and vegetables (WFV) are believed to contain substantial quantities of micronutrients and are commonly consumed in rural areas of developing countries endowed with natural vegetation. Previous studies that provided evidence on the contribution of WFV to household micronutrient intake in a developing country setting did not consider the effect of antinutritional factors. Therefore, applying the in vitro bioavailability assessment technique and using the Acholi subregion of Uganda a case area, this study examined the contribution of commonly consumed WFV to the pooled annual household dietary requirement for iron. Laboratory analysis showed that the concentration of antinutrients varied with plant species but the pool was dominated by phytate (10.5-150 mg/100 g) and phenolic substances (38.6-41.7 mg GAE/g). In vitro iron bioavailability varied with plant species was quantitatively higher from vegetables than fruits by 27% although total concentration of the micronutrient was higher in fruits than vegetables by 142%. Nutritional computation, taking into account, household composition, and physiological status revealed that consumption of WFV resulted in a median contribution of 1.8% (a minimum of 0.02 and a maximum of 34.7%) to the pooled annual household dietary iron requirements on the basis of bioavailable iron fraction. These results demonstrate that WFV contributes meagerly to household iron needs but may serve other dietary and non-nutrient health purposes.
Collapse
Affiliation(s)
- Jean Damascene Tuyizere
- Faculty of Agriculture and EnvironmentDepartment of Food Science and Postharvest TechnologyGulu UniversityGuluUganda
| | - Lawrence Okidi
- Faculty of Agriculture and EnvironmentDepartment of Food Science and Postharvest TechnologyGulu UniversityGuluUganda
| | - Samuel Elolu
- Faculty of Agriculture and EnvironmentDepartment of Food Science and Postharvest TechnologyGulu UniversityGuluUganda
| | - Duncan Ongeng
- Faculty of Agriculture and EnvironmentDepartment of Food Science and Postharvest TechnologyGulu UniversityGuluUganda
| |
Collapse
|
24
|
Mohamed RM, Ali MR, Smuda SS, Abedelmaksoud TG. Utilization of sugarcane bagasse aqueous extract as a natural preservative to extend the shelf life of refrigerated fresh meat. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.16720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract This study aimed to investigate the extraction of total phenolic compounds of sugarcane bagasse using various solvents. In addition, the Sugarcane Bagasse Water Extract (SBWE) was used in refrigerated fresh meat as natural preservative. The fresh meat was dipped into water solutions containing various phenolic compounds concentrations (T1:125, T2:250 and T3:500 ppm). During 10 days of storage at 4 °C for all the treated samples were compared with untreated one. The results revealed that SBWE showed relevant values of total phenolic compounds (17.90 mg/g) and total flavonoids content (4.50 mg/g), as well as 45.90% of antioxidant content. On the other hand, microbiological examination and sensory evaluation have turned out to be the best treatment for T3:500 ppm. The SBWE showed an antibacterial impact on Staphylococcus sp. and a reduction in the Total Plate Count and in the group of Psychrotrophs. The shelf-life of refrigerated fresh meat treated with SBWE by dipping it into water solutions was also extended to more than 10 days.
Collapse
|
25
|
Dridi W, Bordenave N. Pine Bark Phenolic Extracts, Current Uses, and Potential Food Applications: A Review. Curr Pharm Des 2020; 26:1866-1879. [PMID: 32048960 DOI: 10.2174/1381612826666200212113903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To summarize the main findings from research on food uses of Pine Bark Phenolic Extracts (PBPE), their origin, methods of extraction, composition, health effects, and incorporation into food products. METHODS A narrative review of all the relevant papers known to the authors was conducted. RESULTS PBPE are mainly extracted from the bark Pinus pinaster. They are generally rich in procyanidins and their effects on health in the form of nutritional supplements include effect on some forms of cancer, on diabetes, on eye and skin health. Their method of extraction influences greatly their composition and yield, and commercially suitable methods are still to be developed. Incorporation into food products raises challenges related to bioavailability and subsequent bioactivity and sensory properties of the final products. CONCLUSION PBPE represent an opportunity for the development of functional foods with phenolic-rich bioactive compounds.
Collapse
Affiliation(s)
- Wafa Dridi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
26
|
Jiang L, Fan Z, Tong R, Zhou X, Li J, Yin H. Functional Diversification of the Dihydroflavonol 4-Reductase from Camellia nitidissima Chi. in the Control of Polyphenol Biosynthesis. Genes (Basel) 2020; 11:E1341. [PMID: 33198369 PMCID: PMC7696568 DOI: 10.3390/genes11111341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/09/2023] Open
Abstract
Plant secondary metabolism is complex in its diverse chemical composition and dynamic regulation of biosynthesis. How the functional diversification of enzymes contributes to the diversity is largely unknown. In the flavonoids pathway, dihydroflavonol 4-reductase (DFR) is a key enzyme mediating dihydroflavanol into anthocyanins biosynthesis. Here, the DFR homolog was identified from Camellia nitidissima Chi. (CnDFR) which is a unique species of the genus Camellia with golden yellow petals. Sequence analysis showed that CnDFR possessed not only conserved catalytic domains, but also some amino acids peculiar to Camellia species. Gene expression analysis revealed that CnDFR was expressed in all tissues and the expression of CnDFR was positively correlated with polyphenols but negatively with yellow coloration. The subcellular localization of CnDFR by the tobacco infiltration assay showed a likely dual localization in the nucleus and cell membrane. Furthermore, overexpression transgenic lines were generated in tobacco to understand the molecular function of CnDFR. The analyses of metabolites suggested that ectopic expression of CnDFR enhanced the biosynthesis of polyphenols, while no accumulation of anthocyanins was detected. These results indicate a functional diversification of the reductase activities in Camellia plants and provide molecular insights into the regulation of floral color.
Collapse
Affiliation(s)
- Lina Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ran Tong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
| | - Xingwen Zhou
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
27
|
Podsędek A, Zakłos-Szyda M, Polka D, Sosnowska D. Effects of Viburnum opulus fruit extracts on adipogenesis of 3T3-L1 cells and lipase activity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
28
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
29
|
In Vitro and In Vivo Study on Humans of Natural Compound Synergy as a Multifunctional Approach to Cellulite-Derived Skin Imperfections. COSMETICS 2020. [DOI: 10.3390/cosmetics7020048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim: The present study aimed to assess the efficacy of a nutraceutical ingredient, SelectSIEVE® Rainbow, based on botanical extracts, in ameliorating cellulite-derived skin imperfections and microcirculation. The nutritional supplement contained a mixture of Oryza sativa (L.), Citrus sinensis (L.) Osbeck, Ananas comosus (L.) Merr, and Actinidia chinensis Planch; all ingredients were botanicals that can be used in food supplements. Results: In vitro studies showed the high capacity of the supplement to have an anti-inflammatory, antioxidant, and hypolipidemic effect, accompanied by an interesting proteolytic activity. The randomized double-blind placebo-controlled clinical trial, carried out on 60 women during an 8-week treatment period, confirmed the in vitro study results. SelectSIEVE® Rainbow showed a whole-body shaping activity, with a reduction of the waist, hip, and tight circumference of 0.8, 0.65 and 0.72 cm, respectively. It also showed a reduction of subcutaneous fat mass of 1.24 mm and body weight, with an average of 0.7 kg and positive peaks of −2.9 kg. Skin health and appearance were also improved: +5.4% skin elasticity, +5.5% skin tonicity and +5.7% skin draining. Finally, the dermatological evaluation of the cellulite score and microcirculation showed an improvement in 57% and 60% of the subjects enrolled in the studies. Conclusions: This first study provides interesting inputs on the effectiveness of the nutraceutical complex standardized in polyphenols, anthocyanins and proteolytic enzymes to counteract cellulite blemishes and improve local microcirculation. The positive response encourages deeper studies and further investigation.
Collapse
|
30
|
Deng Q, Li XX, Fang Y, Chen X, Xue J. Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5926381. [PMID: 32565865 PMCID: PMC7292974 DOI: 10.1155/2020/5926381] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the diseases with the highest morbidity and mortality globally. It causes a huge burden on families and caregivers and high costs for medicine and surgical interventions. Given expensive surgeries and failures of most conventional treatments, medical community tries to find a more cost-effective cure. Thus, attentions have been primarily focused on food or herbs. Quercetin (Qu) extracted from food, a flavonoid component, develops potentials of alternative or complementary medicine in atherosclerosis. Due to the wide range of health benefits, researchers have considered to apply Qu as a natural compound in therapy. This review is aimed to identify the antiatherosclerosis functions of Qu in treating ASCVD such as anti-inflammatory, antioxidant properties, effects on endothelium-dependent vasodilation, and blood lipid-lowering.
Collapse
Affiliation(s)
- Qian Deng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xue Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Fang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingui Xue
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
32
|
Govers C, Berkel Kasikci M, van der Sluis AA, Mes JJ. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutr Rev 2019; 76:29-46. [PMID: 29087531 DOI: 10.1093/nutrit/nux039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Berries are generally considered beneficial to health. This health-promoting potential has mainly been ascribed to berries' phytochemical and vitamin content, and little attention has been paid to the potential benefits of berries for the digestive tract, despite this being the first point of contact. In vivo studies that described the health effects of berries on individual parts of the digestive tract (ie, the mouth, esophagus, stomach, small and large intestine, microbiome, and immune system) were reviewed. Immune effects were included because a large part of the immune system is located in the intestine. Beneficial health effects were mainly observed for whole berry extracts, not individual berry components. These effects ranged from support of the immune system and beneficial microbiota to reduction in the number and size of premalignant and malignant lesions. These results demonstrate the potency of berries and suggest berries can serve as a strong adjuvant to established treatments or therapies for a variety of gastrointestinal and immune-related illnesses.
Collapse
Affiliation(s)
- Coen Govers
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Muzeyyen Berkel Kasikci
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands.,Department of Food Engineering, Faculty of Engineering, Celal Bayar University, Manisa, Turkey
| | - Addie A van der Sluis
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Jurriaan J Mes
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| |
Collapse
|
33
|
Lyophilized Maqui ( Aristotelia chilensis) Berry Induces Browning in the Subcutaneous White Adipose Tissue and Ameliorates the Insulin Resistance in High Fat Diet-Induced Obese Mice. Antioxidants (Basel) 2019; 8:antiox8090360. [PMID: 31480627 PMCID: PMC6769892 DOI: 10.3390/antiox8090360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Maqui (Aristotelia Chilensis) berry features a unique profile of anthocyanidins that includes high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and delphinidin-3-O-sambubioside and has shown positive effects on fasting glucose and insulin levels in humans and murine models of type 2 diabetes and obesity. The molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance was investigated in high fat diet-induced obese mice supplemented with a lyophilized maqui berry. Maqui-dietary supplemented animals showed better insulin response and decreased weight gain but also a differential expression of genes involved in de novo lipogenesis, fatty acid oxidation, multilocular lipid droplet formation and thermogenesis in subcutaneous white adipose tissue (scWAT). These changes correlated with an increased expression of the carbohydrate response element binding protein b (Chrebpb), the sterol regulatory binding protein 1c (Srebp1c) and Cellular repressor of adenovirus early region 1A-stimulated genes 1 (Creg1) and an improvement in the fibroblast growth factor 21 (FGF21) signaling. Our evidence suggests that maqui dietary supplementation activates the induction of fuel storage and thermogenesis characteristic of a brown-like phenotype in scWAT and counteracts the unhealthy metabolic impact of an HFD. This induction constitutes a putative strategy to prevent/treat diet-induced obesity and its associated comorbidities.
Collapse
|
34
|
Manolescu BN, Oprea E, Mititelu M, Ruta LL, Farcasanu IC. Dietary Anthocyanins and Stroke: A Review of Pharmacokinetic and Pharmacodynamic Studies. Nutrients 2019; 11:nu11071479. [PMID: 31261786 PMCID: PMC6682894 DOI: 10.3390/nu11071479] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cerebrovascular accidents are currently the second major cause of death and the third leading cause of disability in the world, according to the World Health Organization (WHO), which has provided protocols for stroke prevention. Although there is a multitude of studies on the health benefits associated with anthocyanin (ACN) consumption, there is no a rigorous systematization of the data linking dietary ACN with stroke prevention. This review is intended to present data from epidemiological, in vitro, in vivo, and clinical studies dealing with the stroke related to ACN-rich diets or ACN supplements, along with possible mechanisms of action revealed by pharmacokinetic studies, including ACN passage through the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Bogdan Nicolae Manolescu
- Department of Organic Chemistry "C.D. Nenitescu", Faculty of Applied Chemistry and Science of Materials, Polytechnic University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania.
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Hygiene, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia, 020956 Bucharest, Romania.
| | - Lavinia L Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| | - Ileana C Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| |
Collapse
|
35
|
Park M, Sharma A, Lee HJ. Anti-Adipogenic Effects of Delphinidin-3- O- β-Glucoside in 3T3-L1 Preadipocytes and Primary White Adipocytes. Molecules 2019; 24:E1848. [PMID: 31091729 PMCID: PMC6571603 DOI: 10.3390/molecules24101848] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Delphinidin-3-O-β-glucoside (D3G) is a health-promoting anthocyanin whose anti-obesity activity has not yet been thoroughly investigated. We examined the effects of D3G on adipogenesis and lipogenesis in 3T3-L1 adipocytes and primary white adipocytes using real-time RT-PCR and immunoblot analysis. D3G significantly inhibited the accumulation of lipids in a dose-dependent manner without displaying cytotoxicity. In the 3T3-L1 adipocytes, D3G downregulated the expression of key adipogenic and lipogenic markers, which are known as peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1 (SREBP1), CCAAT/enhancer-binding protein alpha (C/EBPα), and fatty acid synthase (FAS). Moreover, the relative protein expression of silent mating type information regulation 2 homolog 1 (SIRT1) and carnitine palmitoyltransferase-1 (CPT-1) were increased, alongside reduced lipid levels and the presence of several small lipid droplets. Furthermore, D3G increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which suggests that D3G may play a role in AMPK and ACC activation in adipocytes. Our data indicate that D3G attenuates adipogenesis and promotes lipid metabolism by activating AMPK-mediated signaling, and, hence, could have a therapeutic role in the management and treatment of obesity.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Korea.
| | - Anshul Sharma
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Korea.
| |
Collapse
|
36
|
Burton-Freeman B, Brzeziński M, Park E, Sandhu A, Xiao D, Edirisinghe I. A Selective Role of Dietary Anthocyanins and Flavan-3-ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence. Nutrients 2019; 11:E841. [PMID: 31013914 PMCID: PMC6520947 DOI: 10.3390/nu11040841] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of DM and its prevalence is increasing worldwide. Because it is a progressive disease, prevention, early detection and disease course modification are possible. Diet plays a critical role in reducing T2DM risk. Therapeutic dietary approaches routinely recommend diets high in plant foods (i.e., vegetables, fruits, whole-grains). In addition to essential micronutrients and fiber, plant-based diets contain a wide-variety of polyphenols, specifically flavonoid compounds. Evidence suggests that flavonoids may confer specific benefits for T2DM risk reduction through pathways influencing glucose absorption and insulin sensitivity and/or secretion. The present review assesses the relationship between dietary flavonoids and diabetes risk reduction reviewing current epidemiology and clinical research. Collectively, the research indicates that certain flavonoids, explicitly anthocyanins and flavan-3-ols and foods rich in these compounds, may have an important role in dietary algorithms aimed to address diabetes risk factors and the development of T2DM.
Collapse
Affiliation(s)
- Britt Burton-Freeman
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Michał Brzeziński
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
- Department of Public Health and Social Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland.
| | - Eunyoung Park
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Amandeep Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Di Xiao
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
37
|
Xiao D, Zhu L, Edirisinghe I, Fareed J, Brailovsky Y, Burton-Freeman B. Attenuation of Postmeal Metabolic Indices with Red Raspberries in Individuals at Risk for Diabetes: A Randomized Controlled Trial. Obesity (Silver Spring) 2019; 27:542-550. [PMID: 30767409 DOI: 10.1002/oby.22406] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study investigated the effect of red raspberry intake on meal-induced postprandial metabolic responses in individuals who have overweight or obesity with prediabetes and insulin resistance (PreDM-IR), and in metabolically healthy individuals (Reference). METHODS Thirty-two adults (PreDM-IR, n = 21; Reference, n = 11) were randomized to a controlled, three-arm, single-blinded, crossover trial. Participants were provided 0 g of frozen red raspberries (Control), 125 g of frozen red raspberries (RR-125) (~1 cup), or 250 g of frozen red raspberries (RR-250) (~2 cups), with a challenge breakfast meal (high carbohydrate/moderate fat) on three separate days. Multiple blood samples were collected up to 8 hours post breakfast with a final blood sample at 24 hours. A snack was provided at 6 hours. RESULTS Breakfast containing RR-125 and RR-250 significantly reduced 2-hour insulin area under the curve, and RR-250 reduced peak insulin, peak glucose, and 2-hour glucose AUC compared with Control in the PreDM-IR group (P < 0.05). Postprandial triglycerides were significantly lower after RR-125 versus RR-250 (P = 0.01) but not different from Control (P > 0.05). No significant meal-related differences were observed for oxidative stress or inflammatory biomarkers. CONCLUSIONS Our findings suggest that red raspberries aid in postmeal glycemic control in individuals with PreDM-IR, reducing glycemic burden with less insulin, which may be related to improved tissue insulin sensitivity.
Collapse
Affiliation(s)
- Di Xiao
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Lanjun Zhu
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Indika Edirisinghe
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Jawed Fareed
- Department of Pharmacology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Yevgeniy Brailovsky
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Britt Burton-Freeman
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
- Department of Nutrition, University of California, Davis, California, USA
| |
Collapse
|
38
|
Zhang J, Xiao J, Giampieri F, Forbes-Hernandez TY, Gasparrini M, Afrin S, Cianciosi D, Reboredo-Rodriguez P, Battino M, Zheng X. Inhibitory effects of anthocyanins on α-glucosidase activity. JOURNAL OF BERRY RESEARCH 2019. [DOI: 10.3233/jbr-180335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiaojiao Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Francesca Giampieri
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Ancona, Italy
| | - Tamara Y. Forbes-Hernandez
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Ancona, Italy
| | - Massimiliano Gasparrini
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Ancona, Italy
| | - Sadia Afrin
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Ancona, Italy
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Ancona, Italy
| | - Patricia Reboredo-Rodriguez
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Ancona, Italy
- Department of Analytical and Food Chemistry, Nutrition and Bromatology Group, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Ancona, Italy
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Kallscheuer N, Menezes R, Foito A, da Silva MH, Braga A, Dekker W, Sevillano DM, Rosado-Ramos R, Jardim C, Oliveira J, Ferreira P, Rocha I, Silva AR, Sousa M, Allwood JW, Bott M, Faria N, Stewart D, Ottens M, Naesby M, Nunes Dos Santos C, Marienhagen J. Identification and Microbial Production of the Raspberry Phenol Salidroside that Is Active against Huntington's Disease. PLANT PHYSIOLOGY 2019; 179:969-985. [PMID: 30397021 PMCID: PMC6393794 DOI: 10.1104/pp.18.01074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/22/2018] [Indexed: 05/22/2023]
Abstract
Edible berries are considered to be among nature's treasure chests as they contain a large number of (poly)phenols with potentially health-promoting properties. However, as berries contain complex (poly)phenol mixtures, it is challenging to associate any interesting pharmacological activity with a single compound. Thus, identification of pharmacologically interesting phenols requires systematic analyses of berry extracts. Here, raspberry (Rubus idaeus, var Prestige) extracts were systematically analyzed to identify bioactive compounds against pathological processes of neurodegenerative diseases. Berry extracts were tested on different Saccharomyces cerevisiae strains expressing disease proteins associated with Alzheimer's, Parkinson's, or Huntington's disease, or amyotrophic lateral sclerosis. After identifying bioactivity against Huntington's disease, the extract was fractionated and the obtained fractions were tested in the yeast model, which revealed that salidroside, a glycosylated phenol, displayed significant bioactivity. Subsequently, a metabolic route to salidroside was reconstructed in S cerevisiae and Corynebacterium glutamicum The best-performing S cerevisiae strain was capable of producing 2.1 mm (640 mg L-1) salidroside from Glc in shake flasks, whereas an engineered C glutamicum strain could efficiently convert the precursor tyrosol to salidroside, accumulating up to 32 mm (9,700 mg L-1) salidroside in bioreactor cultivations (yield: 0.81 mol mol-1). Targeted yeast assays verified that salidroside produced by both organisms has the same positive effects as salidroside of natural origin.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica (iBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Alexandre Foito
- The James Hutton Institute, Invergowrie, DD2 5DA Dundee, Scotland, United Kingdom
| | | | - Adelaide Braga
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | | | - David Méndez Sevillano
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Rita Rosado-Ramos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Carolina Jardim
- Instituto de Biologia Experimental e Tecnológica (iBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Joana Oliveira
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Patrícia Ferreira
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Isabel Rocha
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ana Rita Silva
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Márcio Sousa
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - J William Allwood
- The James Hutton Institute, Invergowrie, DD2 5DA Dundee, Scotland, United Kingdom
| | - Michael Bott
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, Jülich 52428, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich D-52425, Germany
| | - Nuno Faria
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Derek Stewart
- The James Hutton Institute, Invergowrie, DD2 5DA Dundee, Scotland, United Kingdom
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | | | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Jan Marienhagen
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, Jülich 52428, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich D-52425, Germany
| |
Collapse
|
40
|
Chu Q, Zhang S, Chen M, Han W, Jia R, Chen W, Zheng X. Cherry Anthocyanins Regulate NAFLD by Promoting Autophagy Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4825949. [PMID: 30931080 PMCID: PMC6410467 DOI: 10.1155/2019/4825949] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic disease that threatens human health, and present therapies remain limited due to the lack of effective drugs. Lipid metabolic disturbance and oxidative stress have strong links to the development of NAFLD, while autophagy was generally accepted as a key regulatory mechanism on these steps. Our previous studies indicated that cherry anthocyanins (CACN) protected against high fat diet-induced obesity and NALFD in C57BL/6 mice, while the underlying molecule mechanism is still unclear. Thus, in this study, we show that CACN protect against oleic acid- (OA-) induced oxidative stress and attenuate lipid droplet accumulation in NAFLD cell models. According to the results of a transmission electron microscope (TEM), western blot, immunofluorescence (IF), and adenovirus transfection (Ad-mCherry-GFP-LC3B), autophagy is in accordance with the lipid-lowering effect induced by CACN. Further studies illustrate that CACN may activate autophagy via mTOR pathways. In addition, an autophagy inhibitor, 3-methyladenine (3-MA), was applied and the result suggested that autophagy indeed participates in the lipid clearance process in OA-induced lipid accumulation. All these results indicate that the positive effects of CACN on OA-induced hepatic lipid accumulation are mediated via activating autophagy, showing a potential target for the therapeutic strategy of NAFLD.
Collapse
Affiliation(s)
- Qiang Chu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shuang Zhang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Meng Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wen Han
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wen Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Iizuka Y, Ozeki A, Tani T, Tsuda T. Blackcurrant Extract Ameliorates Hyperglycemia in Type 2 Diabetic Mice in Association with Increased Basal Secretion of Glucagon-Like Peptide-1 and Activation of AMP-Activated Protein Kinase. J Nutr Sci Vitaminol (Tokyo) 2019; 64:258-264. [PMID: 30175788 DOI: 10.3177/jnsv.64.258] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Blackcurrants are berries that contain high levels of anthocyanins, particularly delphinidin 3-rutinoside (D3R). Several studies have reported that the consumption of blackcurrant extract (BCE) lowers blood glucose levels and ameliorates glucose tolerance, but the mechanism underlying this effect remains unclear. Glucagon-like peptide-1 (GLP-1) and AMP-activated protein kinase (AMPK) are considered one of the most significant molecular targets for the prevention and treatment of type 2 diabetes. In this study, we showed that dietary BCE significantly reduced blood glucose concentration and improved glucose tolerance in type 2 diabetic mice (KK-Ay). The basal GLP-1 concentration in plasma was significantly increased in the BCE group accompanied by upregulation of prohormone convertase 1/3 (PC1/3), the enzyme that processes intestinal proglucagon. Moreover, the level of phospho-AMPKα protein in skeletal muscle was significantly increased in the BCE group, and this was increase accompanied by significant upregulation of glucose transporter 4 (Glut4) proteins in the plasma membrane of BCE group. In conclusion, dietary BCE significantly reduced blood glucose concentration and improved glucose tolerance in association with increased basal GLP-1 concentration in plasma, upregulation of PC1/3 expression, and translocation of Glut4 to the plasma membrane of skeletal muscle in type 2 diabetic mice; furthermore, these effects were accompanied by activation of AMPK. Our findings demonstrated that D3R-rich BCE may help prevent diabetes and allow the dosages of diabetes drugs to be reduced.
Collapse
Affiliation(s)
- Yuzuru Iizuka
- College of Bioscience and Biotechnology, Chubu University
| | - Aoi Ozeki
- College of Bioscience and Biotechnology, Chubu University
| | - Tsubasa Tani
- College of Bioscience and Biotechnology, Chubu University
| | - Takanori Tsuda
- College of Bioscience and Biotechnology, Chubu University
| |
Collapse
|
42
|
Xu W, Yang Y, Xue SJ, Shi J, Lim LT, Forney C, Xu G, Bamba BSB. Effect of In Vitro Digestion on Water-in-Oil-in-Water Emulsions Containing Anthocyanins from Grape Skin Powder. Molecules 2018; 23:E2808. [PMID: 30380666 PMCID: PMC6278365 DOI: 10.3390/molecules23112808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/01/2023] Open
Abstract
The effects of in vitro batch digestion on water-in-oil-in-water (W/O/W) double emulsions encapsulated with anthocyanins (ACNs) from grape skin were investigated. The double emulsions exhibited the monomodal distribution (d = 686 ± 25 nm) showing relatively high encapsulation efficiency (87.74 ± 3.12%). After in vitro mouth digestion, the droplet size (d = 771 ± 26 nm) was significantly increased (p < 0.05). The double W₁/O/W₂ emulsions became a single W₁/O emulsion due to proteolysis, which were coalesced together to form big particles with significant increases (p < 0.01) of average droplet sizes (d > 5 µm) after gastric digestion. During intestinal digestion, W₁/O droplets were broken to give empty oil droplets and released ACNs in inner water phase, and the average droplet sizes (d < 260 nm) decreased significantly (p < 0.05). Our results indicated that ACNs were effectively protected by W/O/W double emulsions against in vitro mouth digestion and gastric, and were delivered in the simulated small intestine phase.
Collapse
Affiliation(s)
- Weili Xu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Sophia Jun Xue
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - John Shi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada.
| | - Guihua Xu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Bio Sigui Bruno Bamba
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
43
|
Dachmann E, Hengst C, Ozcelik M, Kulozik U, Dombrowski J. Impact of Hydrocolloids and Homogenization Treatment on the Foaming Properties of Raspberry Fruit Puree. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2179-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Efficacy of an Anthocyanin and Prebiotic Blend on Intestinal Environment in Obese Male and Female Subjects. J Nutr Metab 2018; 2018:7497260. [PMID: 30302287 PMCID: PMC6158948 DOI: 10.1155/2018/7497260] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/06/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Background Anthocyanins and prebiotics impact overall health and wellness, likely through modulation of the microbiota and the intestinal ecosystem. Objectives An 8-week open-label study in male and female volunteers with uncomplicated obesity was designed to study the efficacy of an anthocyanin and prebiotic blend in modulating intestinal microbiota and intestinal inflammation. Results After 8 weeks of daily supplementation, participants had a significant decrease in Firmicutes (p < 0.001) and Actinobacteria (p < 0.001) and a significant increase in Bacteroidetes (p < 0.001). Bowel habits were improved as evidenced by reductions in the severity of bloating (p < 0.05), gas (p=0.035), and abdominal pain (p=0.015) as well as significant improvements in stool consistency (p < 0.05). Finally, a nonsignificant decrease in the inflammatory marker fecal calprotectin was seen (p=0.107). The supplement was safe and well tolerated. Conclusions The results suggest that regular consumption of the anthocyanin-prebiotic blend positively modulated the intestinal ecosystem and provided insights into the mechanisms of action and its impact on health benefits.
Collapse
|
45
|
Tsuda T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct 2018; 9:705-714. [PMID: 29206254 DOI: 10.1039/c7fo01242j] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcumin is a polyphenol found in turmeric (Curcuma longa), used as a spice, in food coloring, and as a traditional herbal medicine. It has been shown that curcumin has health benefits such as antioxidant, anti-inflammatory, and anticancer properties, improvement of brain function, and control of obesity and diabetes. However, native curcumin easily degrades and has low oral bioavailability, and a recent report has expressed doubt about curcumin's various effects. To overcome its low bioavailability, various curcumin formulations with enhanced bioavailability are currently being developed. This review discusses the chemistry, metabolism, and absorption of curcumin, to which various reported health benefits have been ascribed, as well as curcumin's degradation products and metabolites and their possible functions. Moreover, the research trend towards the obesity- and diabetes-preventing/suppressing aspects of curcumin and the latest case studies on highly water-dispersible and bioavailable curcumin formulations will be discussed. We summarize the challenges concerning research on curcumin's health benefits as follows: clarifying the relationship between curcumin's health benefits and the formation of curcumin-derived oxidation and degradation products and metabolites, determining whether curcumin itself or other components in turmeric are responsible for its effects, and conducting further human trials in which multiple research groups employ the same samples and conditions. High-bioavailability formulations would be useful in such future studies.
Collapse
Affiliation(s)
- Takanori Tsuda
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
46
|
Luís Â, Domingues F, Pereira L. Association between berries intake and cardiovascular diseases risk factors: a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Food Funct 2018; 9:740-757. [PMID: 29243749 DOI: 10.1039/c7fo01551h] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The main goal of this work was to clarify the effects of the consumption of berries on cardiovascular disease (CVD) risk factors by performing a systematic review according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) statement, followed by a meta-analysis and a trial sequential analysis (TSA) of randomized controlled trials (RCTs). The electronic search was conducted in PubMed, Scopus, SciELO, Web of Science and Cochrane Library between April and June 2016. To be included, RCTs had to report 1 or more of the following outcomes: total cholesterol (TC), HDL-cholesterol (HDL), LDL-cholesterol (LDL), triglycerides (TG), blood pressure (BP), C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM), intercellular adhesion molecule-1 (ICAM), glucose, insulin, apolipoprotein A-I (Apo A-I) or apolipoprotein B (Apo B). It was observed that the intake of berries reduces TC, LDL, TG, and BP while increasing the level of HDL, suggesting a beneficial effect on the control of CVDs' risk factors. Thus, the intake of berries as nutraceuticals or functional foods could be suggested for the prevention and control of CVDs.
Collapse
Affiliation(s)
- Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | | | | |
Collapse
|
47
|
Solverson PM, Rumpler WV, Leger JL, Redan BW, Ferruzzi MG, Baer DJ, Castonguay TW, Novotny JA. Blackberry Feeding Increases Fat Oxidation and Improves Insulin Sensitivity in Overweight and Obese Males. Nutrients 2018; 10:nu10081048. [PMID: 30096878 PMCID: PMC6115824 DOI: 10.3390/nu10081048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/04/2023] Open
Abstract
Berries and other anthocyanin-rich treatments have prevented weight gain and adiposity in rodent models of diet-induced obesity. Their efficacy may be explained by modulation of energy substrate utilization. However, this effect has never been translated to humans. The objective of this study was to evaluate the effects of berry intake on energy substrate use and glucoregulation in volunteers consuming a high-fat diet. Twenty-seven overweight or obese men were enrolled in a randomized, placebo-controlled crossover study with two treatment periods. Subjects were fed an investigator controlled, high-fat (40% of energy from fat) diet which contained either 600 g/day blackberries (BB, 1500 mg/day flavonoids) or a calorie and carbohydrate matched amount of gelatin (GEL, flavonoid-free control) for seven days prior to a meal-based glucose tolerance test (MTT) in combination with a 24 h stay in a room-sized indirect calorimeter. The washout period that separated the treatment periods was also seven days. The BB treatment resulted in a significant reduction in average 24 h respiratory quotient (RQ) (0.810 vs. 0.817, BB vs. GEL, p = 0.040), indicating increased fat oxidation. RQ during the MTT was significantly lower with the BB treatment (0.84) compared to GEL control (0.85), p = 0.004. A 4 h time isolation during dinner showed similar treatment effects, where RQ was reduced and fat oxidation increased with BB (0.818 vs. 0.836, 28 vs. 25 g, respectively; BB vs. GEL treatments). The glucose AUC was not different between the BB and GEL treatments during the MTT (3488 vs. 4070 mg·min/dL, respectively, p = 0.12). However, the insulin AUC was significantly lower with the BB compared to the GEL control (6485 vs. 8245 µU·min/mL, p = 0.0002), and HOMA-IR improved with BB (p = 0.0318). Blackberry consumption may promote increased fat oxidation and improved insulin sensitivity in overweight or obese males fed a high fat diet.
Collapse
Affiliation(s)
- Patrick M Solverson
- USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
- Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | - William V Rumpler
- USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| | - Jayme L Leger
- USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| | - Benjamin W Redan
- Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN 47906, USA.
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA.
| | - David J Baer
- USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| | - Thomas W Castonguay
- Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | - Janet A Novotny
- USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
48
|
Martins ICVS, Borges NA, Stenvinkel P, Lindholm B, Rogez H, Pinheiro MCN, Nascimento JLM, Mafra D. The value of the Brazilian açai fruit as a therapeutic nutritional strategy for chronic kidney disease patients. Int Urol Nephrol 2018; 50:2207-2220. [PMID: 29915880 DOI: 10.1007/s11255-018-1912-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
Açai (Euterpe oleracea Mart.) fruit from the Amazon region in Brazil contains bioactive compounds such as α-tocopherol, anthocyanins (cyanidin 3-glycoside and cyanidin 3-rutinoside), and other flavonoids with antioxidant and anti-inflammatory properties. Moreover, the prebiotic activity of anthocyanins in modulating the composition of gut microbiota has emerged as an additional mechanism by which anthocyanins exert health-promoting effects. Açai consumption may be a nutritional therapeutic strategy for chronic kidney disease (CKD) patients since these patients present with oxidative stress, inflammation, and dysbiosis. However, the ability of açai to modulate these conditions has not been studied in CKD, and this review presents recent information about açai and its possible therapeutic effects in CKD.
Collapse
Affiliation(s)
- Isabelle C V S Martins
- Neuroscience and Cell Biology Graduate Program, Federal University Pará (UFPA), Av. Generalíssimo Deodoro, 92 - Umarizal, Belém, PA, 66055-240, Brazil.
| | - Natália A Borges
- Cardiovascular Science Graduate Program, Federal University Fluminense (UFF), Niterói, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Hervé Rogez
- Centre for Agro-food Valorisation of Amazonian Bioactive Compound, UFPA, Belém, Brazil
| | | | - José L M Nascimento
- Neuroscience and Cell Biology Graduate Program, Federal University Pará (UFPA), Av. Generalíssimo Deodoro, 92 - Umarizal, Belém, PA, 66055-240, Brazil
- Neuroscience Research, Ceuma University, São Luis, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation, Rio de Janeiro, RJ, Brazil
| | - Denise Mafra
- Cardiovascular Science Graduate Program, Federal University Fluminense (UFF), Niterói, Brazil
- Medical Science Graduate Program, UFF, Niterói, Brazil
| |
Collapse
|
49
|
Hosoda K, Sasahara H, Matsushita K, Tamura Y, Miyaji M, Matsuyama H. Anthocyanin and proanthocyanidin contents, antioxidant activity, and in situ degradability of black and red rice grains. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018. [PMID: 29514441 PMCID: PMC6043450 DOI: 10.5713/ajas.17.0655] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective An experiment was conducted to assess the antioxidant contents and activities of colored rice grains and to evaluate their nutritive characteristics in terms of chemical composition and in situ ruminal degradation. Methods Ten cultivars of colored rice grains (Oryza sativa L.) collected from several areas of Japan were studied, and control rice without pigment, maize, barley, and wheat grains were used as control grains. Their chemical compositions, pigment, polyphenol contents, total antioxidant capacity (TAC), and degradation characteristics were determined. Results The starch contents of the colored rice grains were in the range of 73.5% to 79.6%, similar to that of the control rice grain. The black and red rice grains contained anthocyanin (maximum: 5,045.6 μg/g) and proanthocyanidin (maximum: 3,060.6 μg/g) at high concentrations as their principal pigments, respectively. There were significantly (p<0.05) positive relationships among the pigment contents, polyphenol content, and TAC values in the colored and control rice grains, indicating that the increase in pigment contents also contributed to the increased polyphenol content and TAC values in the colored rice grains. The dry matter and starch degradation characteristics, as represented by c (fractional degradation rate of slowly degradable fraction) and by the effective degradability, of the colored rice grains and the control rice grain were ranked as follows among commonly used grains: wheat>barley ≥rice>maize. The colored rice grains also included the most-digestible starch, since their potential degradable fraction and actual degradability at 48 h incubation were almost 100%. Conclusion Colored rice grains have high potential to be used as antioxidant sources in addition to starch sources in ruminants.
Collapse
Affiliation(s)
- Kenji Hosoda
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Tochigi 329-2793, Japan.,Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Kumamoto 861-1192, Japan
| | - Hideki Sasahara
- Central Region Agricultural Research Center, NARO, Joetsu, Niigata 943-0193, Japan
| | - Kei Matsushita
- Central Region Agricultural Research Center, NARO, Joetsu, Niigata 943-0193, Japan
| | - Yasuaki Tamura
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa 907-0002, Japan
| | - Makoto Miyaji
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Tochigi 329-2793, Japan
| | - Hiroki Matsuyama
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
50
|
Safaeian L, Emami R, Hajhashemi V, Haghighatian Z. Antihypertensive and antioxidant effects of protocatechuic acid in deoxycorticosterone acetate-salt hypertensive rats. Biomed Pharmacother 2018; 100:147-155. [PMID: 29428662 DOI: 10.1016/j.biopha.2018.01.107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Protocatechuic acid (PCA) is a natural antioxidant with beneficial cardiovascular properties. In this study, the effect of supplementation with PCA was investigated in deoxycorticosterone acetate (DOCA)-salt hypertension. Male Wistar rats received DOCA (25 mg/kg, s.c.) twice weekly and 1% NaCl in drinking water and simultaneously treated with PCA (50, 100 and 200 mg/kg, p.o.) for 4 weeks. Systolic blood pressure (SBP) was detected using tail-cuff method. Electrolytes including Na+, K+ and chloride, catalase activity, glutathione, total antioxidant capacity, malondialdehyde (MDA) and hydroperoxides concentration were measured in serum samples. Body and organs weight, water intake and, kidney and heart histopathology were also evaluated. Administration of PCA reversed the changes caused by DOCA-salt approximately at all doses. At the lowest dose, PCA significantly decreased SBP (132.5 ± 4.0 vs 152.3 ± 4.5 mmHg, P < .05), serum sodium (138.5 ± 1.52 vs 141 ± 1.50, P < .05) and chloride level (101.6 ± 1.47 vs 110 ± 1.39, P < .01) and raised serum potassium level (3.8 ± 0.09 vs 3.1 ± 0.17, P < .05) compared with DOCA-salt hypertensive rats. PCA increased serum catalase activity, total antioxidant capacity and glutathione concentration and reduced MDA and hydroperoxides levels. PCA also improved organ weight changes, reduced water intake and moderately prevented histopathological changes of kidney and heart upon DOCA-salt administration. The present study indicates the antihypertensive and antioxidant effects of PCA against DOCA-salt hypertension.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reyhaneh Emami
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Valiollah Hajhashemi
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Haghighatian
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|