1
|
Egresi A, Blázovics A, Lengyel G, Tóth AG, Csongrády B, Jakab Z, Hagymási K. Redox Homeostasis and Non-Invasive Assessment of Significant Liver Fibrosis by Shear Wave Elastography. Diagnostics (Basel) 2024; 14:1945. [PMID: 39272729 PMCID: PMC11394606 DOI: 10.3390/diagnostics14171945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatic fibrosis with various origins can be estimated non-invasively by using certain biomarkers and imaging-based measurements. The aim of our study was to examine redox homeostasis biomarkers and liver stiffness measurements for the assessment of significant liver fibrosis in different etiologies of chronic liver diseases. A cohort study consisting of 88 chronic liver disease patients of both sexes (age 49.1 ± 14.7 years) was performed. Cytokine profiles as well as redox homeostasis characteristics were determined. Liver fibrosis stages were assessed with shear wave elastography. The plasma levels of four cytokines showed no significant alteration between the four fibrotic stages; however, higher values were measured in the F2-4 stages. Free sulfhydryl group concentration, the marker of redox homeostasis, was lower in significant fibrosis (F0-F1: 0.36 ± 0.06 vs. F2-4: 0.29 ± 0.08 mmol/L, p < 0.05). Higher chemiluminescence values, as free radical-antioxidant parameters, were detected in advanced fibrosis stages in erythrocytes (F0-F1: 36.00 ± 37.13 vs. F2-4: 51.47 ± 44.34 RLU%). These data suggest that oxidative stress markers can predict significant fibrosis, with the aim of reducing the number of protocol liver biopsies in patients unlikely to have significant disease; however, their role in distinguishing between the certain fibrosis groups needs further studies.
Collapse
Affiliation(s)
- Anna Egresi
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1091 Budapest, Hungary
| | - Anna Blázovics
- Department of Surgical Research and Techniques, The Heart and Vascular Center, Semmelweis University, 1091 Budapest, Hungary
| | - Gabriella Lengyel
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1091 Budapest, Hungary
| | - Adrienn Gréta Tóth
- Centre for Bioinformatics, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Barbara Csongrády
- Department of Radiology, Semmelweis University, 1091 Budapest, Hungary
| | - Zsuzsanna Jakab
- Department of Internal Medicine and Oncology, Semmelweis University, 1091 Budapest, Hungary
| | | |
Collapse
|
2
|
Babuta M, Morel C, de Carvalho Ribeiro M, Datta AA, Calenda C, Copeland C, Nasser I, Szabo G. A novel experimental model of MetALD in male mice recapitulates key features of severe alcohol-associated hepatitis. Hepatol Commun 2024; 8:e0450. [PMID: 38896082 PMCID: PMC11186819 DOI: 10.1097/hc9.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The recent increase in the incidence of alcohol-associated hepatitis (AH) coincides with the obesity epidemic in the United States. However, current mouse models do not fully replicate the combined insults of obesity, metabolic dysfunction-associated steatohepatitis, and alcohol. The aim of this study was to develop a new mouse model that recapitulates the robust inflammatory and fibrotic phenotype characteristic of human MetALD. METHODS Eight- to 10-week-old male C57BL/6 mice were fed chow or high fat-cholesterol-sugar diet (metabolic dysfunction-associated steatohepatitis diet) and in each group, some received alcohol in drinking water (ad libitum) and weekly alcohol binges (EtOH) for 3 months. The liver was assessed for features of AH. RESULTS MetALD mice displayed increased liver damage indicated by highly elevated ALT and bilirubin levels compared to all other groups. Liver steatosis was significantly greater in the MetALD mice compared to all other experimental groups. The inflammatory phenotype of MetALD was also recapitulated, including increased IL-6 and IL-1β protein levels as well as increased CD68+ macrophages and Ly6G+ neutrophils in the liver. Sirius red staining and expression of collagen 1, alpha-smooth muscle actin indicated advanced fibrosis in the livers of MetALD mice. In addition, indicators of epithelial-to-mesenchymal transition markers were increased in MetALD mice compared to all other groups. Furthermore, we found increased ductular reaction, dysregulated hedgehog signaling, and decreased liver synthetic functions, consistent with severe AH. CONCLUSIONS Alcohol administration in mice combined with metabolic dysfunction-associated steatohepatitis diet recapitulates key characteristics of human AH including liver damage, steatosis, robust systemic inflammation, and liver immune cell infiltration. This model results in advanced liver fibrosis, ductular reaction, decreased synthetic function, and hepatocyte dedifferentiation, suggesting a robust model of MetALD in mice.
Collapse
Affiliation(s)
- Mrigya Babuta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Morel
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelle de Carvalho Ribeiro
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Aditi Ashish Datta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles Calenda
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Taiwo M, Huang E, Pathak V, Bellar A, Welch N, Dasarathy J, Streem D, McClain CJ, Mitchell MC, Barton BA, Szabo G, Dasarathy S, Schaefer EA, Luther J, Z. Day L, Ouyang X, Suyavaran A, Mehal WZ, Jacobs JM, Goodman RP, Rotroff DM, Nagy LE. Proteomics identifies complement protein signatures in patients with alcohol-associated hepatitis. JCI Insight 2024; 9:e174127. [PMID: 38573776 PMCID: PMC11141929 DOI: 10.1172/jci.insight.174127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Diagnostic challenges continue to impede development of effective therapies for successful management of alcohol-associated hepatitis (AH), creating an unmet need to identify noninvasive biomarkers for AH. In murine models, complement contributes to ethanol-induced liver injury. Therefore, we hypothesized that complement proteins could be rational diagnostic/prognostic biomarkers in AH. Here, we performed a comparative analysis of data derived from human hepatic and serum proteome to identify and characterize complement protein signatures in severe AH (sAH). The quantity of multiple complement proteins was perturbed in liver and serum proteome of patients with sAH. Multiple complement proteins differentiated patients with sAH from those with alcohol cirrhosis (AC) or alcohol use disorder (AUD) and healthy controls (HCs). Serum collectin 11 and C1q binding protein were strongly associated with sAH and exhibited good discriminatory performance among patients with sAH, AC, or AUD and HCs. Furthermore, complement component receptor 1-like protein was negatively associated with pro-inflammatory cytokines. Additionally, lower serum MBL associated serine protease 1 and coagulation factor II independently predicted 90-day mortality. In summary, meta-analysis of proteomic profiles from liver and circulation revealed complement protein signatures of sAH, highlighting a complex perturbation of complement and identifying potential diagnostic and prognostic biomarkers for patients with sAH.
Collapse
Affiliation(s)
| | | | - Vai Pathak
- Department of Quantitative Health Sciences, and
| | | | - Nicole Welch
- Department of Inflammation and Immunity
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaividhya Dasarathy
- Department of Family Medicine, Metro Health Medical Center, Cleveland, Ohio, USA
| | - David Streem
- Department of Psychiatry and Psychology, Cleveland Clinic Lutheran Hospital, Cleveland, Ohio, USA
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Mack C. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce A. Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Esperance A. Schaefer
- Alcohol Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jay Luther
- Alcohol Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Le Z. Day
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Xinshou Ouyang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Arumugam Suyavaran
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wajahat Z. Mehal
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- West Haven VA Medical Center, West Haven, Connecticut, USA
| | - Jon M. Jacobs
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Russell P. Goodman
- Alcohol Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Endocrine Unit, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, and
- Endocrine and Metabolism Institute and
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura E. Nagy
- Department of Inflammation and Immunity
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- See Supplemental Acknowledgments for information on the AlcHepNet Consortium
| |
Collapse
|
4
|
Li W, Xia Y, Yang J, Sanyal AJ, Shah VH, Chalasani NP, Yu Q. Disrupted balance between pro-inflammatory lipid mediators and anti-inflammatory specialized pro-resolving mediators is linked to hyperinflammation in patients with alcoholic hepatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.15.23300034. [PMID: 38168393 PMCID: PMC10760266 DOI: 10.1101/2023.12.15.23300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Chronic excessive alcohol consumption leads to a spectrum of alcohol-associated liver diseases (ALD), including alcoholic hepatitis (AH). AH is characterized by intense systemic and liver inflammation, posing significant risks of health complications and mortality. While inflammation is a crucial defense mechanism against injury and infection, its timely resolution is essential to prevent tissue damage and restore tissue homeostasis. The resolution of inflammation is an actively regulated process, primarily governed by specialized pro-resolving mediators (SPMs), lipid metabolites derived from ω-6 and ω-3 poly-unsaturated fatty acids (PUFAs). We investigated the balance between pro-inflammatory lipid mediators (PLMs) and SPMs in the ω-6 and ω-3 PUFA metabolic pathways and examined the impact of alcohol abstinence on rectifying the dysregulated biosynthesis of PLMs and SPMs in AH patients. Methods LC-MS/MS and ELISA were used to quantify levels of bioactive lipid mediators (LMs) and their precursors in the plasma samples from 58 AH patients, 29 heavy drinkers without overt liver diseases (HDCs), and 35 healthy controls (HCs). Subsequently, we assessed correlations of altered LMs with clinical parameters and various markers of inflammatory cascade andmicrobial translocation. Furthermore, we conducted a longitudinal study to track changes in levels of LMs over 6- and 12-month follow-ups in AH patients who underwent alcohol abstinence. Results AH patients exhibited significantly higher plasma levels of ω-6 PLMs (PGD 2 and LTB 4 ) and SPM RvE1 compared to HDCs and/or HCs. Conversely, key SPMs such as LXA4, RvD1, and several precursors in the ω-3 pathway were significantly downregulated in AH patients. Some of these altered LMs were found to correlate with AH disease severity, clinical parameters, and various inflammatory cytokines. In particular, the LTB4/LXA4 ratio was substantially elevated in AH patients relative to HDCs and HCs. This altered ratio displayed a positive correlation with the MELD score, suggesting its potential utility as an indicator of disease severity in AH patients. Importantly, the majority of dysregulated LMs, particularly PLMs, were normalized following alcohol abstinence. Conclusion Our study reveals significant dysregulation in the levels of PLM metabolites and anti-inflammatory SPMs in both ω-6 and ω-3 PUFA pathways in AH patients. This disrupted biosynthesis, characterized by an overabundance of PLMs and a deficiency in SPMs, is linked to the heightened inflammation observed in AH patients. Importantly, our findings suggest an important role of alcohol abstinence in restoring the balance of these LMs and the potential therapeutic benefits of SPM supplements in alleviating the inflammatory cascade in AH patients.
Collapse
|
5
|
Su ZW, Yan TY, Feng J, Zhang MY, Han L, Zhang HF, Xiao Y. Protective Effects and Mechanism of Polysaccharides from Edible Medicinal Plants in Alcoholic Liver Injury: A Review. Int J Mol Sci 2023; 24:16530. [PMID: 38003718 PMCID: PMC10671977 DOI: 10.3390/ijms242216530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Alcohol use accounts for a large variety of diseases, among which alcoholic liver injury (ALI) poses a serious threat to human health. In order to overcome the limitations of chemotherapeutic agents, some natural constituents, especially polysaccharides from edible medicinal plants (PEMPs), have been applied for the prevention and treatment of ALI. In this review, the protective effects of PEMPs on acute, subacute, subchronic, and chronic ALI are summarized. The pathogenesis of alcoholic liver injury is analyzed. The structure-activity relationship (SAR) and safety of PEMPs are discussed. In addition, the mechanism underlying the hepatoprotective activity of polysaccharides from edible medicinal plants is explored. PEMPs with hepatoprotective activities mainly belong to the families Orchidaceae, Solanaceae, and Liliaceae. The possible mechanisms of PEMPs include activating enzymes related to alcohol metabolism, attenuating damage from oxidative stress, regulating cytokines, inhibiting the apoptosis of hepatocytes, improving mitochondrial function, and regulating the gut microbiota. Strategies for further research into the practical application of PEMPs for ALI are proposed. Future studies on the mechanism of action of PEMPs will need to focus more on the utilization of multi-omics approaches, such as proteomics, epigenomics, and lipidomics.
Collapse
Affiliation(s)
- Zhuo-Wen Su
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
- Academician and Expert Workstations in Puer City of Yunnan Province, Puer 665600, China
| | - Ting-Yu Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
| | - Jing Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
| | - Meng-Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
| | - Lei Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
| | - Hua-Feng Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
- Academician and Expert Workstations in Puer City of Yunnan Province, Puer 665600, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| |
Collapse
|
6
|
Lin KY, Yang HY, Yang SC, Chen YL, Watanabe Y, Chen JR. Caulerpa lentillifera improves ethanol-induced liver injury and modulates the gut microbiota in rats. Curr Res Food Sci 2023; 7:100546. [PMID: 37483276 PMCID: PMC10362798 DOI: 10.1016/j.crfs.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Caulerpa lentillifera (CL), also called sea grape, is a type of edible green alga which was reported to have antioxidative and immunomodulatory potential. This study aimed to investigate the hepatoprotective effects of CL in a rat model of chronic ethanol exposure. Wistar rats were assigned to four groups and supplied with an isocaloric control liquid diet (group C), an ethanol liquid diet (group E), a control liquid diet supplemented with 5% CL (group CC), or an ethanol liquid diet supplemented with 5% CL (group EC) for a 12-week experimental period. Ethanol feeding induced steatosis, inflammation, and changes in the gut microbiota by the end of the study, whereas CL supplementation significantly improved liver injuries and decreased circulatory endotoxin levels. Moreover, we also found that CL reversed ethanol-induced elevation of hepatic toll-like receptor 4 (TLR4), MyD88 protein expression, the phosphorylated-nuclear factor (NF)-κB-to-NF-κB ratio, and proinflammatory cytokine concentrations. Additionally, CL also increased the abundance of Akkermansia and tight junction proteins and diminished the Firmicutes-to-Bacteroidetes ratio. Dietary CL inhibited the progression of alcoholic liver disease, and some of the possible mechanisms may be strengthening the intestinal barrier function, alleviating dysbiosis, and modulating the TLR4 pathway.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Yang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Y. Watanabe
- General Health Medical Center, Yokohama University of Pharmacy, Yokohama, Japan
| | - Jiun-Rong Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Rani R, Gandhi CR. Stellate cell in hepatic inflammation and acute injury. J Cell Physiol 2023; 238:1226-1236. [PMID: 37120832 DOI: 10.1002/jcp.31029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
The perisinusoidal hepatic stellate cells (HSCs) have been investigated extensively for their role as the major fibrogenic cells during chronic liver injury. HSCs also produce numerous cytokines, chemokines, and growth mediators, and express cell adhesion molecules constitutively and in response to stimulants such as endotoxin (lipopolysaccharide). With this property and by interacting with resident and recruited immune and inflammatory cells, HSCs regulate hepatic immune homeostasis, inflammation, and acute injury. Indeed, experiments with HSC-depleted animal models and cocultures have provided evidence for the prominent role of HSCs in the initiation and progression of inflammation and acute liver damage due to various toxic agents. Thus HSCs and/or mediators derived thereof during acute liver damage may be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Richa Rani
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Research & Development, Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Research & Development, Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Wang Y, Zhang N, Zhou J, Sun P, Zhao L, Zhou F. Protective Effects of Several Common Amino Acids, Vitamins, Organic Acids, Flavonoids and Phenolic Acids against Hepatocyte Damage Caused by Alcohol. Foods 2022; 11:foods11193014. [PMID: 36230090 PMCID: PMC9563571 DOI: 10.3390/foods11193014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
With the increase in alcohol consumption, more and more people are suffering from alcoholic liver disease (ALD). Therefore, it is necessary to elaborate the pathogenesis of ALD from the aspects of alcohol metabolism and harm. In this study, we established an alcoholic liver injury model in vitro by inducing L02 cells with different concentration of ethanol and acetaldehyde. Results showed that the metabolism of ethanol can promote the content of ROS, MDA, TNF-α, IL-6, and caspase 3, causing oxidative and inflammatory stress and membrane permeability changes. However, unmetabolized ethanol and acetaldehyde had little effect on cell membrane permeability and inflammation, indicating that ethanol metabolites were the main reason for cell membrane damage. We also evaluated the effects of amino acids (taurine and methionine), vitamins (E and vitamin D), organic acids (malic acid and citric acid), flavonoids (rutin and quercetin), and phenolic acids (ferulic acid and chlorogenic acid) on alcohol-induced cell membrane damage of L02 cells. Chlorogenic acid, taurine, vitamin E, and citric acid had remarkable effects on improving cell membrane damage. Malic acid, rutin, quercetin, and ferulic acid had obvious therapeutic effects, while vitamin D and methionine had poor therapeutic effects. The relationship between the structure and effect of active ingredients can be further studied to reveal the mechanism of action, and monomers can be combined to explore whether there is a synergistic effect between functional components, in order to provide a certain theoretical basis for the actual study of liver protection.
Collapse
Affiliation(s)
- Yashen Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (L.Z.); (F.Z.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (L.Z.); (F.Z.)
| |
Collapse
|
9
|
Narrative Review: Glucocorticoids in Alcoholic Hepatitis—Benefits, Side Effects, and Mechanisms. J Xenobiot 2022; 12:266-288. [PMID: 36278756 PMCID: PMC9589945 DOI: 10.3390/jox12040019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Alcoholic hepatitis is a major health and economic burden worldwide. Glucocorticoids (GCs) are the only first-line drugs recommended to treat severe alcoholic hepatitis (sAH), with limited short-term efficacy and significant side effects. In this review, I summarize the major benefits and side effects of GC therapy in sAH and the potential underlying mechanisms. The review of the literature and data mining clearly indicate that the hepatic signaling of glucocorticoid receptor (GR) is markedly impaired in sAH patients. The impaired GR signaling causes hepatic down-regulation of genes essential for gluconeogenesis, lipid catabolism, cytoprotection, and anti-inflammation in sAH patients. The efficacy of GCs in sAH may be compromised by GC resistance and/or GC’s extrahepatic side effects, particularly the side effects of intestinal epithelial GR on gut permeability and inflammation in AH. Prednisolone, a major GC used for sAH, activates both the GR and mineralocorticoid receptor (MR). When GC non-responsiveness occurs in sAH patients, the activation of MR by prednisolone might increase the risk of alcohol abuse, liver fibrosis, and acute kidney injury. To improve the GC therapy of sAH, the effort should be focused on developing the biomarker(s) for GC responsiveness, liver-targeting GR agonists, and strategies to overcome GC non-responsiveness and prevent alcohol relapse in sAH patients.
Collapse
|
10
|
Lyu H, Tang H, Liang Y, Huang S, Wang Y, Huang W, Zhou Y. Alcohol Consumption and Risk of Liver Fibrosis in People Living With HIV: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:841314. [PMID: 35371091 PMCID: PMC8971654 DOI: 10.3389/fimmu.2022.841314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives It is unclear if a high level of alcohol consumption is a risk factor for liver fibrosis for people living with HIV (PLWH). This study systematically summarizes the risk relationship between different alcohol consumption and the incidence of liver fibrosis among PLWH. Methods We identified potential studies by searching the PubMed, Embase, Web of Science Library, and CNKI databases up to September 26th, 2021. Observation studies in PLWH that evaluated the relationship between alcohol consumption and the risk of liver fibrosis and estimated the effect of alcohol with pooled odds ratios (pooled ORs) and 95% confidence intervals (CIs) were included. Results There were total 15 studies included in data analysis. Three studies were set up as cohort studies and the other twelve were cross-sectional studies. Our study was based on 22,676 individuals and 2,729 liver fibrosis cases from 15 studies. Alcohol abuse is a significant risk factor of liver fibrosis (pooled OR = 2.25, 95% CI: 1.59-3.17, p < 0.05) among PLWH. Daily alcohol consumption > 50 g can elevate the risk of liver fibrosis (pooled OR = 3.10, 95% CI: 2.02-4.73, p < 0.05) among PLWH. However, high-risk alcohol consumption determined by AUDIT-C (AUDIT-C ≥ 4) had little or no effect on subsequent liver fibrosis risk. Further, alcohol consumption > 50 g is also a risk factor to liver fibrosis in PLWH co-infected with HCV (pooled OR = 2.48, 95% CI: 1.62-3.80, p < 0.05) and in HIV mono-infected (pooled OR = 1.85, 95% CI: 1.00-3.43, p < 0.05). Conclusion Alcohol consumption is associated with an increased risk of liver fibrosis in PLWH. HCV co-infection with alcohol abuse could possibly induce a higher risk of liver fibrosis than HIV mono-infected patients. Systematic Review Registration PROSPERO, identifier (CRD42021272604).
Collapse
Affiliation(s)
- Hang Lyu
- Department of HIV Prevention, Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Haotong Tang
- Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yizhi Liang
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Shaoli Huang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Jiaxing, China
| | - Yuyu Wang
- School of Medicine, Jinan University, Guangzhou, China
| | - Wenyan Huang
- Department of HIV Prevention, Zhuhai Center for Disease Control and Prevention, Zhuhai, China
- *Correspondence: Wenyan Huang , ; Yi Zhou,
| | - Yi Zhou
- Department of HIV Prevention, Zhuhai Center for Disease Control and Prevention, Zhuhai, China
- *Correspondence: Wenyan Huang , ; Yi Zhou,
| |
Collapse
|
11
|
Neuman MG, Seitz HK, Teschke R, Malnick S, Johnson-Davis KL, Cohen LB, German A, Hohmann N, Moreira B, Moussa G, Opris M. Molecular, Viral and Clinical Features of Alcohol- and Non-Alcohol-Induced Liver Injury. Curr Issues Mol Biol 2022; 44:1294-1315. [PMID: 35723310 PMCID: PMC8947098 DOI: 10.3390/cimb44030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023] Open
Abstract
Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the pathways of alcohol metabolism. Ethanol undergoes a phase I type of reaction, mainly catalyzed by the cytoplasmic enzyme, alcohol dehydrogenase (ADH), and by the microsomal ethanol-oxidizing system (MEOS). Reactive oxygen species (ROS) generated by cytochrome (CYP) 2E1 activity and MEOS contribute to ethanol-induced toxicity. We aimed to: (1) Describe the cellular, pathophysiological and clinical effects of alcohol misuse on the liver; (2) Select the biomarkers and analytical methods utilized by the clinical laboratory to assess alcohol exposure; (3) Provide therapeutic ideas to prevent/reduce alcohol-induced liver injury; (4) Provide up-to-date knowledge regarding the Corona virus and its affect on the liver; (5) Link rare diseases with alcohol consumption. The current review contributes to risk identification of patients with alcoholic, as well as non-alcoholic, liver disease and metabolic syndrome. Additional prevalence of ethnic, genetic, and viral vulnerabilities are presented.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
- Correspondence:
| | - Helmut K. Seitz
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60323 Frankfurt, Germany;
| | - Stephen Malnick
- Department of Internal Medicine C. Kaplan Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel; (S.M.); (A.G.)
| | - Kamisha L. Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Centre and Division of Toxicology, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84115, USA;
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre and Department of Medicine, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M4N 3N5, Canada;
| | - Anit German
- Department of Internal Medicine C. Kaplan Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel; (S.M.); (A.G.)
| | - Nicolas Hohmann
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - Bernhardo Moreira
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - George Moussa
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
- Family Medicine Clinic CAR, 010362 Bucharest, Romania
| |
Collapse
|
12
|
Petagine L, Zariwala MG, Patel VB. Alcoholic liver disease: Current insights into cellular mechanisms. World J Biol Chem 2021; 12:87-103. [PMID: 34630912 PMCID: PMC8473419 DOI: 10.4331/wjbc.v12.i5.87] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) due to chronic alcohol consumption is a significant global disease burden and a leading cause of mortality. Alcohol abuse induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of ALD is widely recognized, the precise triggers for disease progression are still to be fully elucidated. Oxidative stress, mitochondrial dysfunction, gut dysbiosis and altered immune system response plays an important role in disease pathogenesis, triggering the activation of inflammatory pathways and apoptosis. Despite many recent clinical studies treatment options for ALD are limited, especially at the alcoholic hepatitis stage. We have therefore reviewed some of the key pathways involved in the pathogenesis of ALD and highlighted current trials for treating patients.
Collapse
Affiliation(s)
- Lucy Petagine
- Center for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Mohammed Gulrez Zariwala
- Center for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Vinood B Patel
- Center for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| |
Collapse
|
13
|
Güzel M, Akpınar O. Hydroxychloroquine Attenuates Acute Inflammation (LPS)-Induced Apoptosis via Inhibiting TRPV1 Channel/ROS Signaling Pathways in Human Monocytes. BIOLOGY 2021; 10:biology10100967. [PMID: 34681066 PMCID: PMC8533250 DOI: 10.3390/biology10100967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary LPS is a well-known agent in cell line models, including U937 monocytes, for inducing acute inflammation (INF). It is not known whether antioxidant HCQ, through the inhibition of TRPV1 in U937, can decrease oxidative monocyte toxicity and cell death. We investigated the modulator action of HCQ treatment through the modulation of TRPV1 on the levels of mROS, INF, and apoptosis in an LPS-stimulated U937 monocyte model. Acute INF activates apoptotic, inflammatory, and oxidant action through acute INF-dependent excessive cROS, MDA, cytokine generation, and Ca2+ influx in U937 human monocyte cells. Furthermore, treatment with acute INF increases TRPV1 and apoptotic marker (CAS3, CAS9, Bax, and Bcl-2) concentrations via downregulation of glutathione level and glutathione peroxidase activity in U937 monocytes. The acute INF-caused U937 oxidative stress and cytotoxicity is diminished by the treatment of HCQ and TRPV1 inhibitor (CPZ). In summary, treatment with HCQ and CPZ induced anti-inflammatory, anti-apoptotic, and antioxidant action via the inhibition of cROS, cytokine generation, and caspase activation. Abstract Acute inflammation (INF) and apoptosis are induced in monocytes by the generation of several factors, including the products of cytosolic oxygen free radicals (cROS) and the excessive influx of Ca2+ via the stimulation of TRPV1. These are main factors in the etiology of monocyte activation-induced inflammatory and neurodegenerative diseases. Importantly, the protective action of hydroxychloroquine (HCQ) treatment via the inhibition of TRPV1 on the levels of inflammatory factors, cROS, and apoptosis in acute INF (lipopolysaccharide, LPS)-exposed neuronal cells was recently reported. However, the relationships between acute INF via TRPV1 activation and HCQ in monocytes have not been fully clarified yet. The cell membrane of U937 human monocytes contains natural TRPV1. In the study plan, we used U937 cells in four main groups, namely control, HCQ (60 μM for 48 h), INF (1 μg/mL LPS for 16 h), and HCQ + INF. The current data indicate that LPS-induced acute INF caused the upregulation of excessive cytosolic Ca2+ accumulation via the stimulation of TRPV1 in the cells. The treatment of INF additionally upregulated the levels of apoptosis and cytokines (IL6, IL1β, and TNFα), due to upregulated cROS and lipid peroxidation levels as well as upregulated generation of caspase -3 (CAS3) and -9 (CAS9) but a decrease in glutathione and glutathione peroxidase. The expression levels of TRPV1, Bax, CAS3, and CAS9 were also upregulated by the treatment of LPS. However, treatment with HCQ and TRPV1 blocker (capsazepine) modulated the levels of cytokines, caspases, cROS, Ca2+ influx, and apoptosis through the modulation of TRPV1 in the U937 that were stimulated with LPS. In summary, the present data suggest TRPV1 activation through the acute INF (LPS)-induced inflammatory, oxidant, and apoptotic adverse actions in monocyte cells, whereas HCQ prevented adverse actions via the modulation of TRPV1. The results may be significant in the modulation of monocyte activation-caused inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mustafa Güzel
- Labaratory of Medical Microbiology, Private Medical Center of Maltepe, Maltepe Tıp Merkezi, TR-34854 Istanbul, Turkey
- Correspondence:
| | - Orhan Akpınar
- Medical Microbiology Unit, Oral and Maxillofacial Surgery Department, Dentistry School, Suleyman Demirel University, TR-32260 Isparta, Turkey;
- Department of Medical Microbiology, Health Sciences Institute, Suleyman Demirel University, TR-32260 Isparta, Turkey
| |
Collapse
|
14
|
Neuman MG, Mueller J, Mueller S. Non-invasive Biomarkers of Liver Inflammation and Cell Death in Response to Alcohol Detoxification. Front Physiol 2021; 12:678118. [PMID: 34305638 PMCID: PMC8292967 DOI: 10.3389/fphys.2021.678118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Alcohol-related liver disease (ALD) represents the most common liver disease worldwide, however, the underlying molecular mechanisms are still poorly understood. Namely centrilobular inflammation and programmed cell death are characteristic to ALD and it remains to be elucidated why they persist despite the absence of alcohol. Aims To study the effects of alcohol withdrawal in a cohort of heavy drinkers and the role of cirrhosis by using non-invasive biomarkers such as cytokines, apoptotic and angiogenic markers. Methods Caspase 3-cleaved M30, M65, cytokines (IL-6, IL-8), tumor necrosis factor alpha (TNF-α), transforming growth factor (TGF-β) and vascular endothelial growth factor (VEGF) were measured in 114 heavy drinkers. The role of alcohol detoxification was investigated in 45 patients. The liver histology was available in 23 patients. Fibrosis stage and steatosis were assessed by measuring liver stiffness (LS) and controlled attenuation parameter (CAP) in all patients using transient elastography (FibroScan, Echosens, Paris). Mean observation interval between the measurements was 5.7 ± 1.4 days (mean + -SD). Results Patients consumed a mean of 204 ± 148 g/day alcohol with a heavy drinking duration of 15.3 ± 11.0 years. Mean LS was 20.7 ± 24.4 kPa and mean CAP was 303 ± 51 dB/m. Fibrosis distribution was F0-38.1%, F1-2-31%, F3-7.1 and F4-23.9%. Apoptotic markers M30 and M65 were almost five times above normal. In contrast, TNF- α a, IL-8 and VEGF were only slightly elevated. Patients with manifest liver cirrhosis (F4) had significantly higher levels of M30, M65, IL-6 and IL-8. Histology features such as hepatocyte ballooning, Mallory-Denk bodies, inflammation and fibrosis were all significantly associated with elevated LS, and serum levels of TNF-alpha, M30 and M65 but not with CAP and other cytokines. During alcohol detoxification, LS, transaminases, TGF- β, IL-6, IL-8 and VEGF decreased significantly. In contrast, no significant changes were observed for M30, M65 and TNF- α and M30 even increased during detoxification in non-cirrhotic patients. Profibrogenic cytokine TGF-beta and pro-angiogenic cytokine VEGF showed a delayed decrease in patients with manifest cirrhosis. Conclusion Patients with alcohol-related cirrhosis have a pronounced apoptotic activity and a distinct inflammatory response that only partly improves after 1 week of alcohol detoxification. Alcohol withdrawal may represent an important approach to better dissect the underlying mechanisms in the setting of alcohol metabolism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Johannes Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany.,Department of Internal Medicine, Salem Medical Center, Heidelberg, Germany
| |
Collapse
|
15
|
Alharshawi K, Fey H, Vogle A, Klenk T, Kim M, Aloman C. Alcohol Consumption Accumulation of Monocyte Derived Macrophages in Female Mice Liver Is Interferon Alpha Receptor Dependent. Front Immunol 2021; 12:663548. [PMID: 33995391 PMCID: PMC8119877 DOI: 10.3389/fimmu.2021.663548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Monocytes develop in the bone marrow from the hematopoietic stem cells and represent heterogeneous phagocyte cells in the circulation. In homeostatic and inflammatory conditions, after recruitment into tissues, monocytes differentiate into macrophages and dendritic cells. Alcohol use causes about 3.3 million worldwide deaths per year, which is about 5.9% of all deaths. In the United States and Europe, alcohol use disorders represent the fifth leading cause of death. Females are more susceptible to alcoholic liver injury in both humans and mice. Strikingly, we still do not know how much of this difference in tissue injury is due to the differential effect of alcohol and its toxic metabolites on a) parenchymal or resident cells and/or b) immune response to alcohol. Therefore, we used a model of chronic alcohol exposure in mice to investigate the dynamics of monocytes, an innate immune cell type showed to be critical in alcoholic liver injury, by using immunophenotypic characterization. Our data reveal a sex-dimorphism of alcohol response of hepatic monocytes in female mice that is interferon receptor alpha dependent. This dimorphism could shed light on potential cellular mechanism(s) to explain the susceptibility of females to alcoholic immunopathogenesis and suggests an additional targetable pathway for alcoholic liver injury in females.
Collapse
Affiliation(s)
- Khaled Alharshawi
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, United States
| | - Holger Fey
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, United States
| | - Alyx Vogle
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, United States
| | - Tori Klenk
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, United States
| | - Miran Kim
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, United States
| | - Costica Aloman
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, United States
| |
Collapse
|
16
|
Tang XH, Melis M, Mai K, Gudas LJ, Trasino SE. Fenretinide Improves Intestinal Barrier Function and Mitigates Alcohol Liver Disease. Front Pharmacol 2021; 12:630557. [PMID: 33815111 PMCID: PMC8012525 DOI: 10.3389/fphar.2021.630557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol liver disease (ALD) is a major cause of liver-related mortality globally, yet there remains an unmet demand for approved ALD drugs. The pathogenesis of ALD involves perturbations to the intestinal barrier and subsequent translocation of bacterial endotoxin that, acting through toll-like receptor 4 (TLR4), promotes hepatic inflammation and progression of ALD. In the present study we investigated the ability of fenretinide (Fen) [N-(4-hydroxyphenyl) retinamide], a synthetic retinoid with known anti-cancer and anti-inflammatory properties, to modulate intestinal permeability and clinical hallmarks of ALD in a mouse model of chronic ethanol (EtOH) exposure. Our results show that EtOH-treated mice had reductions in mRNA and protein expression of intestinal tight junction proteins, including claudin one and occludin, and increases in intestinal permeability and endotoxemia compared to pair-fed mice. Also, EtOH-treated mice had marked increases in hepatic steatosis, liver injury, and expression of pro-inflammatory mediators, including TNF-α, and TLR4-positive macrophages, Kupffer cells, and hepatocytes in the intestines and liver, respectively. In contrast, EtOH + Fen-treated mice were resistant to the effects of EtOH on promoting intestinal permeability and had higher intestinal protein levels of claudin one and occludin. Also, EtOH + Fen-treated mice had significantly lower plasma levels of endotoxin, and reductions in expression of TNF-α and TLR4 positive macrophages, Kupffer cells, and hepatocytes in the intestine and liver. Lastly, we found that EtOH + Fen-treated mice exhibited major reductions in hepatic triglycerides, steatosis, and liver injury compared to EtOH-treated mice. Our findings are the first to demonstrate that Fen possesses anti-ALD properties, potentially through modulation of the intestinal barrier function, endotoxemia, and TLR4-mediated inflammation. These data warrant further pre-clinical investigations of Fen as a potential anti-ALD drug.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Karen Mai
- Nutrition Program, Hunter College, City University of New York, New York, NY, United States
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Steven E Trasino
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States.,Nutrition Program, Hunter College, City University of New York, New York, NY, United States
| |
Collapse
|
17
|
Namachivayam A, Valsala Gopalakrishnan A. A review on molecular mechanism of alcoholic liver disease. Life Sci 2021; 274:119328. [PMID: 33711388 DOI: 10.1016/j.lfs.2021.119328] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption leads to damage to the organs of the body. More importantly, the liver is majorly affected organ upon alcohol consumption for most of the people; it causes inflammation and affects various pathways involved in metabolism. If the person is with high response of inflammatory in conduct with alcohol leads to the liver damage, which involves the creating effects with major cycle leads to homeostasis. In this review, we summarize the molecular mechanisms of alcoholic liver disease, such as the important role of genes, risk factors, pathogenicity, and role of micro RNA, the role of inflammation in the liver, and alcoholic fibrosis in the liver. There is increased oxidative stress, change in the biochemical alterations, and reduction in the antioxidant enzymes. These changes in the mechanism lead to liver injury. Hepatocyte nuclear factor-4 is the major transcriptional factor for the regulation of some genes involved in the lipid metabolism and oxidation process; with the help of the agonist, we can attenuate the level of the gene in the site of hepatic tissues, which will prevent the homeostatic condition. This review shows a clear view of the various pathways involved in alcohol consumption, which helps in the prevention of ALD using an agonist.
Collapse
Affiliation(s)
- Arunraj Namachivayam
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
18
|
Lai Y, Tan Q, Xv S, Huang S, Wang Y, Li Y, Zeng T, Mo C, Chen Y, Huang S, Zhou C, Gao L, Lv Z. Ginsenoside Rb1 Alleviates Alcohol-Induced Liver Injury by Inhibiting Steatosis, Oxidative Stress, and Inflammation. Front Pharmacol 2021; 12:616409. [PMID: 33716743 PMCID: PMC7952325 DOI: 10.3389/fphar.2021.616409] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) has become a heavy burden on health worldwide. Ginsenoside Rb1 (GRb1), extracted from Panax quinquefolium L., has protective effects on many diseases, but the effect and mechanisms of GRb1 on ALD remain unknown. This study aimed to investigate the protective effects of GRb1 on ALD and to discover the potential mechanisms. Zebrafish larvae were exposed to 350 mM ethanol for 32 h to establish a model of acute alcoholic liver injury, and the larvae were then treated with 6.25, 12.5, or 25 μM GRb1 for 48 h. The human hepatocyte cell line was stimulated by 100 mM ethanol and meanwhile incubated with 6.25, 12.5, and 25 μM GRb1 for 24 h. The lipid changes were detected by Oil Red O staining, Nile Red staining, and triglyceride determination. The antioxidant capacity was assessed by fluorescent probes in vivo, and the expression levels of inflammatory cytokines were detected by immunohistochemistry, immunofluorescence, and quantitative real-time PCR. The results showed that GRb1 alleviated lipid deposition in hepatocytes at an optimal concentration of 12.5 μM in vivo. GRb1 reversed the reactive oxygen species accumulation caused by alcohol consumption and partially restored the level of glutathione. Furthermore, GRb1 ameliorated liver inflammation by inhibiting neutrophil infiltration in the liver parenchyma and downregulating the expression of nuclear factor-kappa B pathway-associated proinflammatory cytokines, including tumor necrosis factor-α and interleukin-1β. This study revealed that GRb1 has a protective effect on alcohol-induced liver injury due to its resistance to lipid deposition as well as antioxidant and anti-inflammatory actions. These findings suggest that GRb1 may be a promising candidate against ALD.
Collapse
Affiliation(s)
- Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qinxiang Tan
- Renal Division, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Shu Xv
- Oncology Department of Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Wen B, Zhang C, Zhou J, Zhang Z, Che Q, Cao H, Bai Y, Guo J, Su Z. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. Pharmacol Ther 2020; 222:107752. [PMID: 33253739 DOI: 10.1016/j.pharmthera.2020.107752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Targeted therapy is an emerging treatment strategy for alcoholic liver disease (ALD). Inflammation plays an important role in the occurrence and development of ALD, and is a key choice for its targeted treatment, and anti-inflammatory treatment has been considered beneficial for liver disease. Surprisingly, immune checkpoint inhibitors have become important therapeutic agents for hepatocellular carcinoma (HCC). Moreover, studies have shown that the combination of inflammatory molecule inhibitors and immune checkpoint inhibitors can exert better effects than either alone in mouse models of HCC. This review discusses the mechanism of hepatic ethanol metabolism and the conditions under which inflammation occurs. In addition, we focus on the potential molecular targets in inflammatory signalling pathways and summarize the potential targeted inhibitors and immune checkpoint inhibitors, providing a theoretical basis for the targeted treatment of ALD and the development of new combination therapy strategies for HCC.
Collapse
Affiliation(s)
- Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Sehrawat TS, Liu M, Shah VH. The knowns and unknowns of treatment for alcoholic hepatitis. Lancet Gastroenterol Hepatol 2020; 5:494-506. [PMID: 32277902 DOI: 10.1016/s2468-1253(19)30326-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
Alcoholic hepatitis is an acute, inflammatory liver disease associated with high morbidity and mortality both in the short term and long term. Alcoholic hepatitis often arises in patients with a background of chronic liver disease and it is characterised by the rapid onset of jaundice and the development of myriad complications. Medical therapy for severe alcoholic hepatitis relies on corticosteroids, which have modest effectiveness. Abstinence from alcohol is critically important in patients with alcoholic hepatitis, but recidivism is high. Because of the absence of effective medical treatments for alcoholic hepatitis and alcohol dependency, there is a pressing need to develop new and effective therapeutics. Supported by promising preliminary and preclinical studies, many ongoing clinical trials of new therapies for alcoholic hepatitis are currently underway and are discussed further in this Series paper.
Collapse
Affiliation(s)
- Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mengfei Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Bjørkhaug ST, Neupane SP, Bramness JG, Aanes H, Skar V, Medhus AW, Valeur J. Plasma cytokine levels in patients with chronic alcohol overconsumption: Relations to gut microbiota markers and clinical correlates. Alcohol 2020; 85:35-40. [PMID: 31610228 DOI: 10.1016/j.alcohol.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alcohol-related morbidity may involve changes in the gut microbiota and immune dysregulation. We have previously demonstrated alterations in gut microbiota composition and functions in patients with alcohol overconsumption, and now aimed to investigate possible associations between cytokine levels, gut microbiota, and clinical symptoms. METHODS We included hospital inpatients with a history of chronic alcohol overconsumption. For comparison, we included control patients with a low alcohol intake. Cytokine levels (TGF-β1, TNF-α, IL-10, IL-8, IL-6, IFN-γ, MCP-1, IL-1RA, IL-1β, and IL-17) were determined using a customized V-plex assay. We then examined associations of cytokine levels with the abundance of Proteobacteria and Faecalibacterium, percentage of the short-chain fatty acid butyrate, psychiatric symptoms (Hospital Anxiety and Depression Scale), and biochemical liver variables. RESULTS We included 28 patients with alcohol overconsumption (79% men), and 25 control patients (72% men). Patients with alcohol overconsumption had higher levels of IL-6 (p = 0.002), IFN-γ (p = 0.018), and MCP-1 (p = 0.006), and lower levels of TGF-β1 (p = 0.017) compared with control patients. Inverse correlations were found between Proteobacteria abundance and TNF-α (Rs = -0.55, p = 0.02) and IL-8 (Rs = -0.58, p = 0.014), and between Faecalibacterium and MCP-1 levels (Rs = -0.56, p = 0.02) in the control patients, but not in patients with alcohol overconsumption. Patients with alcohol overconsumption reported more psychiatric symptoms, and these symptoms were inversely correlated with IL-10 levels. There were positive correlations between several of the assessed cytokines and biochemical liver variables, and negative correlations between cytokine levels and albumin. CONCLUSION Patients with alcohol overconsumption had a cytokine profile suggestive of increased systemic inflammatory activity, with higher levels of pro-inflammatory cytokines (IL-6, IFN-γ, and MCP-1) and lower levels of anti-inflammatory cytokines (TGF-β1). The findings may represent a link between alcohol use and alcohol-related morbidity.
Collapse
Affiliation(s)
- Steinar Traae Bjørkhaug
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway; Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Sudan Prasad Neupane
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Jørgen G Bramness
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway; Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - Viggo Skar
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Asle W Medhus
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
22
|
Hyun J, Sun Z, Ahmadi AR, Bangru S, Chembazhi UV, Du K, Chen T, Tsukamoto H, Rusyn I, Kalsotra A, Diehl AM. Epithelial splicing regulatory protein 2-mediated alternative splicing reprograms hepatocytes in severe alcoholic hepatitis. J Clin Invest 2020; 130:2129-2145. [PMID: 31945016 PMCID: PMC7108908 DOI: 10.1172/jci132691] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Severe alcoholic hepatitis (SAH) is a deadly liver disease without an effective medical therapy. Although SAH mortality is known to correlate with hepatic accumulation of immature liver cells, why this occurs and how it causes death are unclear. Here, we demonstrate that expression of epithelial splicing regulatory protein 2 (ESRP2), an RNA-splicing factor that maintains the nonproliferative, mature phenotype of adult hepatocytes, was suppressed in both human SAH and various mouse models of SAH in parallel with the severity of alcohol consumption and liver damage. Inflammatory cytokines released by excessive alcohol ingestion reprogrammed adult hepatocytes into proliferative, fetal-like cells by suppressing ESRP2. Sustained loss of ESRP2 permitted reemergence of a fetal RNA-splicing program that attenuates the Hippo signaling pathway and thus allows fetal transcriptional regulators to accumulate in adult liver. We further showed that depleting ESRP2 in mice exacerbated alcohol-induced steatohepatitis, enabling surviving hepatocytes to shed adult hepatocyte functions and become more regenerative, but threatening overall survival by populating the liver with functionally immature hepatocytes. Our findings revealed a mechanism that explains why liver failure develops in patients with the clinical syndrome of SAH, suggesting that recovery from SAH might be improved by limiting adult-to-fetal reprogramming in hepatocytes.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Department of Medicine, Duke University Health System, Durham, North Carolina, USA
- Regeneration Next, Duke University School of Medicine, Durham, North Carolina, USA
- Institute of Tissue Regeneration Engineering (ITREN) and College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ali Reza Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sushant Bangru
- Department of Biochemistry, School of Molecular and Cellular Biology, and
- Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ullas V. Chembazhi
- Department of Biochemistry, School of Molecular and Cellular Biology, and
| | - Kuo Du
- Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Tianyi Chen
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cellular Biology, and
- Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| |
Collapse
|
23
|
Neuman MG, Seitz HK, French SW, Malnick S, Tsukamoto H, Cohen LB, Hoffman P, Tabakoff B, Fasullo M, Nagy LE, Tuma PL, Schnabl B, Mueller S, Groebner JL, Barbara FA, Yue J, Nikko A, Alejandro M, Brittany T, Edward V, Harrall K, Saba L, Mihai O. Alcoholic-Hepatitis, Links to Brain and Microbiome: Mechanisms, Clinical and Experimental Research. Biomedicines 2020; 8:E63. [PMID: 32197424 PMCID: PMC7148515 DOI: 10.3390/biomedicines8030063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10-20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Helmut Karl Seitz
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Stephen Malnick
- Department Internal Medicine C, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Heidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-5311, USA;
- Department of Veterans; Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Paula Hoffman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Michael Fasullo
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12205, USA;
| | - Laura E. Nagy
- Departments of Pathobiology and Gastroenterology, Center for Liver Disease Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Pamela L. Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Sebastian Mueller
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Jennifer L. Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - French A. Barbara
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Jia Yue
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Afifiyan Nikko
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Mendoza Alejandro
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Tillman Brittany
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Vitocruz Edward
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Kylie Harrall
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Laura Saba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Opris Mihai
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department Family Medicine Clinic CAR, 010164 Bucharest, Romania
| |
Collapse
|
24
|
Portelli J, Wiers CE, Li X, Deschaine SL, McDiarmid GR, Bermpohl F, Leggio L. Peripheral proinflammatory markers are upregulated in abstinent alcohol-dependent patients but are not affected by cognitive bias modification: Preliminary findings. Drug Alcohol Depend 2019; 204:107553. [PMID: 31541874 PMCID: PMC6913873 DOI: 10.1016/j.drugalcdep.2019.107553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Inflammatory pathways are known to be negatively affected in patients with alcohol use disorder (AUD). Cognitive bias modification (CBM), an emerging behavioral treatment that involves the 're-training' of cognitive biases using computerized tasks, has been reported to reduce alcohol craving and relapse rates. The aim of this study was to compare peripheral concentrations of the proinflammatory biomarkers IL-18, IL-6, IL-1β, TNF-α and CRP in AUD patients versus controls and to identify whether CBM treatment affected these biomarkers in AUD patients. METHODS This 3-week double-blind randomized controlled study tested 36 male abstinent AUD patients receiving CBM or placebo-training, who were also compared to 18 male healthy controls. The approach avoidance task (AAT) was used to test the AUD patients before and after training. CBM training took place over 6 sessions, using a joystick-based approach-avoidance task. Blood samples were collected after the pre- and post-AAT test sessions for the AUD groups, and during an outpatient appointment with the controls. RESULTS AUD patients, versus controls, presented with significantly higher plasma levels of TNF- α (P < 0.0001) and CRP (P = 0.0031). No changes in the CBM versus placebo groups were noted in IL-18, TNF-α and CRP concentrations following pre-post change or within group pretest- posttest analysis. IL-6 and IL-1β levels fell under the lower detection limit, thus were not included in the final analyses. CONCLUSIONS This study confirms that the inflammatory system is altered in AUD. This was the first study that investigated whether CBM training affected proinflammatory markers in AUD patients.
Collapse
Affiliation(s)
- Jeanelle Portelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Corinde E. Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Xiaobai Li
- Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sara L. Deschaine
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Gray R. McDiarmid
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Felix Bermpohl
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Germany.,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, USA; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
| |
Collapse
|
25
|
Abstract
Drug-induced liver injury (DILI) is a comprehensive phenomenon. The injury to the liver may occur as an unexpected and undesired reaction to a therapeutic dose of a drug (idiosyncratic reaction) or as an expected therapeutic effect of the direct (intrinsic) toxicity of a drug taken in a large enough dose to cause liver injury. The direct toxicity (type A) reactions represent an extension of the drug's therapeutic effect; they occur relatively frequently and are typically dose-related and frequency-of-exposure-related. By contrast, idiosyncratic reactions, or type B reactions, are unpredictable, occurring only in susceptible individuals, and are unrelated to the dose or frequency of exposure. DILI encompasses both acute and/or chronic hepatic lesions. The liver injury may be the only clinical manifestation of the adverse drug effect. Otherwise, it may be accompanied by injury to other organs, or by systemic manifestations. The liver injury may be observed in 1-8 days from taking the drug. DILI cases may result in the disapproval of a new drug or in the removal of a useful drug from the market by regulatory agencies. The purpose of this review is to provide guidance to facilitate the detection and assessment of hepatotoxicity induced by therapeutics that received market authorization. This review supports the safe and effective use of drugs by patients and guides laboratory medicine professional in determining the possible drug-induced liver damage.
Collapse
|
26
|
Lou Z, Wang J, Chen Y, Xu C, Chen X, Shao T, Zhang K, Pan H. Linderae radix ethanol extract attenuates alcoholic liver injury via attenuating inflammation and regulating gut microbiota in rats. Braz J Med Biol Res 2019; 52:e7628. [PMID: 31116255 PMCID: PMC6526752 DOI: 10.1590/1414-431x20197628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore the influence of gut microbiota alterations induced by Linderae radix ethanol extract (LREE) on alcoholic liver disease (ALD) in rats and to study the anti-inflammatory effect of LREE on ALD through the lipopolysaccharide (LPS) toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB) pathway. ALD rat models were established by intragastric liquor [50% (v/v) ethanol] administration at 10 mL/kg body weight for 20 days. Rats were divided into six groups: normal group (no treatment), model group (ALD rats), Essentiale group (ALD rats fed with Essentiale, 137 mg/kg), and LREE high/moderate/low dose groups (ALD rats fed with 4, 2, or 1 g LREE/kg). NF-κB and LPS levels were evaluated. Liver pathological changes and intestinal ultrastructure were examined by hematoxylin and eosin staining and transmission electron microscopy. The gut microbiota composition was evaluated by 16S rDNA sequencing. Expression levels of TLR4 and CD68 in liver tissue, and occludin and claudin-1 in intestinal tissue were measured. LREE treatment significantly reduced NF-κB and LPS levels, improved liver pathological changes, and ameliorated intestinal ultrastructure injury. Meanwhile, LREE-fed groups showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than the rats in the model group. Administration of LREE suppressed TLR4 overexpression and promoted the expression of occludin and claudin-1 in intestine tissue. Thus, LREE could partly ameliorate microflora dysbiosis, suppress the inflammatory response, and attenuate liver injury in ALD rats. The protective effect of LREE might be related to the LPS-TLR4-NF-κB pathway.
Collapse
Affiliation(s)
- Zhaohuan Lou
- Institute of Medical Material, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Junwei Wang
- Emergency Department, People's Hospital of Tiantai County, Tiantai, Zhejiang, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Tiantai, Zhejiang, China
| | - Chandi Xu
- School of Clinical Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyi Chen
- Emergency Department, People's Hospital of Tiantai County, Tiantai, Zhejiang, China
| | - Tiejuan Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kena Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Wang M, Ma LJ, Yang Y, Xiao Z, Wan JB. n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: A critical review. Crit Rev Food Sci Nutr 2018; 59:S116-S129. [PMID: 30580553 DOI: 10.1080/10408398.2018.1544542] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess alcohol exposure leads to alcoholic liver disease (ALD), a predominant cause of liver-related morbidity and mortality worldwide. In the past decade, increasing attention has been paid to understand the association between n-3 polyunsaturated fatty acids (n-3 PUFAs) and ALD. In this review, we summarize the metabolism of n-3 PUFAs, animal model of ALD, and the findings from recent studies determining the role of n-3 PUFAs in ALD as a possible treatment. The animal models of acute ethanol exposure, chronic ethanol exposure and chronic-plus-single binge ethanol feeding have been widely used to explore the impact of n-3 PUFAs. Although the results of studies regarding the role of n-3 PUFAs in ALD have been inconsistent or controversial, increasing evidence has demonstrated that n-3 PUFAs may be useful in alleviating alcoholic steatosis and alcohol-induced liver injury through multiple mechanisms, including decreased de novo lipogenesis and lipid mobilization from adipose tissue, enhanced mitochondrial fatty acid β-oxidation, reduced hepatic inflammation and oxidative stress, and promoted intestinal homeostasis, positively suggesting that n-3 PUFAs might be promising for the management of ALD. The oxidation of n-3 PUFAs ex vivo in an experimental diet was rarely considered in most n-3 PUFA-related studies, likely contributing to the inconsistent results. Thus, the role of n-3 PUFAs in ALD deserves greater research efforts and remains to be evaluated in randomized, placebo-controlled clinic trial. ABBREVIATION AA arachidonic acid ACC acetyl-CoA carboxylase ACLY ATP-citrate lyase ACO acyl-CoA oxidase ALA α-linolenic acid ALD alcoholic liver disease ALP alkaline phosphatase ALT alanine aminotransferase AMPK AMP-activated protein kinase AST aspartate aminotransferase ATGL adipose triglyceride lipase cAMP cyclic adenosine 3',5'-monophosphate COX cyclooxygenases CPT1 carnitine palmitoyltransferase 1 CYP2E1 cytochrome P450 2E1 DGAT2 diacylglycerol acyltransferase 2 DGLA dihomo-γ-linolenic acid DHA docosahexaenoic acid DPA docosapentaenoic acid DTA docosatetraenoic acid EPA eicosapentaenoic acid ER endoplasmic reticulum ETA eicosatetraenoic acid FAS fatty acid synthase FATPs fatty acid transporter proteins GLA,γ linolenic acid GPR120 G protein-coupled receptor 120 GSH glutathione; H&E haematoxylin-eosin; HO-1 heme oxygenase-1; HSL hormone-sensitive lipase; IL-6 interleukin-6 iNOS nitric oxide synthase LA linoleic acid LBP lipopolysaccharide binding protein LOX lipoxygenases LXR liver X receptor LXREs LXR response elements MCP-1 monocyte chemotactic protein-1 MTP microsomal triglyceride transfer protein MUFA monounsaturated fatty acids MyD88 myeloid differentiation factor 88 n-3 PUFAs omega-3 polyunsaturated fatty acid NAFLD nonalcoholic fatty liver disease NASH nonalcoholic steatohepatitis NF-κB transcription factor nuclear factor κB PDE3B phosphodiesterase 3B PPAR peroxisome proliferator-activated receptor ROS reactive oxygen species RXR retinoid X receptor SCD-1 stearyl CoA desaturase-1 SDA stearidonic acid SFA saturated fatty acids SIRT1 sirtuin 1 SOD superoxide dismutase SREBP sterol regulatory element-binding protein TB total bilirubin TC total cholesterol TG triacylglycerol TLR4 Toll-like receptor-4 TNF-α tumor necrosis factor-α VLDLR very low-density lipoprotein receptor WT wild type; ZO-1 zonula occludens-1.
Collapse
Affiliation(s)
- Meng Wang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China.,b Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University , Shijiazhuang , Hebei , China
| | - Li-Juan Ma
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yan Yang
- c Department of Nutrition, School of Public Health , Sun Yat-Sen University , Guangzhou , China
| | - Zeyu Xiao
- d Collaborative Translational Medicine Collaborative Innovation Center, Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Bo Wan
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
28
|
Swidnicka-Siergiejko A, Wereszczynska-Siemiatkowska U, Siemiatkowski A, Wasielica-Berger J, Janica J, Mroczko B, Dabrowski A. The imbalance of peripheral interleukin-18 and transforming growth factor-β1 levels in patients with cirrhosis and esophageal varices. Cytokine 2018; 113:440-445. [PMID: 30392846 DOI: 10.1016/j.cyto.2018.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/09/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The presence of esophageal varices in liver cirrhosis indicates clinically significant portal hypertension (PH), that results from structural and dynamic changes in the liver and systemic circulation including the activation of several fibrotic and inflammatory pathways. We assessed if interleukin-18 (IL-18) and transforming growth factor-β1 (TGF-β1) serum levels can be used as PH markers and reflect its severity. MATERIAL AND METHODS IL-18 and TGF-β1 peripheral blood levels were analyzed in 83 cirrhotic patients with esophageal varices compared to healthy individuals, in relation to MELD and Child-Pugh scores, laboratory and Doppler ultrasound parameters, and non-selective beta-blocker therapy (NSBB). RESULTS IL-18 concentration was significantly higher in cirrhotic patients, while TGF-β1 concentration was lower than in controls. MELD score correlated positively with IL-18 levels and negatively with TGF-β1 levels. IL-18 levels correlated positively with bilirubin, INR, ALT and AST levels, and negatively with albumin levels and erythrocyte count. TGF-β1 levels correlated positively with platelet count, leukocyte, and erythrocyte count, and negatively with bilirubin levels and prothrombin time. Moreover, significant correlations were found: between IL and 18 levels and portal, mesenteric superior, and splenic vein velocity, and between TGF-β1 levels and splenic vein diameter and spleen size. In a subgroup of patients, IL-18 levels significantly decreased after NSBB. CONCLUSION The observed imbalance of peripheral IL-18 and TGF-β1 levels indicates clinically significant PH associated with the presence of esophageal varices in cirrhosis. The correlation of IL-18 levels with liver failure indicators and decrease with NSBB suggest an important role of IL-18 in disease progression and its potential use as noninvasive test for PH assessment.
Collapse
Affiliation(s)
| | | | - Andrzej Siemiatkowski
- Department of Anaesthesiology and Intensive Care, Medical University of Bialystok, Poland
| | | | - Jacek Janica
- Department of Radiology, Medical University of Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostic, Medical University of Bialystok, Poland
| | - Andrzej Dabrowski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Poland
| |
Collapse
|
29
|
Corticosteroids, nutrition, pentoxifylline, or fecal microbiota transplantation for severe alcoholic hepatitis. Indian J Gastroenterol 2018; 37:215-225. [PMID: 29931479 DOI: 10.1007/s12664-018-0859-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/20/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Alcohol-induced intestinal dysbiosis is central to the development of the severe alcoholic liver disease. We present the first study to compare outcomes in patients of severe alcoholic hepatitis (SAH) on nutritional therapy, corticosteroids, pentoxifylline, and healthy donor fecal transplantation (FMT) and discuss distinct microbial community and microbiome metabolic functional changes after FMT. METHODS Out of 1271 liver disease patients, 809 (63.7%) were diagnosed to have the alcoholic liver disease, of which 51 patients (8 treated with corticosteroids, 17 with nutritional support only, 10 with pentoxifylline, 16 receiving FMT) were included. Clinical, biochemical parameters, liver disease, and alcoholic hepatitis severity scores at baseline and mortality at the end of 1 and 3 months were analyzed between groups. Stool microbiota (SM) analysis was performed for healthy controls (HC) and respective recipients after FMT. RESULTS All the patients were male. The proportions of patients surviving at the end of 1 and 3 months in the steroids, nutrition, pentoxifylline, and FMT group were 63%, 47%, 40% and 75% [p = 0.179] and 38%, 29%, 30%, and 75% [p = 0.036], respectively. When compared with FMT, relative risk and hazard ratios for death were higher in all the other groups. Following FMT, distinct and beneficial modulation of SM and pathways of dysregulated metabolism, infections, inflammation, and oxidative stress in SAH patients were noted in tandem with improved clinical outcomes. CONCLUSIONS Healthy donor FMT for SAH improves survival beyond what is offered by current therapies and can function as a cost-effective bridge to liver transplant (LT) or for improving transplant-free survival. Larger studies and randomized trials are unmet needs.
Collapse
|
30
|
Gao J, Chen S, Qiu Z, Fang L, Zhang L, Guo C, Chen T, Qiu L. Myricitrin ameliorates ethanol-induced steatosis in mouse AML12 liver cells by activating AMPK, and reducing oxidative stress and expression of inflammatory cytokines. Mol Med Rep 2018; 17:7381-7387. [PMID: 29568905 DOI: 10.3892/mmr.2018.8740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/02/2018] [Indexed: 11/05/2022] Open
Abstract
It is necessary to identify compounds that may provide protection against alcoholic liver disease. To the best of our knowledge, the effect of myricitrin on the development of ethanol‑induced liver disease has not been previously investigated. The present study aimed to determine the effect of myricitrin on ethanol‑induced steatosis in AML12 mouse liver cells and to identify the underlying molecular mechanisms. Ethanol‑treated AML12 cells exhibited significant improvement in viability following treatment with myricitrin. Oil red O staining indicated that myricitrin ameliorated ethanol‑induced lipid accumulation in cells. Furthermore, following treatment with myricitrin, improvement in ethanol‑induced steatosis and decrease in the levels of reactive oxygen species and lipoperoxides were observed in ethanol‑stimulated cells. Myricitrin suppressed mRNA and protein expression of tumor necrosis factor‑α, interleukin‑6 and transforming growth factor‑β1 in ethanol‑stimulated AML12 cells. Myricitrin markedly increased phosphorylation of adenosine monophosphate‑activated protein kinase (AMPK) and significantly reduced mRNA expression of sterol‑regulatory element‑binding protein‑1c (SREBP‑1c) and fatty acid synthase in ethanol‑stimulated AML12 cells. The results of the present study indicate that myricitrin ameliorates ethanol‑induced steatosis in AML12 cells by attenuating oxidative stress, suppressing expression of certain inflammatory cytokines and modulating the AMPK/SREBP-1c pathway.
Collapse
Affiliation(s)
- Jing Gao
- School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Si Chen
- School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Zikai Qiu
- Light Industry and Food Engineering College, Guangxi University, Nanning 530004, P.R. China
| | - Liping Fang
- School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Lishan Zhang
- School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Chang Guo
- School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Tong Chen
- School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Longxin Qiu
- School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| |
Collapse
|
31
|
Magdaleno F, Ge X, Fey H, Lu Y, Gaskell H, Blajszczak CC, Aloman C, Fiel MI, Nieto N. Osteopontin deletion drives hematopoietic stem cell mobilization to the liver and increases hepatic iron contributing to alcoholic liver disease. Hepatol Commun 2018; 2:84-98. [PMID: 29404515 PMCID: PMC5776866 DOI: 10.1002/hep4.1116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the role of osteopontin (OPN) in hematopoietic stem cell (HPSC) mobilization to the liver and its contribution to alcoholic liver disease (ALD). We analyzed young (14-16 weeks) and old (>1.5 years) wild-type (WT) littermates and global Opn knockout (Opn-/- ) mice for HPSC mobilization to the liver. In addition, WT and Opn-/- mice were chronically fed the Lieber-DeCarli diet for 7 weeks. Bone marrow (BM), blood, spleen, and liver were analyzed by flow cytometry for HPSC progenitors and polymorphonuclear neutrophils (PMNs). Chemokines, growth factors, and cytokines were measured in serum and liver. Prussian blue staining for iron deposits and naphthol AS-D chloroacetate esterase staining for PMNs were performed on liver sections. Hematopoietic progenitors were lower in liver and BM of young compared to old Opn-/- mice. Granulocyte colony-stimulating factor and macrophage colony-stimulating factor were increased in Opn-/- mice, suggesting potential migration of HPSCs from the BM to the liver. Furthermore, ethanol-fed Opn-/- mice showed significant hepatic PMN infiltration and hemosiderin compared to WT mice. As a result, ethanol feeding caused greater liver injury in Opn-/- compared to WT mice. Conclusion: Opn deletion promotes HPSC mobilization, PMN infiltration, and iron deposits in the liver and thereby enhances the severity of ALD. The age-associated contribution of OPN to HPSC mobilization to the liver, the prevalence of PMNs, and accumulation of hepatic iron, which potentiates oxidant stress, reveal novel signaling mechanisms that could be targeted for therapeutic benefit in patients with ALD. (Hepatology Communications 2018;2:84-98).
Collapse
Affiliation(s)
| | - Xiaodong Ge
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Holger Fey
- Division of Digestive DiseasesRush University Medical CenterChicagoIL
| | - Yongke Lu
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Harriet Gaskell
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
| | | | - Costica Aloman
- Division of Digestive DiseasesRush University Medical CenterChicagoIL
| | - M. Isabel Fiel
- Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Natalia Nieto
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
- Department of Medicine, Division of Gastroenterology and HepatologyUniversity of Illinois at ChicagoChicagoIL
| |
Collapse
|
32
|
Kim A, McCullough RL, Poulsen KL, Sanz-Garcia C, Sheehan M, Stavitsky AB, Nagy LE. Hepatic Immune System: Adaptations to Alcohol. Handb Exp Pharmacol 2018; 248:347-367. [PMID: 29374837 DOI: 10.1007/164_2017_88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Both the innate and adaptive immune systems are critical for the maintenance of healthy liver function. Immune activity maintains the tolerogenic capacity of the liver, modulates hepatocellular response to various stresses, and orchestrates appropriate cellular repair and turnover. However, in response to heavy, chronic alcohol exposure, the finely tuned balance of pro- and anti-inflammatory functions in the liver is disrupted, leading to a state of chronic inflammation in the liver. Over time, this non-resolving inflammatory response contributes to the progression of alcoholic liver disease (ALD). Here we review the contributions of the cellular components of the immune system to the progression of ALD, as well as the pathophysiological roles for soluble and circulating mediators of immunity, including cytokines, chemokines, complement, and extracellular vesicles, in ALD. Finally, we compare the role of the innate immune response in health and disease in the liver to our growing understanding of the role of neuroimmunity in the development and maintenance of a healthy central nervous system, as well as the progression of neuroinflammation.
Collapse
Affiliation(s)
- Adam Kim
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Rebecca L McCullough
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kyle L Poulsen
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos Sanz-Garcia
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Megan Sheehan
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Abram B Stavitsky
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Laura E Nagy
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Gastroenterology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
33
|
TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines (Basel) 2017; 5:vaccines5040034. [PMID: 28976923 PMCID: PMC5748601 DOI: 10.3390/vaccines5040034] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023] Open
Abstract
Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans.
Collapse
|
34
|
Xin B, Cui Y, Wang Y, Wang L, Yin J, Zhang L, Pang H, Zhang H, Wang RA. Combined use of alcohol in conventional chemical-induced mouse liver cancer model improves the simulation of clinical characteristics of human hepatocellular carcinoma. Oncol Lett 2017; 14:4722-4728. [PMID: 29085472 PMCID: PMC5649534 DOI: 10.3892/ol.2017.6800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/09/2017] [Indexed: 01/01/2023] Open
Abstract
Liver cancer is the one of most common types of cancer and the 2nd cause of cancer-associated mortalities worldwide. Establishing appropriate animal models of liver cancer is essential for basic and translational studies. The present study evaluated the effects of the combined use of alcohol with a conventional chemical-induced mouse liver cancer model. The treatment of alcohol/diethylnitrosamine (DEN)/carbon tetrachloride (CCl4) in the mice of experimental groups resulted in a series of pathological changes in the liver. Liver inflammation, fibrosis, cirrhosis and hepatocellular carcinoma were identified, and this method used less time (1–5 months) for inducement compared with the conventional chemical-induced method alone. In addition, murine α-fetoprotein (mAFP) was expressed throughout and ultrastructural features met the criteria for liver cancer. Fatty degeneration of pancreas, reduced blood glucose levels, and increased spleen weight were observed. These results indicated that an AFP-secreting hepatocellular carcinoma model of BALB/c mouse was successfully developed. The disease process and morphological changes met the criterion of the liver cancer process. Therefore the model developed in the present study may be an ideal animal model for studying the occurrence and development of liver cancer.
Collapse
Affiliation(s)
- Bo Xin
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China.,Department of Oncology, No. 88 Hospital of People's Liberation Army, Tai'an, Shandong 271000, P.R. China
| | - Ying Cui
- Department of Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yanxia Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Licheng Zhang
- Department of Oncology, No. 88 Hospital of People's Liberation Army, Tai'an, Shandong 271000, P.R. China
| | - Hailin Pang
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Helong Zhang
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Rui-An Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
35
|
Li W, Amet T, Xing Y, Yang D, Liangpunsakul S, Puri P, Kamath P, Sanyal A, Shah V, Katz B, Radaeva S, Crabb D, Chalasani N, Yu Q. Alcohol abstinence ameliorates the dysregulated immune profiles in patients with alcoholic hepatitis: A prospective observational study. Hepatology 2017; 66:575-590. [PMID: 28466561 PMCID: PMC5548491 DOI: 10.1002/hep.29242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/27/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022]
Abstract
Alcoholic hepatitis (AH) develops in only a small proportion of heavy drinkers. To better understand the mechanisms underlying this disparity, we conducted a study to define the relationship between AH development and dysregulated immune responses that might be ameliorated by alcohol abstinence. Sixty-eight AH patients, 65 heavy drinking controls without liver disease (HDC), and 20 healthy controls were enrolled and followed up to 12 months. At baseline, HDC and healthy controls had no significant differences in their plasma levels of 38 inflammatory cytokines/chemokines measured using multiplex immunoassays. However, compared to HDC, AH patients had higher baseline levels of 11 cytokines/chemokines (tumor necrosis factor alpha, interleukin 6 [IL-6], IL-8, interferon gamma-induced protein 10, IL-4, IL-9, IL-10, fibroblast growth factor 2, IL-7, IL-15, and transforming growth factor alpha) but lower levels of the anti-inflammatory macrophage-derived chemokine. AH patients also had more activated yet dysfunctional immune cells as monocytes, T cells, and B cells expressed higher levels of cluster of differentiation 38 (CD38) and CD69 but low levels of human leukocyte antigen DR, CD80, and CD86 at baseline. In addition, CD4 T cells produced less interferon-gamma in response to T-cell stimulation. Up-regulated IL-6, IL-8, CD38, and CD69 and down-regulated macrophage-derived chemokine, human leukocyte antigen DR, CD86, and CD80 correlated positively and negatively, respectively, with disease severity. Longitudinal analysis indicated that levels of IL-6, IL-8, CD38, and CD69 were reduced, whereas levels of macrophage-derived chemokine, human leukocyte antigen DR, CD80, and CD86 were increased in abstinent AH patients. All of the cellular immune abnormalities were reversed by day 360 in abstinent AH patients; however, plasma levels of tumor necrosis factor alpha, IL-8, IL-10, fibroblast growth factor 2, and IL-7 remained higher. CONCLUSION AH patients were in a highly immune-dysregulated state, whereas HDC showed little evidence of immune activation; alcohol abstinence reversed most, but not all, of the immunological abnormalities. (Hepatology 2017;66:575-590).
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Tohti Amet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yanyan Xing
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Dennis Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5175
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Puneet Puri
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Patrick Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Barry Katz
- Department of Biostatistics, Indiana University School of Medicine and Richard M. Fairbanks School of Public Health, Indianapolis, IN 46202
| | - Svetlana Radaeva
- National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Rockville, MD
| | - David Crabb
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5175
- Internal Medicine, Eskenazi Health, Indianapolis, IN 46202
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5175
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
36
|
Dietary fructose augments ethanol-induced liver pathology. J Nutr Biochem 2017; 43:141-150. [PMID: 28315617 DOI: 10.1016/j.jnutbio.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/22/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022]
Abstract
Certain dietary components when combined with alcohol exacerbate alcohol-induced liver injury (ALI). Here, we tested whether fructose, a major ingredient of the western diet, enhances the severity of ALI. We fed mice ethanol for 8 weeks in the following Lieber-DeCarli diets: (a) Regular (contains olive oil); (b) corn oil (contains corn oil); (c) fructose (contains fructose and olive oil) and (d) corn+fructose (contains fructose and corn oil). We compared indices of metabolic function and liver pathology among the different groups. Mice fed fructose-free and fructose-containing ethanol diets exhibited similar levels of blood alcohol, blood glucose and signs of disrupted hepatic insulin signaling. However, only mice given fructose-ethanol diets showed lower insulin levels than their respective controls. Compared with their respective pair-fed controls, all ethanol-fed mice exhibited elevated levels of serum ALT; the inflammatory cytokines TNF-α, MCP-1 and MIP-2; hepatic lipid peroxides and triglycerides. All the latter parameters were significantly higher in mice given fructose-ethanol diets than those fed fructose-free ethanol diets. Mice given fructose-free or fructose-containing ethanol diets each had higher levels of hepatic lipogenic enzymes than controls. However, the level of the lipogenic enzyme fatty acid synthase (FAS) was significantly higher in livers of mice given fructose control and fructose-ethanol diets than in all other groups. Our findings indicate that dietary fructose exacerbates ethanol-induced steatosis, oxidant stress, inflammation and liver injury, irrespective of the dietary fat source, to suggest that inclusion of fructose in or along with alcoholic beverages increases the risk of more severe ALI in heavy drinkers.
Collapse
|
37
|
Zhang X, Wang H, Yin P, Fan H, Sun L, Liu Y. Flaxseed oil ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota in mice. Lipids Health Dis 2017; 16:44. [PMID: 28228158 PMCID: PMC5322643 DOI: 10.1186/s12944-017-0431-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alcoholic liver disease (ALD) represents a chronic wide-spectrum of liver injury caused by consistently excessive alcohol intake. Few satisfactory advances have been made in management of ALD. Thus, novel and more practical treatment options are urgently needed. Flaxseed oil (FO) is rich in α-linolenic acid (ALA), a plant-derived n-3 polyunsaturated fatty acids (PUFAs). However, the impact of dietary FO on chronic alcohol consumption remains unknown. METHODS In this study, we assessed possible effects of dietary FO on attenuation of ALD and associated mechanisms in mice. Firstly, mice were randomly allocated into four groups: pair-fed (PF) with corn oil (CO) group (PF/CO); alcohol-fed (AF) with CO group (AF/CO); PF with FO group (PF/FO); AF with FO group (AF/FO). Each group was fed modified Lieber-DeCarli liquid diets containing isocaloric maltose dextrin a control or alcohol with corn oil and flaxseed oil, respectively. After 6 weeks feeding, mice were euthanized and associated indications were investigated. RESULTS Body weight (BW) was significantly elevated in AF/FO group compared with AF/CO group. Dietary FO reduced the abnormal elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in chronic ethanol consumption. Amelioration of these parameters as well as liver injury via HE staining in dietary FO supplementation in ALD demonstrated that dietary FO can effectively benefit for the protection against ALD. To further understand the underlying mechanisms, we investigated the inflammatory cytokine levels and gut microbiota. A series of inflammatory cytokines, including TNF-α, IL-1β, IL-6 and IL-10, were determined. As a result, TNF-α, IL-1β and IL-6 were decreased in AF/FO group compared with control group; IL-10 showed no significant alteration between AF/CO and AF/FO groups (p > 0.05). Sequencing and analysis of gut microbiota gene indicated that a reduction of Porphyromonadaceae and Parasutterella, as well as an increase in Firmicutes and Parabacteroides, were seen in AF group compared with PF control. Furthermore, dietary FO in ethanol consumption group induced a significant reduction in Proteobacteria and Porphyromonadaceae compared with AF/CO group. CONCLUSION Dietary FO ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota, thus can potentially serve as an inexpensive interventions for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China.,Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hao Wang
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Peipei Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China
| | - Hang Fan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China
| | - Liwei Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China
| | - Yujun Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China.
| |
Collapse
|
38
|
Neuman MG, French SW, Zakhari S, Malnick S, Seitz HK, Cohen LB, Salaspuro M, Voinea-Griffin A, Barasch A, Kirpich IA, Thomes PG, Schrum LW, Donohue TM, Kharbanda KK, Cruz M, Opris M. Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Exp Mol Pathol 2017; 102:162-180. [PMID: 28077318 DOI: 10.1016/j.yexmp.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Stephen Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Andreea Voinea-Griffin
- Public Health Science Texas A&M University, College of Dentistry, Dallas University, TX, USA
| | - Andrei Barasch
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Paul G Thomes
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura W Schrum
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Terrence M Donohue
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marcus Cruz
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Opris
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| |
Collapse
|
39
|
Cai X, Bao L, Wang N, Ren J, Chen Q, Xu M, Li D, Mao R, Li Y. Dietary nucleotides protect against alcoholic liver injury by attenuating inflammation and regulating gut microbiota in rats. Food Funct 2016; 7:2898-908. [PMID: 27247978 DOI: 10.1039/c5fo01580d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleotides have been reported to be effective in attenuating liver damage and regulating gut microbiota. However, the protective effect of nucleotides against alcoholic liver injury remains unknown. The present study aims to investigate whether nucleotides ameliorate alcoholic liver injury and explores the possible mechanism. Male Wistar rats were given alcohol, equivalent distilled water or an isocaloric amount of dextrose intragastrically twice daily for up to 6 weeks respectively. Two subgroups of alcohol-treated rats were fed with a nucleotide-supplemented AIN-93G rodent diet. Serum enzymes, inflammatory cytokines and microbiota composition of the caecum content were evaluated. We found that nucleotides could significantly decrease serum alanine aminotransferase and aspartate aminotransferase, plasma lipopolysaccharide and inflammatory cytokine levels. Sequencing of 16S rRNA genes revealed that nucleotide-treated rats showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than alcohol-treated rats. Moreover, nucleotide treatment inhibited the protein expression of toll-like receptor 4, CD14 and repressed the phosphorylation of inhibitor kappa Bα and nuclear factor-κB p65 in the liver. These results suggested that nucleotides suppressed the inflammatory response and regulated gut microbiota in alcoholic liver injury. The partial inhibition of lipopolysaccharide - toll-like receptor 4-nuclear factor-κB p65 signaling in the liver may be attributed to this mechanism.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Osna NA, Kharbanda KK. Multi-Organ Alcohol-Related Damage: Mechanisms and Treatment. Biomolecules 2016; 6:biom6020020. [PMID: 27092531 PMCID: PMC4919915 DOI: 10.3390/biom6020020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 02/05/2023] Open
Abstract
Alcohol consumption causes damage to various organs and systems.[...].
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|