1
|
Lai X, Liu B, Wan Y, Zhou P, Li W, Hu W, Gong W. Metformin alleviates colitis-associated colorectal cancer via inhibition of the TLR4/MyD88/NFκB/MAPK pathway and macrophage M2 polarization. Int Immunopharmacol 2025; 144:113683. [PMID: 39602956 DOI: 10.1016/j.intimp.2024.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Colon inflammation plays an essential role in the development and progression of colorectal cancer. Emerging evidence from clinical and animal studies indicates that metformin may reduce the risk of colorectal cancer through its anti-inflammatory effects. AIMS To investigate the efficacy of metformin in reducing the risk of colorectal cancer and the possible pathways and mechanisms. METHODS The Enterotoxigenic Bacteroides Fragilis (ETBF)/azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model was established and low-dose metformin (125 mg/kg) or high-dose metformin (250 mg/kg) was administered daily by gavage. Colon tumors were counted, and colon tissue was stained with hematoxylin and eosin (HE) and Periodic Acid-Schiff's and Alcian Blue (PAS-AB). Colon Ki67, ZO-1 Muc2, Claudin-1, Occludin, MPO, reactive oxygen species (ROS), E-cadherin, CD206 and Arg-1 expression were detected by immunohistochemistry or immunofluorescence staining. NF-κB pathway-related protein expression was assessed by Western blot. Fecal short-chain fatty acid (SCFA) levels were also examined. RESULTS Our results showed that low- or high-dose metformin ameliorates colonic mucosal damage, reduces colonic inflammation, and eventually inhibits colorectal tumorigenesis in the ETBF/AOM/DSS mouse model. Our further research found that metformin suppresses the expression of TLR4/MyD88/NFκB/MAPK pathway-related proteins, modulates macrophage M2 polarization and increases SCFA levels in colon contents, which may be the mechanisms by which metformin exerts a protective effect against colon carcinogenesis. CONCLUSION Metformin inhibited colorectal tumorigenesis by suppressing the TLR4/MyD88/NFκB/MAPK pathway, modulating macrophage M2 polarization and increasing SCFA levels. It holds promise as a potentially effective treatment for colorectal cancer.
Collapse
Affiliation(s)
- Xueying Lai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China; Department of Gastroenterology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Bin Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wan
- Department of Gastroenterology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China
| | - Wanjun Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| |
Collapse
|
2
|
Mao N, Yu Y, Lu X, Yang Y, Liu Z, Wang D. Preventive effects of matrine on LPS-induced inflammation in RAW 264.7 cells and intestinal damage in mice through the TLR4/NF-κB/MAPK pathway. Int Immunopharmacol 2024; 143:113432. [PMID: 39447411 DOI: 10.1016/j.intimp.2024.113432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Matrine is a tetracyclic quinolizidine alkaloid with diverse bioactive properties, including anti-inflammatory and neuroprotective properties. However, the underlying anti-inflammatory mechanisms remain unclear. PURPOSE This study aimed to explore how matrine reduces Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and to assess its protective effects against LPS-induced intestinal damage. METHODS The effect of matrine on cell viability was assessed using the cell counting kit-8 (CCK-8) assay. Additionally, its impact on inflammatory cytokines and macrophage polarization was assessed using enzyme-linked immunosorbent assay (ELISA), flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. The effects on intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), nitric oxide (NO) production, and oxidative stress were evaluated using 2',7'-dichlorodihydrofluorescein diacetate staining and JC-1 and Griess assays. Immunofluorescence staining was used to observe the translocation of the NF-κB p65 subunit. Western blotting (WB) and qRT-PCR were employed to analyze the expression levels of proteins related to the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) pathway. An LPS-induced mouse model was established to study the intestinal inflammation and barrier injury. Mouse feces characteristics, colon length, and disease activity index (DAI) were recorded. Hematoxylin-eosin (H&E) and alcian blue/periodic acid schiff (AB/PAS) staining were used to observe morphological changes and barrier damage in the duodenum, jejunum, ileum, and colon and to measure villus length, crypt depth, goblet cell count, and positive areas in the duodenum, jejunum, and ileum. The content of short-chain fatty acids (SCFAs) in the colon was determined using gas chromatography (GC). RESULTS Matrine inhibited LPS-induced inflammatory cytokine levels, suppressed macrophage M1 polarization, and promoted M2 macrophage polarization. Matrine reduced LPS-induced increases in ROS and NO levels and regulates oxidative stress. Additionally, matrine inhibited the nuclear translocation of the NF-κB p65 subunit and exerted anti-inflammatory effects by suppressing the activation of the TLR4/NF-κB/MAPK pathway. In vivo experiments indicated that matrine significantly alleviated LPS-induced diarrhea, increased DAI, and shortened the colon. Matrine reduced the production of the pro-inflammatory cytokine interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α and the pro-inflammatory mediator NO in mouse intestinal tissues while promoting the content of the anti-inflammatory cytokine IL-10. Furthermore, it improved intestinal tissue structure and alleviated LPS-induced intestinal barrier damage. Finally, matrine increased the SCFA levels in the intestine. CONCLUSION Matrine exerted its anti-inflammatory effects and protects against intestinal injury through the TLR4/NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuanqi Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Wang P, Tao W, Li Q, Ma W, Jia W, Kang Y. Indole-3-Aldehyde alleviates lung inflammation in COPD through activating Aryl Hydrocarbon Receptor to inhibit HDACs/NF-κB/NLRP3 signaling pathways. J Mol Med (Berl) 2024:10.1007/s00109-024-02506-9. [PMID: 39694936 DOI: 10.1007/s00109-024-02506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Indole-3-aldehyde (I3A) is an intestinal microbial metabolite that regulates inflammation in various inflammatory diseases; however, its role in chronic obstructive pulmonary disease (COPD) remains unclear. This study aimed to investigate the anti-inflammatory effects and molecular mechanisms of I3A in COPD. We constructed in vivo models using cigarette smoke (CS)-stimulated mice and in vitro models using cigarette smoke extract (CSE)-stimulated MH-S cells. The results demonstrated that I3A significantly alleviated bronchial obstruction in mice with COPD and reduced the expression of inflammatory factors such as TNF-α, IL-1β, and IL-6. Additionally, I3A decreased the levels of matrix metalloproteinases MMP2, MMP12, and inhibited the NF-κB p65/NLRP3 pathways. Further investigation revealed that I3A inhibited NF-κB activity by suppressing p65 phosphorylation and nuclear translocation in CSE-stimulated MH-S cells. The activation of the NF-κB and NLRP3 signaling pathways is mediated by histone deacetylase 5 (HDAC5) and HDAC6, both of which are inhibited by I3A. Subsequent experiments indicated that aryl hydrocarbon receptor (AHR) knockdown attenuated the inhibitory effect of I3A on pro-inflammatory cytokines and the HDACs/NF-κB/NLRP3 signaling pathways, highlighting the dependence of I3A's anti-inflammatory effects on the AHR receptor. KEY MESSAGES: I3A effectively reduced lung inflammation in COPD mice by inhibiting the NF-κB pathway. In CSE-stimulated MH-S cells, I3A suppressed p65 phosphorylation and nuclear translocation, thereby inhibiting NF-κB activity. The activation of the NF-κB/NLRP3 pathways by HDAC5 and HDAC6 was diminished by I3A. Through the activation of the AHR receptor, I3A suppressed the activities of HDAC5/6, leading to a decrease in inflammatory factor levels.
Collapse
Affiliation(s)
- Pengtao Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Shengli Road 804, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Wei Tao
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Shengli Road 804, Xingqing District, Yinchuan, 750004, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qiujie Li
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wanting Ma
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wei Jia
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Shengli Road 804, Xingqing District, Yinchuan, 750004, Ningxia, China.
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Yuting Kang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Shengli Road 804, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
4
|
Chen F, Zhang Y, Wang X, Jing M, Zhang L, Pei K, Zhao T, Su K. Protective effect of Astragaloside II against lung injury in COPD based on mTORC1/GSK-3β signaling pathway. Eur J Pharmacol 2024; 988:177214. [PMID: 39706467 DOI: 10.1016/j.ejphar.2024.177214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Astragaloside II (AST II) is one of the principal bioactive components of Astragalus mongholicus Bunge, exhibiting multiple pharmacological properties. However, the therapeutic efficacy of AST II in Chronic Obstructive Pulmonary Disease (COPD) remains to be fully elucidated. The study explored the effects and mechanisms of AST II in a COPD model induced by exposure to cigarette smoke (CS) and lipopolysaccharide (LPS) in mice. METHODS An animal model of COPD was established by intratracheal instillation of LPS and cigarette smoking in mice. Serum samples were collected to determine inflammatory cell infiltration and cytokine levels. Lung tissues were collected for histological, immunofluorescence and Western blot analysis. The RAW264.7 macrophage cell line was employed to investigate the molecular mechanism of AST II in vitro. RESULTS Lung dysfunction, histopathological damage, inflammatory infiltration, and pro-inflammatory factors secretion in COPD mice induced by CS and LPS were mitigated by AST II. AST II exerted an anti-inflammatory effect by enhancing the activation of the mammalian target of rapamycin complex 1 (mTORC1)/glycogen synthase kinase-3β (GSK-3β) signaling pathway, which promoted the binding of CREB-binding protein (CBP) to CREB, thereby antagonizing the binding to nuclear factor-κB (NF-κB) and inhibiting its transcriptional activity. However, AST II did not demonstrate a protective effect against LPS-induced inflammatory damage to RAW264.7 cells when mTORC1 was inhibited by rapamycin. CONCLUSION AST II exhibits potential therapeutic benefits as an alternative medication for COPD and other respiratory inflammatory conditions since it may reduce lung injury and inflammatory response in mice exposed to CS and LPS.
Collapse
Affiliation(s)
- Fengxi Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yeqing Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xuejian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Mei Jing
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China
| | - Ke Pei
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tong Zhao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kelei Su
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
5
|
Dai C, Liu D, Qin C, Fang J, Cheng G, Xu C, Wang Q, Lu T, Guo Z, Wang J, Zhong T, Guo Q. Guben Kechuan granule attenuates bronchial asthma by inhibiting NF-κB/STAT3 signaling pathway-mediated apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119124. [PMID: 39694430 DOI: 10.1016/j.jep.2024.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic asthma caused by allergies is a lung illness marked by airway remodeling and hyperresponsiveness. Guben Kechuan (GK) granule is a clinically proven formula for treating lung disease. It relieves cough and helps to clear phlegm, but the mechanisms underlying its treatment for asthma are not clear. AIM OF THE STUDY We aimed to elucidate the efficacy and potential mechanisms by which GK ameliorates allergic asthma. MATERIALS AND METHODS Ultra-performance liquid chromatography (UHPLC-LTQ-Orbitrap-MS) identified the main chemical components of GK. The efficacy of GK was studied in an ovalbumin/alum (OVA)/AL(OH)3-sensitized rat model of bronchial asthma by measuring cytokine concentrations in serum and alveolar lavage samples, examining tissue pathology, and performing leukocyte counts. The mechanisms underlying its effectiveness in asthma were investigated by both transcriptomic and proteomic analyses. RESULTS GK relieved asthma-induced airway inflammation and remodeling, reduced inflammatory cell infiltration, and decreased the levels of the inflammatory cytokines TNF-α, IL-4, IL-5, IL-6, and IL-10. Analysis of the transcriptomic and proteomic results found that asthma activated the transcription factors STAT3 and NF-κB and induced oxidative-stress damage and apoptosis. GK was found to reduce Bax and caspase-3 expression, increase Bcl-2 expression, and inhibit asthma-induced apoptosis. GK downregulated the expression of the transcription factors STAT3 and NF-kB, which decreased the inflammatory response. Decreases in CAT, SOD, and GSH reduced asthma-induced oxidative-stress damage. CONCLUSIONS Our findings provide evidence that GK alleviates bronchial asthma by inhibiting apoptosis and oxidative stress damage mediated by the NF-κB/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Chuanhao Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Dewen Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cuiying Qin
- Development Center of Medical Science & Technology National Health Commission of the People's Republic of China, Beijing, 100044, China
| | - Jingya Fang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunhong Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zuchang Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Critical Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Tianyu Zhong
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Qiu A, Wang J, Yang L, Lu X, Zhang W, Pan Z. Intratracheal instillation of budesonide suspension versus normal saline on oxidative stress in neonates with meconium aspiration syndrome. J Matern Fetal Neonatal Med 2024; 37:2337708. [PMID: 38735865 DOI: 10.1080/14767058.2024.2337708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Presently, the efficacy of neonatal resuscitation techniques via interventions such as oral, nasal, and endotracheal suction for preventing meconium aspiration syndrome (MAS) after delivery has not been satisfactory. OBJECTIVE This study aimed to investigate the role of intratracheal instillation of budesonide on oxidative stress in MAS. METHODS Sixty-two neonates with MAS admitted to Huai'an Maternity and Child Healthcare Hospital from January 2018 to June 2020 were divided into a study group (intratracheal instillation of 2 ml budesonide suspension; n = 31) and a control group (intratracheal instillation of 2 ml normal saline; n = 31). Collect data from two groups of patients and evaluate clinical outcomes, including oxygenation index (OI), as well as serum total oxidant status (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI) and 8-Isoprostane before treatment and 72h after admission. RESULTS We found no statistical differences in mortality, complication rate, total oxygen inhalation time, OI before treatment and 72h after admission between the two groups of neonates with MAS, while the duration of invasive respiratory support in the study group was significantly shorter than in the control group. Also, serum TAC, TOS, OSI and 8-isoprostane levels were not statistically different before treatment between the two groups. After 72h of admission, OSI and 8-Isoprostane in neonates with MAS in the study group were much lower than those in the control group. TOS, OSI, 8-Isoprostane in the control group and 8-Isoprostane in the study group were significantly higher than those before treatment. As for TAC and TOS, no significant differences were observed between the two groups. CONCLUSION Intratracheal instillation of budesonide was shown to alleviate oxidative stress and shorten invasive ventilation time in neonates with MAS.
Collapse
Affiliation(s)
- Aijuan Qiu
- Neonatology Department, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu, P. R. China
| | - Jing Wang
- Neonatology Department, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu, P. R. China
| | - Lili Yang
- Neonatology Department, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu, P. R. China
| | - Xiuli Lu
- Neonatology Department, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu, P. R. China
| | - Wenjie Zhang
- Neonatology Department, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu, P. R. China
| | - Zhaojun Pan
- Neonatology Department, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu, P. R. China
| |
Collapse
|
7
|
Park K, Lee JH, Shin E, Jang HY, Song WJ, Kwon HS, Cho YS, Lee JE, Adcock I, Chung KF, Lee JS, Won S, Kim TB. Single-cell RNA sequencing reveals transcriptional changes in circulating immune cells from patients with severe asthma induced by biologics. Exp Mol Med 2024; 56:2755-2762. [PMID: 39672815 DOI: 10.1038/s12276-024-01368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 12/15/2024] Open
Abstract
Patients with severe eosinophilic asthma often require systemic medication, including corticosteroids and anti-type 2 (T2) cytokine biologics, to control the disease. While anti-IL5 and anti-IL4Rα antibodies suppress the effects of IL-4, IL-5 and IL-13, the molecular pathways modified by these biologics that are associated with clinical improvement remain unclear. Therefore, we aimed to describe the effects of T2-targeting biologics on the gene expression of blood immune cells. We conducted single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from eight patients with severe eosinophilic asthma treated with mepolizumab, reslizumab, or dupilumab. PBMCs were obtained before the initiation of biologics and at 1- and 6-month timepoints after the initiation of treatment to elucidate treatment-induced changes. During treatment, the proportions of T cells/natural killer (NK) cells, myeloid cells, and B cells did not change. However, the composition of classical monocytes (CMs) changed: IL1B+ CMs were reduced, and S100A+ CMs were increased. The subsets of T cells also changed, and significant downregulation of the NF-κB pathway was observed. The genes related to the NF-κB pathway were suppressed across T/NK, myeloid, and B cells. The transcriptional landscape did not significantly change after the first month of treatment, but marked changes occurred at six-month intervals. In conclusion, regardless of the type of biologics used, suppression of T2-mediated pathways ultimately reduces the expression of genes related to NF-κB signaling in circulating immune cells. Further studies are warranted to identify potential biomarkers related to treatment response and long-term outcomes.Clinical trial registration number: NCT05164939.
Collapse
Affiliation(s)
- Kyungtaek Park
- Institute of Health and Environment, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 151-742, Korea
| | - Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsoon Shin
- DNA Link, Inc, Seodaemun-Gu Bugahyeon-Ro 150, Industry Coop Bldg. 2Nd Fl, Seoul, 120-140, Korea
| | - Hye Yoon Jang
- DNA Link, Inc, Seodaemun-Gu Bugahyeon-Ro 150, Industry Coop Bldg. 2Nd Fl, Seoul, 120-140, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoo Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- DNA Link, Inc, Seodaemun-Gu Bugahyeon-Ro 150, Industry Coop Bldg. 2Nd Fl, Seoul, 120-140, Korea
| | - Ian Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jeong Seok Lee
- Genome Insight, Inc., San Diego, La Jolla, CA, USA.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 151-742, Korea.
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 151-742, Korea.
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Vahedi Fard M, Mohammadhasani K, Dehnavi Z, Khorasanchi Z. Chronic Obstructive Pulmonary Disease: The Role of Healthy and Unhealthy Dietary Patterns-A Comprehensive Review. Food Sci Nutr 2024; 12:9875-9892. [PMID: 39723104 PMCID: PMC11666972 DOI: 10.1002/fsn3.4519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible disease affecting many people worldwide. Recent evidence suggests that diet and lifestyle play a vital role in COPD progression. We aimed to provide a comprehensive review of the effect of healthy and unhealthy dietary patterns on preventing and treating COPD. For this reason, Scopus, EMBASE, Web of Science, and PubMed were searched. Based on our findings, it appears that adhering to a healthy dietary pattern rich in vegetables, legumes, fruit, nuts, and whole grains may have advantageous impacts on preventing and treating COPD while following an unhealthy dietary pattern rich in red and processed meat, saturated fats, sweets, and sugary drinks affect COPD negatively. Adhering to Mediterranean, dietary approaches to stop hypertension (DASH), Prudent, Ketogenic, and High-protein diet may be related to a lower risk of COPD and improved pulmonary function. Conversely, Western and Ramadan Intermittent Fasting diets may elevate the prevalence of COPD. Proposing a nutritious diet that enhances pulmonary function could potentially be an effective approach to preventing and managing COPD. A comprehensive knowledge of the relationship between dietary factors and COPD can provide healthcare professionals with properly supported approaches to advise patients and empower individuals to make informed lifestyle decisions that are beneficial to improve their pulmonary health.
Collapse
Affiliation(s)
- Mohammad Vahedi Fard
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Kimia Mohammadhasani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Zahra Dehnavi
- Department of Nutritional Sciences, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khorasanchi
- Department of Nutritional Sciences, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
9
|
Zhao S, Huang S, Wu Y, Yao X, Cai X. GATA1-activated lncRNA OIP5-AS1 and GAS5 promote pyroptosis to exacerbate asthma through regulating miR-136-5p/LIFR axis. FASEB J 2024; 38:e70159. [PMID: 39535503 DOI: 10.1096/fj.202401186rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Pyroptosis plays a pivotal role in airway epithelial inflammation during the progression of asthma. This study aimed to explore the influence and mechanisms of opa-interacting protein 5 antisense RNA1 (OIP5-AS1) and growth arrest-specific transcript 5 (GAS5) on pyroptosis in asthmatic models. Pyroptosis was induced in Dermatophagoides pteronyssinus 1 (Der p1)-exposed 16HBE cells and ovalbumin (OVA)-challenged rats. Subsequently, pyroptosis and its related molecular mechanisms were investigated. Our results indicated that GATA1, OIP5-AS1, GAS5, and LIFR were upregulated, while miR-136-5p was downregulated in the patients and experimental models of asthma. OIP5-AS1/GAS5 knockdown repressed NLRP3 inflammasome-mediated pyroptosis in 16HBE cells. Mechanistically, OIP5-AS1/GAS5 sponged miR-136-5p to enhance LIFR expression and subsequently activated NF-κB pathway. OIP5-AS1, GAS5, or LIFR-mediated induction of pyroptosis was abrogated by miR-136-5p mimics or NF-κB inhibitors (BAY11-7082). Finally, GATA1 transcriptionally activated OIP5-AS1/GAS5 to trigger pyroptosis, thereby driving asthma progression in vivo and in vitro. In conclusion, OIP5-AS1/GAS5 transcriptionally activated by GATA1 promoted NLRP3 inflammasome-mediated pyroptosis via the modulation of miR-136-5p/LIFR/NF-κB axis and consequently resulted in airway inflammation in asthma. Our results may provide novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Suzhi Zhao
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Sini Huang
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Yawei Wu
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Xiaozhou Yao
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Xingjun Cai
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
10
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
11
|
Abbasi A, Wang D, Stringer WW, Casaburi R, Rossiter HB. Immune system benefits of pulmonary rehabilitation in chronic obstructive pulmonary disease. Exp Physiol 2024. [PMID: 39456127 DOI: 10.1113/ep091678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by pulmonary and systemic inflammation. Inflammatory mediators show relationships with shortness of breath, exercise intolerance and health related quality of life. Pulmonary rehabilitation (PR), a comprehensive education and exercise training programme, is the most effective therapy for COPD and is associated with reduced exacerbation and hospitalization rates and increased survival. Exercise training, the primary physiological intervention within PR, is known to exert a beneficial anti-inflammatory effect in health and chronic diseases. The question of this review article is whether exercise training can also make such a beneficial anti-inflammatory effect in COPD. Experimental studies using smoke exposure mice models suggest that the response of the immune system to exercise training is favourably anti-inflammatory. However, the evidence about the response of most known inflammatory mediators (C-reactive protein, tumour necrosis factor α, interleukin 6, interleukin 10) to exercise training in COPD patients is inconsistent, making it difficult to conclude whether regular exercise training has an anti-inflammatory effect in COPD. It is also unclear whether COPD patients with more persistent inflammation are a subgroup that would benefit more from hypothesized immunomodulatory effects of exercise training (i.e., personalized treatment). Nevertheless, it seems that PR combined with maintenance exercise training (i.e., lifestyle change) might be more beneficial in controlling inflammation and slowing disease progress in COPD patients, specifically in those with early stages of disease.
Collapse
Affiliation(s)
- Asghar Abbasi
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - David Wang
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - William W Stringer
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Richard Casaburi
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Harry B Rossiter
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
12
|
Li Y, Zhou Y, Liu L, Yang Y, Liu Y, Yan D, Chen J, Xiao Y. Osthole attenuates asthma-induced airway epithelial cell apoptosis and inflammation by suppressing TSLP/NF-κB-mediated inhibition of Th2 differentiation. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:51. [PMID: 39334402 PMCID: PMC11438018 DOI: 10.1186/s13223-024-00913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the influence of osthole (OS) on asthma-induced airway epithelial cell apoptosis and inflammation by restraining Th2 differentiation through suppressing TSLP/NF-κB. METHODS An asthma mouse model and an inflammation cell model were constructed with ovalbumin (OVA) and lipopolysaccharide (LPS), respectively. CD4 + T cells were treated with IL-4 to induce Th2 differentiation. Model mice were treated with OS (15,40 mg/kg) for 7 days, and 10 µg/mL OS was added to cell treatment groups. The levels of relevant indices were detected by RT‒qPCR, HE and Masson staining, Western blotting, ELISA and flow cytometry. RESULTS In a mouse asthma model, TSLP expression was elevated, and the NF-κB pathway was activated. Therefore, OS could restrain the apoptosis and inflammation of airway epithelial cells. Downstream mechanistic studies revealed that OS can suppress Th2 differentiation by restraining the level of TSLP and NF-κB nuclear translocation, thus facilitating the proliferation of airway epithelial cells, restraining their apoptosis and inflammation, and alleviating airway inflammation in asthmatic mice. CONCLUSION OS can inhibit Th2 differentiation by inhibiting the TSLP and NF-κB pathways, which can reduce the apoptosis and inflammation of airway epithelial cells caused by asthma.
Collapse
Affiliation(s)
- Yanli Li
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Yushan Zhou
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Liqiong Liu
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Yunfeng Yang
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Yanhong Liu
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Dailing Yan
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Juyan Chen
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Yi Xiao
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China.
| |
Collapse
|
13
|
Agraval H, Kandhari K, Yadav UCS. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci 2024; 352:122874. [PMID: 38942362 DOI: 10.1016/j.lfs.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer. While EMT has traditionally been associated with the progression of lung cancer, recent research highlights its active involvement in individuals with COPD. Current evidence underscores its role in orchestrating airway remodeling, fostering airway fibrosis, and contributing to the potential for malignant transformation in the complex pathophysiology of COPD. The precise regulatory roles of diverse MMPs in steering EMT during COPD progression needs to be elucidated. Additionally, the less-understood aspect involves how these MMPs bi-directionally activate or regulate various EMT-associated signaling cascades during COPD progression. This review article explores recent advancements in understanding MMPs' role in EMT during COPD progression and various pharmacological approaches to target MMPs. It also delves into the limitations of current MMP inhibitors and explores novel, advanced strategies for inhibiting MMPs, potentially offering new avenues for treating respiratory diseases.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
14
|
Kim SR, Um YJ, Chung SI, Jeong KY, Park HJ, Park KH, Park JW, Park SG, Lee JH. Anti-aminoacyl-tRNA synthetase-interacting multifunctional protein-1 antibody improves airway inflammation in mice with house dust mite induced asthma. World Allergy Organ J 2024; 17:100956. [PMID: 39262899 PMCID: PMC11388501 DOI: 10.1016/j.waojou.2024.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Background Several biologics have been developed and used to treat severe asthma. However, commercialized biologics have limitations in treating T2-low asthma because their main target is the T2 inflammation marker. Therefore, there is an unmet need for treating T2-low severe asthma. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) is an auxiliary protein in the mammalian multi-aminoacyl-tRNA synthetase complex. AIMP1 also acts as a cytokine and induces the secretion of proinflammatory cytokines. Since anti-AIMP1 has been shown to reduce interleukin (IL)-6, tumor necrosis factor-α, and IL-17A levels in a mouse model, it could be effective in the treatment of T2-low severe asthma. Methods Wild-type BALB/c mice were sensitized and challenged with intranasal inoculation of a crude HDM extract. Atliximab, a chimeric AIMP1 antibody, was administered once (20 μg, 40 μg, 100 μg) on Day 14. We evaluated airway hyperresponsiveness (AHR), performed cellular analyses of the bronchoalveolar lavage fluid (BALF), measured inflammatory cytokine levels, and examined peribronchial histological features. Results Atliximab reduced AIMP1 levels in asthmatic mice in a dose-dependent manner. AHR and Inflammatory cells such as neutrophils and eosinophils in the BALF decreased in asthmatic mice treated with atliximab. The levels of IL-6, IL-13, and transforming growth factor-β (TGF-β) in the lung tissue decreased in asthmatic mice treated with a high dose of atliximab (100 μg). Atliximab also reduced goblet cell hyperplasia and peribronchial fibrosis. Conclusions Atliximab improved asthmatic airway inflammation including neutrophilic inflammation in HDM-induced asthma mice. These data suggest that anti-AIMP1 plays an important role in the treatment of severe T2-low asthma.
Collapse
Affiliation(s)
- Sung-Ryeol Kim
- Yongin Severance Hospital, Yonsei University College of Medicine, Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyounggi-do, Republic of Korea
| | - Yun Jung Um
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Sook In Chung
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Yong Jeong
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Jung Park
- Gangnam Severance Hospital, Yonsei University College of Medicine, Department of Internal Medicine, Seoul, Republic of Korea
| | - Kyung Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei University College of Medicine, Division of Allergy and Immunology, Department of Internal Medicine, Seoul, Republic of Korea
| | - Jung-Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei University College of Medicine, Division of Allergy and Immunology, Department of Internal Medicine, Seoul, Republic of Korea
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jae-Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei University College of Medicine, Division of Allergy and Immunology, Department of Internal Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
He S, Wang S, Liu R, Chen H, Wang Q, Jia D, Chen L, Dai J, Li X. Conditioned Medium of Infrapatellar Fat Stem Cells Alleviates Degradation of Chondrocyte Extracellular Matrix and Delays Development of Osteoarthritis. Gerontology 2024; 70:1171-1187. [PMID: 39159625 DOI: 10.1159/000540505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a prevalent clinical chronic degenerative condition characterized by the degeneration of articular cartilage. Currently, drug treatments for OA come with varying degrees of side effects, making the development of new therapeutic approaches for OA imperative. Mesenchymal stem cells (MSCs) are known to mitigate the progression of OA primarily through paracrine effects. The conditioned medium (CM) derived from MSCs encapsulates a variety of paracrine factors secreted by these cells. METHODS In this study, we investigated the effect of the CM of infrapatellar fat pad-derived MSCs (IPFSCs) on OA in vitro and in vivo, as well as and the potential underlying mechanisms. We established three experimental groups: the normal group, the OA group, and the CM intervention group. In vitro experiments, we used methods such as qPCR, Western blot, immunofluorescence, and flow cytometry to detect the impact of CM on OA chondrocytes. In vivo experiments, we evaluated the changes in the knee joints of OA rats after intra-articular injection of CM treatment. RESULTS The results showed that injection of CM into the knee joint inhibited OA development in a rat model induced by destabilization of the medial meniscus and anterior cruciate ligament transection. The CM increased the deposition of extracellular matrix-related components (type II collagen and Proteoglycan). The activation of PI3K/AKT/NF-κB signaling pathway was induced by IL-1β in chondrocytes, which was finally inhibited by CM-IPFSCs treatment. CONCLUSION In summary, IPFSCs-CM may have therapeutic potential for OA.
Collapse
Affiliation(s)
- Shiping He
- Panzhihua Central Hospital, Panzhihua, China
| | - Shihan Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Ruizhou Liu
- Medical College of Zhejiang University, Hangzhou, China,
| | - Hui Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Qiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Dazhou Jia
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Longchi Chen
- Yangzhou Clinical School of Xuzhou Medical University, Yangzhou, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaolei Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
17
|
Zeng Y, Fan N, Gu X, Zhang Y, Min W, Mao Q, Qian Q. Characteristics of gut microbiota and serum metabolism in patients with atopic dermatitis. Skin Res Technol 2024; 30:e13792. [PMID: 38940462 PMCID: PMC11212066 DOI: 10.1111/srt.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects 15%-30% of children and 10% of adults globally, with its incidence being influenced by genetic, environmental, and various other factors. While the immune plays a crucial role in the development, the composition of gut microbiota and serum metabolites also contribute to its pathogenesis. SUBJECT Study the characteristics of gut microbiota and serum metabolites in patients with atopic dermatitis METHOD: In this study, we collected stool and serum samples from 28 AD patients and 23 healthy individuals (NC) for metagenomic sequencing of gut microbiota and non-targeted metabolomic sequencing of serum. RESULT Our results revealed a lower diversity of gut microbiota in the AD group compared to the NC group. The predominant Phylum in AD patients were Bacteroidetes, Pseudomonas, and Verrucomicrobia, with the most dominant bacterial genus being Faecalibacterium. At the species level, Prevotella copri and Faecalibacterium prausnitzii were found to be the most abundant bacteria. Significant differences in serum metabolite profiles were observed between NC and AD patients, with noticeable variations in metabolite expression levels. The majority of metabolites in the serum of AD patients exhibited low expression, while a few showed high expression levels. Notably, metabolites such as Cholesterol glucuronide, Styrene, Lutein, Betaine, Phosphorylcholine, Taurine, and Creatinine displayed the most pronounced alterations. CONCLUSION These findings contribute to a further understanding of the complexities underlying this disease.
Collapse
Affiliation(s)
- Yibin Zeng
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ni Fan
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaoli Gu
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiwen Zhang
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei Min
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qiuyu Mao
- Department of DermatologyMinhang HospitalFudan UniversitShanghaiChina
| | - Qihong Qian
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
18
|
Song XY, Sun Q, Wei SZ, Wang HR, Wang Y, Zhang WB, Ren C, Song XC, Mou YK. IL-6 mediates olfactory dysfunction in a mouse model of allergic rhinitis. Brain Res 2024; 1833:148885. [PMID: 38531465 DOI: 10.1016/j.brainres.2024.148885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Immune-inflammatory response is a key element in the occurrence and development of olfactory dysfunction (OD) in patients with allergic rhinitis (AR). As one of the core factors in immune-inflammatory responses, interleukin (IL)-6 is closely related to the pathogenesis of allergic diseases. It may also play an important role in OD induced by diseases, such as Sjögren's syndrome and coronavirus disease 2019. However, there is no study has reported its role in OD in AR. Thus, this study aimed to investigate the role of IL-6 in AR-related OD, in an attempt to discover a new target for the prevention and treatment of OD in patients with AR. METHODS Differential expression analysis was performed using the public datasets GSE52804 and GSE140454 for AR, and differentially expressed genes (DEGs) were obtained by obtaining the intersection points between these two datasets. IL-6, a common differential factor, was obtained by intersecting the DEGs with the General Olfactory Sensitivity Database (GOSdb) again. A model of AR mice with OD was developed by sensitizing with ovalbumin (OVA) to verify the reliability of IL-6 as a key factor of OD in AR and explore the potential mechanisms. Furthermore, a supernatant and microglia co-culture model of nasal mucosa epithelial cells stimulated by the allergen house dust mite extract Derp1 was established to identify the cellular and molecular mechanisms of IL-6-mediated OD in AR. RESULTS The level of IL-6 in the nasal mucosa and olfactory bulb of AR mice with OD significantly increased and showed a positive correlation with the expression of olfactory bulb microglia marker Iba-1 and the severity of OD. In-vitro experiments showed that the level of IL-6 significantly increased in the supernatant after the nasal mucosa epithelial cells were stimulated by Derp1, along with significantly decreased barrier function of the nasal mucosa. The expression levels of neuroinflammatory markers IL-1β and INOS increased after a conditioned culture of microglia with the supernatant including IL-6. Then knockdown (KD) of IL-6R by small interfering RNA (siRNA), the expression of IL-1β and INOS significantly diminished. CONCLUSION IL-6 plays a key role in the occurrence and development of OD in AR, which may be related to its effect on olfactory bulb microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Han-Rui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Wen-Bin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
| | - Xi-Cheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
| | - Ya-Kui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
| |
Collapse
|
19
|
Buschur KL, Pottinger TD, Vogel-Claussen J, Powell CA, Aguet F, Allen NB, Ardlie K, Bluemke DA, Durda P, Hermann EA, Hoffman EA, Lima JA, Liu Y, Malinsky D, Manichaikul A, Motahari A, Post WS, Prince MR, Rich SS, Rotter JI, Smith BM, Tracy RP, Watson K, Winther HB, Lappalainen T, Barr RG. Peripheral Blood Mononuclear Cell Gene Expression Associated with Pulmonary Microvascular Perfusion: The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2024; 21:884-894. [PMID: 38335160 PMCID: PMC11160125 DOI: 10.1513/annalsats.202305-417oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. The molecular mechanisms underlying these changes are poorly understood in patients, in part because of the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMCs) interact with the pulmonary endothelium. Objectives: To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with ⩾10 pack-years of smoking history. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume, and mean transit time were assessed on contrast-enhanced magnetic resonance imaging, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with pulmonary microvascular blood volume measures on contrast-enhanced dual-energy computed tomography. Differential expression analyses were adjusted for age, gender, race/ethnicity, educational attainment, height, weight, smoking status, and pack-years of smoking. Results: The 79 participants in the discovery sample had a mean age of 69 ± 6 years, 44% were female, 25% were non-White, 34% were current smokers, and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with magnetic resonance imaging (n = 47) or dual-energy contrast-enhanced computed tomography (n = 157) measures. Many of the identified genes are involved in inflammatory processes, including nuclear factor-κB and chemokine signaling pathways. Conclusions: PBMC gene expression in nuclear factor-κB, inflammatory, and chemokine signaling pathways was associated with pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.
Collapse
Affiliation(s)
| | | | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Francois Aguet
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Norrina B. Allen
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kristin Ardlie
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David A. Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | | | - Eric A. Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - João A.C. Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Yongmei Liu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Amin Motahari
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Benjamin M. Smith
- Department of Medicine
- Research Institute, McGill University Health Center, Montreal, Québec, Canada
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Karol Watson
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Hinrich B. Winther
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Tuuli Lappalainen
- Department of Biostatistics
- Department of Systems Biology, Columbia University Medical Center, New York, New York
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
20
|
de Oliveira JR, Pereira ABM, de Souza HI, Dos Santos WM, de Assunção TSF, de Vito FB, de Souza HM, da Silva PR, da Silva MV, Junior VR, Rogerio AP. Anti-inflammatory actions of aspirin-triggered resolvin D1 (AT-RvD1) in bronchial epithelial cells stimulated by cigarette smoke extract. Prostaglandins Other Lipid Mediat 2024; 172:106833. [PMID: 38460760 DOI: 10.1016/j.prostaglandins.2024.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Smoking causes several diseases such as chronic obstructive pulmonary disease (COPD). Aspirin-triggered-resolvin D1 (AT-RvD1) is a lipid mediator produced during the resolution of inflammation and demonstrates anti-inflammatory and pro-resolution effects in several inflammatory experimental models including in the airways. Here we evaluated the role of AT-RvD1 (100 nM) in bronchial epithelial cells (BEAS-2B) stimulated by cigarette smoke extract (CSE; 1%; 1 cigarette) for 24 h. CSE induced the productions of IL-1β, TNF-α, IL-10, IL-4 and IFN-γ as well as the activations of NF-κB and STAT3 and the expression of ALX/FPR2 receptor. AT-RvD1 reduced the IL-1β and TNF-α production and increased the production of IFN-γ. These effects were reversed BOC2, an antagonist of ALX/FPR2 receptor for AT-RvD1. The production of IL-4 and IL-10 were not altered by AT-RvD1. In addition, AT-RvD1 reduced the phosphorylation of NF-κB and STAT3 when compared to CSE-stimulated BEAS-2B cells. No alteration of ALX/FPR2 expression was observed by AT-RvD1 when compared to CSE group. In the human monocytic leukemia cell line, the relative number of copies of IL-1β and IL-4 was significantly higher in CSE + AT-RvD1 group compared CSE group, however, the expression of M1 cytokine was more pronounced than M2 profile. AT-RvD1 could be an important target for the reduction of inflammation in the airways associated with smoking.
Collapse
Affiliation(s)
- Jhony Robson de Oliveira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Henrique Ismarsi de Souza
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Wanessa Maria Dos Santos
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Thaís Sorares Farnesi de Assunção
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Fernanda Bernadelli de Vito
- Institute of Biological and Natural Sciences, Department of Genetics, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Helio Moraes de Souza
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Marcos Vinicius da Silva
- Laboratory of Parasitology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Alexandre Paula Rogerio
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil.
| |
Collapse
|
21
|
Zlatanova M, Nešić A, Trbojević-Ivić J, Četić D, Gavrović-Jankulović M. Targeting NF-κB Signaling: Selected Small Molecules Downregulate Pro-Inflammatory Cytokines in Both Food Allergen and LPS-Induced Inflammation. Int J Mol Sci 2024; 25:5798. [PMID: 38891984 PMCID: PMC11172266 DOI: 10.3390/ijms25115798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Although inflammation is primarily a protective response guarding the human body, it can result in a variety of chronic diseases such as allergies, auto-immune, cardiovascular diseases, and cancer. In NF-κB-mediated inflammation, many small molecules and food compounds characterized as nutraceuticals have shown positive effects associated with immunomodulatory properties. We investigated the effects of selected bioactive small molecules, commonly found in food components, vanillyl alcohol (VA) and lauric acid (LA), on different cell lines exposed to pro-inflammatory stimuli, lipopolysaccharide (LPS), and the food allergen actinidin (Act d 1). Pro-inflammatory cytokines were downregulated in response to both VA and LA, and this downregulation was caused by a decrease in the activation of the NF-κB pathway and the translocation of p65, the pathway's major component. Small nutraceutical molecules, VA and LA, showed not only inhibition of the pro-inflammatory cytokines, but also inhibition of the NF-κB activation, and reduced translocation of the p65 component. The present study may contribute to the therapeutic use of these molecules for various inflammatory diseases, which have in common an increased expression of pro-inflammatory cytokines and NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Milena Zlatanova
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (A.N.)
| | - Andrijana Nešić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (A.N.)
- Institute for Translational Medicine (ITM), Medical School Hamburg (MSH), 20457 Hamburg, Germany
| | | | - Danilo Četić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Marija Gavrović-Jankulović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (A.N.)
| |
Collapse
|
22
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
23
|
Adilis Maria Paiva Ferreira L, Karla Diega Paiva Ferreira L, Fragoso Pereira Cavalcanti R, Allysson de Assis Ferreira Gadelha F, Mangueira de Lima L, Francisco Alves A, Gabriel Lima Júnior C, Regina Piuvezam M. Morita-Baylis-Hillman adduct 2-(3-hydroxy-1-methyl-2-oxoindolin-3-il) acrylonitrile (CISACN) ameliorates the pulmonary allergic inflammation in CARAS model by increasing IFN-γ/IL-4 ratio towards the Th1 immune response. Int Immunopharmacol 2024; 130:111737. [PMID: 38401465 DOI: 10.1016/j.intimp.2024.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) is an airway-type 2 immune response with a profuse inflammatory process widely affecting the world population. Due to the compromise of quality of life and the lack of specific pharmacotherapy, the search for new molecules becomes relevant. This study aimed to evaluate the effectiveness of the Morita-Bailys-Hillman adduct (CISACN) treatment in the CARAS experimental model. Female BALB/c mice were ovalbumin (OVA) -sensitized and -challenged and treated with CISACN. The treatment decreased the eosinophil migration to the nasal and lung cavities and tissues and the goblet cell hyperplasia/hypertrophy, attenuated airway hyperactivity by reducing the hyperplasia/hypertrophy of the smooth muscle and the extracellular matrix's thickness. Also, the treatment reduced the clinical signs of rhinitis as nasal rubbing and sneezing in a histamine-induced nasal hyperreactivity assay. The immunomodulatory effect of CISACN was by reducing OVA-specific IgE serum level, and IL-33, IL-4, IL-13, and TGF-β production, dependent on IFN-γ increase. Furthermore, the effect of CISACN on lung granulocytes was by decreasing the p-p38MAPK/p65NF-κB signaling pathway. Indeed, CISACN reduced the p38MAPK and p65NF-κB activation. These data demonstrated the anti-inflammatory and immunomodulatory effects of the CISACN with scientific support to become a pharmacological tool to treat airway inflammatory diseases.
Collapse
Affiliation(s)
- Larissa Adilis Maria Paiva Ferreira
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Raquel Fragoso Pereira Cavalcanti
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Louise Mangueira de Lima
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Adriano Francisco Alves
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Marcia Regina Piuvezam
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Drug Research Institute of the Federal University of Paraíba, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
24
|
Shin J, Miaskowski C, Wong ML, Yates P, Olshen AB, Roy R, Dokiparthi V, Cooper B, Paul S, Conley YP, Levine JD, Hammer MJ, Kober K. Perturbations in inflammatory pathways are associated with shortness of breath profiles in oncology patients receiving chemotherapy. Support Care Cancer 2024; 32:250. [PMID: 38532105 PMCID: PMC11484916 DOI: 10.1007/s00520-024-08446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE One plausible mechanistic hypothesis is the potential contribution of inflammatory mechanisms to shortness of breath. This study was aimed to evaluate for associations between the occurrence of shortness of breath and perturbations in inflammatory pathways. METHODS Patients with cancer reported the occurrence of shortness of breath six times over two cycles of chemotherapy. Latent class analysis was used to identify subgroups of patients with distinct shortness of breath occurrence profiles (i.e., none (70.5%), decreasing (8.2%), increasing (7.8%), high (13.5%)). Using an extreme phenotype approach, whole transcriptome differential gene expression and pathway impact analyses were performed to evaluate for perturbed signaling pathways associated with shortness of breath between the none and high classes. Two independent samples (RNA-sequencing (n = 293) and microarray (n = 295) methodologies) were evaluated. Fisher's combined probability method was used to combine these results to obtain a global test of the null hypothesis. In addition, an unweighted knowledge network was created using the specific pathway maps to evaluate for interconnections among these pathways. RESULTS Twenty-nine Kyoto Encyclopedia of Genes and Genomes inflammatory signaling pathways were perturbed. The mitogen-activated protein kinase signaling pathway node had the highest closeness, betweenness, and degree scores. In addition, five common respiratory disease-related pathways, that may share mechanisms with cancer-related shortness of breath, were perturbed. CONCLUSIONS Findings provide preliminary support for the hypothesis that inflammation contribute to the occurrence of shortness of breath in patients with cancer. In addition, the mechanisms that underlie shortness of breath in oncology patients may be similar to other respiratory diseases.
Collapse
Affiliation(s)
- Joosun Shin
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christine Miaskowski
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
- School of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Melisa L Wong
- School of Medicine, University of California, San Francisco, CA, USA
| | - Patsy Yates
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adam B Olshen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Vasuda Dokiparthi
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
| | - Bruce Cooper
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
| | - Steven Paul
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
| | - Yvette P Conley
- School of Nursing, Univeristy of Pittsburgh, 3500 Victoria St, Pittsburgh, 15213, PA, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | | | - Kord Kober
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
25
|
Yeung-Luk BH, Wally A, Swaby C, Jauregui S, Lee E, Zhang R, Chen D, Luk SH, Upadya N, Tieng E, Wilmsen K, Sherman E, Sudhakar D, Luk M, Shrivastav AK, Cao S, Ghosh B, Christenson SA, Huang YJ, Ortega VE, Biswal S, Tang WY, Sidhaye VK. Epigenetic Reprogramming Drives Epithelial Disruption in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2024; 70:165-177. [PMID: 37976469 PMCID: PMC10914773 DOI: 10.1165/rcmb.2023-0147oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.
Collapse
Affiliation(s)
| | - Ara Wally
- Department of Environmental Health and Engineering and
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Carter Swaby
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sofia Jauregui
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Esther Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Zhang
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sean H. Luk
- Department of Environmental Health and Engineering and
| | - Nisha Upadya
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ethan Tieng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Kai Wilmsen
- Department of Environmental Health and Engineering and
| | - Ethan Sherman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Dheeksha Sudhakar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Luk
- Department of Environmental Health and Engineering and
| | - Abhishek Kumar Shrivastav
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Shuo Cao
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | | | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Yvonne J. Huang
- Department of Medicine, University of Michigan, Ann Arbor, Michigan; and
| | | | - Shyam Biswal
- Department of Environmental Health and Engineering and
| | - Wan-yee Tang
- Department of Environmental Health and Engineering and
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering and
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
26
|
Mohanan A, Washimkar KR, Mugale MN. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119676. [PMID: 38242330 DOI: 10.1016/j.bbamcr.2024.119676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-β, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.
Collapse
Affiliation(s)
- Anushree Mohanan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Shin JJ, Park J, Shin HS, Arab I, Suk K, Lee WH. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:2670. [PMID: 38473915 DOI: 10.3390/ijms25052670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past century, molecular biology's focus has transitioned from proteins to DNA, and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene expression regulation and signal transduction by inducing epigenetic changes or interacting with various proteins and RNAs. These interactions exhibit a range of functions in various cell types, including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is instrumental in the progression of various pathological conditions including sepsis, atherosclerosis, cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is a key contributor to the onset and development of these diseases. This review aims to summarize the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation, with a particular emphasis on their relevance to human diseases and their potential as therapeutic targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could provide valuable knowledge for the development of treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
28
|
Wu J, Li X, Kong D, Zheng X, Du W, Zhang Y, Jiao Y, Li X. Exploring the importance of m5c in the diagnosis and subtype classification of COPD using the GEO database. Gene 2024; 895:147987. [PMID: 37972696 DOI: 10.1016/j.gene.2023.147987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND 5-Methylcytosine (m5C) is an mRNA modifier that is associated with the occurrence and development of viral infection, pulmonary fibrosis, lung cancer, and other diseases. However, the role of m5C regulators in chronic obstructive pulmonary disease (COPD) remains unknown. METHODS In this study, by analysing the GSE42057 dataset, the differential expression of m5c regulators in the COPD group and control group was obtained, and a correlation analysis was conducted. The random forest model and support vector machine model were used to predict the occurrence of COPD. A nomogram model was also constructed to predict the prevalence of COPD. The COPD patients were divided into subtypes by consistent cluster analysis based on m5c methylation regulators. Immune cell infiltration was performed on the m5c methylation subtypes. Differentially expressed genes (DEGs) between m5c methylation subtypes were screened, and the DEGs were analysed by Gene Ontology (GO) Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, we verified the expression of several m5C regulators and related pathways using a COPD cell model. RESULTS Seven m5c methylation regulators were differentially expressed. The random forest model based on the above genes was the most accurate for predicting the occurrence of COPD. A nomogram model based on the above genes could also accurately predict the prevalence of COPD, and the implementation of these models could benefit COPD patients. The consistent cluster analysis divided the COPD patients into two subtypes (Cluster A and Cluster B). The main component analysis algorithm determined the m5c methylation subtypes and found that patients in Cluster A had a higher m5c score than those in Cluster B. GO analysis of the DEGs between the m5c methylation COPD patient subtypes revealed that DEGS were mainly enriched in leukocyte-mediated immunity and regulation of T-cell activation. KEGG analysis revealed that DEGS were mainly enriched in Th1 and Th2 cell differentiation, neutrophil extracellular trap formation, and the NF-κB signalling pathway. Immunocyte correlation analysis revealed that Cluster B was associated with neutrophil- and macrophage-mediated immunity, while Cluster A was associated with CD4 + T-cell- and CD8 + T-cell-mediated immunity. Cell experiments have also verified some of the above research results. CONCLUSION The diagnosis and subtype classification of COPD patients based on m5c regulators may provide a new strategy for the diagnosis and treatment of COPD.
Collapse
Affiliation(s)
- Jianjun Wu
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xiaoning Li
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Deyu Kong
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xudong Zheng
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weisha Du
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Jiao
- Respiratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China.
| | - Xin Li
- Glaucoma, Eye Hospital China academy of Chinese Medical Sciences, Beijing 100040, China.
| |
Collapse
|
29
|
Kaur J, Rana P, Matta T, Sodhi RK, Pathania K, Pawar SV, Kuhad A, Kondepudi KK, Kaur T, Dhingra N, Sah SP. Protective effect of olopatadine hydrochloride against LPS-induced acute lung injury: via targeting NF-κB signaling pathway. Inflammopharmacology 2024; 32:603-627. [PMID: 37847473 DOI: 10.1007/s10787-023-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Morbidity and mortality rates associated with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are high (30-40%). Nuclear factor-kappa B (NF-κB) is a transcription factor, associated with transcription of numerous cytokines leading to cytokine storm, and thereby, plays a major role in ALI/ARDS and in advanced COVID-19 syndrome. METHODS Considering the role of NF-κB in ALI, cost-effective in silico approaches were utilized in the study to identify potential NF-κB inhibitor based on the docking and pharmacokinetic results. The identified compound was then pharmacologically validated in lipopolysaccharide (LPS) rodent model of acute lung injury. LPS induces ALI by altering alveolar membrane permeability, recruiting activated neutrophils and macrophages to the lungs, and compromising the alveolar membrane integrity and ultimately impairs the gaseous exchange. Furthermore, LPS exposure is associated with exaggerated production of various proinflammatory cytokines in lungs. RESULTS Based on in silico studies Olopatadine Hydrochloride (Olo), an FDA-approved drug was found as a potential NF-κB inhibitor which has been reported for the first time, and considered further for the pharmacological validation. Intraperitoneal LPS administration resulted in ALI/ARDS by fulfilling 3 out of the 4 criteria described by ATS committee (2011) published workshop report. However, treatment with Olo attenuated LPS-induced elevation of proinflammatory markers (IL-6 and NF-κB), oxidative stress, neutrophil infiltration, edema, and damage in lungs. Histopathological studies also revealed that Olo treatment significantly ameliorated LPS-induced lung injury, thus conferring improvement in survival. Especially, the effects produced by Olo medium dose (1 mg/kg) were comparable to dexamethasone standard. CONCLUSION In nutshell, inhibition of NF-κB pathway by Olo resulted in protection and reduced mortality in LPS- induced ALI and thus has potential to be used clinically to arrest disease progression in ALI/ARDS, since the drug is already in the market. However, the findings warrant further extensive studies, and also future studies can be planned to elucidate its role in COVID-19-associated ARDS or cytokine storm.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Priyanka Rana
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Tushar Matta
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupinder Kaur Sodhi
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Khushboo Pathania
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Sandip V Pawar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanthi Kiran Kondepudi
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Neelima Dhingra
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
30
|
Fu Y, Zhao J, Chen J, Zheng Y, Mo R, Zhang L, Zhang B, Lin Q, He C, Li S, Lin L, Xie T, Ding Y. miR‑186‑5p regulates the inflammatory response of chronic obstructive pulmonary disorder by targeting HIF‑1α. Mol Med Rep 2024; 29:34. [PMID: 38214374 PMCID: PMC10804437 DOI: 10.3892/mmr.2024.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/14/2023] [Indexed: 01/13/2024] Open
Abstract
Chronic obstructive pulmonary disorder (COPD) is a chronic respiratory disease that is a major cause of morbidity and mortality worldwide. Previous studies have shown that miR‑186‑5p expression is significantly increased in COPD and is involved in multiple physiological and pathological processes. However, the role of miRNA‑186‑5p in the inflammatory response of COPD remains unclear. In this study, an in vitro model of COPD was established using lipopolysaccharide (LPS)‑induced human bronchial epithelial cells (BEAS‑2B). CCK‑8 assays, flow cytometry, and a Muse cell analyzer were used to determine cell viability, cell cycle distribution, and apoptosis, respectively. The production of TNF‑α and IL‑6 were measured by ELISA. Reverse‑transcription‑quantitative PCR and western blotting were used to analyze mRNA and protein expression levels. The targeting relation between miR‑186‑5p and HIF‑1α was discovered using dual‑luciferase reporter assays. The results showed that transfection of miR‑186‑5p inhibitor inhibited cell proliferation and promoted cell apoptosis in the LPS‑induced BEAS‑2B cells. Inhibition of miR‑186‑5p markedly increased the levels of TNF‑α and IL‑6. miR‑186‑5p directly targeted and negatively regulated HIF‑1α expression. In addition, inhibition of miR‑186‑5p increased the expression of the NF‑κB pathway protein p‑p65. In conclusion, it was found that inhibiting miR‑186‑5p may improve inflammation of COPD through HIF‑1α in LPS‑induced BEAS‑2B cells, possibly by regulating NF‑κB signaling. These findings provide a novel potential avenue for the clinical management of COPD. Future research is required to determine the mechanism of the interaction between miR‑186‑5p and HIF‑1α in COPD.
Collapse
Affiliation(s)
- Yihui Fu
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Jie Zhao
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Jie Chen
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Yamei Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Rubing Mo
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Bingli Zhang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Qi Lin
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Chanyi He
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Siguang Li
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Lingsang Lin
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Tian Xie
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Yipeng Ding
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
31
|
Morel LJDF, Carmona F, Guimarães CC, Moreira LGQ, Leão PDS, Crevelin EJ, Batah SS, Fabro AT, França SDC, Borges MDC, Pereira AMS. A methanolic extract of Eclipta prostrata (L.) L. decreases inflammation in a murine model of chronic allergic asthma via inhibition of the NF-kappa-B pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116930. [PMID: 37487966 DOI: 10.1016/j.jep.2023.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrata (L.) L. is a medicinal plant used by many ethnic groups in Brazil to treat respiratory diseases, hepatitis and the bites of venomous animals. A methanolic extract of E. prostrata (MEEP), the major components of which are wedelolactone (WED) and demethylwedelolactone (DMW), exhibited anti-inflammatory activity in acute asthma models but the effects on lung inflammation and the mechanisms of action of MEEP in a chronic asthma model are not known. AIM OF THE STUDY To study the effects of MEEP in vivo using a chronic ovalbumin (OVA)-induced allergic asthma model in mice. MATERIALS AND METHODS The identities of WED and DMW in MEEP were confirmed and the concentrations determined by liquid chromatography and tandem mass spectrometry. Male Balb/c mice were sensitized and challenged with OVA and experimental animals were treated with MEEP (100, 250 or 500 mg/kg) while control animals were treated with dexamethasone (2 mg/kg) or normal saline. Bronchial hyperresponsiveness, total and differential cell counts in bronchoalveolar lavage (BAL), and the production of Th2 cytokines in lung homogenates were assessed. Lung inflammation and mucus production were evaluated by histological analysis while nuclear factor kappa-B (NF-κB) activation was assessed immunohistochemically. RESULTS Concentrations of WED and DMW in MEEP were 5.12% and 1.04%, respectively. Treatments with MEEP (250 or 500 mg/kg) significantly decreased bronchial hyperresponsiveness, reduced total cell and eosinophil counts in BAL and IL-4 concentrations in lung homogenate, and inhibited NF-κB activation. Treatment with MEEP at 500 mg/kg reduced the level of IL-5 in lung homogenates but did not decrease IL-13 concentration or mucus production. CONCLUSIONS MEEP attenuated bronchial hyperresponsiveness and decreased lung and airway inflammation in a chronic asthma model in mice. The mechanism of action involves inhibition of NF-κB activation, most likely associated with the presence of the coumestans WED and DMW. These results support the ethnopharmacological evidence for the use of E. prostrata against asthma and other respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Lucas Junqueira de Freitas Morel
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil; Faculdade da Ceilândia, Universidade de Brasília, Campus Universitário, Centro Metropolitano, Ceilândia Sul, 72220-275, Brasília, DF, Brazil
| | - Fabio Carmona
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Camila Carla Guimarães
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil
| | | | - Patricia Dos Santos Leão
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Eduardo José Crevelin
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Sabrina Setembre Batah
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Alexandre Todorovic Fabro
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Suzelei de Castro França
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil
| | - Marcos de Carvalho Borges
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Ana Maria Soares Pereira
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil; Botanical Garden of Medicinal Plant Ordem e Progresso, 14680-000, Jardinópolis, SP, Brazil.
| |
Collapse
|
32
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
33
|
Shi F, Cao J, Zhou D, Wang X, Yang H, Liu T, Chen Z, Zeng J, Du S, Yang L, Jia R, Zhang S, Zhang M, Guo Y, Lin X. Revealing the clinical effect and biological mechanism of acupuncture in COPD: A review. Biomed Pharmacother 2024; 170:115926. [PMID: 38035864 DOI: 10.1016/j.biopha.2023.115926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND To provide new ideas for the clinical and mechanism research of acupuncture in the treatment of chronic obstructive pulmonary disease (COPD), this study systematically reviews clinical research and the progress of basic research of acupuncture in the treatment of COPD. METHODS PubMed and Web of Science databases were searched using acupuncture and COPD as keywords in the last 10 years, and the included literature was determined according to exclusion criteria. FINDINGS Acupuncture can relieve clinical symptoms, improve exercise tolerance, anxiety, and nutritional status, as well as hemorheological changes (blood viscosity), reduce the inflammatory response, and reduce the duration and frequency of COPD in patients with COPD. Mechanistically, acupuncture inhibits M1 macrophage activity, reduces neutrophil infiltration, reduces inflammatory factor production in alveolar type II epithelial cells, inhibits mucus hypersecretion of airway epithelial cells, inhibits the development of chronic inflammation in COPD, and slows tissue structure destruction. Acupuncture may control pulmonary COPD inflammation through the vagal-cholinergic anti-inflammatory, vagal-adrenomedullary-dopamine, vagal-dual-sensory nerve fiber-pulmonary, and CNS-hypothalamus-orexin pathways. Furthermore, acupuncture can increase endogenous cortisol levels by inhibiting the HPA axis, thus improving airway antioxidant capacity and reducing airway inflammation in COPD. In conclusion, the inhibition of the chronic inflammatory response is the key mechanism of acupuncture treatment for COPD.
Collapse
Affiliation(s)
- Fangyuan Shi
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dan Zhou
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruo Jia
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siqi Zhang
- Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, China
| | - Mingxing Zhang
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaowei Lin
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
34
|
Ghahramanipour Z, Alipour S, Masoumi J, Rostamlou A, Hatami-Sadr A, Heris JA, Naseri B, Jafarlou M, Baradaran B. Regulation of Dendritic Cell Functions by Vitamins as Promising Therapeutic Strategy for Immune System Disorders. Adv Biol (Weinh) 2023; 7:e2300142. [PMID: 37423961 DOI: 10.1002/adbi.202300142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Indexed: 07/11/2023]
Abstract
A functional immune system is crucial for a healthy life, protecting from infections, tumors, or autoimmune disorders; these are accomplished by the interaction between various immune cells. Nourishment, particularly micronutrients, are very important components in the immune system balance, therefore this review emphasizes the vitamins (D, E, A, C) and Dendritic cells' subsets due to vitamins' roles in immune processes, especially on dendritic cells' functions, maturation, and cytokine production. Current studies reveal significant benefits related to vitamins, including vitamin E, which can contribute to the control of dendritic cells' function and maturation. Furthermore, vitamin D plays an immunoregulatory and anti-inflammatory role in the immune system. Metabolite of vitamin A which is called retinoic acid leads to T cells' differentiation to T helper 1 or T helper 17, so low levels of this vitamin exacerbate the menace of infectious diseases, and vitamin C has anti-oxidant effects on dendritic cells and modulate their activation and differentiation program. Additionally, the correlation between the amount of vitamin and the occurrence or progression of allergic diseases and autoimmunity disorders is discussed according to the results of previous studies.
Collapse
Affiliation(s)
- Zahra Ghahramanipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, 35040, Turkey
| | | | - Javad Ahmadian Heris
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| |
Collapse
|
35
|
Oh YJ, Jin SE, Shin HK, Ha H. Daeshiho-tang attenuates inflammatory response and oxidative stress in LPS-stimulated macrophages by regulating TLR4/MyD88, NF-κB, MAPK, and Nrf2/HO-1 pathways. Sci Rep 2023; 13:18891. [PMID: 37919391 PMCID: PMC10622541 DOI: 10.1038/s41598-023-46033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Daeshiho-tang (DSHT), a traditional herbal formula with diverse pharmacological effects, has shown promise in medicine owing to its anti-hypertensive, anti-diabetic, and anti-inflammatory properties. However, the precise molecular mechanism underlying these effects remains unclear. Thus, we investigated the effect of DSHT on inflammatory response and oxidative stress to understand its molecular mechanism using lipopolysaccharide (LPS)-induced macrophage (RAW 264.7) cells. DSHT decreased the contents of nitric oxide (NO) and prostaglandin E2 (PGE2) through downregulating inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. DSHT suppressed the LPS-induced TLR4 as well as MyD88, subsequently suppressing the NF-κB activation and the phosphorylation of MAPK (p38, ERK, and JNK). Radical scavenging activity results revealed a dose-dependent response of DSHT with diminished ABTS activity, a hallmark of oxidative stress potential. Furthermore, DSHT enhanced Nrf2 and HO-1 expression in response to LPS. Collectively, our findings indicated that DSHT exert anti-inflammatory effect and regulating oxidative stress by modulating TLR4/MyD88, NF-κB, MAPK, and Nrf2/HO-1 pathways, consequently can provide potential therapeutic strategy for the prevention and treatment of inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yong Jin Oh
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu, Daejeon, 34054, Korea
| | - Seong Eun Jin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu, Daejeon, 34054, Korea
| | - Hyeun-Kyoo Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu, Daejeon, 34054, Korea
| | - Hyekyung Ha
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu, Daejeon, 34054, Korea.
| |
Collapse
|
36
|
Nguyen HD. Effects of mixed heavy metals on obstructive lung function: findings from epidemiological and toxicogenomic data. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8663-8683. [PMID: 37700191 DOI: 10.1007/s10653-023-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
The molecular mechanisms and associations of mixed heavy metals (lead, mercury, and cadmium) on obstructive lung function (OLF) in males and females remain unknown. Here, we evaluated the interaction between the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) ratio and three common heavy metals in males and females (n = 6221). Molecular processes involved in OLF development caused by mixed heavy metals were also identified to corroborate the earlier findings. In both males and females, as well as across the entire population, we found that serum cadmium levels were inversely related to the FEV1/FVC ratio. Interactions between serum cadmium and lead, as well as cadmium and mercury, were observed in relation to the FEV1/FVC ratio. Additionally, we observed negative correlations between the FEV1/FVC ratio and mixed serum cadmium, lead, and mercury in both men and women as well as in the overall population. Seven genes were identified as contributing to the etiology of OLF and targeted by combined heavy metals in silico analysis (CYP1A1, CRP, CXCL8, HMOX1, IL6, NOS2, and TNF). The primary relationships between these genes were co-expression interactions. The significant transcription factors and miRNAs associated with OLF and a combination of the examined heavy metals were identified as NFKB2, hsa-miR-155-5p, and hsa-miR-203a-3p. The main biological processes involved in the emergence of OLF induced by mixed heavy metals were listed as inflammatory and oxidative stress pathways, lung fibrosis, chronic obstructive pulmonary disease, as well as cytokine activity, monooxygenase activity, oxidoreductase activity, and interleukin-8 production. Threshold estimations and miRNA sponge patterns for heavy metal exposure levels associated with OLF were evaluated for both males and females. This study found that cadmium plays the most important role in the mixture of cadmium, lead, and mercury in the pathogenesis of OLF. Future studies are required to verify our findings and uncover the molecular mechanisms of long-term exposure to a variety of heavy metals, especially cadmium, in other populations, including children, adolescents, and the elderly.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
37
|
Lu Y, Deng M, Yin Y, Hou G, Zhou X. Global Trends in Research Regarding Macrophages Associated with Chronic Obstructive Pulmonary Disease: A Bibliometric Analysis from 2011 to 2022. Int J Chron Obstruct Pulmon Dis 2023; 18:2163-2177. [PMID: 37810373 PMCID: PMC10558051 DOI: 10.2147/copd.s419634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory condition characterized by chronic airway inflammation, where macrophages from the innate immune system may exert a pivotal influence. Our study aimed to summarize the present state of knowledge and to identify the focal points and emerging developments regarding macrophages associated with COPD through bibliometrics. Methods Publications regarding research on macrophages associated with COPD from January 1, 2011, to January 1, 2022, were retrieved from the Science Citation Index-Expanded (SCI-E) which is part of the Web of Science database. In total, 1521 publications were analyzed using bibliometric methodology. VOSviewer was used to analyze the annual publications, countries, institutions, authors, journals, and research hotspots. Results Based on the bibliometric analysis, publications relating to macrophages associated with COPD tended to increase from 2011 to 2022. The United States was the largest producer and most influential country in this field. Research during the past decade has focused on inflammation in the lungs. Most previous studies have mainly focused on the mechanisms that promote the initiation and progression of COPD. Macrophage-related oxidative stress and immunity, communication between macrophages and epithelial cells, and interventions for acute exacerbations have become the focus of more recent studies and will become a hot topic in the future. Conclusion Global research on macrophage-associated COPD has been growing rapidly in the past decade. The hot topics in this field gradually tended to shift focus from "inflammation" to "oxidative stress", "epithelial-cells", and "exacerbations". The significance of macrophages in coordinating immune responses, interacting with other cells, and exhibiting dysregulated capacities has attracted increasing attention to COPD pathogenesis. The adoption of new technologies may provide a more promising and comprehensive understanding of the specific role of macrophages in COPD in the future.
Collapse
Affiliation(s)
- Ye Lu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
| | - Yan Yin
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
| | - Xiaoming Zhou
- Department of Respirology, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| |
Collapse
|
38
|
Barbosa JAS, da Silva LLS, João JMLG, de Campos EC, Fukuzaki S, Camargo LDN, dos Santos TM, dos Santos HT, Bezerra SKM, Saraiva-Romanholo BM, Lopes FDTQDS, Bonturi CR, Oliva MLV, Leick EA, Righetti RF, Tibério IDFLC. Investigating the Effects of a New Peptide, Derived from the Enterolobium contortisiliquum Proteinase Inhibitor (EcTI), on Inflammation, Remodeling, and Oxidative Stress in an Experimental Mouse Model of Asthma-Chronic Obstructive Pulmonary Disease Overlap (ACO). Int J Mol Sci 2023; 24:14710. [PMID: 37834157 PMCID: PMC10573003 DOI: 10.3390/ijms241914710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesized peptide derived from Enterolobium contortisiliquum (pep3-EcTI) has been associated with potent anti-inflammatory and antioxidant effects, and it may be a potential new treatment for asthma-COPD overlap-ACO). Purpose: To investigate the primary sequence effects of pep3-EcTI in an experimental ACO. BALB/c mice were divided into eight groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep3-EcTI (treated with inhibitor), ACO-DX (treated with dexamethasone), ACO-DX-pep3-EcTI (treated with dexamethasone and inhibitor), and SAL-pep3-EcTI (saline group treated with inhibitor). We evaluated the hyperresponsiveness to methacholine, exhaled nitric oxide, bronchoalveolar lavage fluid (BALF), mean linear intercept (Lm), inflammatory markers, tumor necrosis factor (TNF-α), interferon (IFN)), matrix metalloproteinases (MMPs), growth factor (TGF-β), collagen fibers, the oxidative stress marker inducible nitric oxide synthase (iNOS), transcription factors, and the signaling pathway NF-κB in the airways (AW) and alveolar septa (AS). Statistical analysis was conducted using one-way ANOVA and t-tests, significant when p < 0.05. ACO caused alterations in the airways and alveolar septa. Compared with SAL, ACO-pep3-EcTI reversed the changes in the percentage of resistance of the respiratory system (%Rrs), the elastance of the respiratory system (%Ers), tissue resistance (%Gtis), tissue elastance (%Htis), airway resistance (%Raw), Lm, exhaled nitric oxide (ENO), lymphocytes, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, transforming growth factor (TGF)-β, collagen fibers, and iNOS. ACO-DX reversed the changes in %Rrs, %Ers, %Gtis, %Htis, %Raw, total cells, eosinophils, neutrophils, lymphocytes, macrophages, IL-1β, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, TGF-β, collagen fibers, and iNOS. ACO-DX-pep3-EcTI reversed the changes, as was also observed for the pep3-EcTI and the ACO-DX-pep3-EcTI. Significance: The pep3-EcTI was revealed to be a promising strategy for the treatment of ACO, asthma, and COPD.
Collapse
Affiliation(s)
- Jéssica Anastácia Silva Barbosa
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Luana Laura Sales da Silva
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Juliana Morelli Lopes Gonçalves João
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Elaine Cristina de Campos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Leandro do Nascimento Camargo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Tabata Maruyama dos Santos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Henrique Tibucheski dos Santos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Suellen Karoline Moreira Bezerra
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Beatriz Mangueira Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Department of Medicine, University City of São Paulo, São Paulo 03071-000, Brazil
| | - Fernanda Degobbi Tenório Quirino dos Santos Lopes
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil; (C.R.B.); (M.L.V.O.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil; (C.R.B.); (M.L.V.O.)
| | - Edna Aparecida Leick
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Iolanda de Fátima Lopes Calvo Tibério
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| |
Collapse
|
39
|
Kim MH, Bae CS, Bok SH, Choi HS, Ahn T, Cho SS, Park DH. Drug Development from Natural Products Based on the Pathogenic Mechanism of Asthma. Int J Mol Sci 2023; 24:12469. [PMID: 37569846 PMCID: PMC10419019 DOI: 10.3390/ijms241512469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the pulmonary system associated with many wheeze-to-sleep apnea complications that may lead to death. In 2019, approximately 262 million patients suffered from asthma, and 455 thousand died from the disease worldwide. It is a more severe health problem in children and older adults, and as the aging of society intensifies, the problem will continue to worsen. Asthma inducers can be classified as indoor and outdoor allergens and can cause asthma due to their repeated invasion. There are several theories about asthma occurrence, such as the imbalance between Th1 and Th2, inflammation in the pulmonary system, and the abnormal apoptosis/cell proliferation of cells related to asthma. Although there are many medications for asthma, as it is an incurable disease, the purpose of the drugs is only to suppress the symptoms. The current drugs can be divided into relievers and controllers; however, as they have many adverse effects, such as immune suppression, growth retardation, promotion of cataracts, hyperactivity, and convulsions, developing new asthma drugs is necessary. Although natural products can have adverse effects, the development of asthma drugs from natural products may be beneficial, as some have anti-asthmatic effects such as immune modulation, anti-inflammation, and/or apoptosis modulation.
Collapse
Affiliation(s)
- Min-Hee Kim
- Department of Forestry and Landscape Architecture, Dongshin University, Naju 58245, Republic of Korea;
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (C.-S.B.); (T.A.)
| | - So-Hyeon Bok
- College of Oriental Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Hyo-Seung Choi
- Department of Digital Contents, Dongshin University, Naju 58245, Republic of Korea;
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (C.-S.B.); (T.A.)
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju 58245, Republic of Korea;
| |
Collapse
|
40
|
Zhang Y, Ma R, You C, Leng X, Wang D, Deng S, He B, Guo Z, Guan Z, Lei H, Yu J, Zhou Q, Xing J, Dong Y. Hyaluronic acid modified oral drug delivery system with mucoadhesiveness and macrophage-targeting for colitis treatment. Carbohydr Polym 2023; 313:120884. [PMID: 37182972 DOI: 10.1016/j.carbpol.2023.120884] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023]
Abstract
Based on the biocompatibility and macrophage targeting of natural polysaccharides, combined with the physiological and pathological characteristics of the gastrointestinal tract and colonic mucosa of ulcerative colitis (UC), we prepare dexamethasone (Dex)-loaded oral colon-targeted nano-in-micro drug delivery systems coated with multilayers of chitosan (CS), hyaluronic acid (HA), and finally Eudragit S100 (ECHCD MPs) using a layer-by-layer coating technique for UC treatment through regulating the M1/M2 polarization of intestinal macrophages. HA/CS/Dex nanoparticles (HCD NPs) are ingested by macrophages via CD44 receptor-mediated endocytosis to regulate M1-to-M2 macrophage polarization and exert anti-inflammatory effects. Moreover, ECHCD MPs show better colon-targeting properties than Dex-loaded chitosan nanoparticles (CD NPs) and HCD NPs which is demonstrated by stronger mucoadhesion to inflamed colon tissues. After oral administration, ECHCD MPs exert significant anti-UC effects. Therefore, ECHCD MPs are proven to be as promising oral colon-targeting drug delivery systems for Dex and have potential application in UC treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruirui Ma
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cuiyu You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xue Leng
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danyang Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shujing Deng
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binyang He
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ziyang Guo
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zelin Guan
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
41
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
42
|
Qiu Q, Zhang W, Liu K, Huang F, Su J, Deng L, He J, Lin Q, Luo L. Schisandrin A ameliorates airway inflammation in model of asthma by attenuating Th2 response. Eur J Pharmacol 2023:175850. [PMID: 37329976 DOI: 10.1016/j.ejphar.2023.175850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Asthma is a persistent respiratory ailment that displays periodicity and is linked to the equilibrium of T cells. Several compounds obtained from Chinese herbal medicines display beneficial impacts on T cell regulation and the attenuation of inflammatory mediator synthesis. Schisandrin A, an active lignan derived from the Schisandra fruit, exhibits anti-inflammatory characteristics. In the present study, the network analysis conducted revealed that the nuclear factor-kappaB (NF-κB) signaling pathway is likely a prominent contributor to the anti-asthmatic effects of schisandrin A. In addition, it has been established that the inhibition of cyclooxygenase 2 (COX-2/PTGS2) is likely a significant factor in this process. The results of in vitro experiments have substantiated that schisandrin A can effectively lower the expression of COX-2 and inducible nitric oxide synthase (iNOS) in 16 HBE cells and RAW264.7 cells in a manner that is dependent on the dosage administered. It was able to effectively reduce the activation of the NF-κB signaling pathway while simultaneously improving the injury to the epithelial barrier function. Furthermore, an investigation utilizing immune infiltration as a metric revealed an inequity in Th1/Th2 cells and a surge in Th2 cytokines in asthma patients. In the OVA-induced asthma mice model, it was observed that schisandrin A treatment effectively suppressed inflammatory cell infiltration, reduced the Th2 cell ratio, inhibited mucus secretion, and prevented airway remodeling. To summarize, the administration of schisandrin A has been found to effectively alleviate the symptoms of asthma by impeding the production of inflammation, which includes reducing the Th2 cell ratio and improving the integrity of the epithelial barrier function. These findings offer valuable insights into the potential therapeutic applications of schisandrin A for the treatment of asthma.
Collapse
Affiliation(s)
- Qin Qiu
- Graduate School, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Weizhen Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdon, 51000, China
| | - Kangdi Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Fangfang Huang
- Graduate School, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Liyan Deng
- Graduate School, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Qianwen Lin
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
43
|
Barbosa-de-Oliveira MC, Oliveira-Melo P, Gonçalves da Silva MH, Santos da Silva F, Andrade Carvalho da Silva F, Silva de Araujo BV, Franco de Oliveira M, Tadeu Correia A, Miyoshi Sakamoto S, Valença SS, Lanzetti M, Schmidt M, Kennedy-Feitosa E. Modulation of Alveolar Macrophage Activity by Eugenol Attenuates Cigarette-Smoke-Induced Acute Lung Injury in Mice. Antioxidants (Basel) 2023; 12:1258. [PMID: 37371988 DOI: 10.3390/antiox12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigates the role of eugenol (EUG) on CS-induced acute lung injury (ALI) and how this compound is able to modulate macrophage activity. C57BL/6 mice were exposed to 12 cigarettes/day/5days and treated 15 min/day/5days with EUG. Rat alveolar macrophages (RAMs) were exposed to CSE (5%) and treated with EUG. In vivo, EUG reduced morphological changes inflammatory cells, oxidative stress markers, while, in vitro, it induced balance in the oxidative stress and reduced the pro-inflammatory cytokine release while increasing the anti-inflammatory one. These results suggest that eugenol reduced CS-induced ALI and acted as a modulator of macrophage activity.
Collapse
Affiliation(s)
- Maria Clara Barbosa-de-Oliveira
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Paolo Oliveira-Melo
- Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | | | - Flávio Santos da Silva
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Felipe Andrade Carvalho da Silva
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Bruno Vinicios Silva de Araujo
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | | | - Aristides Tadeu Correia
- Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | - Sidnei Miyoshi Sakamoto
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Samuel Santos Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil
| | - Manuella Lanzetti
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, Building 3211, Room 406, 9713 AV Groningen, The Netherlands
- Groningen Research Institute of Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Emanuel Kennedy-Feitosa
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| |
Collapse
|
44
|
Alhirmizi IAO, Uysal F, Arslan SO, Özünlü SAÇ, Koç A, Parlar A, Bayram KK. Fenofibrate Attenuates Asthma Features in an Ovalbumin-induced Mouse Model Via Suppressing NF-κB Binding Activity. Respir Physiol Neurobiol 2023:104083. [PMID: 37295485 DOI: 10.1016/j.resp.2023.104083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/07/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND/AIM Asthma is a chronic inflammatory disease of the airways with a high prevalence. Asthma has a complex pathophysiology and about 5-10% of patients are not fully responsive to the currently available treatments. The aim of this study is to investigate the involvement of NF-κB in the effects of fenofibrate on a mouse model of allergic asthma. MATERIALS AND METHODS A total of 49 BALB/c mice were randomly distributed into 7 groups (n=7). Allergic asthma model was created by administering i.p. injections of ovalbumin on days 0, 14 and 21, followed by provocation with inhaled ovalbumin on days 28, 29 and 30. Fenofibrate was orally given in 3 different doses; 1, 10 and 30mg/kg through days 21 to 30 of the experiment. On day 31, pulmonary function test using whole body plethysmography was performed. The mice were sacrificed 24hours later. Blood samples were obtained, and serum of each sample was separated for IgE determination. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected to measure IL-5 and IL-13 levels. Nuclear extracts of lung tissues were employed to assess nuclear factor kappa B (NF-κB) p65 binding activity. RESULTS Enhanced Pause (Penh) values were significantly increased in ovalbumin-sensitized and challenged mice (p<0.01). Administration of fenofibrate (10 and 30mg/kg) resulted in improved pulmonary function as shown by significantly lower Penh values (p<0.01). Interleukin (IL) -5 and IL-13 levels in BALF and lung tissues and immunoglobulin E (IgE) levels in serum were significantly elevated in the allergic mice. IL-5 levels in the lung tissues of mice treated with 1mg/kg fenofibrate (FEN1) group were significantly reduced (p<0.01). BALF and lung tissue IL-5 and IL-13 levels in mice treated with 10 and 30mg/kg fenofibrate, FEN10 and FEN30, respectively, were significantly diminished when compared to the ovalbumin-treated (OVA) group, whereas treatment with 1mg/kg fenofibrate resulted in insignificant changes. IgE levels in the serum of FEN30 group mice have shown a prominent reduction (p<0.01). NF-κB p65 binding activity was higher in mice sensitized and challenged with ovalbumin (p<0.01). NF-κB p65 binding activity was significantly reduced in allergic mice treated with 30mg/kg (p<0.01) fenofibrate. CONCLUSIONS In this study, we showed that administration of 10 and 30mg/kg fenofibrate effectively attenuated airway hyperresponsiveness and inflammation in a mouse model of allergic asthma, possibly through inhibition of NF-κB binding activity.
Collapse
Affiliation(s)
| | - Fatma Uysal
- Medical Pharmacology Department, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Seyfullah Oktay Arslan
- Medical Pharmacology Department, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.
| | - Saliha Ayşenur Çam Özünlü
- Medical Pharmacology, Ankara, Türkiye Department, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Ayşegül Koç
- Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Ali Parlar
- Medical Pharmacology Department, Faculty of Medicine, University of Adıyaman, Adıyaman, Türkiye
| | - Keziban Korkmaz Bayram
- Medical Genetic Department, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| |
Collapse
|
45
|
Sun C, Bai S, Liang Y, Liu D, Liao J, Chen Y, Zhao X, Wu B, Huang D, Chen M, Wu D. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed Pharmacother 2023; 162:114573. [PMID: 37018986 DOI: 10.1016/j.biopha.2023.114573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Aging is a major driving factor in lung diseases. Age-related lung disease is associated with downregulated expression of SIRT1, an NAD+-dependent deacetylase that regulates inflammation and stress resistance. SIRT1 acts by inducing the deacetylation of various substrates and regulates several mechanisms that relate to lung aging, such as genomic instability, lung stem cell exhaustion, mitochondrial dysfunction, telomere shortening, and immune senescence. Chinese herbal medicines have many biological activities, exerting anti-inflammatory, anti-oxidation, anti-tumor, and immune regulatory effects. Recent studies have confirmed that many Chinese herbs have the effect of activating SIRT1. Therefore, we reviewed the mechanism of SIRT1 in age-related lung disease and explored the potential roles of Chinese herbs as SIRT1 activators in the treatment of age-related lung disease.
Collapse
|
46
|
Oh ES, Ryu HW, Kim MO, Lee JW, Song YN, Park JY, Kim DY, Ro H, Lee J, Kim TD, Hong ST, Lee SU, Oh SR. Verproside, the Most Active Ingredient in YPL-001 Isolated from Pseudolysimachion rotundum var. subintegrum, Decreases Inflammatory Response by Inhibiting PKCδ Activation in Human Lung Epithelial Cells. Int J Mol Sci 2023; 24:ijms24087229. [PMID: 37108390 PMCID: PMC10138391 DOI: 10.3390/ijms24087229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinhyuk Lee
- Disease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| |
Collapse
|
47
|
Asker ME, Abdelmeged AA, Shaheen MA, Eissa RG. Sunitinib displays pulmonary fibrosis in experimental rats: Role of IL-17A dependent pathway. Int Immunopharmacol 2023; 119:110173. [PMID: 37058748 DOI: 10.1016/j.intimp.2023.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Sunitinib (SUN) is an FDA approved first line drug for management of metastatic renal cancers and advanced cancerous states of gastrointestinal tract, however, side effects including fibrosis has been reported. Secukinumab (Secu) is an immunoglobulin G1 monoclonal antibody that exhibits anti-inflammatory activity by inhibiting several cellular signaling molecules. This study aimed to examine pulmonary protective potential of Secu in SUN-induced pulmonary fibrosis mediated through inhibition of inflammation via targeting IL-17A associated signaling pathway and using pirfenidone (PFD), an antifibrotic drug approved in 2014 for treatment of pulmonary fibrosis with IL-17A as one of its targets, as a reference drug. Wistar rats (160-200 g) were divided randomly into 4 groups (n = 6); Group 1 served as normal control; Group 2 served as disease control where it was exposed to SUN (25 mg/kg; 3 times weekly orally for 28 days); Group 3 was administered SUN and Secu (3 mg/kg subcutaneous at 0,14 and 28 days) and Group 4 was administered SUN and PFD (100 mg/kg/day orally for 28 days). Pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were measured in addition to components of IL-17A signaling pathway (TGF-β, collagen, hydroxyproline). Results revealed that IL-17A-associated signaling pathway was activated in fibrotic lung tissue induced by SUN. Relative to normal control, SUN administration significantly elevated lung organ coefficient, IL-1β, IL-6, TNF-α, IL-17A, TGF-β, hydroxyproline and collagen expression. Secu or PFD treatment restored the altered levels to nearly normal values. Our study indicates that IL-17A participates in the development and progression of pulmonary fibrosis in a TGF-β dependent manner. Hence, components of IL-17A signaling pathway represent potential therapeutic targets for protection and treatment of fibro-proliferative lung disease.
Collapse
Affiliation(s)
- Mervat E Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa A Abdelmeged
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A Shaheen
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rana G Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
48
|
Jang WY, Hwang JY, Cho JY. Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. Int J Mol Sci 2023; 24:6119. [PMID: 37047092 PMCID: PMC10093821 DOI: 10.3390/ijms24076119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling pathways progress inflammation and immune cell differentiation in the host immune response; however, the uncontrollable stimulation of NF-κB signaling is responsible for several inflammatory illnesses regardless of whether the conditions are acute or chronic. Innate immune cells, such as macrophages, microglia, and Kupffer cells, secrete pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, via the activation of NF-κB subunits, which may lead to the damage of normal cells, including neurons, cardiomyocytes, hepatocytes, and alveolar cells. This results in the occurrence of neurodegenerative disorders, cardiac infarction, or liver injury, which may eventually lead to systemic inflammation or cancer. Recently, ginsenosides from Panax ginseng, a historical herbal plant used in East Asia, have been used as possible options for curing inflammatory diseases. All of the ginsenosides tested target different steps of the NF-κB signaling pathway, ameliorating the symptoms of severe illnesses. Moreover, ginsenosides inhibit the NF-κB-mediated activation of cancer metastasis and immune resistance, significantly attenuating the expression of MMPs, Snail, Slug, TWIST1, and PD-L1. This review introduces current studies on the therapeutic efficacy of ginsenosides in alleviating NF-κB responses and emphasizes the critical role of ginsenosides in severe inflammatory diseases as well as cancers.
Collapse
Affiliation(s)
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
49
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
50
|
Yang N, Zhang L, Tian D, Wang P, Men K, Ge Y, Zhang C. Tanshinone increases Hemopexin expression in lung cells and macrophages to protect against cigarette smoke-induced COPD and enhance antiviral responses. Cell Cycle 2023; 22:645-665. [PMID: 36218263 PMCID: PMC9980497 DOI: 10.1080/15384101.2022.2129933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease, while respiratory infections can elicit exacerbations in COPD patients to mediate increased mortality. Administration of Tanshinones (TS) derivatives has been demonstrated to protect against cigarette smoking (CS) and lipopolysaccharide (LPS)-induced COPD progression. However, the underlying molecular mechanisms and the roles of TS in mitigating the severity of viral-mediated exacerbations of COPD have not been elucidated. Here, we found that TS treatments significantly attenuated lung function decline, inflammatory responses and oxidative stress in CS and LPS-induced COPD mice. Subsequent RNA-seq analysis revealed significantly upregulated Hemopexin expression and enriched interferons (IFNs) signaling pathways in lung tissues of COPD mice upon TS treatments. Moreover, TS administration demonstrated Hemopexin-dependent beneficial roles in BEAS-2B lung cells and RAW264.7 macrophages, which was associated with the suppression of oxidative stress and ERK, NF-κB, and NLRP3 inflammasome signaling pathways-mediated inflammation. Furthermore, TS promoted IFN signaling and rescued impaired antiviral responses in CS and LPS-exposed lung cells that were infected by influenza virus. Notably, hemopexin over-expression in lung cells and macrophages recapitulated the pharmacological activities of TS. Taken together, these results indicate that TS administration is a promising and potential therapeutic strategy for treating COPD and preventing COPD exacerbations.
Collapse
Affiliation(s)
- Ning Yang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Liang Zhang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Dongdong Tian
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Ping Wang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Kai Men
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Yiliang Ge
- Hengyang Medical School, University of South China, Hunan
| | - Cailian Zhang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| |
Collapse
|