1
|
da Rocha PDS, Orué SL, Ferreira IC, Espindola PPDT, Rodrigues MVB, de Carvalho JTG, Baldivia DDS, Leite DF, dos Santos HF, Oliveira AS, Campos JF, dos Santos EL, de Picoli Souza K. Lipid-Lowering and Anti-Inflammatory Effects of Campomanesia adamantium Leaves in Adipocytes and Caenorhabditis elegans. Pharmaceuticals (Basel) 2024; 17:1062. [PMID: 39204167 PMCID: PMC11359582 DOI: 10.3390/ph17081062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Obesity is a pandemic disease characterized by lipid accumulation, increased proinflammatory cytokines, and reactive oxygen species. It is associated with the development of comorbidities that lead to death. Additionally, drug treatments developed to control obesity are insufficient and have a variety of adverse effects. Thus, the search for new anti-obesity therapies is necessary. Campomanesia adamantium is a species from the Brazilian Cerrado that has the potential to treat obesity, as described by the antihyperlipidemic activity of its roots. Therefore, this study aimed to investigate the activity of the aqueous extract of C. adamantium leaves (AECa) on the control of reactive species in vitro, on lipid accumulation in adipocytes and Caenorhabditis elegans, and on the production of proinflammatory cytokines in adipocytes. The antioxidant capacity of AECa was observed by its action in scavenging DPPH• free radical, iron-reducing power, and inhibition of β-carotene bleaching. AECa reduced lipid accumulation in preadipocytes and in C. elegans. Moreover, AECa reduced the production of the proinflammatory cytokines MCP-1, TNF-α, and IL-6 in adipocytes. In summary, the antioxidant activity and the ability of AECa to reduce the accumulation of lipids and proinflammatory cytokines indicate, for the first time, the anti-obesity potential of C. adamantium leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil; (P.d.S.d.R.); (S.L.O.); (I.C.F.); (P.P.d.T.E.); (M.V.B.R.); (J.T.G.d.C.); (D.d.S.B.); (D.F.L.); (H.F.d.S.); (A.S.O.); (J.F.C.); (E.L.d.S.)
| |
Collapse
|
2
|
Li DL, Hodge AM, Cribb L, Southey MC, Giles GG, Milne RL, Dugué PA. Body Size, Diet Quality, and Epigenetic Aging: Cross-Sectional and Longitudinal Analyses. J Gerontol A Biol Sci Med Sci 2024; 79:glae026. [PMID: 38267386 PMCID: PMC10953795 DOI: 10.1093/gerona/glae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 01/26/2024] Open
Abstract
Epigenetic age is an emerging marker of health that is highly predictive of disease and mortality risk. There is a lack of evidence on whether lifestyle changes are associated with changes in epigenetic aging. We used data from 1 041 participants in the Melbourne Collaborative Cohort Study with blood DNA methylation measures at baseline (1990-1994, mean age: 57.4 years) and follow-up (2003-2007, mean age: 68.8 years). The Alternative Healthy Eating Index-2010 (AHEI-2010), the Mediterranean Dietary Score, and the Dietary Inflammatory Index were used as measures of diet quality, and weight, waist circumference, and waist-to-hip ratio as measures of body size. Five age-adjusted epigenetic aging measures were considered: GrimAge, PhenoAge, PCGrimAge, PCPhenoAge, and DunedinPACE. Multivariable linear regression models including restricted cubic splines were used to assess the cross-sectional and longitudinal associations of body size and diet quality with epigenetic aging. Associations between weight and epigenetic aging cross-sectionally at both time points were positive and appeared greater for DunedinPACE (per SD: β ~0.24) than for GrimAge and PhenoAge (β ~0.10). The longitudinal associations with weight change were markedly nonlinear (U-shaped) with stable weight being associated with the lowest epigenetic aging at follow-up, except for DunedinPACE, for which only weight gain showed a positive association. We found negative, linear associations for AHEI-2010 both cross-sectionally and longitudinally. Other adiposity measures and dietary scores showed similar results. In middle-aged to older adults, declining diet quality and weight gain may increase epigenetic age, while the association for weight loss may require further investigation. Our study sheds light on the potential of weight management and dietary improvement in slowing aging processes.
Collapse
Affiliation(s)
- Danmeng Lily Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison M Hodge
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Lachlan Cribb
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Aloo SO, Barathikannan K, Oh DH. Polyphenol-rich fermented hempseed ethanol extracts improve obesity, oxidative stress, and neural health in high-glucose diet-induced Caenorhabditis elegans. Food Chem X 2024; 21:101233. [PMID: 38426074 PMCID: PMC10901904 DOI: 10.1016/j.fochx.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Whole hempseed (WHS), fermented whole hempseed (FWHS), dehulled hempseed (DHS), and fermented dehulled hempseed (FDHS) ethanol extracts were tested for their toxicity and physiological benefits in relation to their phenolic profiles. The safety of all samples was confirmed by the absence of toxic effects on HepG2 cells. FWHS exhibited the highest capacity to inhibit lipase activity (70.80%) and acetylcholinesterase (AChE) (78.94%) in vitro. Similarly, in HepG2 cells, FWHS revealed the greatest ability to reduce the accumulation of reactive oxygen species (ROS). Fermented hempseed demonstrated superior antioxidant, neuroprotective and anti-fat potential, counteracting ageing in high glucose diet-induced C. elegans than unfermented. HPLC and UHPLC-Q-TOF-MS/MS2 phenolic identification revealed the presence of diverse flavonoids, phenolic acids, lignanamides, and phenylamides in hempseed extracts. Among these polyphenols, quercetin, gallic acid, and kaempferol exhibited excellent antioxidant potential, whereas N-trans-feruloyl tyramine displayed the highest anti-lipase potential. This study suggests that polyphenol-rich hempseed exhibits potent antioxidant, and anti-obesity effects, and could improve neural health.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
- Faculty of Agriculture and Food Security, Tom Mboya University, Homabay 199-40300, Kenya
| | - Kaliyan Barathikannan
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, Saveetha (SIMATS) University, Sriperumbudur, Chennai 600124, India
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
4
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
5
|
Núñez S, López V, Moliner C, Valero MS, Gómez-Rincón C. Lipid lowering and anti-ageing effects of edible flowers of Viola x wittrockiana Gams in a Caenorhabditis elegans obese model. Food Funct 2023; 14:8854-8864. [PMID: 37697957 DOI: 10.1039/d3fo02181e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Life expectancy has increased considerably in the last decades, clearing the way for preventive medicine. The ingestion of healthy foods or ingredients to improve health is gaining attention and edible flowers entail a promising source of bioactive compounds. The aim of this work was to study the anti-ageing and anti-obesity properties of an extract obtained from an edible flower Viola x wittrockiana though in vitro and in vivo methodologies with Caenorhabditis elegans as a model. The capacity to inhibit the enzymes α-glucosidase and lipase as well as to prevent advance glycation end-product (AGE) formation was tested in vitro. Caenorhabditis elegans was used as an obesity in vivo model to assess the effects of the extract on fat accumulation, development, progeny and health span. Viola flowers showed lower IC50 values in the α-glucosidase assay than the reference drug acarbose and exerted a higher inhibition of AGE formation than the reference substance aminoguanidine; the extract also showed pancreatic lipase inhibiting properties. Moreover, the extract lowered fat storage of C. elegans in a dose-dependent manner, up to 90.37% at the highest tested dose, and improved health span biomarkers such as lipofuscin accumulation and progeny availability. Our results demonstrate, for the first time, the anti-obesogenic and anti-ageing activity of Viola x wittrockiana flowers and their potential use as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Sonia Núñez
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Spain
| | - Cristina Moliner
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.
| | - Marta Sofía Valero
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Spain
- Department of Pharmacology and Physiology, Universidad de Zaragoza, Spain
| | - Carlota Gómez-Rincón
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Spain
| |
Collapse
|
6
|
Li J, Li D, Chen Y, Chen W, Xu J, Gao L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin Interv Aging 2023; 18:963-986. [PMID: 37351381 PMCID: PMC10284159 DOI: 10.2147/cia.s414714] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
The changing composition of gut microbiota, much like aging, accompanies people throughout their lives, and the inextricable relationship between both has recently attracted extensive attention as well. Modern medical research has revealed that a series of changes in gut microbiota are involved in the aging process of organisms, which may be because gut microbiota modulates aging-related changes related to innate immunity and cognitive function. At present, there is no definite and effective method to delay aging. However, Nobel laureate Tu Youyou's research on artemisinin has inspired researchers to study the importance of Traditional Chinese Medicine (TCM). TCM, as an ancient alternative medicine, has unique advantages in preventive health care and in treating diseases as it already has formed an independent understanding of the aging system. TCM practitioners believe that the mechanism of aging is mainly deficiency, and pathological states such as blood stasis, qi stagnation and phlegm coagulation can exacerbate the process of aging, which involves a series of organs, including the brain, kidney, heart, liver and spleen. Our current understanding of aging has led us to realise that TCM can indeed make some beneficial changes, such as the improvement of cognitive impairment. However, due to the multi-component and multi-target nature of TCM, the exploration of its mechanism of action has become extremely complex. While analysing the relationship between gut microbiota and aging, this review explores the similarities and differences in treatment methods and mechanisms between TCM and Modern Medicine, in order to explore a new approach that combines TCM and Modern Medicine to regulate gut microbiota, improve immunity and delay aging.
Collapse
Affiliation(s)
- Jinfan Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dong Li
- Department of Diabetes, Licheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250100, People’s Republic of China
| | - Yajie Chen
- Department of Rehabilitation and Health Care, Jinan Vocational College of Nursing, Jinan, Shandong, 250100, People’s Republic of China
| | - Wenbin Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
7
|
Ben Tahar S, Garnier J, Eller K, DiMauro N, Piet J, Mehta S, Bajpayee AG, Shefelbine SJ. Adolescent obesity incurs adult skeletal deficits in murine induced obesity model. J Orthop Res 2023; 41:386-395. [PMID: 35578981 DOI: 10.1002/jor.25378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/06/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023]
Abstract
Adolescent obesity has risen dramatically in the last few decades. While adult obesity may be osteoprotective, the effects of obesity during adolescence, which is a period of massive bone accrual, are not clear. We used a murine model of induced adolescent obesity to examine the structural, mechanical, and compositional differences between obese and healthy weight bone in 16-week-old female C57Bl6 mice. We also examined the effects of a return to normal weight after skeletal maturity (24 weeks old). We found obese adolescent bone exhibited decreased trabecular bone volume, increased cortical diameter, increased ultimate stress, and increased brittleness (decreased plastic energy to fracture), similar to an aging phenotype. The trabecular bone deficits remained after return to normal weight after skeletal maturity. However, after returning to normal diet, there was no difference in ultimate stress nor plastic energy to fracture between groups as the normal diet group increased ultimate stress and brittleness. Interestingly, compositional changes appeared in the former high-fat diet mice after skeletal maturity with a lower mineral to matrix ratio compared to normal diet mice. In addition there was a trend toward increased fluorescent advanced glycation endproducts in the former high-fat diet mice compared to normal diet mice but this did not reach significance (p < 0.05) due to the large variability. The skeletal consequences of adolescent obesity may have lasting implications for the adult skeleton even after return to normal weight. Given the rates of adolescent obesity, skeletal health should be a concern.
Collapse
Affiliation(s)
- Soha Ben Tahar
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Julien Garnier
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Kerry Eller
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Nicole DiMauro
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Judith Piet
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Shihkar Mehta
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
El-Kafoury B, Mohamed F, Bahgat N, El Samad AA, Shawky M, Abdel-Hady EA. Failure of subcutaneous lipectomy to combat metabolic dysregulations in ovariectomy-induced obesity in young female rats. Hormones (Athens) 2022; 21:421-436. [PMID: 35486321 PMCID: PMC9464754 DOI: 10.1007/s42000-022-00371-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The deleterious effect of visceral adipose tissue accumulation is well known. However, the recent trend in liposuction is mal-directed toward easily accessible subcutaneous fat for the purpose of body shaping. The aim of the present study is to probe the metabolic effects of subcutaneous abdominal adipose tissue lipectomy in ovariectomized obese rats as well as the role of adipokines in these changes. METHODS The study was conducted on young female rats randomized into two main groups according to the duration of the experiment, namely, 5-week and 10-week. Both groups were subdivided as follows: sham-operated, ovariectomized, and ovariectomized lipectomized rat groups. The rats underwent measurement of body weight (BW) and determination of body mass index (BMI). Fasting blood glucose, lipid profile, liver function, plasma malondialdehyde, leptin, and adiponectin were estimated, and the content of both blood and hepatic tissue of reduced glutathione was assessed. In addition, histological study of the liver, aorta, and perirenal fat of all rat groups was performed. RESULTS Ovariectomy-induced obesity is marked by a significant increase in BW and BMI. Following subcutaneous lipectomy, the rats exhibited significant weight gain accompanied by fasting hyperglycemia, dyslipidemia, deterioration of synthetic function of the liver, and disturbed oxidant/antioxidant status. Histological examination revealed fatty infiltration of aortic and hepatic tissues. CONCLUSION Despite the immediate positive effect of subcutaneous lipectomy for weight loss and/or body shaping, multiple delayed hazards follow the procedure, which should be carefully considered.
Collapse
Affiliation(s)
- Bataa El-Kafoury
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatma Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nehal Bahgat
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abeer Abd El Samad
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona Shawky
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A Abdel-Hady
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
9
|
The Relationship between Selected Inflammation and Oxidative Stress Biomarkers and Carotid Intima-Media Thickness (IMT) Value in Youth with Type 1 Diabetes Co-Existing with Early Microvascular Complications. J Clin Med 2022; 11:jcm11164732. [PMID: 36012972 PMCID: PMC9409989 DOI: 10.3390/jcm11164732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Recent years have confirmed the importance of oxidative stress and biomarkers of inflammation in estimating the risk of cardiovascular disease (CVD) and explaining not fully understood pathogenesis of diabetic macroangiopathy. We aimed to analyze the relation between the intima-media thickness (IMT) of common carotid arteries and the occurrence of classical cardiovascular risk factors, together with the newly proposed biomarkers of CVD risk (high-sensitivity C-reactive protein (hsCRP), myeloperoxidase (MPO), adiponectin, N-terminal-pro B-type natriuretic peptide (NT-proBNP) and vitamin D) in youth with type 1 diabetes (T1D) recognized in screening tests to present early stages of microvascular complications (VC). The study group consisted of 50 adolescents and young adults with T1D, mean age 17.1 years (10–26 age range), including 20 patients with VC (+) and 30 VC (−). The control group (Control) consisted of 22 healthy volunteers, mean age 16.5 years (11–26 age range). In the VC (+) patients, we found a significantly higher concentration of HbA1c, lipid levels, hsCRP and NT-proBNP. BMI and blood pressure values were highest in the VC (+) group. Higher levels of MPO and lower levels of vitamin D were found in both diabetic groups vs. Control. IMT in VC (+) patients was significantly higher and correlated positively with HbA1c, hsCRP, NT-pro-BNP and negatively with vitamin D levels. In conclusion, youth with T1D and VC (+) present many abnormalities in the classical and new CVD biomarkers. hsCRP and MPO seem to be the most important markers for estimating the risk of macroangiopathy. NT-proBNP may present a possible marker of early myocardial injury in this population.
Collapse
|
10
|
Korac B, Kalezic A, Pekovic-Vaughan V, Korac A, Jankovic A. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol 2021; 42:101887. [PMID: 33579666 PMCID: PMC8113039 DOI: 10.1016/j.redox.2021.101887] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
"Life is an instantaneous encounter of circulating matter and flowing energy" (Jean Giaja, Serbian physiologist), is one of the most elegant definitions not only of life but the relationship of redox biology and metabolism. Their evolutionary liaison has created inseparable yet dynamic homeostasis in health, which, when disrupted, leads to disease. This interconnection is even more pertinent today, in an era of increasing metabolic diseases of epidemic proportions such as obesity, metabolic syndrome, and diabetes. Despite great advances in understanding the molecular mechanisms of redox and metabolic regulation, we face significant challenges in preventing, diagnosing, and treating metabolic diseases. The etiological association and temporal overlap of these syndromes present significant challenges for the discrimination of appropriate clinical biomarkers for diagnosis, treatment, and outcome prediction. These multifactorial, multiorgan metabolic syndromes with complex etiopathogenic mechanisms are accompanied by disturbed redox equilibrium in target tissues and circulation. Free radicals and reactive species are considered both a causal factor and a consequence of disease status. Thus, determining the subtypes and levels of free radicals and reactive species, oxidatively damaged biomolecules (lipids, proteins, and nucleic acids) and antioxidant defense components as well as redox-sensitive transcription factors and fluxes of redox-dependent metabolic pathways will help define existing and establish novel redox biomarkers for stratifying metabolic diseases. This review aims to discuss diverse redox/metabolic aspects in obesity, metabolic syndrome, and diabetes, with the imperative to help establish a platform for emerging and future redox-metabolic biomarkers research in precision medicine. Future research warrants detailed investigations into the status of redox biomarkers in healthy subjects and patients, including the use of emerging 'omic' profiling technologies (e.g., redox proteomes, lipidomes, metabolomes, and transcriptomes), taking into account the influence of lifestyle (diet, physical activity, sleep, work patterns) as well as circadian ~24h fluctuations in circulatory factors and metabolites.
Collapse
Affiliation(s)
- Bato Korac
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia; Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia.
| | - Andjelika Kalezic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, L7 8TX, Liverpool, UK
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
11
|
Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. Int J Mol Sci 2021; 22:ijms22083939. [PMID: 33920428 PMCID: PMC8069594 DOI: 10.3390/ijms22083939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are hormonally active compounds in the environment that interfere with the body's endocrine system and consequently produce adverse health effects. Despite persistent public health concerns, EDCs remain important components of common consumer products, thus representing ubiquitous contaminants to humans. While scientific evidence confirmed their contribution to the severity of Influenza A virus (H1N1) in the animal model, their roles in susceptibility and clinical outcome of the coronavirus disease (COVID-19) cannot be underestimated. Since its emergence in late 2019, clinical reports on COVID-19 have confirmed that severe disease and death occur in persons aged ≥65 years and those with underlying comorbidities. Major comorbidities of COVID-19 include diabetes, obesity, cardiovascular disease, hypertension, cancer, and kidney and liver diseases. Meanwhile, long-term exposure to EDCs contributes significantly to the onset and progression of these comorbid diseases. Besides, EDCs play vital roles in the disruption of the body's immune system. Here, we review the recent literature on the roles of EDCs in comorbidities contributing to COVID-19 mortality, impacts of EDCs on the immune system, and recent articles linking EDCs to COVID-19 risks. We also recommend methodologies that could be adopted to comprehensively study the role of EDCs in COVID-19 risk.
Collapse
|
12
|
Omidkhoda SF, Mehri S, Heidari S, Hosseinzadeh H. Protective Effects of Crocin Against Hepatic Damages in D-galactose Aging Model in Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:440-450. [PMID: 33680043 PMCID: PMC7757971 DOI: 10.22037/ijpr.2019.15022.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aging is a progressive process which is associated with liver dysfunction and it is due to oxidative stress, inflammation, and cell apoptosis. Long-term D-galactose (D-gal) administration is able to develop an aging model in animals. Crocin as a major active ingredient in saffron has shown anti-inflammatory and hepatoprotective effects via its antioxidant capacity. Thus, the aim of the present study was the assessment of crocin effects on hepatic and metabolic disorders induced by D-gal in rats. Aging model was induced in rats by 56-day administration of D-gal (400 mg/kg/day subcutaneously). Protective effects of different doses of crocin (7.5, 15 and 30 mg/kg/day) in concomitant with D-gal administration were evaluated. Malondialdehyde (MDA) and reduced glutathione (GSH) amounts were measured by means of their reaction, respectively, with thiobarbituric acid and 5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB) under a specific condition. Cyclooxygenase-2 (COX-2), β-galactosidase, induced nitric oxide synthase (iNOS), and carboxymethyllysine (CML) levels were determined by western blotting method. Additionally, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured in serum. D-gal administration significantly elevated ALT, AST, ALP levels, which were markedly inhibited by crocin administration. Crocin suppressed the overgeneration of lipid peroxidation products such as MDA. iNOS was elevated by D-gal administration and was returned to the normal extent by crocin. Therefore, Crocin as a powerful antioxidant and radical scavenger, totally exhibited hepatoprotective effects against D-gal-induced toxicity in rats.
Collapse
Affiliation(s)
- Seyedeh Farzaneh Omidkhoda
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Heidari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Nissankara Rao LS, Kilari EK, Kola PK. Protective effect of Curcuma amada acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment. Nutr Neurosci 2021; 24:212-225. [PMID: 31149894 DOI: 10.1080/1028415x.2019.1616436] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: Curcuma amada Roxb. (Mango ginger) was evaluated for anti-obesity, anti-amnesic and neuroprotection using high-fat and high-sugar diet (HFHS)-induced obesity and cognitive impairment in rats. Methods: Animals were exposed to HFHS diet to evaluate lipid parameters and subjected to Y maze test and Pole climbing test to evaluate the memory. In addition, oxidative stress parameters, acetyl cholinesterase activity (AChE), neurochemicals and histopathology were assessed in the brain. Results: HFHS diet led to increased body weight and lipid parameters (total cholesterol, low-density lipoprotein [LDL], and very low-density lipoprotein [VLDL], triglycerides [TG]) but not high-density lipoprotein (HDL). Elevated serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), oxidative biomarker, decreased enzymatic and non-enzymatic antioxidants, Acetylcholinesterase (AChE) activity and reduced percentage of spontaneous alternation behaviour (% SAB in Y-maze test) as well as reduced serotonin and dopamine levels and neurodegeneration were observed in HFHS diet-fed rats. Curcuma amada (CAAE1, 100 mg/kg and CAAE2, 300 mg/kg) treatment to HFHS diet-fed rats (21 days after HFHS diet feeding alone) showed dose-dependent activity and ameliorated the HFHS diet-induced alterations in lipid parameters related to obesity, hepatological parameters, memory, oxidative stress, neurochemicals and neurodegeneration. Furthermore, 300 mg/kg of C. amada (CAAE2) augmented the memory by inhibiting acetylcholinesterase (AChE) activity; it also ameliorated the effect of antioxidants such as glutathione, superoxide dismutase (SOD), and total thiol and mitigated the effect of malondialdehyde (MDA). CAAE2 also controlled the level of dopamine and serotonin and reduced the neurodegeneration in the hippocampus CA1 region. Discussion: The results of the present study indicated that treatment with C. amada 300 mg/kg (CAAE2) attenuated the HFHS diet-induced obesity, memory loss, oxidative stress, and neurodegeneration. These study results indicated that the administration of C. amada offers a potential treatment option for obesity and memory loss, and it requires further preclinical and clinical evaluations.
Collapse
Affiliation(s)
| | - Eswar Kumar Kilari
- Department of Pharmacology, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| |
Collapse
|
14
|
Meldrum DR, Morris MA, Gambone JC, Esposito K. Aging and erectile function. Aging Male 2020; 23:1115-1124. [PMID: 31724458 DOI: 10.1080/13685538.2019.1686756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The authors review and discuss numerous factors that influence erectile function and their interactions, based on the published literature. Of critical importance are vascular nitric oxide; nutrition; exercise; weight control and maintaining insulin sensitivity; early treatment of hypertension with attention to effects on erectile function; avoiding sources of oxidative stress such as obesity and smoking; reducing inflammation (e.g. from gingivitis); improving pelvic floor muscle strength; and inhibiting cyclic GMP break-down. The described interventions act on different aspects of erectile biochemistry and physiology. Therefore, combining multiple therapeutic approaches will yield maximum benefits for erectile and vascular and general health.
Collapse
Affiliation(s)
- David R Meldrum
- Department of Reproductive Medicine, University of California San Diego, San Diego, CA, USA
- Reproductive Partners San Diego, La Jolla, CA, USA
| | - Marge A Morris
- Diabetes, Education and Nutrition Department, Mercy Regional Medical Center, Durango, CO, USA
| | - Joseph C Gambone
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, Diabetes Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
15
|
Ormazabal P, Cifuentes M, Varì R, Scazzocchio B, Masella R, Pacheco I, Vega W, Paredes A, Morales G. Hydroethanolic Extract of Lampaya Medicinalis Phil. ( Verbenaceae) Decreases Proinflammatory Marker Expression in Palmitic Acid-exposed Macrophages. Endocr Metab Immune Disord Drug Targets 2020; 20:1309-1320. [PMID: 32400338 DOI: 10.2174/1871530320666200513082300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obesity is a major health problem associated with increased comorbidities, which are partially triggered by inflammation. Proinflammatory macrophage infiltration in adipose tissue of individuals with obesity increases chronic inflammation. Obesity is associated with elevated plasma levels of saturated fatty acids, such as palmitic acid (PA), which promotes inflammation in vivo and in vitro. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in the folk medicine of Northern Chile to counteract inflammation of rheumatic diseases. Hydroethanolic extract of lampaya (HEL) contains spectrophotometrically defined compounds that may contribute to the observed effect on inflammation. METHODS We evaluated the phytochemical composition of HEL by high-performance liquid chromatography coupled to diode array detection (HPLC-DAD) and liquid chromatography-electrospray ionization- tandem mass spectrometry (LC-ESI-MS/MS). We assessed whether the exposure to HEL affects PA-induced expression of proinflammatory factors in THP-1 macrophages. RESULTS HPLC-DAD and LC-ESI-MS/MS analyses showed the presence of considerable amounts of flavonoids in HEL. The PA-induced phosphorylation of the inflammatory pathway mediators IKK and NF-κB, as well as the elevated expression and secretion of proinflammatory cytokines (IL-6, TNF-α), were reduced in cells pre-exposed to HEL. CONCLUSION These findings give new insights about the effect of HEL reducing IKK/NF-κB proinflammatory pathway, likely explained by the number of flavonoids contained in the extract. More studies would be needed to define the possible role of Lampaya as a preventive approach in subjects with obesity whose circulating PA might contribute to chronic inflammation.
Collapse
Affiliation(s)
- Paulina Ormazabal
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000 Rancagua, Chile.,Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Mariana Cifuentes
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Rosaria Varì
- Center for Gender- Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Beatrice Scazzocchio
- Center for Gender- Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Roberta Masella
- Center for Gender- Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Igor Pacheco
- Laboratorio de Bioinformatica y Expresion Genica, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Wladimir Vega
- Laboratorio de Bioinformatica y Expresion Genica, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Adrián Paredes
- Laboratorio de Quimica Biologica, Instituto Antofagasta (IA) and Departamento de Quimica, Facultad de Ciencias Basicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| | - Glauco Morales
- Laboratorio de Quimica Biologica, Instituto Antofagasta (IA) and Departamento de Quimica, Facultad de Ciencias Basicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| |
Collapse
|
16
|
Drehmer E, Navarro-Moreno MÁ, Carrera S, Villar VM, Moreno ML. Oxygenic metabolism in nutritional obesity induced by olive oil. The influence of vitamin C. Food Funct 2019; 10:3567-3580. [PMID: 31157805 DOI: 10.1039/c8fo02550a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a medical and sociological problem of great importance due to the high percentage of people affected and the important health consequences that it involves. Most cases of obesity are related to an inadequate diet, rich in fats, which could lead to changes in the patient's oxygenic metabolism. That is why this study has been proposed to evaluate how some aspects of oxygenic metabolism are affected in a nutritional experimental model, with a controlled hyperlipidic liquid diet based on olive oil, and the effect of the antioxidant vitamin C on these conditions. Wistar rats were divided into four groups which received a control and hyperlipidic liquid diet for 30 days, with or without a vitamin C supplement (CO, COC, HO and HOC). First of all the body and fat tissue development was measured in the four groups. Our results showed that the excessive intake of nutritional and healthy fat such as olive oil did not prevent the appearance of obesity and the supplementation with vitamin C did not have a protective effect on body and fat development. The study of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in total liver, liver cytosol, abdominal white fat, brown fat and blood cells showed that vitamin C could have different selectivities and affinities for different enzymes and compartments/tissues of the body. Finally, the effect of vitamin C on various metabolic parameters (glucose, pyruvate, lactate, LDH, ATP, acetoacetate and beta-hydroxybutyrate) provided positive protection against oxidative stress especially under hyperlipidic conditions. All things considered, the present study concludes that vitamin C treatment could protect Wistar rats from the oxidative stress impairment induced by obesity generated by an excessive intake of fats.
Collapse
Affiliation(s)
- Eraci Drehmer
- Department of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | | | | | | |
Collapse
|
17
|
Rebollo-Hernanz M, Zhang Q, Aguilera Y, Martín-Cabrejas MA, Gonzalez de Mejia E. Relationship of the Phytochemicals from Coffee and Cocoa By-Products with their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants (Basel) 2019; 8:E279. [PMID: 31387271 PMCID: PMC6721099 DOI: 10.3390/antiox8080279] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to compare the phytochemicals from coffee and cocoa by-products and their relationship with the potential for reducing markers of inflammation, oxidative stress, adipogenesis, and insulin resistance in vitro. We characterized the phytochemical profile of extracts from coffee husk, coffee silverskin, and cocoa shell and evaluated their in vitro biological activity in RAW264.7 macrophages and 3T3-L1 adipocytes. Pearson correlations and principal component regressions were performed to find the contribution of phytochemicals and underlying mechanisms of action. Coffee husk and silverskin extracts were mainly composed of caffeine and chlorogenic acid. Major components in cocoa shell included theobromine and protocatechuic acid. Both coffee and cocoa by-product extracts effectively reduced inflammatory markers in macrophages and adipocytes (NO, PGE2, TNF-α, MCP-1, and IL-6) and the production of reactive oxygen species (21.5-66.4%). Protocatechuic and chlorogenic acids, together with caffeine, were suggested as main contributors against inflammation and oxidative stress. Furthermore, extracts reduced lipid accumulation (4.1-49.1%) in adipocytes by regulating lipolysis and inducing adipocyte browning. Gallic and chlorogenic acids were associated with reduced adipogenesis, and caffeine with adipocyte browning. Extracts from coffee and cocoa by-products also modulated the phosphorylation of insulin receptor signaling pathway and stimulated GLUT-4 translocation (52.4-72.9%), increasing glucose uptake. The insulin-sensitizing potential of the extracts was mainly associated with protocatechuic acid. For the first time, we identified the phytochemicals from coffee and cocoa by-products and offered new insights into their associations with biomarkers of inflammation, oxidative stress, adipogenesis, and insulin resistance in vitro.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiaozhi Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310000, China
| | - Yolanda Aguilera
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria A Martín-Cabrejas
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
Tsuboi H, Sakakibara H, Tatsumi A, Yamakawa-Kobayashi K, Matsunaga M, Kaneko H, Shimoi K. Serum IL-6 levels and oxidation rate of LDL cholesterol were related to depressive symptoms independent of omega-3 fatty acids among female hospital and nursing home workers in Japan. J Affect Disord 2019; 249:385-393. [PMID: 30818247 DOI: 10.1016/j.jad.2019.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Chronic low-grade inflammation and oxidative stress are commonly observed in persons with depression or depressive symptoms. We explored the degree of depressive symptoms under psychological stress in relation to serum LDL oxidation, inflammatory markers, and fatty acid (FA) distribution among female population. The purpose of this study was to identify peripheral factors that are related to depressive symptoms, and to assess how each factor is related to depressive symptoms. METHODS 133 female workers in a hospital and nursing homes were recruited in Japan. Depressive symptoms were assessed using the Japanese version of the Centre for Epidemiologic Studies Depression Scale (CES-D), and perceived stress was assessed using the visual analogue scale. Cytokine levels and oxidation rate of LDL cholesterol (ox-LDL/LDL) were measured as indices of inflammation and oxidation. Omega-3 FA distribution was also measured. Path analysis and hierarchical regression analysis were used to determine if each factor was predictive of depressive symptoms. RESULTS It was identified that serum ox-LDL/LDL was positively connected with depressive symptoms, but was more strongly related to perceived psychological stress. Elevated serum IL-6 was positively correlated with depressive symptoms, though the effect was partly transmitted via ox-LDL/LDL. Additionally, serum ω3 PUFAs were inversely associated with depressive symptoms independently of IL-6 or ox-LDL/LDL. CONCLUSION Although this study is unlikely to fully explain the causes of depressive symptoms, it suggests that psychological stress and somatic factors such as inflammation, oxidation and nutrition are related to depressive symptoms. These findings suggest the therapeutic potential of lifestyle targets to alleviate the identified depression risk factors, anti-oxidative therapies, anti-inflammatory therapies and nutritional interventions to prevent depression.
Collapse
Affiliation(s)
- Hirohito Tsuboi
- Institute of Medical, Pharmaceutical & Health Sciences, Kanazawa University, Kanazawa, Japan; Department of Neurology and Internal Psychosomatic Medicine, Bantane Hospital, Fujita Health University School of Medicine, Nagoya, Japan.
| | - Hiroyuki Sakakibara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan; Faculty of Agriculture, University of Miyazaki, Japan.
| | - Asami Tatsumi
- Department of Community Health Nursing, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | - Masahiro Matsunaga
- Department of Neurology and Internal Psychosomatic Medicine, Bantane Hospital, Fujita Health University School of Medicine, Nagoya, Japan; Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan.
| | - Hiroshi Kaneko
- Department of Neurology and Internal Psychosomatic Medicine, Bantane Hospital, Fujita Health University School of Medicine, Nagoya, Japan; Department of Internal Medicine, Hoshigaoka Maternity Hospital, Nagoya, Japan.
| | - Kayoko Shimoi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
19
|
Kim HJ, Lee J, Chae DW, Lee KB, Sung SA, Yoo TH, Han SH, Ahn C, Oh KH. Serum klotho is inversely associated with metabolic syndrome in chronic kidney disease: results from the KNOW-CKD study. BMC Nephrol 2019; 20:119. [PMID: 30943913 PMCID: PMC6446407 DOI: 10.1186/s12882-019-1297-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/17/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MS) is prevalent in chronic kidney disease (CKD). Klotho, a protein linked to aging, is closely associated with CKD. Each component of MS and klotho has an association. However, little is known about the association between klotho and MS per se. We investigated the association between serum klotho levels and MS using baseline cross-sectional data obtained from a large Korean CKD cohort. METHODS Of the 2238 subjects recruited in the KoreaN Cohort Study for Outcome in Patients With Chronic Kidney Disease (KNOW-CKD) between 2011 and 2016, 484 patients with missing data on serum klotho and extreme klotho values (values lower than the detectable range or > 6000 pg/mL) or with autosomal dominant polycystic kidney disease patients were excluded. The data of the remaining 1754 subjects were included in the present study. MS was defined using the revised National Cholesterol Education Program Adult Treatment Panel (NCEP-ATP) III criteria. Serum klotho levels were measured using an enzyme-linked immunosorbent assay. RESULTS Mean patient age was 54.9 ± 12.1 years and 1110 (63.3%) were male. The prevalence of MS among all study subjects was 63.7% (n = 1118). The median serum klotho level was 527 pg/mL (interquartile range [IQR]: 418-656 pg/mL). Serum klotho level was significantly lower in MS patients than patients without MS (Median [IQR]; 521 pg/mL [413, 651] vs. 541 pg/mL [427, 676], respectively; P = 0.012). After adjusting for age, sex, estimated glomerular filtration rate, and overt proteinuria, serum klotho was independently associated with MS (adjusted odds ratio [OR], 0.44; 95% confidence interval, 0.23-0.82; P = 0.010). Furthermore, the adjusted OR for MS was found to be significantly increased at serum klotho levels of < 518 pg/mL (receiver operating characteristic curve cut-off value). CONCLUSIONS Serum klotho was inversely associated with the presence of MS in patients with CKD. TRIAL REGISTRATION This trial was registered on ClinicalTrials.gov on 26 June 2012 ( https://clinicaltrials.gov;NCT01630486 ).
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Internal Medicine, Dongguk University College of Medicine, Gyeongju-si, Gyeongsangbuk-do, Korea
| | - Joongyub Lee
- School of Medicine, Inha University, Incheon, Korea.,Department of Prevention and Management, Inha University Hospital, Incheon, Korea
| | - Dong-Wan Chae
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnamsi, Gyeonggi-do, Korea
| | - Kyu-Beck Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Ah Sung
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea.
| |
Collapse
|
20
|
Bayliak MM, Abrat OB, Storey JM, Storey KB, Lushchak VI. Interplay between diet-induced obesity and oxidative stress: Comparison between Drosophila and mammals. Comp Biochem Physiol A Mol Integr Physiol 2018; 228:18-28. [PMID: 30385171 DOI: 10.1016/j.cbpa.2018.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
Abstract
Obesity caused by excessive fat accumulation in adipocytes is a growing global problem and is a major contributing risk factor for many chronic metabolic diseases. There is increasing evidence that oxidative stress plays a crucial role in both obesity progression and obesity-related complications. In recent years, Drosophila models of diet-induced obesity and associated pathologies have been successfully developed through manipulation of carbohydrate or fat concentrations in the food. Obese flies accumulate triacylglycerols in the fat body, an organ homologous to mammalian adipose tissue and exhibit metabolic and physiological complications including hyperglycemia, redox imbalance and shortened longevity; these are all similar to those observed in obese humans. In this review, we summarize current data on the mechanisms of oxidative stress induction in obesity, with emphasis on metabolic switches and the involvement of redox-responsive signaling pathways such as NF-κB and Nfr2. The recent achievements with D. melanogaster model suggest a complicated relationship between obesity, oxidative stress, and longevity but the Drosophila model offers probably the best opportunities to delve further into unraveling these interactions, particularly the roles of antioxidants and of Nrf2-regulated responses, in order to increase our understanding of the obese metabolic phenotype and test and develop anti-obesity pharmaceuticals.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk 76018, Ukraine.
| | - Olexandra B Abrat
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk 76018, Ukraine.
| | - Janet M Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
21
|
Cardoso S, Moreira PI. Diabesity and brain disturbances: A metabolic perspective. Mol Aspects Med 2018; 66:71-79. [PMID: 30321556 DOI: 10.1016/j.mam.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
The last decades have been marked by an increased prevalence in non-communicable diseases such as obesity and type 2 diabetes (T2D) as well as by population aging and age-related (brain) diseases. The current notion that the brain and the body are interrelated units is gaining the attention of the scientific and medical community. Growing evidence demonstrates that there is a significant overlap in risk, comorbidity, and pathophysiological mechanisms across obesity, T2D and brain disturbances; settings that seem to be worsened when both obesity and T2D occur simultaneously, the so-called diabesity. Thereupon, there is a great concern to critically appraise and understand the mechanisms by which diabesity can affect brain responses, and may accelerate the decline in brain health. In this framework, metabolic disturbances mediated by altered insulin signaling and mitochondrial function arise among the multifactorial interactions described to occur between obesity, T2D and neurocognitive deficits. In this review we have compiled all the notions and evidence describing how diabesity negatively influences brain function putting the emphasis on insulin signaling pathway disturbances and mitochondrial anomalies. We also debate lifestyle interventions as amenable strategies to lessen metabolic anomalies and, consequently, diabesity-associated brain alterations.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Institute of Physiology - Faculty of Medicine - University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
22
|
De Carli L, Gambino R, Lubrano C, Rosato R, Bongiovanni D, Lanfranco F, Broglio F, Ghigo E, Bo S. Impaired taste sensation in type 2 diabetic patients without chronic complications: a case-control study. J Endocrinol Invest 2018; 41:765-772. [PMID: 29185232 DOI: 10.1007/s40618-017-0798-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Few and contradictory data suggest changes in taste perception in type 2 diabetes (T2DM), potentially altering food choices. We, therefore, analyzed taste recognition thresholds in T2DM patients with good metabolic control and free of conditions potentially impacting on taste, compared with age-, body mass index-, and sex-matched normoglycemic controls. METHODS An ascending-concentration method was used, employing sucrose (sweet), sodium chloride (salty), citric acid (sour), and quinine hydrochloride (bitter), diluted in increasing concentration solutions. The recognition threshold was the lowest concentration of correct taste identification. RESULTS The recognition thresholds for the four tastes were higher in T2DM patients. In a multiple regression model, T2DM [β = 0.95; 95% CI 0.32-1.58; p = 0.004 (salty); β = 0.61; 0.19-1.03; p = 0.006 (sweet); β = 0.78; 0.15-1.40; p = 0.016 (sour); β = 0.74; 0.22-1.25; p = 0.006 (bitter)] and waist circumference [β = 0.05; 0.01-0.08; p = 0.012 (salty); β = 0.03; 0.01-0.05; p = 0.020 (sweet); β = 0.04; 0.01-0.08; p = 0.020 (sour); β = 0.04; 0.01-0.07; p = 0.007 (bitter)] were associated with the recognition thresholds. Age was associated with salty (β = 0.06; 0.01-0.12; p = 0.027) and BMI with sweet thresholds (β = 0.06; 0.01-0.11; p = 0.019). CONCLUSIONS Taste recognition thresholds were higher in uncomplicated T2DM, and central obesity was significantly associated with this impairment. Hypogeusia may be an early sign of diabetic neuropathy and be implicated in the poor compliance of these patients to dietary recommendations.
Collapse
Affiliation(s)
- L De Carli
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - R Gambino
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - C Lubrano
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - R Rosato
- Department of Psychology, University of Turin, Turin, Italy
| | - D Bongiovanni
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - F Lanfranco
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - F Broglio
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - E Ghigo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - S Bo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| |
Collapse
|
23
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
24
|
Kasum M, Orešković S, Čehić E, Lila A, Ejubović E, Soldo D. The role of female obesity on in vitro fertilization outcomes. Gynecol Endocrinol 2018; 34:184-188. [PMID: 29037105 DOI: 10.1080/09513590.2017.1391209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this review is to analyze the role of obesity on fertility outcome in women undergoing in vitro fertilization (IVF) with respect to clinical or live birth rates and pregnancy loss rates. Despite findings from several earlier and newer studies that obesity does not adversely affect pregnancy outcome in women attempting conception, numerous reports from mostly recent studies suggest that obesity undoubtedly impairs IVF outcomes. Obesity impairs ovarian responsiveness to gonadotrophin stimulation, requiring higher doses of medication, increased risk of cycle cancelation, pre-term delivery, low birth weight or miscarriage, and decreases implantation, clinical pregnancy or live birth rates compared to women of normal weight. The mechanisms underlying the adverse effects of female obesity on IVF outcome may be primarily explained by functional alterations to the hypothalamic-pituitary-ovarian axis. Additionally, obesity appears to affect deleteriously the number and quality of oocytes or embryos, and impairs endometrial decidualization which is necessary for uterine receptivity. Nevertheless, attaining normal body weight by the use of lifestyle modifications, including a healthy diet and exercise over time of several months before and during an IVF treatment, may be successful in achievement of gradual and sustainable weight loss with improvement of IVF outcome.
Collapse
Affiliation(s)
- Miro Kasum
- a Department of Obstetrics and Gynaecology, School of Medicine , University Hospital Centre Zagreb , Zagreb , Croatia
| | - Slavko Orešković
- a Department of Obstetrics and Gynaecology, School of Medicine , University Hospital Centre Zagreb , Zagreb , Croatia
| | - Ermin Čehić
- b Department of Obstetrics and Gynaecology , Cantonal Hospital Zenica , Zenica , Bosnia and Herzegovina
| | - Albert Lila
- c Gynaecology Cabinet , Kosovo Ocupational Health Institute , Giakove , Kosovo
| | - Emina Ejubović
- b Department of Obstetrics and Gynaecology , Cantonal Hospital Zenica , Zenica , Bosnia and Herzegovina
| | - Dragan Soldo
- d Department of Obstetrics and Gynaecology , University Clinical Hospital Mostar , Mostar , Bosnia and Herzegovina
| |
Collapse
|
25
|
Emre E, Ural E, Aktas M, Kahraman G, Bildirici U, Kilic T, Akay K, Cekirdeci EI, Şahin T, Ural D. The Existence of Obesity Paradox and Effect of Obesity on In-Hospital-Outcomes on Elderly Patients Treated with Primary Percutaneous Coronary Intervention. INT J GERONTOL 2018. [DOI: 10.1016/j.ijge.2017.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
26
|
Ciavattini A, Montik N, Clemente N, Santoni F, Moriconi L, Serri M, Barbadoro P, Sabbatinelli J, Vignini A. Obesity and ultrasound-estimated visceral fat deposits in women undergoing Assisted Reproductive Technology (ART) procedures. Gynecol Endocrinol 2017; 33:972-976. [PMID: 28475432 DOI: 10.1080/09513590.2017.1323858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to evaluate the influence of body mass index (BMI) and ultrasound-estimated visceral adipose tissue deposits on oocyte quality and pregnancy rate in women undergoing Assisted Reproductive Technology (ART) procedures. The study included 58 women who underwent ART procedures. According to their BMI, the women were divided into normal weight and overweight/obese; an ultrasound evaluation of preperitoneal fat thickness (PFT) was also performed for each patient. The oocyte quality was then assessed, and samples of follicular fluid were collected from each woman, in order to evaluate the intrafollicular concentration of reactive oxygen species (ROS) as markers of oxidative stress and pro-inflammatory cytokines (IL-1β and IL-6) as markers of chronic inflammation. A negative correlation was found between BMI (as well as PFT) and the number of retrieved oocytes (r = -0.3; p <0.05 and r = -0.5; p < 0.001, respectively), good quality oocytes (r = -0.4; p = <0.05) and obtained embryos (r = -0.3; p < 0.05). In women undergoing ART procedures, BMI and PFT negatively influence the number of oocytes retrieved and their quality. However, on multivariable analysis, only age, PFT and number of retrieved oocytes affect the success rate of ART procedures.
Collapse
Affiliation(s)
| | - Nina Montik
- a Woman's Health Sciences Department, Gynecologic Section
| | | | | | | | - Matteo Serri
- a Woman's Health Sciences Department, Gynecologic Section
| | | | - Jacopo Sabbatinelli
- c Department of Clinical Sciences , Section of Biochemistry, Biology and Physics, Polytechnic University of Marche , Ancona , Italy
| | - Arianna Vignini
- c Department of Clinical Sciences , Section of Biochemistry, Biology and Physics, Polytechnic University of Marche , Ancona , Italy
| |
Collapse
|
27
|
Sugizaki T, Zhu S, Guo G, Matsumoto A, Zhao J, Endo M, Horiguchi H, Morinaga J, Tian Z, Kadomatsu T, Miyata K, Itoh H, Oike Y. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality. NPJ Aging Mech Dis 2017; 3:12. [PMID: 28900540 PMCID: PMC5591191 DOI: 10.1038/s41514-017-0012-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022] Open
Abstract
A favorable effect of an inhibitor of the sodium–glucose cotransporter 2 (SGLT2i) on mortality of diabetic patients was recently reported, although mechanisms underlying that effect remained unclear. Here, we examine SGLT2i effects on survival of diabetic mice and assess factors underlying these outcomes. To examine SGLT2i treatment effects in a model of severe diabetes, we fed genetically diabetic db/db mice a high-fat diet and then assessed outcomes including diabetic complications between SGLT2i TA-1887-treated and control mice. We also compare effects of SGLT2i TA-1887 with those of lowering blood glucose levels via insulin treatment. Untreated db/db mice showed remarkable weight loss, or cachexia, while TA-1887-treated mice did not but rather continued to gain weight at later time points and decreased mortality. TA-1887 treatment prevented pancreatic beta cell death, enhanced preservation of beta cell mass and endogenous insulin secretion, and increased insulin sensitivity. Moreover, TA-1887 treatment attenuated inflammation, oxidative stress, and cellular senescence, especially in visceral white adipose tissue, and antagonized endothelial dysfunction. Insulin treatment of db/db mice also prevented weight loss and antagonized inflammation and oxidative stress. However, insulin treatment had less potent effects on survival and prevention of cellular senescence and endothelial dysfunction than did TA-1887 treatment. SGLT2i treatment prevents diabetic cachexia and death by preserving function of beta cells and insulin target organs and attenuating complications. SGLT2i treatment may be a promising therapeutic strategy for type 2 diabetes patients with morbid obesity and severe insulin resistance. Sodium-glucose cotransporter 2 inhibitor (SGLT2i) has a favorable effect on mortality of diabetic subjects, but the mechanism stays unclear. Taichi Sugizaki at Kumamoto University examined SGLT2i effects in severe diabetic obese mice, and discovered that they showed prolonged survival without pathological weight loss, or cachexia. As with SGLT2i, Insulin also prevented cachexia, improved pancreatic beta cell function, insulin sensitivity and some organ damages. However, what makes SGLT2i important was to suppress cellular aging or vessel inflammation, while insulin accelerated those developments, which may lead to a result that SGLT2i has contributed to prolonged survival more than insulin. SGLT2i demonstrates an association with survival period upon maintaining good condition of pancreatic beta cells and insulin target organs, providing insight into strategies for treatment of severe diabetes.
Collapse
Affiliation(s)
- Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan.,Department of Immunology, Allergy and Vascular Medicine, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto, 860-8556 Japan.,Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Shunshun Zhu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| | - Ge Guo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| | - Akiko Matsumoto
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| | - Jiabin Zhao
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| | - Zhe Tian
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan.,Department of Immunology, Allergy and Vascular Medicine, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto, 860-8556 Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
| |
Collapse
|
28
|
Oviedo-Solís CI, Sandoval-Salazar C, Lozoya-Gloria E, Maldonado-Aguilera GA, Aguilar-Zavala H, Beltrán-Campos V, Pérez-Vázquez V, Ramírez-Emiliano J. Ultraviolet light-C increases antioxidant capacity of the strawberry ( Fragaria x ananassa) in vitro and in high-fat diet-induced obese rats. Food Sci Nutr 2017; 5:1004-1014. [PMID: 28948018 PMCID: PMC5608977 DOI: 10.1002/fsn3.487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Flavonoids and polyphenols from the strawberry and other fruits have been proposed to reduce the oxidative stress produced by the obesity and her complications. Moreover, it has been proposed that irradiation with UV-C to strawberry may increase the antioxidant capacity of this fruit. The aim of the present study was to explore the effects of the UV-C on antioxidant capacity of strawberry in vitro and in vivo. Strawberry slices were irradiated with ultraviolet light-C (UV-C) at 1.2 W/m2/16.5 min; then, the power antioxidant was isolated from the nonirradiated and irradiated strawberry slices into an organic phase, which was lyophilized to finally producing a nonirradiated strawberry extract (NSE) and UV-irradiated strawberry extract (UViSE) powder. After the antioxidant capacity of both extracts were determined in vitro using the Trolox equivalent antioxidant capacity (TEAC) assay and in vivo using high-fat diet-induced obese rats. Our results demonstrated that irradiation with UV-C to strawberry slices increased the antioxidants content, which was corroborated in vitro, where the antioxidant capacity of UViSE was higher than the NSE. However, in obese rats, the reduction in the oxidative damage by the UViSE and NSE were similar in peripheral tissues. Interestingly, the UViSE was better than the NSE to reduce the oxidative damage in brain. In conclusion, UV-irradiation increases the antioxidants content of strawberry that is correlated with an increased antioxidant capacity in vitro, but in rats, this antioxidant capacity may be more effective in brain than in peripheral tissues.
Collapse
Affiliation(s)
| | - Cuauhtémoc Sandoval-Salazar
- División de Ciencias de Salud e Ingenierías Departamento de Enfermería y Obstetricia Universidad de Guanajuato Celaya Gto. México
| | - Edmundo Lozoya-Gloria
- Laboratorio de Bioquímica y Biología Molecular de Productos Naturales de Plantas CINVESTAV Irapuato, Gto México
| | - Genaro A Maldonado-Aguilera
- División de Ciencias de Salud e Ingenierías Departamento de Enfermería y Obstetricia Universidad de Guanajuato Celaya Gto. México
| | - Herlinda Aguilar-Zavala
- División de Ciencias de Salud e Ingenierías Departamento de Enfermería Clínica Universidad de Guanajuato Celaya Gto. México
| | - Vicente Beltrán-Campos
- División de Ciencias de Salud e Ingenierías Departamento de Enfermería Clínica Universidad de Guanajuato Celaya Gto. México
| | - Victoriano Pérez-Vázquez
- División de Ciencias de la Salud Departamento de Ciencias Médicas Campus León Universidad de Guanajuato León México
| | - Joel Ramírez-Emiliano
- División de Ciencias de la Salud Departamento de Ciencias Médicas Campus León Universidad de Guanajuato León México
| |
Collapse
|
29
|
Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5724046. [PMID: 28408970 PMCID: PMC5376943 DOI: 10.1155/2017/5724046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/17/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750 μg/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters (E/E′, E′/A′, E/Vp) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFNγ, and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes.
Collapse
|
30
|
Meldrum DR, Morris MA, Gambone JC. Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil Steril 2017; 107:833-839. [PMID: 28292617 DOI: 10.1016/j.fertnstert.2017.02.104] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Abstract
Obesity has become pandemic owing to an obesogenic environment (inexpensive calorie dense food, technologies and structure of communities that reduce or replace physical activity, and inexpensive nonphysical entertainment) and excessive emphasis on low fat intake resulting in excessive intake of simple carbohydrates and sugar. Effects are greater for women owing to their smaller size and extra weight gain with each pregnancy, with 38% of American adult women being obese. Women are responsible for more than three-fourths of the more than 400 billion dollars of excess direct health care expenditures due to obesity. They are less likely to conceive naturally and with fertility treatments, more likely to miscarry, and have more prematurity and other complications with their pregnancies. We describe the many causes, including key roles that a dysbiotic intestinal microbiome plays in metabolic derangements accompanying obesity, increased calorie absorption, and increased appetite and fat storage. Genetic causes are contributory if these other factors are present but have limited effect in isolation. The numerous health consequences of obesity are discussed. The authors itemize ways that an individual and societies can mitigate the pandemic. However, individual will power, the will of society to enact change, and willingness of the public to accept outside intervention frustrate efforts to stabilize or reverse this crisis. The most promising strategies are education and efforts by individuals to make responsible choices several times every day to protect, most effectively by prevention, their most valuable asset.
Collapse
Affiliation(s)
- David R Meldrum
- Division of Reproductive Endocrinology and Infertility, Department of Reproductive Medicine, University of California, San Diego, California.
| | - Marge A Morris
- Diabetes Education and Nutrition Department, Mercy Regional Medical Center, Durango, Colorado
| | - Joseph C Gambone
- David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
31
|
Impact of Yoga and Meditation on Cellular Aging in Apparently Healthy Individuals: A Prospective, Open-Label Single-Arm Exploratory Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7928981. [PMID: 28191278 PMCID: PMC5278216 DOI: 10.1155/2017/7928981] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
This study was designed to explore the impact of Yoga and Meditation based lifestyle intervention (YMLI) on cellular aging in apparently healthy individuals. During this 12-week prospective, open-label, single arm exploratory study, 96 apparently healthy individuals were enrolled to receive YMLI. The primary endpoints were assessment of the change in levels of cardinal biomarkers of cellular aging in blood from baseline to week 12, which included DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OH2dG), oxidative stress markers reactive oxygen species (ROS), and total antioxidant capacity (TAC), and telomere attrition markers telomere length and telomerase activity. The secondary endpoints were assessment of metabotrophic blood biomarkers associated with cellular aging, which included cortisol, β-endorphin, IL-6, BDNF, and sirtuin-1. After 12 weeks of YMLI, there were significant improvements in both the cardinal biomarkers of cellular aging and the metabotrophic biomarkers influencing cellular aging compared to baseline values. The mean levels of 8-OH2dG, ROS, cortisol, and IL-6 were significantly lower and mean levels of TAC, telomerase activity, β-endorphin, BDNF, and sirtuin-1 were significantly increased (all values p < 0.05) post-YMLI. The mean level of telomere length was increased but the finding was not significant (p = 0.069). YMLI significantly reduced the rate of cellular aging in apparently healthy population.
Collapse
|