1
|
Buckeridge E, Caballero CC, Smith DH, Stott MB, Carere CR. Substrate and nutrient manipulation during continuous cultivation of extremophilic algae, Galdieria spp. RTK 37.1, substantially impacts biomass productivity and composition. Biotechnol Bioeng 2024; 121:3428-3439. [PMID: 39032007 DOI: 10.1002/bit.28814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
The extremophilic nature and metabolic flexibility of Galdieria spp. highlights their potential for biotechnological application. However, limited research into continuous cultivation of Galdieria spp. has slowed progress towards the commercialization of these algae. The objective of this research was to investigate biomass productivity and growth yields during continuous photoautotrophic, mixotrophic and heterotrophic cultivation of Galdieria sp. RTK371; a strain recently isolated from within the Taupō Volcanic Zone in Aotearoa-New Zealand. Results indicate Galdieria sp. RTK371 grows optimally at pH 2.5 under warm white LED illumination. Photosynthetic O2 production was dependent on lighting intensity with a maximal value of (133.5 ± 12.1 nmol O2 mgbiomass -1 h-1) achieved under 100 μmol m-2 s-1 illumination. O2 production rates slowed significantly to 42 ± 1 and <0.01 nmol O2 mgbiomass -1 h-1 during mixotrophic and heterotrophic growth regimes respectively. Stable, long-term chemostat growth of Galdieria sp. RTK371 was achieved during photoautotrophic, mixotrophic and heterotrophic growth regimes. During periods of ammonium limitation, Galdieria sp. RTK371 increased its intracellular carbohydrate content (up to 37% w/w). In contrast, biomass grown in ammonium excess was composed of up to 65% protein (w/w). Results from this study demonstrate that the growth of Galdieria sp. RTK371 can be manipulated during continuous cultivation to obtain desired biomass and product yields over long cultivation periods.
Collapse
Affiliation(s)
- Emma Buckeridge
- Te Tari Pūhanga Tukanga Matū, Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand
| | - Carlos C Caballero
- Te Tari Pūhanga Tukanga Matū, Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand
- Scion Te Papa Tipu Innovation Park, Rotorua, Aotearoa, New Zealand
- Laboratorio de Biorefinería, Universidad Nacional, Heredia, Costa Rica
| | - Daniel H Smith
- Te Tari Pūhanga Tukanga Matū, Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand
| | - Matthew B Stott
- Te Kura Pūtaiao Koiora-School of Biological Sciences, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand
| | - Carlo R Carere
- Te Tari Pūhanga Tukanga Matū, Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand
| |
Collapse
|
2
|
Chen M, Chen Y, Zhang Q. Assessing global carbon sequestration and bioenergy potential from microalgae cultivation on marginal lands leveraging machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174462. [PMID: 38992374 DOI: 10.1016/j.scitotenv.2024.174462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive study unveils the vast global potential of microalgae as a sustainable bioenergy source, focusing on the utilization of marginal lands and employing advanced machine learning techniques to predict biomass productivity. By identifying approximately 7.37 million square kilometers of marginal lands suitable for microalgae cultivation, this research uncovers the extensive potential of these underutilized areas, particularly within equatorial and low-latitude regions, for microalgae bioenergy development. This approach mitigates the competition for food resources and conserves freshwater supplies. Utilizing cutting-edge machine learning algorithms based on robust datasets from global microalgae cultivation experiments spanning 1994 to 2017, this study integrates essential environmental variables to map out a detailed projection of potential yields across a variety of landscapes. The analysis further delineates the bioenergy and carbon sequestration potential across two effective cultivation methods: Photobioreactors (PBRs), and Open Ponds, with PBRs showcasing exceptional productivity, with a global average daily biomass productivity of 142.81mgL-1d-1, followed by Open Ponds at 122.57mgL-1d-1. Projections based on optimal PBR conditions suggest an annual yield of 99.54 gigatons of microalgae biomass. This yield can be transformed into 64.70 gigatons of biodiesel, equivalent to 58.68 gigatons of traditional diesel, while sequestering 182.16 gigatons of CO2, equating to approximately 4.5 times the global CO2 emissions projected for 2023. Notably, Australia leads in microalgae biomass production, with an annual output of 16.19 gigatons, followed by significant contributions from Kazakhstan, Sudan, Brazil, the United States, and China, showcasing the diverse global potential for microalgae bioenergy across varying ecological and geographical landscapes. Through this rigorous investigation, the study emphasizes the strategic importance of microalgae cultivation in achieving sustainable energy solutions and mitigating climate change, while also acknowledging the scalability challenges and the necessity for significant economic and energy investments.
Collapse
Affiliation(s)
- Minghao Chen
- School of Engineering and Applied Sciences, Harvard University, MA, 02138 Cambridge, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, MA 02139 Cambridge, USA
| | - Yixuan Chen
- Hydrological Bureau of Guangdong Province, Guangzhou 510145, China
| | - Qingtao Zhang
- Guangdong Provincial Key Laboratory for Marine Civil Engineering, School of Civil Engineering, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China.
| |
Collapse
|
3
|
Patelou M, Koletti A, Infante C, Skliros D, Komaitis F, Kalloniati C, Tsiplakou E, Mavrommatis A, Mantecón L, Flemetakis E. Omics exploration of Tetraselmis chuii adaptations to diverse light regimes. Antonie Van Leeuwenhoek 2024; 118:21. [PMID: 39419938 DOI: 10.1007/s10482-024-02028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Microalgae are significantly influenced by light quality and quantity, whether in their natural habitats or under laboratory and industrial culture conditions. The present study examines the adaptive responses of the marine microalga Tetraselmis chuii to different light regimes, using a cost-effective filtering method and a multi-omics approach. Microalgal growth rates were negatively affected by all filtered light regimes. After six days of cultivation, growth rate for cultures exposed to blue and green filtered light was 67%, while for red filter was 83%, compared to control cultures. Transcriptomic analysis revealed that the usage of green filters resulted in upregulation of transcripts involved in ribosome biogenesis or coding for elongation factors, exemplified by a 2.3-fold increase of TEF3. On the other hand, a 2.7-fold downregulation was observed in photosynthesis-related petJ. Exposure to blue filtered light led to the upregulation of transcripts associated with pyruvate metabolism, while photosynthesis was negatively impacted. In contrast, application of red filter induced minor transcriptomic alterations. Regarding metabolomic analysis, sugars, amino acids, and organic acids exhibited significant changes under different light regimes. For instance, under blue filtered light sucrose accumulated over 6-fold, while aspartic acid content decreased by 4.3-fold. Lipidomics analysis showed significant accumulation of heptadecanoic and linoleic acids under green and red light filters. Together, our findings indicate that filter light can be used for targeted metabolic manipulation.
Collapse
Affiliation(s)
- Maria Patelou
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Carlos Infante
- Fitoplancton Marino, S.L., Dársena Comercial S/N (Muelle Pesquero), El Puerto de Santa María, 11500, Cádiz, Spain
| | - Dimitrios Skliros
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Fotios Komaitis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Chrysanthi Kalloniati
- Department of Marine Sciences, University of the Aegean, University Hill, 81100, Mytilene, Greece
| | - Eleni Tsiplakou
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Alexandros Mavrommatis
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., Dársena Comercial S/N (Muelle Pesquero), El Puerto de Santa María, 11500, Cádiz, Spain
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
4
|
Ugya AY, Hasan DB, Ari HA, Sheng Y, Chen H, Wang Q. Antibiotic synergistic effect surge bioenergy potential and pathogen resistance of Chlorella variabilis biofilm. ENVIRONMENTAL RESEARCH 2024; 259:119521. [PMID: 38960350 DOI: 10.1016/j.envres.2024.119521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Tetracycline (TC) and ciprofloxacin (CF) induce a synergistic effect that alters the biochemical composition, leading to a decrease in the growth and photosynthetic efficiency of microalgae. But the current study provides a novel insight into stress-inducing techniques that trigger a change in macromolecules, leading to an increase in the bioenergy potential and pathogen resistance of Chlorella variabilis biofilm. The study revealed that in a closed system, a light intensity of 167 μmol/m2/s causes 93.5% degradation of TC and 16% degradation of CF after 7 days of exposure, hence availing the products for utilization by C. variabilis biofilm. The resistance to pathogens invasion was linked to 85% and 40% increase in the expression level of photosystem II oxygen-evolving enhancer protein 3 (PsbQ), and mitogen activated kinase (MAK) respectively. The results also indicate that a surge in light intensity triggers 49% increase in the expression level of lysophosphatidylcholine (LPC) (18:2), which is an important lipidomics that can easily undergo transesterification into bioenergy. The thermogravimetric result indicates that the biomass sample of C. variabilis biofilm cultivated under light intensity of 167 μmol/m2/s produces a higher residual mass of 45.5% and 57.5 under air and inert conditions, respectively. The Fourier transform infrared (FTIR) indicates a slight shift in the major functional groups, while the energy-dispersive X-ray spectroscopy (SEM-EDS) and X-ray fluorescence (XRF) indicate clear differences in the morphology and elemental composition of the biofilm biomass in support of the increase bioenergy potential of C. variabilis biofilm. The current study provides a vital understanding of a innovative method of cultivation of C. variabilis biofilm, which is resistant to pathogens and controls the balance between fatty acid and TAG synthesis leading to surge in bioenergy potential and environmental sustainability.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China; Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Diya'uddeen Basheer Hasan
- Centre for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | - Yangyang Sheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China.
| |
Collapse
|
5
|
Wankhede L, Bhardwaj G, Saini R, Osorio-Gonzalez CS, Brar SK. Technological modes and processes to enhance the Rhodosporidium toruloides based lipid accumulation. Microbiol Res 2024; 287:127840. [PMID: 39032267 DOI: 10.1016/j.micres.2024.127840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Rhodosporidium toruloides has emerged as an excellent option for microbial lipid production due to its ability to accumulate up to 70 % of lipids per cell dry weight, consume multiple substrates such as glucose and xylose, and tolerate toxic compounds. Despite the potential of Rhodosporidium toruloides for high lipid yields, achieving these remains is a significant hurdle. A comprehensive review is essential to thoroughly evaluate the advancements in processes and technologies to enhance lipid production in R. toruloides. The review covers various strategies for enhancing lipid production like co-culture, adaptive evolution, carbon flux analysis, as well as different modes of fermentation. This review will help researchers to better understand the recent developments in technologies for sustainable and scalable lipid production from R. toruloides and simultaneously emphasize the need for developing an efficient and sustainable bioprocess.
Collapse
Affiliation(s)
- Lachi Wankhede
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Gaurav Bhardwaj
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Carlos S Osorio-Gonzalez
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
6
|
Wang X, Ma S, Kong F. Microalgae Biotechnology: Methods and Applications. Bioengineering (Basel) 2024; 11:965. [PMID: 39451341 PMCID: PMC11506088 DOI: 10.3390/bioengineering11100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Microalgae are regarded as sustainable and promising chassis for biotechnology due to their efficient photosynthesis and ability to convert CO2 into valuable products [...].
Collapse
Affiliation(s)
| | | | - Fantao Kong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (X.W.); (S.M.)
| |
Collapse
|
7
|
Sipaúba-Tavares LH, Costa JID, Fenerick DC. Different light intensity on Messastrum gracile growth under phototrophic cultivation in laboratory. Braz J Microbiol 2024; 55:2189-2197. [PMID: 38839707 PMCID: PMC11405606 DOI: 10.1007/s42770-024-01389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
The present research evaluates the effects of three different lighting intensities, 60 (control), 30 and 120 µmol photons m- 2 s- 1 on Messastrum gracile growth. The observations indicated that a light intensity of 60 µmol photons m- 2 s- 1 resulted in higher cell density during experimental period. The light intensity of 120 µmol photons m- 2 s- 1 had a strong negative impact on M. gracile growth. Parameters such as lipid and protein content, cell density, chlorophyll-a and biomass were lower compared to the other light intensities. On the 14th and 21st growth days, the biomass, lipid and protein content were higher at 60 µmol photons m- 2 s- 1 with 800 mg L- 1, 5.7% and 34.4% biomass dry weight, respectively. The study also highlighted the economic aspects of M. gracile cultivation. The light intensities 30 and 60 µmol photons m- 2 s- 1 were found to be more advantageous than 120 µmol photons m- 2 s- 1 in terms of biomass, unit cost, lipid and protein content. Based on these findings, it was concluded that the light intensities of 30 and 60 µmol photons m- 2 s- 1 are more viable for M. gracile cultivation in laboratory under conditions used.
Collapse
Affiliation(s)
- Lúcia Helena Sipaúba-Tavares
- Laboratory of Limnology and Plankton Production, Aquaculture Center, Universidade Estadual Paulista- UNESP, CEP 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Jesaias Ismael da Costa
- Laboratory of Limnology and Plankton Production, Aquaculture Center, Universidade Estadual Paulista- UNESP, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Débora Cristina Fenerick
- Laboratory of Limnology and Plankton Production, Aquaculture Center, Universidade Estadual Paulista- UNESP, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
8
|
Rearte TA, Celis-Pla PSM, Abdala-Díaz R, Castro-Varela P, Marsili SN, García C, Cerón-García MC, Figueroa FL. Increase in polyunsaturated fatty acids and carotenoid accumulation in the microalga Golenkinia brevispicula (Chlorophyceae) by manipulating spectral irradiance and salinity. Biotechnol Bioeng 2024. [PMID: 39183489 DOI: 10.1002/bit.28831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Microalgal biotechnology offers a promising platform for the sustainable production of diverse renewable bioactive compounds. The key distinction from other microbial bioprocesses lies in the critical role that light plays in cultures, as it serves as a source of environmental information to control metabolic processes. Therefore, we can use these criteria to design a bioprocess that aims to stimulate the accumulation of target molecules by controlling light exposure. We study the effect on biochemical and photobiological responses of Golenkinia brevispicula FAUBA-3 to the exposition of different spectral irradiances (specifically, high-fluence PAR of narrow yellow spectrum complemented with low intensity of monochromatic radiations of red, blue, and UV-A) under prestress and salinity stress conditions. High light (HL) intensity coupled to salinity stress affected the photosynthetic activity and photoprotection mechanisms as shown by maximal quantum yield (Fv/Fm) and non-photochemical quenching (NPQmax) reduction, respectively. HL treatments combined with the proper dose of UV-A radiation under salinity stress induced the highest carotenoid content (2.75 mg g dry weight [DW]- 1) composed mainly of lutein and β-carotene, and the highest lipid accumulation (35.3% DW) with the highest polyunsaturated fatty acid content (alpha-linolenic acid (C18:3) and linoleic acid (C18:2)). Our study can guide the strategies for commercial indoor production of G. brevispicula for high-value metabolites.
Collapse
Affiliation(s)
- T A Rearte
- Cátedra de Química Inorgánica y Analítica, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, CABA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - P S M Celis-Pla
- Laboratory of Aquatic Environmental Research (LACER)/HUB-AMBIENTAL UPLA, Playa Ancha University, Valparaíso, Chile
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - R Abdala-Díaz
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Málaga, Spain
| | - P Castro-Varela
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - S N Marsili
- Cátedra de Química Inorgánica y Analítica, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, CABA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - C García
- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M C Cerón-García
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - F L Figueroa
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Málaga, Spain
| |
Collapse
|
9
|
Singh P, Mohanty SS, Mohanty K. Comprehensive assessment of microalgal-based treatment processes for dairy wastewater. Front Bioeng Biotechnol 2024; 12:1425933. [PMID: 39165401 PMCID: PMC11333367 DOI: 10.3389/fbioe.2024.1425933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
The dairy industry is becoming one of the biggest sectors within the global food industry, and these industries use almost 34% of the water. The amount of water used is governed by the production process and the technologies employed in the plants. Consequently, the dairy industries generate almost 0.2-10 L of wastewater per liter of processed milk, which must be treated before being discharged into water bodies. The cultivation of microalgae in a mixotrophic regime using dairy wastewater enhances biomass growth, productivity, and the accumulation of value-added product. The generated biomass can be converted into biofuels, thus limiting the dependence on petroleum-based crude oil. To fulfill the algal biorefinery model, it is important to utilize every waste stream in a cascade loop. Additionally, the harvested water generated from algal biomass production can be recycled for further microalgal growth. Economic and sustainable wastewater management, along with proper reclamation of nutrients from dairy wastewater, is a promising approach to mitigate the problem of water scarcity. A bibliometric study revealing limited work on dairy wastewater treatment using microalgae for biofuel production. And, limited work is reported on the pretreatment of dairy wastewater via physicochemical methods before microalgal-based treatment. There are still significant gaps remains in large-scale cultivation processes. It is also crucial to discover robust strains that are highly compatible with the specific concentration of contaminants, as this will lead to increased yields and productivity for the targeted bio-product. Finally, research on reutilization of culture media in photobioreactor is necessary to augument the productivity of the entire process. Therefore, the incorporation of the microalgal biorefinery with the wastewater treatment concept has great potential for promoting ecological sustainability.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Satya Sundar Mohanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
10
|
Auñon-Lopez A, Alberdi-Cedeño J, Pignitter M, Castejón N. Microalgae as a New Source of Oxylipins: A Comprehensive LC-MS-Based Analysis Using Conventional and Green Extraction Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16749-16760. [PMID: 39016675 PMCID: PMC11299188 DOI: 10.1021/acs.jafc.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Microalgae are promising sources of essential lipids, including omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFA) and novel lipid metabolites like oxylipins. However, limited data exist on the oxylipin profile, its characterization, and the potential impact of the extraction process on these metabolites in microalgae. Thus, our study aimed to investigate the fatty acid and oxylipin profile of four microalgal species of interest (Microchloropsis gaditana, Tisochrysis lutea, Phaeodactylum tricornutum, and Porphyridium cruentum) while also examining the impact of the extraction method, with a focus on developing a greener process using ultrasound-assisted extraction (UAE) and ethanol. The UAE method showed similar oxylipin profiles, generally yielding concentrations comparable to those of the conventional Folch method. In total, 68 oxylipins derived from n-3 and n-6 PUFA were detected, with the highest concentrations of n-3 oxylipins found in P. tricornutum and T. lutea and of n-6 oxylipins in P. cruentum. This study provides the most extensive oxylipin characterization of these microalgae species to date, offering insights into alternative extraction methods and opening new avenues for further investigation of the significance of oxylipins in microalgae.
Collapse
Affiliation(s)
- Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jon Alberdi-Cedeño
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Alava), Spain
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Natalia Castejón
- Institute of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
11
|
Liu H, Xie L, Xiao Y, Ran R, Fang Y, Yang B, Tan L, Xu J, Lu S, Dong Y, Cui L. Conversion of Retinoids along the Marine Food Chain Contributes to Adverse Impacts on the Spine, Liver, and Intestinal Health of the Marine Medaka ( Oryzias melastigma). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12921-12932. [PMID: 38965053 PMCID: PMC11271003 DOI: 10.1021/acs.est.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Marine microalgae serve as an aquaculture bait. To enhance algal cell growth and breeding profits, high-intensity light conditions are standard for cultivating bait microalgae, potentially altering microalgal metabolite production. This research revealed that Thalassiosira pseudonana, when subjected to high-intensity light conditions, accumulated significant quantities of retinal (RAL) that transferred through the food chain and transformed into all-trans retinoic acid (atRA) in marine medaka. The study further explored the toxic effects on individual fish and specific tissues, as well as the mechanisms behind this toxicity. The accumulation of atRA in the liver, intestine, and spinal column resulted in structural damage and tissue inflammation, as well as oxidative stress. It also down-regulated the gene transcription levels of key pathways involved in immune function and growth. Furthermore, it disrupted the homeostasis of the intestinal microbial communities. The implications for wildlife and human health, which are influenced by the regulation of microalgal metabolite accumulation and their transfer via the food chain, require further investigation and could hold broader significance.
Collapse
Affiliation(s)
- Haisu Liu
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Lei Xie
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Yang Xiao
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Ruiwei Ran
- Guangzhou
Key Laboratory of Subtropical Biodiversity and Biomonitoring, College
of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuhang Fang
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Baoling Yang
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Liying Tan
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Juanchan Xu
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Songhui Lu
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
- Southern
Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, PR China
| | - Yuelei Dong
- Guangzhou
Key Laboratory of Subtropical Biodiversity and Biomonitoring, College
of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Lei Cui
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
12
|
Dou B, Li Y, Wang F, Chen L, Zhang W. Chassis engineering for high light tolerance in microalgae and cyanobacteria. Crit Rev Biotechnol 2024:1-19. [PMID: 38987975 DOI: 10.1080/07388551.2024.2357368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.
Collapse
Affiliation(s)
- Biyun Dou
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Yang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
13
|
Saud A, Gupta S, Allal A, Preud’homme H, Shomar B, Zaidi SJ. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS OMEGA 2024; 9:29088-29113. [PMID: 39005778 PMCID: PMC11238215 DOI: 10.1021/acsomega.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 07/16/2024]
Abstract
Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution. The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach. The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.
Collapse
Affiliation(s)
- Asif Saud
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Soumya Gupta
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | - Ahmed Allal
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | | | - Basem Shomar
- Environmental
Science Center, Qatar University, , P.O. Box 2713, Doha, Qatar
| | - Syed Javaid Zaidi
- UNESCO
Chair on Desalination and Water Treatment, Center for Advanced Materials
(CAM), Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Jui TJ, Tasnim A, Islam SR, Manjur OHB, Hossain MS, Tasnim N, Karmakar D, Hasan MR, Karim MR. Optimal growth conditions to enhance Chlorella vulgaris biomass production in indoor phyto tank and quality assessment of feed and culture stock. Heliyon 2024; 10:e31900. [PMID: 38841447 PMCID: PMC11152938 DOI: 10.1016/j.heliyon.2024.e31900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Commercial microalgae cultivation is a dynamic field with ongoing efforts to improve efficiency, reduce costs, and explore new applications. We conducted a study to examine how different light exposure periods affect Chlorella vulgaris's growth. We employed a Phyto tank batch system of approximately 3.5 L with LED light control, controlled airflow, and sterilized bags, maintained at 22.0 ± 2.0 °C indoors. Various methods, including spectrophotometry, and cell counter were employed to monitor Chlorella vulgaris growth under different light exposure cycles. Additionally, quality analysis as feed source was employed by proximate, amino acid, beta-glucan, and microbial content analysis. The results revealed significant variations in C. vulgaris biomass production based on light exposure duration. Notably, the 16:8-h light-dark photoperiod exhibited the highest biomass concentration, reaching 6.48 × 107 ± 0.50 cells/mL with an optical density (OD) of 1.165 absorbance at 682 nm. The 12:12-h light-dark photoperiod produced the second-highest biomass concentration, with 2.305 × 106 ± 0.60 cells/mL at an OD of 0.489. Proximate analysis of dry algae powder revealed low lipid content (0.48 %), high protein content (37.61 %), variable ash concentration (average 10.75 %), and a significant carbohydrate fraction (51.16 %) during extended daylight and shorter dark periods. Amino acid analysis identified nine essential amino acids, with glutamic acid being the most abundant (17.7 %) and methionine the least (0.4 %). Furthermore, quality analysis and microbiological assays demonstrated that the C. vulgaris biomass is well-suited for fish and livestock use as a feed source and possibility as human nutraceuticals. These findings can be considered more environmentally friendly and ethically sound due to the absence of genetic modification.
Collapse
Affiliation(s)
- Turfatul Jannat Jui
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Anika Tasnim
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - S.M. Rashadul Islam
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Omar Hamza Bin Manjur
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Md. Saddam Hossain
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Nishat Tasnim
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Debabrata Karmakar
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Md. Rakibul Hasan
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Md. Rezaul Karim
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| |
Collapse
|
15
|
Fekete G, Sebők A, Klátyik S, Varga ZI, Grósz J, Czinkota I, Székács A, Aleksza L. Comparative Analysis of Laboratory-Based and Spectroscopic Methods Used to Estimate the Algal Density of Chlorella vulgaris. Microorganisms 2024; 12:1050. [PMID: 38930433 PMCID: PMC11205756 DOI: 10.3390/microorganisms12061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chlorella vulgaris is of great importance in numerous exploratory or industrial applications (e.g., medicals, food, and feed additives). Rapid quantification of algal biomass is crucial in photobioreactors for the optimization of nutrient management and the estimation of production. The main goal of this study is to provide a simple, rapid, and not-resource-intensive estimation method for determining the algal density of C. vulgaris according to the measured parameters using UV-Vis spectrophotometry. Comparative assessment measurements were conducted with seven different methods (e.g., filtration, evaporation, chlorophyll a extraction, and detection of optical density and fluorescence) to determine algal biomass. By analyzing the entire spectra of diluted algae samples, optimal wavelengths were determined through a stepwise series of linear regression analyses by a novel correlation scanning method, facilitating accurate parameter estimation. Nonlinear formulas for spectrometry-based estimation processes were derived for each parameter. As a result, a general formula for biomass concentration estimation was developed, with recommendations for suitable measuring devices based on algae concentration levels. New values for magnesium content and the average single-cell weight of C. vulgaris were established, in addition to the development of a rapid, semiautomated cell counting method, improving efficiency and accuracy in algae quantification for cultivation and biotechnology applications.
Collapse
Affiliation(s)
- György Fekete
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - András Sebők
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - Szandra Klátyik
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - Zsolt István Varga
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - János Grósz
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - Imre Czinkota
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - András Székács
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - László Aleksza
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
- Profikomp Environmental Technologies Inc., Kühne Ede u. 7, H-2100 Gödöllő, Hungary
| |
Collapse
|
16
|
Rayamajhi V, An Y, Byeon H, Lee J, Kim T, Choi A, Lee J, Lee K, Kim C, Shin H, Jung S. A Study on the Effect of Various Media and the Supplementation of Organic Compounds on the Enhanced Production of Astaxanthin from Haematococcus lacustris (Girod-Chantrans) Rostafinski (Chlorophyta). Microorganisms 2024; 12:1040. [PMID: 38930422 PMCID: PMC11205594 DOI: 10.3390/microorganisms12061040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Natural astaxanthin is in high demand due to its multiple health benefits. The microalga Haematococcus lacustris has been used for the commercial production of astaxanthin. In this study, we investigated the effects of six different media with and without a nitrogen source and supplementation with nine organic compounds on the growth and astaxanthin accumulation of H. lacustris. The highest astaxanthin contents were observed in cultures of H. lacustris in Jaworski's medium (JM), with a level of 9.099 mg/L in JM with a nitrogen source supplemented with leucine (0.65 g/L) and of 20.484 mg/L in JM without a nitrogen source supplemented with sodium glutamate (0.325 g/L). Six of the nine organic compounds examined (leucine, lysine, alanine, sodium glutamate, glutamine, and cellulose) enhanced the production of astaxanthin in H. lacustris, while malic acid, benzoic acid, and maltose showed no beneficial effects.
Collapse
Affiliation(s)
- Vijay Rayamajhi
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Yunji An
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Huijeong Byeon
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Jihyun Lee
- Korea Fisheries Resources Agency East Sea Branch, Samho-ro, Buk-gu, Pohang 37601, Gyungsangbuk-do, Republic of Korea
| | - Taesoo Kim
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - AhJung Choi
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - JongDae Lee
- Department of Environmental Health Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - KwangSoo Lee
- Department of Sports Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - ChulHyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - HyunWoung Shin
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
- AlgaeBio, Inc., Asan 31459, Chungcheongnam-do, Republic of Korea
| | - SangMok Jung
- Research Institute for Basic Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
17
|
Demirden SF, Erdogan B, Öncel DŞ, Oncel SS. Effect of culture hydrodynamics on Arthrospira platensis production using a single-use photobioreactor system through a CFD supported approach. Biotechnol Prog 2024:e3480. [PMID: 38766884 DOI: 10.1002/btpr.3480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Laboratory scale conventional single-use bioreactor was used to investigate the effect of different stirrer speeds on the Arthrospira platensis (Spirulina platensis) culture. Experiments were handled in two steps. First step was the selection of the stirring speeds, which was simulated via using CFD, and the second was the long term cultivation with the selected speed. During 10 days of batches as the first step, under identical culture conditions, stirrer speed of 230 rpm gave higher results, compared to 130 and 70 rpm, with respect to dry biomass weight, absorbance value (AB) and chlorophyll-a concentration. Volumetric productivity during the growth phase of the cultures were calculated as 0.39 ± 0.03, 0.28 ± 0.01, and 0.19 ± 0.02 g L-1 d-1, from the fast to the slower speeds. According to the results a 17 day batch was handled with 230 rpm in order to monitor the effects on the culture. The culture reached a volumetric productivity of 0.33 ± 0.04 g L-1 d-1. Statistical analysis showed the significance of the parameters related with the stirring speed.
Collapse
Affiliation(s)
- S Furkan Demirden
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| | - Barıs Erdogan
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| | - Deniz Şenyay Öncel
- Department of Biomechanics, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey
| | - Suphi S Oncel
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| |
Collapse
|
18
|
Fayezizadeh MR, Ansari NA, Sourestani MM, Fujita M, Hasanuzzaman M. Management of Secondary Metabolite Synthesis and Biomass in Basil ( Ocimum basilicum L.) Microgreens Using Different Continuous-Spectrum LED Lights. PLANTS (BASEL, SWITZERLAND) 2024; 13:1394. [PMID: 38794463 PMCID: PMC11125838 DOI: 10.3390/plants13101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Different LED light spectra (LS) are absorbed by different plant photoreceptors and can control biomass and plant secondary metabolite synthesis. In this study, the effects of continuous-spectrum LED lights (red, blue, white, red + blue, and 12 h blue + 12 h red) on the production value, antioxidant compounds, and biomass of basil (Ocimum basilicum L.) microgreens (Red Rubin, Violeto, and Kapoor cultivars and the Ablagh genotype) were investigated. The results showed significant effects of LS on cultivar (Cv) and the interaction of LS and Cv on the studied traits. The highest quantitys of chlorophyll a, total chlorophyll, and nitrate were obtained in Violeto under blue lighting. Red lighting enhanced starch synthesis in Red Rubin and flavonoids in the Violeto Cv. The highest biomass (4.54 kg m-2) was observed in the Ablagh genotype and the highest carbohydrate synthesis in Violeto Cv in the red + blue treatment. The highest anthocyanin content (26.33 mg 100 g-1 FW) was observed for Red Rubin Cv under 12 h blue + 12 h red light. The greatest antioxidant capacity (83.57% inhibition), the highest levels of phenolic compounds (2027.25 mg GA 100 g-1 FW), vitamin C (405.76 mg 100 g-1 FW), proline, antioxidant potential composite index (APCI), and the greatest production values were obtained for the Ablagh genotype under blue lighting. Taken together, the experiment findings indicate that growing the Ablagh genotype under continuous blue lighting can increase the antioxidant capacity, phenolic compounds, and vitamin C and that this LED light spectrum can be used as a practical method to produce basil microgreens with high nutritional health value.
Collapse
Affiliation(s)
- Mohammad Reza Fayezizadeh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Naser Alemzadeh Ansari
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Mohammad Mahmoodi Sourestani
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Masayuki Fujita
- Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
19
|
Cebrián-Lloret V, Cartan-Moya S, Martínez-Sanz M, Gómez-Cortés P, Calvo MV, López-Rubio A, Martínez-Abad A. Characterization of the invasive macroalgae Rugulopteryx Okamurae for potential biomass valorisation. Food Chem 2024; 440:138241. [PMID: 38141439 DOI: 10.1016/j.foodchem.2023.138241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
This study aimed to examine the composition and properties of the invasive macroalgae R. okamurae and explore potential applications. The results showed that the seaweed biomass is mainly composed of structural carbohydrates, with alginate being the main constituent, accounting for 32 % of its total composition and with a mannuronic and guluronic acid ratio (M/G) ratio of 0.93. It also has a relatively high concentration of fucose, related to the presence of fucoidans that have important biological functions. Among the mineral contents, a high magnesium and calcium (7107 and 5504 mg/kg) concentration, and the presence of heavy metals above legislated thresholds, were notable. R. okamurae also contained a high lipid content of 17 %, mainly composed of saturated fatty acids, but with a significant fraction of n3 polyunsaturated fatty acids (18 %) resulting in a low n6/n3 ratio (0.31), that has health benefits. The protein content of R. okamurae was 12 %, with high-quality proteins, as essential amino acids (mainly leucine, phenylalanine and valine) constitute 32 % of the total amino acids. It also showed a high polyphenol content and outstanding antioxidant properties (106.88 mg TE/g). Based on these findings, R. okamurae has significant potential as a sustainable source of bioactive compounds that can add value to different sectors, including food, feed, pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Vera Cebrián-Lloret
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Sara Cartan-Moya
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Marta Martínez-Sanz
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - María Visitación Calvo
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| |
Collapse
|
20
|
Zhang S, Si L, Su X, Zhao X, An X, Li M. Growth phase-dependent reorganization of cryptophyte photosystem I antennae. Commun Biol 2024; 7:560. [PMID: 38734819 PMCID: PMC11088674 DOI: 10.1038/s42003-024-06268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Photosynthetic cryptophytes are eukaryotic algae that utilize membrane-embedded chlorophyll a/c binding proteins (CACs) and lumen-localized phycobiliproteins (PBPs) as their light-harvesting antennae. Cryptophytes go through logarithmic and stationary growth phases, and may adjust their light-harvesting capability according to their particular growth state. How cryptophytes change the type/arrangement of the photosynthetic antenna proteins to regulate their light-harvesting remains unknown. Here we solve four structures of cryptophyte photosystem I (PSI) bound with CACs that show the rearrangement of CACs at different growth phases. We identify a cryptophyte-unique protein, PsaQ, which harbors two chlorophyll molecules. PsaQ specifically binds to the lumenal region of PSI during logarithmic growth phase and may assist the association of PBPs with photosystems and energy transfer from PBPs to photosystems.
Collapse
Affiliation(s)
- Shumeng Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Long Si
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Su
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuelin Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaomin An
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mei Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Goswami RK, Mehariya S, Verma P. Sub-pilot scale sequential microalgal consortium-based cultivation for treatment of municipal wastewater and biomass production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123796. [PMID: 38518973 DOI: 10.1016/j.envpol.2024.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Municipal wastewater (MWW) was treated by a sequential pilot microalgal cultivation process. The cultivation was performed inside a specifically designed low-cost photobioreactor (PBR) system. A microalgal consortium 2:1 was developed using Tetraselmis indica (TS) and Picochlorum sp. (PC) in the first stage and PC:TS (2:1) in the second stage and the nutrient removal efficiency and biomass production and biomolecules production was evaluated and also compared with monoculture in a two-stage sequential cultivation system. This study also investigated the effect of seasonal variations on microalgae growth and MWW treatment. The results showed that mixed microalgal consortium (TS:PC) had higher nutrient removal efficiency, with chemical oxygen demand (COD), total phosphate (TP), and total nitrate (TN) removal efficiencies of 78.50, 84.49, and 84.20%, respectively, and produced a biomass of 2.50 g/L with lipid content of 37.36% in the first stage of cultivation under indoor conditions. In the second stage of indoor cultivation, the PC:TS consortium demonstrated maximum COD, TP, and TN removal efficiencies of 92.49, 94.24, and 94.16%, respectively. It also produced a biomass of 2.65 g/L with a lipid content of 40.67%. Among all the seasonal variations, mass flow analysis indicated that the combination of mixed consortium-based two-stage sequential process during the winter season favored maximum nutrient removal efficiency of TN i.e. 88.54% (84.12 mg/L) and TP i.e., 90.18% (43.29 mg/L), respectively. It also enhanced total biomass production of 49.10 g in 20-L medium, which includes lipid yield ∼15.68 g compared to monoculture i.e., 82.06% (78.70 mg/L) and 82.87% (40.26 mg/L) removal of TN and TP, respectively, and produced biomass 43.60 g with 11.90 g of lipids.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
22
|
Dubey S, Chen CW, Patel AK, Bhatia SK, Singhania RR, Dong CD. Development in health-promoting essential polyunsaturated fatty acids production by microalgae: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:847-860. [PMID: 38487279 PMCID: PMC10933236 DOI: 10.1007/s13197-023-05785-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 03/17/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) found in microalgae, primarily omega-3 (ω-3) and omega-6 (ω-6) are essential nutrients with positive effects on diseases such as hyperlipidemia, atherosclerosis, and coronary risk. Researchers still seek improvement in PUFA yield at a large scale for better commercial prospects. This review summarizes advancements in microalgae PUFA research for their cost-effective production and potential applications. Moreover, it discusses the most promising cultivation modes using organic and inorganic sources. It also discusses biomass hydrolysates to increase PUFA production as an alternative and sustainable organic source. For cost-effective PUFA production, heterotrophic, mixotrophic, and photoheterotrophic cultivation modes are assessed with traditional photoautotrophic production modes. Also, mixotrophic cultivation has fascinating sustainable attributes over other trophic modes. Furthermore, it provides insight into growth phase (stage I) improvement strategies to accumulate biomass and the complementing effects of other stress-inducing strategies during the production phase (stage II) on PUFA enhancement under these cultivation modes. The role of an excessive or limiting range of salinity, nutrients, carbon source, and light intensity were the most effective parameter in stage II for accumulating higher PUFAs such as ω-3 and ω-6. This article outlines the commercial potential of microalgae for omega PUFA production. They reduce the risk of diabetes, cardiovascular diseases (CVDs), cancer, and hypertension and play an important role in their emerging role in healthy lifestyle management.
Collapse
Affiliation(s)
- Siddhant Dubey
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-Wen Chen
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Anil Kumar Patel
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Reeta Rani Singhania
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| |
Collapse
|
23
|
O’Neil GW, Keller A, Balila J, Golden S, Sipila N, Stone B, Nelson RK, Reddy CM. Monitoring Changes to Alkenone Biosynthesis in Commercial Tisochrysis lutea Microalgae. ACS OMEGA 2024; 9:16374-16383. [PMID: 38617607 PMCID: PMC11007839 DOI: 10.1021/acsomega.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
Alkenones are unique lipids produced by certain species of microalgae, well-known for use in paleoclimatology, and more recently pursued to advance sustainability across multiple industries. Beginning in 2018, the biosynthesis of alkenones by commercially grown Tisochrysis lutea (T-Iso) microalgae from one of the world's most established producers, Necton S.A., changed dramatically from structures containing 37 and 38 carbons, to unusual shorter-chain C35 and C36 diunsaturated alkenones (C35:2 and C36:2 alkenones). While the exact reasons for this change remain unknown, analysis of alkenones isolated from T-Iso grown in 2021 and 2023 revealed that this change has persisted. The structure of these rare shorter-chain alkenones, including double bond position, produced by Necton T-Iso remained the same over the last five years, which was determined using a new and optimized cross-metathesis derivatization approach with analysis by comprehensive two-dimensional gas chromatography and NMR. However, noticeable differences in the alkenone profiles among the different batches were observed. Combined with fatty acid compositional analysis, the data suggest a connection between these lipid classes (e.g., increased DHA corresponds to lower amounts of shorter-chain alkenones) and the ability to manipulate their biosynthesis in T-Iso with changes to cultivation conditions.
Collapse
Affiliation(s)
- Gregory W. O’Neil
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Allison Keller
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Jazmine Balila
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Sydney Golden
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Nate Sipila
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Britton Stone
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Robert K. Nelson
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
24
|
Jin C, Zhu Y, You J, Yu Q, Liu Q, Zhou X. The regulation of light quality on the substance production and photosynthetic activity of Dunaliella bardawil. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112872. [PMID: 38401433 DOI: 10.1016/j.jphotobiol.2024.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
To study the influence and regulation of light quality on the microalgal photosynthetic activity and production of biomass and substances, green alga Dunaliella bardawil was cultured in this study under the monochromatic red light (7R0B), blue light (0R7B), and their combinations with different ratios (xRyB, x + y = 7), as well as a control of white light (W). The results demonstrated that the only advantage for control W was its chlorophyll-a (Chl-a) and Chl-b contents. All substance production at 7R0B were much lower than at control W, except of glycerol. Compared to control W, protein production at 1R6B (259.22 mg/L) was 1.10 times greater, carbohydrate production at 0R7B (306.49 mg/L) was 1.34 times higher, lipid production at 3R4B (133.60 mg/L) was 1.36 times higher, and glycerol production at 4R3B (53.58 mg/L) was 1.13 times greater. In comparison to control W, there was the significant improvements of at least 19%, 20%, and 5%, respectively, in the values of potential maximal relative electron transport efficiency (rETRmax), light intensity with saturated rETR (IK), and actual photochemical efficiency of PSII (QYss) in treatments. The correlation analysis revealed that the content of carotenoids was closely related to non-photochemical quenching (NPQ). The test using Chl-a fluorescence transients (JIP-test) proved that red light inhibited electron transport from reduced Quinone A (QA-) to QB and resulted in a sharp increase in RC/CSm, and that the blue-dominated light enhanced electron transport from QA- to QB and from plastoquinone (PQ) to PSI receptor side. The photosynthetic parameters including Ψo, φEO, φRO, δRO, PIABS, PItotal, DFABS, and DFtotal, which were positively correlated with growth and substance production, were improved by blue-dominated light. The variations in the electron transport chain might provide the signals for metabolic regulation. The results of this study will be helpful to promote the production of Dunaliella bardawil under artificial illumination and to clarify the regulating mechanism of light quality on microalgal photosynthesis.
Collapse
Affiliation(s)
- Cuili Jin
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China; Marine Science & Technology Institute, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Yan Zhu
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Jiajie You
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Qiuyan Yu
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Qing Liu
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China; Marine Science & Technology Institute, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Xiaojian Zhou
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China; Marine Science & Technology Institute, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China.
| |
Collapse
|
25
|
Rezaei A, Cheniany M, Ahmadzadeh H, Vaezi J. A new isolate cold-adapted Ankistrodesmus sp. OR119838: influence of light, temperature, and nitrogen concentration on growth characteristics and biochemical composition using the two-stage cultivation strategy. Bioprocess Biosyst Eng 2024; 47:341-353. [PMID: 38281211 DOI: 10.1007/s00449-023-02964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Natural-based chemicals from microalgae such as lipids and pigments are the interests in industries and the bioeconomy. Cold-adapted Ankistrodesmus sp. OR119838, an isolated strain from Cheshmeh-Sabz Lake in northeastern Iran, was cultivated using a two-stage culture strategy under different environmental conditions. With doubling the nitrate concentration at the vegetative stage (170 mg/L) and increasing the light intensity (180 µmol photons/m2/s) the highest specific growth rate (0.61 ± 0.02 per day) and biomass productivity (121.1 ± 7.2 mg/L/day) were observed at 25 °C. In the optimal growth condition Chl a and Chl b contents of Ankistrodesmus sp. OR119838 reached the highest amount (11.07 ± 0.14 and 11.23 ± 0.29 µg/mL, respectively) at 25 °C. While carotenoid content correlated negatively with optimum biomass productivity (- 0.708) and had the best value (12.23 ± 0.29 µg/mL) in nitrogen deficiency (42 mg/L) and intense light conditions (180 µmol photons/m2/s) at 15 °C. Lipid content was increased with declined nitrate concentration (42 mg/L), high light intensity, and 180 µmol photons/m2/s at 25 °C. The highest percentage of polyunsaturated fatty acids (71.94%) and α-linolenic acid (57.73 ± 6.63%) was observed in conditions with 170 mg/L nitrate concentration and low light intensity (40 µmol photons/m2/ s) at the low temperature (15 °C). While saturated fatty acids content (43.27%) and palmitic acid reached the highest amount under 40 µmol photons/m2/s, 42 mg/L nitrate at 25 °C (35.02 ± 5.33%). Biomass productivity of Ankistrodesmus sp. OR119838, as a cold-adapted strain, decreased by only 8.2% with a 10-degree decline in temperature. Therefore, this strain has good potential to grow in open ponds by tolerating the daily temperature fluctuations.
Collapse
Affiliation(s)
- Azar Rezaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran.
| | - Hossein Ahmadzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran.
| | - Jamil Vaezi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
| |
Collapse
|
26
|
Moreno B, Sowa A, Reginia K, Balazy P, Chelchowski M, Ronowicz M, Kuklinski P. Sea water temperature and light intensity at high-Arctic subtidal shallows - 16 years perspective. Sci Data 2024; 11:227. [PMID: 38388536 PMCID: PMC10883912 DOI: 10.1038/s41597-024-03054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Manifestations of climate change in the Arctic include an increase in water temperatures and massive loss of sea ice enabling more light penetration. Yet to understand tempo and scale of these parameters change over time, constant monitoring is needed. We present 16-yr long-term datasets of sea water temperature and relative light intensity at two depth strata (8 and 14 ± 1 m) of two hard-bottom sites in southern Isfjorden proper (Spitsbergen, 78°N). The high temporal resolution of the datasets (every 30 min, between 2006-2022) makes them suitable for studying changes at a local scale, correlating environmental variability with observed processes in benthic assemblages, and serving as ground-truth for comparison with, for example, remotely sensed or mooring data. These datasets serve as baseline for long-term investigations in the shallows of a high-Arctic fjord undergoing severe environmental changes.
Collapse
Affiliation(s)
- Bernabé Moreno
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.
| | - Anna Sowa
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Kamil Reginia
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Piotr Balazy
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Maciej Chelchowski
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Marta Ronowicz
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Piotr Kuklinski
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.
| |
Collapse
|
27
|
Machado MD, Soares EV. Features of the microalga Raphidocelis subcapitata: physiology and applications. Appl Microbiol Biotechnol 2024; 108:219. [PMID: 38372796 PMCID: PMC10876740 DOI: 10.1007/s00253-024-13038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
The microalga Raphidocelis subcapitata was isolated from the Nitelva River (Norway) and subsequently deposited in the collection of the Norwegian Institute of Water Research as "Selenastrum capricornutum Printz". This freshwater microalga, also known as Pseudokirchneriella subcapitata, acquired much of its notoriety due to its high sensitivity to different chemical species, which makes it recommended by different international organizations for the assessment of ecotoxicity. However, outside this scope, R. subcapitata continues to be little explored. This review aims to shed light on a microalga that, despite its popularity, continues to be an "illustrious" unknown in many ways. Therefore, R. subcapitata taxonomy, phylogeny, shape, size/biovolume, cell ultra-structure, and reproduction are reviewed. The nutritional and cultural conditions, chronological aging, and maintenance and preservation of the alga are summarized and critically discussed. Applications of R. subcapitata, such as its use in aquatic toxicology (ecotoxicity assessment and elucidation of adverse toxic outcome pathways) are presented. Furthermore, the latest advances in the use of this alga in biotechnology, namely in the bioremediation of effluents and the production of value-added biomolecules and biofuels, are highlighted. To end, a perspective regarding the future exploitation of R. subcapitata potentialities, in a modern concept of biorefinery, is outlined. KEY POINTS: • An overview of alga phylogeny and physiology is critically reviewed. • Advances in alga nutrition, cultural conditions, and chronological aging are presented. • Its use in aquatic toxicology and biotechnology is highlighted.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
28
|
Keet G, Du Toit JP, Pott RWM. Methods for the separation of hydraulic retention time and solids retention time in the application of photosynthetic microorganisms in photobioreactors: a review. World J Microbiol Biotechnol 2024; 40:100. [PMID: 38366203 PMCID: PMC10873236 DOI: 10.1007/s11274-024-03909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Photosynthetic microorganisms have a wide range of biotechnical applications, through the application of their versatile metabolisms. However, their use in industry has been extremely limited to date, partially because of the additional complexities associated with their cultivation in comparison to other organisms. Strategies and developments in photobioreactors (PBRs) designed for their culture and applications are needed to drive the field forward. One particular area which bears examination is the use of strategies to separate solid- and hydraulic-residence times (SRT and HRT), to facilitate flow-through systems and continuous processing. The aim of this review is to discuss the various types of PBRs and methods which are currently demonstrated in the literature and industry, with a focus on the separation of HRT and SRT. The use of an efficient method of biomass retention in a PBR may be advantageous as it unlocks the option for continuous operation, which may improve efficiency, and improve economic feasibility of large-scale implementation of photosynthetic biocatalysts, especially where biomass is not the primary product. Due to the underexplored nature of the separation of HRT and SRT in reactors using photosynthetic microorganisms, limited literature is available regarding their performance, efficiencies, and potential issues. This review first introduces an overview into photosynthetic microorganisms cultivated and commonly exploited for use in biotechnological applications, with reference to bioreactor considerations specific to each organism. Following this, the existing technologies used for the separation of HRT and SRT in PBRs are explored. The respective advantages and disadvantages are discussed for each PBR design, which may inform an interested bioprocess engineer.
Collapse
Affiliation(s)
- Grant Keet
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - J P Du Toit
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
- Watchmaker Genomics, Cape Town, South Africa
| | | |
Collapse
|
29
|
Khairuddin F, Zaharah Mohd Fuzi SF, Ahmad A, Oon LK, Bokhari A, Dailin DJ, Habila MA, Nawaz A, Chuah LF. Evaluation on microalgae for the production of bio-chemicals and electricity. CHEMOSPHERE 2024; 350:141007. [PMID: 38141667 DOI: 10.1016/j.chemosphere.2023.141007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/04/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Recent advancement in biophotovoltaic systems using microalgae, coupled with biorefinery approach, would improve economy-feasibility in production. The major concern is its commercial strength in terms of scalability, strain selection and extraction procedure cost. It must compete with conventional feedstocks such as fossil fuels. This project proposes to enhance the economic feasibility of microalgae-based biorefinery by evaluating their performance for bio-electricity, bio-diesel and carotenoids production in a single cycle. The first part of the study was to construct and select a Bio-bottle Voltaic (BBV) device that would allow microalgae to grow and produce bioproducts, as well as generate the maximum current output reading derived from the microalgae's photosynthesis process. The second phase consisted of a 25-day investigation into the biorefinery performance of six different microalgal species in producing bio-electricity, bio-diesel and carotenoid in a prototype BBV device. The prototype BBV device with aluminium foil and pencil lead as its anode and cathode produced the highest carotenoid and biodiesel component production from the two microalgae tested, according to the results of the first phase of the experiment. In the second portion of the study, Scenedesmus dimorphus and Chlorella vulgaris were identified as the two microalgae most capable of maintaining their growth throughout the experiment. The maximum current reading observed for C. vulgaris was 653 mV. High Performance Liquid Chromatography analysis showed four major carotenoid compounds found which were Neoxanthin, Cantaxanthin, Astaxanthin and 9-cis antheraxanthin, and the highest carotenoid producer was C. vulgaris which recorded at 1.73 μg/mL. C. vulgaris recorded as the most alkanes producer with 22 compounds detected and Heptacosane and Heneicosane as the two major biodiesel compounds found in the extracts. Evaluation of C. vulgaris data showed that it has enormous potential for microalgal biorefinery candidates. Further ongoing research and development efforts for C. vulgaris will improve the economic viability of microalgae-based industries and reduce reliance on depleted fossil fuels.
Collapse
Affiliation(s)
- Farahayu Khairuddin
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia; Faculty of Applied Sciences & Technology, Universiti Tun Hussein Onn Malaysia, Hab Pendidikan Tinggi Pagoh, KM 1, Jalan Panchor, 84600, Panchor, Johor, Malaysia
| | - Siti Fatimah Zaharah Mohd Fuzi
- Faculty of Applied Sciences & Technology, Universiti Tun Hussein Onn Malaysia, Hab Pendidikan Tinggi Pagoh, KM 1, Jalan Panchor, 84600, Panchor, Johor, Malaysia
| | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Low Kheng Oon
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - A Bokhari
- School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Daniel Joe Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Alam Nawaz
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - L F Chuah
- School of Technology Management and Logistics, Universiti Utara Malaysia, 06010 Sintok, Kedah Darul Aman, Malaysia
| |
Collapse
|
30
|
Ma Y, Sun X, Sun Y, Li H, Li H, Jiao X. Synchronous enhancement of astaxanthin and lipid accumulation in Haematococcus lacustris through co-mutation of ethanol and atmospheric and room temperature plasma: Exploration of characteristics and underlying mechanisms. BIORESOURCE TECHNOLOGY 2024; 394:130305. [PMID: 38199438 DOI: 10.1016/j.biortech.2024.130305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Haematococcus lacustris is a precious algal species renowned for its ability to simultaneous production of astaxanthin and lipid. However, its slow growth rate necessitates the development of appropriate mutagenesis methodologies to effectively enhance its synchronous production of both astaxanthin and lipid. This study introduced the co-mutation of Atmospheric and Room Temperature Plasma (ARTP) and ethanol. The performance and preliminary mechanisms underlying the combined accumulation of astaxanthin and lipid in H. lacustris under both mutations by ARTP and ethanol were comparatively analyzed. Combined astaxanthin and lipid contents relative to total cell mass in the 110-2 strain reached 54.4%, surpassing that of strain 0-3 and the control by 17.0% and 47.6% respectively. Transcriptome level analysis revealed how both ethanol and ARTP induction promote the expressions of carotenoid and lipid synthesis genes and related enzymatic activities. Upregulation of genes associated with cell activity contributed to lipid and astaxanthin metabolism in multi pathways.
Collapse
Affiliation(s)
- Yihua Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| | - Xin Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China.
| | - Youreng Sun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Haoyang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| | - Hongwei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| | - Xiangfei Jiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| |
Collapse
|
31
|
Aslanbay Guler B, Demirel Z, Imamoglu E. Induction of antioxidant activities of Arthrospira platensis and Chlorella vulgaris by modified culture conditions. Bioprocess Biosyst Eng 2024; 47:275-287. [PMID: 38286864 DOI: 10.1007/s00449-023-02963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Microalgae are considered a promising source for obtaining natural compounds with strong antioxidant activity. Despite the great progress made in this field, there is still need for further studies applying simple and cost-effective modifications to reveal their full potential and enhance antioxidant properties. Arthrospira platensis and Chlorella vulgaris are some of the most common cells studied for this purpose. In this study, it was aimed to develop a bioprocess for the enhancement of antioxidant properties of these two microalgae by evaluating the effect of different culture conditions. With this aim, the impacts of light intensity/reactive oxygen species and nitrogen sources/reactive oxygen species were evaluated for the A. platensis and C. vulgaris cells, respectively. Results showed that the antioxidant potential of A. platensis was found to be correlated with the phycocyanin and total phenolic content of cells, and 80 µmol photons m-2 s-1 light intensity induced antioxidant activity in a two-step cultivation mode. For C. vulgaris cells, maximum antioxidant activities of 68.10 ± 1.51% and 75.68 ± 0.66% were obtained in cultures with NH4Cl (0.016% (w/v)) for DPPH and ABTS assays, respectively. The applied oxidative stress factors exhibited different effects on the antioxidant activities of the cells because of their cellular morphologies and changing mechanisms of reactive oxygen species. These outcomes show the potential of applied modifications on cells and suggest a promising route to enhance antioxidant activities of microalgae for further research.
Collapse
Affiliation(s)
- Bahar Aslanbay Guler
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey.
| | - Zeliha Demirel
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Esra Imamoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
32
|
Songserm R, Nishiyama Y, Sanevas N. Light Influences the Growth, Pigment Synthesis, Photosynthesis Capacity, and Antioxidant Activities in Scenedesmus falcatus. SCIENTIFICA 2024; 2024:1898624. [PMID: 38293704 PMCID: PMC10827371 DOI: 10.1155/2024/1898624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Light plays a significant role in microalgae cultivation, significantly influencing critical parameters, including biomass production, pigment content, and the accumulation of metabolic compounds. This study was intricately designed to optimize light intensities, explicitly targeting enhancing growth, pigmentation, and antioxidative properties in the green microalga, Scenedesmus falcatus (KU.B1). Additionally, the study delved into the photosynthetic efficiency in light responses of S. falcatus. The cultivation of S. falcatus was conducted in TRIS-acetate-phosphate medium (TAP medium) under different light intensities of 100, 500, and 1000 μmol photons m-2·s-1 within a photoperiodic cycle of 12 h of light and 12 h of dark. Results indicated a gradual increase in the growth of S. falcatus under high light conditions at 1000 μmol photons m-2·s-1, reaching a maximum optical density of 1.33 ± 0.03 and a total chlorophyll content of 22.67 ± 0.2 μg/ml at 120 h. Conversely, a slower growth rate was observed under low light at 100 μmol photons m-2·s-1. However, noteworthy reductions in the maximum quantum yield (Fv/Fm) and actual quantum yield (Y(II)) were observed under 1000 μmol photons m-2·s-1, reflecting a decline in algal photosynthetic efficiency. Interestingly, these changes under 1000 μmol photons m-2·s-1 were concurrent with a significant accumulation of a high amount of beta-carotene (919.83 ± 26.33 mg/g sample), lutein (34.56 ± 0.19 mg/g sample), and canthaxanthin (24.00 ± 0.38 mg/g sample) within algal cells. Nevertheless, it was noted that antioxidant activities and levels of total phenolic compounds (TPCs) decreased under high light at 1000 μmol photons m-2·s-1, with IC50 of DPPH assay recorded at 218.00 ± 4.24 and TPC at 230.83 ± 86.75 mg of GAE/g. The findings suggested that the elevated light intensity at 1000 μmol photons m-2·s-1 enhanced the growth and facilitated the accumulation of valuable carotenoid pigment in S. falcatus, presenting potential applications in the functional food and carotenoid industry.
Collapse
Affiliation(s)
- Rattanaporn Songserm
- Department of Botany, Faculty of Science, Kasetsart University, Bangkean, Bangkok 10900, Thailand
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nuttha Sanevas
- Department of Botany, Faculty of Science, Kasetsart University, Bangkean, Bangkok 10900, Thailand
| |
Collapse
|
33
|
Jiao H, Tsigkou K, Elsamahy T, Pispas K, Sun J, Manthos G, Schagerl M, Sventzouri E, Al-Tohamy R, Kornaros M, Ali SS. Recent advances in sustainable hydrogen production from microalgae: Mechanisms, challenges, and future perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115908. [PMID: 38171102 DOI: 10.1016/j.ecoenv.2023.115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
The depletion of fossil fuel reserves has resulted from their application in the industrial and energy sectors. As a result, substantial efforts have been dedicated to fostering the shift from fossil fuels to renewable energy sources via technological advancements in industrial processes. Microalgae can be used to produce biofuels such as biodiesel, hydrogen, and bioethanol. Microalgae are particularly suitable for hydrogen production due to their rapid growth rate, ability to thrive in diverse habitats, ability to resolve conflicts between fuel and food production, and capacity to capture and utilize atmospheric carbon dioxide. Therefore, microalgae-based biohydrogen production has attracted significant attention as a clean and sustainable fuel to achieve carbon neutrality and sustainability in nature. To this end, the review paper emphasizes recent information related to microalgae-based biohydrogen production, mechanisms of sustainable hydrogen production, factors affecting biohydrogen production by microalgae, bioreactor design and hydrogen production, advanced strategies to improve efficiency of biohydrogen production by microalgae, along with bottlenecks and perspectives to overcome the challenges. This review aims to collate advances and new knowledge emerged in recent years for microalgae-based biohydrogen production and promote the adoption of biohydrogen as an alternative to conventional hydrocarbon biofuels, thereby expediting the carbon neutrality target that is most advantageous to the environment.
Collapse
Affiliation(s)
- Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Konstantinos Pispas
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Georgios Manthos
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna A-1030, Austria.
| | - Eirini Sventzouri
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
34
|
Lin J, Chi L, Yuan Q, Li B, Feng M. Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168338. [PMID: 37931817 DOI: 10.1016/j.scitotenv.2023.168338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The ubiquitous existence of various pharmaceuticals in the marine environment has received global attention for their risk assessment. However, rather little is known thus far regarding the natural attenuation (e.g., photolysis)-induced product/mixture toxicity of these pharmaceuticals on marine organisms. In this study, the photodegradation behavior, product formation, and risks of two representative pharmaceuticals (i.e., ciprofloxacin, CIP; diclofenac, DCF) were explored in the simulated estuary water. It was noted that both pharmaceuticals can be completely photolyzed within 1 h, and five products of CIP and three products of DCF were identified by a high-resolution liquid chromatography-mass spectrometer. Accordingly, their photodecomposition pathways were tentatively proposed. The in silico prediction suggested that the formed transformation products maintained the persistence, bioaccumulation potential, and multi-endpoint toxic effects such as genotoxicity, developmental toxicity, and acute/chronic toxicity on different aquatic species. Particularly, the non-targeted metabolomics first elucidated that DCF and its photolytic mixtures can significantly affect the antioxidant status of marine algae (Heterosigma akashiwo), triggering oxidative stress and damage to cellular components. It is very alarming that the complete photolyzed DCF sample induced more serious oxidative stress than DCF itself, which called for more concern about the photolysis-driven ecological risks. Overall, this investigation first uncovered the overlooked but serious toxicity of the transformation products of prevalent pharmaceuticals during natural attenuation on marine species.
Collapse
Affiliation(s)
- Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Lianbao Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Yuan
- China United Engineering Corporation Limited, Hangzhou 310052, China
| | - Busu Li
- Laoshan Laboratory, Qingdao 266237, China.
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| |
Collapse
|
35
|
Sartori RB, Deprá MC, Dias RR, Fagundes MB, Zepka LQ, Jacob-Lopes E. The Role of Light on the Microalgae Biotechnology: Fundamentals, Technological Approaches, and Sustainability Issues. Recent Pat Biotechnol 2024; 18:22-51. [PMID: 38205773 DOI: 10.2174/1872208317666230504104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 01/12/2024]
Abstract
Light energy directly affects microalgae growth and productivity. Microalgae in natural environments receive light through solar fluxes, and their duration and distribution are highly variable over time. Consequently, microalgae must adjust their photosynthetic processes to avoid photo limitation and photoinhibition and maximize yield. Considering these circumstances, adjusting light capture through artificial lighting in the main culture systems benefits microalgae growth and induces the production of commercially important compounds. In this sense, this review provides a comprehensive study of the role of light in microalgae biotechnology. For this, we present the main fundamentals and reactions of metabolism and metabolic alternatives to regulate photosynthetic conversion in microalgae cells. Light conversions based on natural and artificial systems are compared, mainly demonstrating the impact of solar radiation on natural systems and lighting devices, spectral compositions, periodic modulations, and light fluxes when using artificial lighting systems. The most commonly used photobioreactor design and performance are shown herein, in addition to a more detailed discussion of light-dependent approaches in these photobioreactors. In addition, we present the principal advances in photobioreactor projects, focusing on lighting, through a patent-based analysis to map technological trends. Lastly, sustainability and economic issues in commercializing microalgae products were presented.
Collapse
Affiliation(s)
- Rafaela Basso Sartori
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariany Costa Deprá
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Rosangela Rodrigues Dias
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariane Bittencourt Fagundes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Leila Queiroz Zepka
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Eduardo Jacob-Lopes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
36
|
Dey R, Ortiz Tena F, Wang S, Martin Messmann J, Steinweg C, Thomsen C, Posten C, Leu S, Ullrich MS, Thomsen L. Exploring advanced phycoremediation strategies for resource recovery from secondary wastewater using a large scale photobioreactor. BIORESOURCE TECHNOLOGY 2024; 391:129986. [PMID: 37931766 DOI: 10.1016/j.biortech.2023.129986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
This study aimed to investigate the operation of a 1000L microalgae-based membrane photobioreactor system in a greenhouse for continuous secondary wastewater treatment using Desmodesmus sp., a green microalgae strain originally isolated from a German sewage plant. The research spanned both summer and winter seasons, seeking to comprehend key trends and optimization strategies. Maintaining low cell concentrations in the photobioreactor during periods of light inhibition proved advantageous for nutrient uptake rates. Effective strategies for enhancing algae-based wastewater treatment included cell mass recycling, particularly during periods of high light availability. In comparison to conventional continuous cultivation methods, employing cell recycling and high dilution rates during times of abundant light, alongside using low cell concentrations and dilution rates during light inhibition, resulted in an 80 % and 10 % increase in overall biomass productivity during summer and winter, respectively. Furthermore, nitrogen/phosphorus (N/P) removal rates exhibited a 23 % improvement during winter, while remaining unchanged in summer.
Collapse
Affiliation(s)
- Rohit Dey
- School of Science, Constructor University Bremen, Germany.
| | | | - Song Wang
- College of Life Sciences and Oceanography, Shenzhen University, China
| | | | | | | | | | - Stefan Leu
- Ben-Gurion University of the Negev, Israel
| | | | - Laurenz Thomsen
- School of Science, Constructor University Bremen, Germany; University of Gothenburg, Department of Marine Sciences Sweden
| |
Collapse
|
37
|
Kerner M, Wolff T, Brinkmann T. Efficient supply with carbon dioxide from flue gas during large scale production of microalgae: A novel approach for bioenergy facades. BIORESOURCE TECHNOLOGY 2024; 391:129917. [PMID: 37884099 DOI: 10.1016/j.biortech.2023.129917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The efficiency of using enriched CO2 from flue gas for large scale production of the green microalgae Chlorella sorokiniana in a bioenergy facade was studied. Using a membrane device, the enrichment of CO2 from heating system flue gas in the low pressure product gas was up to 49 vol% and the CO2 recovery was 62 %. With a static mixer the re-compressed product gas was applied to the culture medium with mean losses during cultivation of only 24 %. Thereby the pH could be maintained at a mean of 6.2 and a temperature always below 28 °C, both optimal for growth of Chlorella sorokiniana. Although PAR solar radiation during midday always exceeded 1000 µmol m-2 s-1 mean photosynthetic efficiency was 0.54 g mol-1. Results indicate that the chosen approach for CO2 supply overcomes the problem of CO2 losses and allows for a more economic and sustainable microalgae production in a bioenergy facade.
Collapse
Affiliation(s)
- Martin Kerner
- SSC Strategic Science Consult GmbH, Beim Alten Gaswerk 5, 22761 Hamburg, Germany.
| | - Thorsten Wolff
- Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Torsten Brinkmann
- Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
38
|
Biswal AK, Pattanayak GK, Ruhil K, Kandoi D, Mohanty SS, Leelavati S, Reddy VS, Govindjee G, Tripathy BC. Reduced expression of chlorophyllide a oxygenase (CAO) decreases the metabolic flux for chlorophyll synthesis and downregulates photosynthesis in tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1-16. [PMID: 38435853 PMCID: PMC10901765 DOI: 10.1007/s12298-023-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024]
Abstract
Chlorophyll b is synthesized from chlorophyllide a, catalyzed by chlorophyllide a oxygenase (CAO). To examine whether reduced chlorophyll b content regulates chlorophyll (Chl) synthesis and photosynthesis, we raised CAO transgenic tobacco plants with antisense CAO expression, which had lower chlorophyll b content and, thus, higher Chl a/b ratio. Further, these plants had (i) lower chlorophyll b and total Chl content, whether they were grown under low or high light; (ii) decreased steady-state levels of chlorophyll biosynthetic intermediates, due, perhaps, to a feedback-controlled reduction in enzyme expressions/activities; (iii) reduced electron transport rates in their intact leaves, and reduced Photosystem (PS) I, PS II and whole chain electron transport activities in their isolated thylakoids; (iv) decreased carbon assimilation in plants grown under low or high light. We suggest that reduced synthesis of chlorophyll b by antisense expression of CAO, acting at the end of Chl biosynthesis pathway, downregulates the chlorophyll b biosynthesis, resulting in decreased Chl b, total chlorophylls and increased Chl a/b. We have previously shown that the controlled up-regulation of chlorophyll b biosynthesis and decreased Chl a/b ratio by over expression of CAO enhance the rates of electron transport and CO2 assimilation in tobacco. Conversely, our data, presented here, demonstrate that-antisense expression of CAO in tobacco, which decreases Chl b biosynthesis and increases Chl a/b ratio, leads to reduced photosynthetic electron transport and carbon assimilation rates, both under low and high light. We conclude that Chl b modulates photosynthesis; its controlled down regulation/ up regulation decreases/ increases light-harvesting, rates of electron transport, and carbon assimilation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01395-5.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Gopal K. Pattanayak
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kamal Ruhil
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Life Sciences, Sharda University, Greater Noida, UP, India
| | - Sushree S. Mohanty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sadhu Leelavati
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Vanga S. Reddy
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Govindjee Govindjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Baishnab C. Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Biotechnology, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
39
|
Elangovan B, Detchanamurthy S, Senthil Kumar P, Rajarathinam R, Deepa VS. Biotreatment of Industrial Wastewater using Microalgae: A Tool for a Sustainable Bioeconomy. Mol Biotechnol 2023:10.1007/s12033-023-00971-0. [PMID: 37999921 DOI: 10.1007/s12033-023-00971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Fresh water is one of the essential sources of life, and its requirement has increased in the past years due to population growth and industrialization. Industries use huge quantities of fresh water for their processes, and generate high quantities of wastewater rich in organic matter, nitrates, and phosphates. These effluents have contaminated the freshwater sources and there is a need to recycle this wastewater in an ecologically harmless manner. Microalgae use the nutrients in the wastewater as a medium for growth and the biomass produced are rich in nutrition that can cater growing food and energy needs. The primary and secondary metabolites of microalgae are utilized as biofuel and as active ingredients in cosmetics, animal feed, therapeutics, and pharmaceutical products. In this review, we explore food processing industries like dairy, meat, aquaculture, breweries, and their wastewater for the microalgal growth. Current treatment methods are expensive and energy demanding, which indirectly leads to higher greenhouse gas emissions. Microalgae acts as a potential biotreatment tool and mitigates carbon dioxide due to their high photosynthetic efficiency. This review aims to address the need to recycle wastewater generated from such industries and potentiality to use microalgae for biotreatment. This will help to build a circular bioeconomy by using wastewater as a valuable resource to produce valuable products.
Collapse
Affiliation(s)
- Balaji Elangovan
- R&D, Seagrass Tech Pvt. Ltd, Karaikal, 609604, Puducherry, India
| | | | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, 605014, Puducherry, India.
| | - Ravikumar Rajarathinam
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sakunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamilnadu, 600062, India
| | - Vijaykumar Sudarshana Deepa
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, 534101, Andhra Pradesh, India.
| |
Collapse
|
40
|
Sands E, Davies S, Puxty RJ, Vergé V, Bouget FY, Scanlan DJ, Carré IA. Genetic and physiological responses to light quality in a deep ocean ecotype of Ostreococcus, an ecologically important photosynthetic picoeukaryote. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6773-6789. [PMID: 37658791 PMCID: PMC10662239 DOI: 10.1093/jxb/erad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Phytoplankton are exposed to dramatic variations in light quality when cells are carried by upwelling or downwelling currents or encounter sediment. We investigated the potential impact of light quality changes in Ostreococcus, a key marine photosynthetic picoeukaryote, by analysing changes in its transcriptome, pigment content, and photophysiology after acclimation to monochromatic red, green, or blue light. The clade B species RCC809, isolated from the deep euphotic zone of the tropical Atlantic Ocean, responded to blue light by accelerating cell division at the expense of storage reserves and by increasing the relative level of blue-light-absorbing pigments. It responded to red and green light by increasing its potential for photoprotection. In contrast, the clade A species OTTH0595, which originated from a shallow water environment, showed no difference in photosynthetic properties and minor differences in carotenoid contents between light qualities. This was associated with the loss of candidate light-quality responsive promoter motifs identified in RCC809 genes. These results demonstrate that light quality can have a major influence on the physiology of eukaryotic phytoplankton and suggest that different light quality environments can drive selection for diverse patterns of responsiveness and environmental niche partitioning.
Collapse
Affiliation(s)
- Elizabeth Sands
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sian Davies
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Valerie Vergé
- Université Pierre et Marie Curie, Paris 06, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls sur Mer, France
| | - François-Yves Bouget
- Université Pierre et Marie Curie, Paris 06, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls sur Mer, France
| | | | | |
Collapse
|
41
|
Maltsev Y, Kulikovskiy M, Maltseva S. Nitrogen and phosphorus stress as a tool to induce lipid production in microalgae. Microb Cell Fact 2023; 22:239. [PMID: 37981666 PMCID: PMC10658923 DOI: 10.1186/s12934-023-02244-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023] Open
Abstract
Microalgae, capable of accumulating large amounts of lipids, are of great value for biodiesel production. The high cost of such production stimulates the search for cultivation conditions that ensure their highest productivity. Reducing the content of nitrogen and phosphorus in the culture medium is widely used to change the content and productivity of lipids in microalgae. Achieving the right balance between maximum growth and maximum lipid content and productivity is the primary goal of many experimental works to ensure cost-effective biodiesel production from microalgae. The content of nitrogen and phosphorus in nutrient media for algal cultivation after converted to nitrogen (-N) and phosphorus (-P) lies in an extensive range: from 0.007 g L- 1 to 0.417 g L- 1 and from 0.0003 g L- 1 to 0.227 g L- 1 and N:P ratio from 0.12:1 to 823.33:1. When studying nutritional stress in microalgae, no single approach is used to determine the experimental concentrations of nitrogen and phosphorus. This precludes the possibility of correct interpretation of the data and may lead to erroneous conclusions. This work results from the systematisation of information on using nitrogen and phosphorus restriction to increase the lipid productivity of microalgae of different taxonomic and ecological groups to identify future research directions. The results of 301 experiments were included in the analysis using the principal components method. The investigation considered various divisions and classes: Cyanobacteria, Rhodophyta, Dinophyta, Haptophyta, Cryptophyta, Heterokontophyta/Ochrophyta (Bacillariophyceae, Eustigmatophyceae, Xanthophyceae), Chlorophyta, and also the ratio N:P, the time of the experiment, the light intensity during cultivation. Based on the concentrations of nitrogen and phosphorus existing in various nutrient media, a general scheme for designating the supply of nutrient media for nitrogen (as NO3- or NH4+, N g L- 1) and phosphorus (as РO4-, P g L- 1) has been proposed: replete -N (˃0.4 g L- 1), moderate -N (0.4-0.2), moderate N-limitation (0.19-0.1), strong N-limitation (˂0.1), without nitrogen (0), replete -Р (˃0.2), moderate -P (0.2-0.02), moderate P-limitation (0.019-0.01), strong P-limitation (˂0.01), without phosphorus (0).
Collapse
Affiliation(s)
- Yevhen Maltsev
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia.
| | - Maxim Kulikovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Svetlana Maltseva
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| |
Collapse
|
42
|
Bedane DT, Asfaw SL. Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse. BIORESOUR BIOPROCESS 2023; 10:81. [PMID: 38647578 PMCID: PMC10992203 DOI: 10.1186/s40643-023-00699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 04/25/2024] Open
Abstract
Anaerobically treated slaughterhouse effluent is rich in nutrients, organic matter, and cause eutrophication if discharged to the environment without proper further treatment. Moreover, phosphorus and nitrogen in agro-processing industry wastewaters are mainly removed in the tertiary treatment phase. The objective of this study is to evaluate the pollutant removal efficiency of Chlorella and Scenedesmus species as well as their co-culture treating two-phase anaerobic digester effluent through microalgae biomass production. The dimensions of the rectangular photobioreactor used to conduct the experiment are 15 cm in height, 20 cm in width, and 30 cm in length. Removal efficiencies between 86.74-93.11%, 96.74-97.47%, 91.49-92.91%, 97.94-99.46%, 89.22-94.28%, and 91.08-95.31% were attained for chemical oxygen demand, total nitrogen, nitrate, ammonium, total phosphorous, and orthophosphate by Chlorella species, Scenedesmus species, and their co-culture, respectively. The average biomass productivity and biomass yield of Chlorella species, Scenedesmus species, and their co-culture were 1.4 ± 0.1, 1.17 ± 0.12, 1.5 ± 0.13 g/L, and 0.18, 0.21, and 0.23 g/L*day, respectively. The final effluent quality in terms of chemical oxygen demand, total nitrogen, and total phosphorous attained by Chlorella species and the co-culture were below the permissible discharge limit for slaughterhouse effluent standards in the country (Ethiopia). The results of the study showed that the use of microalgae as well as their co-culture for polishing the nutrients and residual organic matter in the anaerobically treated agro-processing industry effluent offers a promising result for wastewater remediation and biomass production. In general, Chlorella and Scenedesmus species microalgae and their co-culture can be applied as an alternative for nutrient removal from anaerobically treated slaughterhouse wastewater as well as biomass production that can be used for bioenergy.
Collapse
Affiliation(s)
- Dejene Tsegaye Bedane
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Seyoum Leta Asfaw
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
43
|
An SM, Cho K, Kim ES, Ki H, Choi G, Kang NS. Description and Characterization of the Odontella aurita OAOSH22, a Marine Diatom Rich in Eicosapentaenoic Acid and Fucoxanthin, Isolated from Osan Harbor, Korea. Mar Drugs 2023; 21:563. [PMID: 37999387 PMCID: PMC10671887 DOI: 10.3390/md21110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Third-generation biomass production utilizing microalgae exhibits sustainable and environmentally friendly attributes, along with significant potential as a source of physiologically active compounds. However, the process of screening and localizing strains that are capable of producing high-value-added substances necessitates a significant amount of effort. In the present study, we have successfully isolated the indigenous marine diatom Odontella aurita OAOSH22 from the east coast of Korea. Afterwards, comprehensive analysis was conducted on its morphological, molecular, and biochemical characteristics. In addition, a series of experiments was conducted to analyze the effects of various environmental factors that should be considered during cultivation, such as water temperature, salinity, irradiance, and nutrients (particularly nitrate, silicate, phosphate, and iron). The morphological characteristics of the isolate were observed using optical and electron microscopes, and it exhibited features typical of O. aurita. Additionally, the molecular phylogenetic inference derived from the sequence of the small-subunit 18S rDNA confirmed the classification of the microalgal strain as O. aurita. This isolate has been confirmed to contain 7.1 mg g-1 dry cell weight (DCW) of fucoxanthin, a powerful antioxidant substance. In addition, this isolate contains 11.1 mg g-1 DCW of eicosapentaenoic acid (EPA), which is one of the nutritionally essential polyunsaturated fatty acids. Therefore, this indigenous isolate exhibits significant potential as a valuable source of bioactive substances for various bio-industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Nam Seon Kang
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.M.A.); (K.C.); (E.S.K.); (H.K.); (G.C.)
| |
Collapse
|
44
|
Patel AK, Vadrale AP, Singhania RR, Chen CW, Chang JS, Dong CD. Enhanced mixotrophic production of lutein and lipid from potential microalgae isolate Chlorella sorokiniana C16. BIORESOURCE TECHNOLOGY 2023; 386:129477. [PMID: 37437816 DOI: 10.1016/j.biortech.2023.129477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The current work aims to isolate high lutein-producing microalgae and maximize lutein production under a sustainable lutein-lipid biorefinery scheme. Lutein reduces retinitis, macular degeneration risk and improves eye health. An effective bioprocess design optimized nutrients, temperature, light, and salinity for biomass and lutein yield enhancement. 3X macro/micronutrients maximally enhanced biomass and lutein yields, 5.2 g/Land 71.13 mg/L. Temperature 32 °C exhibited maximum 17.4 mg/g lutein content and 10 k lux was most favorable for growth and lutein yield (15.47 mg/g). A 25% seawater addition led maximum of 21-27% lipid that could be used for biodiesel. Isolate was identified as Chlorella sorokiniana C16, which exhibited one of the highest lutein yields reported among recent studies, positioning it as a promising candidate for commercial lutein production. This study provides valuable insights into an effective bioprocess design and highlights the C16 strain potential as a sustainable platform for high-value lutein production under a biorefinery scheme.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta-Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Jo Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
45
|
Shan S, Manyakhin AY, Wang C, Ge B, Han J, Zhang X, Zhou C, Yan X, Ruan R, Cheng P. Mixotrophy, a more promising culture mode: Multi-faceted elaboration of carbon and energy metabolism mechanisms to optimize microalgae culture. BIORESOURCE TECHNOLOGY 2023; 386:129512. [PMID: 37481043 DOI: 10.1016/j.biortech.2023.129512] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Some mixotrophic microalgae appear to exceed the sum of photoautotrophy and heterotrophy in terms of biomass production. This paper mainly reviews the carbon and energy metabolism of microalgae to reveal the synergistic mechanisms of the mixotrophic mode from multiple aspects. It explains the shortcomings of photoautotrophic and heterotrophic growth, highlighting that the mixotrophic mode is not simply the sum of photoautotrophy and heterotrophy. Specifically, microalgae in mixotrophic mode can be divided into separate parts of photoautotrophic and heterotrophic cultures, and the synergistic parts of photoautotrophic culture enhance aerobic respiration and heterotrophic culture enhance the Calvin cycle. Additionally, this review argues that current deficiencies in mixotrophic culture can be improved by uncovering the synergistic mechanism of the mixotrophic mode, aiming to increase biomass growth and improve quality. This approach will enable the full utilization of advantagesin various fields, and provide research directions for future microalgal culture.
Collapse
Affiliation(s)
- Shengzhou Shan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Artem Yurevich Manyakhin
- Far Eastern Branch, Russian Academy of Sciences, Federal Scientific Center of East Asian Terrestrial Biodiversity, 100-letiya Vladivostoka Prospect, 159, Vladivostok 690022, Russia
| | - Chun Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
46
|
Broadwell ELM, Pickford RE, Perkins RG, Sgouridis F, Williamson CJ. Adaptation versus plastic responses to temperature, light, and nitrate availability in cultured snow algal strains. FEMS Microbiol Ecol 2023; 99:fiad088. [PMID: 37553143 PMCID: PMC10481995 DOI: 10.1093/femsec/fiad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Snow algal blooms are widespread, dominating low temperature, high light, and oligotrophic melting snowpacks. Here, we assessed the photophysiological and cellular stoichiometric responses of snow algal genera Chloromonas spp. and Microglena spp. in their vegetative life stage isolated from the Arctic and Antarctic to gradients in temperature (5 - 15°C), nitrate availability (1 - 10 µmol L-1), and light (50 and 500 µmol photons m-2 s-1). When grown under gradients in temperature, measured snow algal strains displayed Fv/Fm values increased by ∼115% and electron transport rates decreased by ∼50% at 5°C compared to 10 and 15°C, demonstrating how low temperatures can mimic high light impacts to photophysiology. When using carrying capacity as opposed to growth rate as a metric for determining the temperature optima, these snow algal strains can be defined as psychrophilic, with carrying capacities ∼90% higher at 5°C than warmer temperatures. All strains approached Redfield C:N stoichiometry when cultured under nutrient replete conditions regardless of temperature (5.7 ± 0.4 across all strains), whereas significant increases in C:N were apparent when strains were cultured under nitrate concentrations that reflected in situ conditions (17.8 ± 5.9). Intra-specific responses in photophysiology were apparent under high light with Chloromonas spp. more capable of acclimating to higher light intensities. These findings suggest that in situ conditions are not optimal for the studied snow algal strains, but they are able to dynamically adjust both their photochemistry and stoichiometry to acclimate to these conditions.
Collapse
Affiliation(s)
- Emily L M Broadwell
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rachel E Pickford
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rupert G Perkins
- School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Fotis Sgouridis
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Christopher J Williamson
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| |
Collapse
|
47
|
Ali Y, Thomas R, Holgersson S, Isaksson M, Insulander Björk K. Experimental determination of concentration factors of Ni, Ru and Sb in the model diatom Phaeodactylum tricornutum. Sci Rep 2023; 13:13575. [PMID: 37604893 PMCID: PMC10442315 DOI: 10.1038/s41598-023-38795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/14/2023] [Indexed: 08/23/2023] Open
Abstract
This paper describes the experimental determination of concentration factors (CF) for nickel, ruthenium and antimony in the model diatom Phaeodactylum tricornutum Bohlin (Bacillariophyceae), which was chosen as a representative of marine phytoplankton. Better determinations of these CF are needed to improve the modelling of marine ecosystems at release points, where radioactive pollutants enter the ecosystem, for more accurate predictions of radiation dose to humans caused by these pollutants. A literature study revealed that the currently implemented values of these CF are based on very scarce data, and a computational sensitivity study showed that the radiation dose caused by radioisotopes of these elements depend strongly on the phytoplankton CF. Nutrient-enriched water samples from Swedish coastal waters were used as a medium for growing of the diatom species P. tricornutum and radioactive isotopes of the studied elements were added to the cultures during the exponential growth phase. The radioactivity in the P. tricornutum and in the culture medium were measured separately and used for determination of CF. Conservative estimates of the CF based on this phytoplankton proxy on the present data are 6400 L/kg for nickel, 20,000 L/kg for ruthenium and 890 L/kg for antimony, with P. tricornutum biomass masses referring to dry weight. The estimates for nickel and ruthenium are similar to previously published values, which underpins the credibility of radiation dose calculations based on these values. The estimate for antimony is uncertain, but also, to our knowledge, represents the first published experimentally based data on this CF.
Collapse
Affiliation(s)
- Y Ali
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - R Thomas
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S Holgersson
- Division of Energy and Materials, Department of Chemistry, Chalmers University of Technology, Gothenburg, Sweden
| | - M Isaksson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K Insulander Björk
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
48
|
Bulynina SS, Ziganshina EE, Ziganshin AM. Growth Efficiency of Chlorella sorokiniana in Synthetic Media and Unsterilized Domestic Wastewater. BIOTECH 2023; 12:53. [PMID: 37606440 PMCID: PMC10443301 DOI: 10.3390/biotech12030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Incorporating a variety of microalgae into wastewater treatment is considered an economically viable and environmentally sound strategy. The present work assessed the growth characteristics of Chlorella sorokiniana during cultivation in balanced synthetic media and domestic wastewater. Increasing the NH4+-N concentration to 360 mg L-1 and adding extra PO43--P and SO42--S (up to 80 and 36 mg L-1, respectively) contributed to an increase in the total biomass levels (5.7-5.9 g L-1) during the cultivation of C. sorokiniana in synthetic media. Under these conditions, the maximum concentrations of chlorophylls and carotenoids were 180 ± 7.5 and 26 ± 1.4 mg L-1, respectively. Furthermore, when studying three types of domestic wastewaters, it was noted that only one wastewater contributed to the productive growth of C. sorokiniana, but all wastewaters stimulated an increased accumulation of protein. Finally, the alga, when growing in optimal unsterilized wastewater, showed a maximum specific growth rate of 0.73 day-1, a biomass productivity of 0.21 g L-1 day-1, and 100% NH4+-N removal. These results demonstrate that the tested alga actively adapts to changes in the composition of the growth medium and accumulates high levels of protein in systems with poor-quality water.
Collapse
Affiliation(s)
| | | | - Ayrat M. Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (S.S.B.); (E.E.Z.)
| |
Collapse
|
49
|
Wu H, Zhang H, Peng J, Zheng G, Lu S, Tan Z. Adaptive responses of geographically distinct strains of the benthic dinoflagellate, Prorocentrum lima (Dinophyceae), to varying light intensity and photoperiod. HARMFUL ALGAE 2023; 127:102479. [PMID: 37544679 DOI: 10.1016/j.hal.2023.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
The toxic Prorocentrum lima complex can potentially cause serious harm to the benthos and entire food chain. Studies have revealed physiological differences in strains from different regions related to local environment, while differences in the adaptive responses of P. lima complex should be urgently assessed. Hence, this study explored the adaptive responses to varying light intensities and photoperiods of two P. lima complex strains SHG101 and 3XS34, isolated from the Bohai Sea and the South China Sea, respectively. We found the highest cell density of 7.49 × 104 cells mL-1 recorded in the 3XS strain in the stationary phase with high light intensity exposure. No significant difference was observed in growth rate among SHG groups, however, significant differences were found among 3XS groups ranging from 0.176 to 0.311 d-1. Three key pigments Chl a, Peri, and Fuco accounted for up to 60% of the total pigments. Production and concentrations of pigments and Fv/Fm values exhibit a significant negative correlation with high light intensity and growth. Conversely, total diarrhetic shellfish toxin content and the proportion of diol esters increased to varying degrees after high intensity light exposure, with 3XS strain under high light intensity and a photoperiod of light and darkness (12L:12D) consistently exhibiting the highest levels, finally reaching a maximum (21.6 pg cell-1) at day 28. A shortened photoperiod of high light intensity (8L:16D) resulted in impaired recovery compared with 12L:12D. Furthermore, 3XS showed more delayed and intense adaptive responses, indicating a stronger tolerance compared to SHG. Collectively, these results directly characterized variation in the adaptive responses of geographically distinct strains of P. lima complex, highlighting the previously ignored potential risk diversity of this species.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haoyu Zhang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou 10362, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
50
|
Qian J, Xu C, Song H, Zhou W, Toda T, Li H, Takayama Y, Sekine M, Koga S, Li J, Liu J. Enhancing algal growth and nutrient recovery from anaerobic digestion piggery effluent by an integrated pretreatment strategy of ammonia stripping and flocculation. Front Bioeng Biotechnol 2023; 11:1219103. [PMID: 37456717 PMCID: PMC10339316 DOI: 10.3389/fbioe.2023.1219103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Anaerobic digestion piggery effluent (ADPE) with a quite high ammonium (NH4 +) concentration and turbidity (dark brown color) generally requires high dilution before microalgae cultivation, owing to its NH4 + toxicity and color inhibition to algal growth. An integrated pretreatment strategy of ammonia stripping and chemical flocculation may be a more practical pretreatment procedure for enhancing algae yield and nutrient recovery from anaerobic digestion piggery effluent. In this study, we determined the optimum pretreatment strategy of anaerobic digestion piggery effluent for subsequent microalgae cultivation and nutrient recovery. The results showed that the integrated anaerobic digestion piggery effluent pretreatment strategy of high-temperature ammonia stripping and chemical flocculation at a mixed dosage of 2 g L-1 polyaluminum chloride (PAC) and 40 mg L-1 cationic polyacrylamide (C-PAM), and 50 mg L-1 ammonium nitrogen (NH4 +-N) enrichment provided maximum algal yield (optical density = 1.8) and nutrient removal (95.2%, 98.7%, 99.3%, and 78.5% for the removal efficiencies of total nitrogen, NH4 +-N, total phosphorus, and chemical oxygen demand, respectively) from anaerobic digestion piggery effluent. The integrated pretreatment strategy is expected to become a more practical pretreatment procedure for enhancing algae yield and nutrient recovery from anaerobic digestion piggery effluent.
Collapse
Affiliation(s)
- Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Chengyu Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Hanwu Song
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Tatsuki Toda
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Hongwu Li
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Yoshiki Takayama
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Mutsumi Sekine
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Shinichi Koga
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Jun Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| |
Collapse
|