1
|
Guo Y, Li J, Miao X, Wang H, Ge H, Xu H, Wang J, Wang Y. Phospholipase D2 drives cellular lipotoxicity and tissue inflammation in alcohol-associated liver disease. Life Sci 2024; 358:123166. [PMID: 39447730 DOI: 10.1016/j.lfs.2024.123166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
AIMS Excessive alcohol consumption leads to alcoholic liver disease (ALD), a major contributing factor to cirrhosis and hepatocellular carcinoma. In the present study we investigated the involvement of phospholipase D2 (PLD2) in the pathogenesis of ALD. METHODS AND MATERIALS ALD was induced in mice by chronic and binge ethanol feeding (the NIAAA model). Cellular transcriptome was examined by RNA-seq. KEY FINDINGS Analysis of RNA-seq datasets indicated that PLD2 expression was up-regulated in liver tissues and in hepatocytes during ALD pathogenesis. Exposure of hepatocytes to ethanol treatment led to an increase in PLD2 expression. Similarly, ethanol feeding in mice stimulated PLD2 expression in the liver. On the contrary, PLD2 knockdown in hepatocytes down-regulated expression of pro-inflammatory and pro-lipogenic genes and dampened lipid accumulation. Consistently, PLD2 knockdown in mice significantly ameliorated ALD pathogenesis as evidenced by reduced steatosis and hepatic inflamamation. RNA-seq identified several metabolic pathways that were influenced by PLD2 deficiency. SIGNIFICANCE Our data demonstrate that PLD2 is a novel regulator of ALD and suggest that small-molecule PLD2 inhibitors can be considered as a reasonable strategy for ALD treatment.
Collapse
Affiliation(s)
- Yan Guo
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Jichen Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Hansong Wang
- Department of Emergency Medical Center, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Hailong Ge
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, Changzhou, China
| | - Huihui Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| | - Jianguo Wang
- Pediatric Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Yu Wang
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, Changzhou, China.
| |
Collapse
|
2
|
Wang H, Li X, Zhang Q, Fu C, Jiang W, Xue J, Liu S, Meng Q, Ai L, Zhi X, Deng S, Liang W. Autophagy in Disease Onset and Progression. Aging Dis 2024; 15:1646-1671. [PMID: 37962467 PMCID: PMC11272186 DOI: 10.14336/ad.2023.0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 11/15/2023] Open
Abstract
Autophagy is a biological phenomenon whereby components of cells can self-degrade using autophagosomes. During this process, cells can clear dysfunctional organelles or unwanted elements. Autophagy can recycle unnecessary biomolecules into new components or sometimes, even destroy the cells themselves. This cellular process was first observed in 1962 by Keith R. Porter et al. Since then, autophagy has been studied for over 60 years, and much has been learned on the topic. Nevertheless, the process is still not fully understood. It has been proven, for example, that autophagy can be a positive force for maintaining good health by removing older or damaged cells. By contrast, autophagy is also involved in the onset and progression of various conditions caused by pathogenic infections. These diseases generally involve several important organs in the human body, including the liver, kidney, heart, and central nervous system. The regulation of the defects of autophagy defects may potentially be used to treat some diseases. This review comprehensively discusses recent research frontiers and topics of interest regarding autophagy-related diseases.
Collapse
Affiliation(s)
- Hao Wang
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong, China.
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Chengtao Fu
- School of Medicine, Huzhou University, Zhejiang, China.
| | - Wenjie Jiang
- Department of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, China.
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shan Liu
- Bioimaging Core of Shenzhen Bay Laboratory Shenzhen, China.
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shoulong Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
3
|
Floris A, Chandla S, Lim Y, Barbier-Torres L, Seth K, Khangholi A, Li TW, Robison A, Murray BJ, Lee S, Michitaka M, Murali R, Tomasi ML, Lu SC. Sumoylation of methionine adenosyltransferase alpha 1 promotes mitochondrial dysfunction in alcohol-associated liver disease. Hepatology 2024; 80:102-118. [PMID: 38100286 PMCID: PMC11178676 DOI: 10.1097/hep.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND AIMS Methionine adenosyltransferase alpha1 (MATα1) is responsible for the biosynthesis of S-adenosylmethionine in normal liver. Alcohol consumption enhances MATα1 interaction with peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), which blocks MATα1 mitochondrial targeting, resulting in lower mitochondrial MATα1 content and mitochondrial dysfunction in alcohol-associated liver disease (ALD) in part through upregulation of cytochrome P450 2E1. Conversely, alcohol intake enhances SUMOylation, which enhances cytochrome P450 2E1 expression. MATα1 has potential SUMOylation sites, but whether MATα1 is regulated by SUMOylation in ALD is unknown. Here, we investigated if MATα1 is regulated by SUMOylation and, if so, how it impacts mitochondrial function in ALD. APPROACH AND RESULTS Proteomics profiling revealed hyper-SUMOylation of MATα1, and prediction software identified lysine 48 (K48) as the potential SUMOylation site in mice (K47 in humans). Experiments with primary hepatocytes, mouse, and human livers revealed that SUMOylation of MAT1α by SUMO2 depleted mitochondrial MATα1. Furthermore, mutation of MATα1 K48 prevented ethanol-induced mitochondrial membrane depolarization, MATα1 depletion, and triglyceride accumulation. Additionally, CRISPR/CRISPR associated protein 9 gene editing of MATα1 at K48 hindered ethanol-induced MATα1-PIN1 interaction, degradation, and phosphorylation of MATα1 in vitro. In vivo, CRISPR/CRISPR associated protein 9 MATα1 K48 gene-edited mice were protected from ethanol-induced fat accumulation, liver injury, MATα1-PIN1 interaction, mitochondrial MATα1 depletion, mitochondrial dysfunction, and low S-adenosylmethionine levels. CONCLUSIONS Taken together, our findings demonstrate an essential role for SUMOylation of MATα1 K48 for interaction with PIN1 in ALD. Preventing MATα1 K48 SUMOylation may represent a potential treatment strategy for ALD.
Collapse
Affiliation(s)
- Andrea Floris
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Swati Chandla
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Youngyi Lim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lucia Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Karina Seth
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Arash Khangholi
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tony W.H. Li
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aaron Robison
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ben J. Murray
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sion Lee
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matsuda Michitaka
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
4
|
Zhang X, Yu H, Yan X, Li P, Wang C, Zhang C, Ji H. Selenium reduces hepatopancreas lipid accumulation of grass carp ( Ctenopharyngodon idella) fed high-fat diet via lipophagy activation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:126-136. [PMID: 38023382 PMCID: PMC10661554 DOI: 10.1016/j.aninu.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 12/01/2023]
Abstract
It has been reported that selenium (Se) can reduce hepatopancreas lipid accumulation induced by high-fat diet. However, its mechanism is still unknown. This study aims to investigate the specific mechanisms by which Se alleviates high-fat diet-induced lipid accumulation. Grass carp were fed control diet (4.8% lipid, Con), high-fat diet (8.8% lipid, HFD) or HFD supplemented with 0.3 mg/kg nano-Se (HSe0.3) for 10 weeks. Growth performance, Se deposition, lipid accumulation, hepatic ultrastructure, and gene and protein expression levels associated with autophagy were examined. Furthermore, oleic acid (OA) was used to incubate the grass carp hepatocytes (L8824) for 24 h, and then the L8824 were incubated with sodium selenite in presence or absence of an autophagy inhibitor for 24 h. L8824 was analyzed for triglyceride concentration, immunofluorescence, and gene and protein expression levels associated with autophagy. We found that dietary nano-Se improved the growth of fish fed HFD and also decreased hepatosomatic index and intraperitoneal fat ratio of fish fed HFD (P < 0.05). HFD significantly increased hepatopancreas lipid accumulation and decreased autophagic activity (P < 0.05). Treatment of grass carp fed HFD with nano-Se decreased lipid accumulation and restored hepatic autophagy (P < 0.05). In vitro, Se (100 μM sodium selenite) obviously activated autophagy in L8824 incubated with OA, and consequently reduced the lipid accumulation induced by OA (P < 0.05). Furthermore, using pharmacological inhibition (chloroquine) of the autophagy greatly diminished the beneficial effects of Se on alleviating OA-induced lipid accumulation and increased the co-localization of lipid droplets with autophagosome (P < 0.05), which indicated that Se increased autophagic flux. In conclusion, these results suggest that Se alleviates HFD-induced hepatopancreas lipid accumulation by activating lipophagy.
Collapse
Affiliation(s)
- Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianfang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Salete-Granado D, Carbonell C, Puertas-Miranda D, Vega-Rodríguez VJ, García-Macia M, Herrero AB, Marcos M. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications. Antioxidants (Basel) 2023; 12:1425. [PMID: 37507963 PMCID: PMC10376811 DOI: 10.3390/antiox12071425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ethanol consumption triggers oxidative stress by generating reactive oxygen species (ROS) through its metabolites. This process leads to steatosis and liver inflammation, which are critical for the development of alcoholic liver disease (ALD). Autophagy is a regulated dynamic process that sequesters damaged and excess cytoplasmic organelles for lysosomal degradation and may counteract the harmful effects of ROS-induced oxidative stress. These effects include hepatotoxicity, mitochondrial damage, steatosis, endoplasmic reticulum stress, inflammation, and iron overload. In liver diseases, particularly ALD, macroautophagy has been implicated as a protective mechanism in hepatocytes, although it does not appear to play the same role in stellate cells. Beyond the liver, autophagy may also mitigate the harmful effects of alcohol on other organs, thereby providing an additional layer of protection against ALD. This protective potential is further supported by studies showing that drugs that interact with autophagy, such as rapamycin, can prevent ALD development in animal models. This systematic review presents a comprehensive analysis of the literature, focusing on the role of autophagy in oxidative stress regulation, its involvement in organ-organ crosstalk relevant to ALD, and the potential of autophagy-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
| | - Cristina Carbonell
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Puertas-Miranda
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Víctor-José Vega-Rodríguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Qi X, Sun X, Wang M, Wang M, Qi Z, Cui C. Ginseng polysaccharides ameliorate abnormal lipid metabolism caused by acute alcoholic liver injury by promoting autophagy. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
| | - Xihan Sun
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
| | - Muyao Wang
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| | - Mei Wang
- Dalian Academy of Agricultural Sciences Dalian China
| | - Zhanwen Qi
- Yanbian Han Gongfang Health Products Co., Ltd. Yanji China
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| |
Collapse
|
7
|
Liu M, Zheng X, Sun C, Zhou Q, Liu B, Xu P. Tea Tree Oil Mediates Antioxidant Factors Relish and Nrf2-Autophagy Axis Regulating the Lipid Metabolism of Macrobrachium rosenbergii. Antioxidants (Basel) 2022; 11:2260. [PMID: 36421446 PMCID: PMC9686997 DOI: 10.3390/antiox11112260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 10/29/2023] Open
Abstract
Both oxidative stress and autophagy refer to regulating fat metabolism, and the former affects autophagy, but the role and mechanism of the antioxidant-autophagy axis in regulating lipid metabolism remains unclear. As an antioxidant, tea tree oil (TTO) has little research on the regulatory mechanism of lipid metabolism in crustaceans. This study investigated whether TTO could alter hepatopancreatic lipid metabolism by affecting the antioxidant-autophagy axis. Feed Macrobrachium rosenbergii with three different levels of TTO diets for 8 weeks: CT (0 mg/kg TTO), 100TTO (100 mg/kg TTO), and 1000TTO (1000 mg/kg TTO). The results showed that 100TTO treatment reduced the hemolymph lipids level and hepatopancreatic lipid deposition compared to CT. In contrast, 1000TTO treatment increased hepatopancreatic lipid deposition, damaging both morphology and function in the hepatopancreas. The 100TTO treatment promoted lipolysis and reduced liposynthesis at the transcriptional level compared to the CT group. Meanwhile, it improved the hepatopancreas antioxidant capacity and maintained mitochondrial structural and ROS homeostasis. In addition, it simultaneously activated the expression of transcription factors Keap1-Nrf2 and Imd-Relish. By contrast, the 1000TTO group significantly enhanced the ROS level, which considerably activated the Keap1-Nrf2 signaling expression but had no significant effects on the expression of Imd-Relish. The 100TTO group supplementation significantly enhanced lipid droplet breakdown and autophagy-related genes and protein expression. On the contrary, the 1000TTO group significantly inhibited the expression of genes and proteins related to autophagy. Pearson analysis revealed that Nrf2 has a positive correlation to lipid anabolism-related genes (Fasn, Srebp1, Pparγ) and autophagy regulators (mtor, akt, p62), and were negatively correlated with lipolysis-related genes (Cpt1, Hsl, Ampkα) and autophagy markers (Ulk1, Lc3). Relish was positively correlated with Atgl, Cpt1, Ampkα, Ulk1, and Lc3, and negatively correlated with Pparγ and p62. Moreover, Keap1 and Imd were negatively correlated with p62 and mtor, respectively. In sum, 100 mg/kg TTO enhanced antioxidant activity and increased autophagy intensity through the Relish-Imd pathway to enhance lipid droplet breakdown, while 1000 mg/kg TTO overexpressed Nrf2, thus inhibiting autophagy and ultimately causing excessive lipid deposition and peroxidation. Our study gives a fresh perspective for deciphering the bidirectional regulation mechanism of lipid metabolism by different doses of TTO based on the antioxidant-autophagy axis.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Bo Liu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| |
Collapse
|
8
|
Pinto AP, da Rocha AL, Teixeira GR, Rovina RL, Veras ASC, Frantz F, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, Quadrilatero J, da Silva ASR. Rapamycin did not prevent the excessive exercise-induced hepatic fat accumulation. Life Sci 2022; 306:120800. [PMID: 35839860 DOI: 10.1016/j.lfs.2022.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Giovana R Teixeira
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil; Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Rafael L Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Allice S C Veras
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil
| | - Fabiani Frantz
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological, and Bromatological Analysis, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Pinto AP, Rocha ALD, Marafon BB, Nogueira JE, Branco LGS, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, da Silva ASR. Chronic rapamycin treatment decreases hepatic
IL
‐6 protein but increases autophagy markers as a protective effect against the overtraining‐induced tissue damage. Clin Exp Pharmacol Physiol 2022; 49:893-902. [DOI: 10.1111/1440-1681.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Jonatas E. Nogueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Luiz G. S. Branco
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences, University of Campinas (UNICAMP), Limeira São Paulo Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences, University of Campinas (UNICAMP), Limeira São Paulo Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences, University of Campinas (UNICAMP), Limeira São Paulo Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences, University of Campinas (UNICAMP), Limeira São Paulo Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| |
Collapse
|
10
|
Zhang S, Peng X, Yang S, Li X, Huang M, Wei S, Liu J, He G, Zheng H, Yang L, Li H, Fan Q. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis 2022; 13:132. [PMID: 35136038 PMCID: PMC8825858 DOI: 10.1038/s41419-022-04593-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a conserved method of quality control in which cytoplasmic contents are degraded via lysosomes. Lipophagy, a form of selective autophagy and a novel type of lipid metabolism, has recently received much attention. Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). Although much remains unknown, lipophagy appears to play a significant role in many organisms, cell types, metabolic states, and diseases. It participates in the regulation of intracellular lipid storage, intracellular free lipid levels (e.g., fatty acids), and energy balance. However, it remains unclear how intracellular lipids regulate autophagy. Impaired lipophagy can cause cells to become sensitive to death stimuli and may be responsible for the onset of a variety of diseases, including nonalcoholic fatty liver disease and metabolic syndrome. Like autophagy, the role of lipophagy in cancer is poorly understood, although analysis of specific autophagy receptors has helped to expand the diversity of chemotherapeutic targets. These studies have stimulated increasing interest in the role of lipophagy in the pathogenesis and treatment of cancer and other human diseases.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongyu Zheng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
11
|
Lin H, Guo X, Liu J, Liu P, Mei G, Li H, Li D, Chen H, Chen L, Zhao Y, Jiang C, Yu Y, Liu W, Yao P. Improving Lipophagy by Restoring Rab7 Cycle: Protective Effects of Quercetin on Ethanol-Induced Liver Steatosis. Nutrients 2022; 14:nu14030658. [PMID: 35277017 PMCID: PMC8915175 DOI: 10.3390/nu14030658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic alcohol consumption retards lipophagy, which contributes to the pathogenesis of liver steatosis. Lipophagy-related Rab7 has been presumed as a crucial regulator in the progression of alcohol liver disease despite elusive mechanisms. More importantly, whether or not hepatoprotective quercetin targets Rab7-associated lipophagy disorder is unknown. Herein, alcoholic fatty liver induced by chronic-plus-single-binge ethanol feeding to male C57BL/6J mice was manifested by hampering autophagosomes formation with lipid droplets and fusion with lysosomes compared with the normal control, which was normalized partially by quercetin. The GST-RILP pulldown assay of Rab7 indicated an improved GTP-Rab7 as the quercetin treatment for ethanol-feeding mice. HepG2 cells transfected with CYP2E1 showed similar lipophagy dysfunction when exposed to ethanol, which was blocked when cells were transfected with siRNA-Rab7 in advance. Ethanol-induced steatosis and autophagic flux disruption were aggravated by the Rab7-specific inhibitor CID1067700 while alleviated by transfecting with the Rab7Wt plasmid, which was visualized by immunofluorescence co-localization analysis and mCherry-GFP-LC3 transfection. Furthermore, TBC1D5, a Rab GTPase-activating protein for the subsequent normal circulation of Rab7, was downregulated after alcohol administration but regained by quercetin. Rab7 circulation retarded by ethanol and corrected by quercetin was further revealed by fluorescence recovery after photobleaching (FRAP). Altogether, quercetin attenuates hepatic steatosis by normalizing ethanol-imposed Rab7 turnover disorders and subsequent lipophagy disturbances, highlighting a novel mechanism and the promising prospect of quercetin-like phytochemicals against the crucial first hit from alcohol.
Collapse
Affiliation(s)
- Hongkun Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Jingjing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Peiyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Guibin Mei
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Dan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Li Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Ying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Chunjie Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
| | - Yaqin Yu
- Department of inspection and certification, China Certification and Inspection Group Hubei Co., Ltd., Wuhan 430030, China;
| | - Wen Liu
- Department of Hepatology, The Second People’s Hospital of Fuyang, Fuyang 236015, China
- Correspondence: (W.L.); (P.Y.); Tel.: +86-13855882102 (W.L.); +86-18986282296 (P.Y.)
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (H.L.); (X.G.); (J.L.); (P.L.); (G.M.); (H.L.); (D.L.); (H.C.); (L.C.); (Y.Z.); (C.J.)
- Ministry of Education Lab. of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Correspondence: (W.L.); (P.Y.); Tel.: +86-13855882102 (W.L.); +86-18986282296 (P.Y.)
| |
Collapse
|
12
|
Duwaerts CC, Maiers JL. ER Disposal Pathways in Chronic Liver Disease: Protective, Pathogenic, and Potential Therapeutic Targets. Front Mol Biosci 2022; 8:804097. [PMID: 35174209 PMCID: PMC8841999 DOI: 10.3389/fmolb.2021.804097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum is a central player in liver pathophysiology. Chronic injury to the ER through increased lipid content, alcohol metabolism, or accumulation of misfolded proteins causes ER stress, dysregulated hepatocyte function, inflammation, and worsened disease pathogenesis. A key adaptation of the ER to resolve stress is the removal of excess or misfolded proteins. Degradation of intra-luminal or ER membrane proteins occurs through distinct mechanisms that include ER-associated Degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD), which includes macro-ER-phagy, micro-ER-phagy, and Atg8/LC-3-dependent vesicular delivery. All three of these processes are critical for removing misfolded or unfolded protein aggregates, and re-establishing ER homeostasis following expansion/stress, which is critical for liver function and adaptation to injury. Despite playing a key role in resolving ER stress, the contribution of these degradative processes to liver physiology and pathophysiology is understudied. Analysis of publicly available datasets from diseased livers revealed that numerous genes involved in ER-related degradative pathways are dysregulated; however, their roles and regulation in disease progression are not well defined. Here we discuss the dynamic regulation of ER-related protein disposal pathways in chronic liver disease and cell-type specific roles, as well as potentially targetable mechanisms for treatment of chronic liver disease.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica L. Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
A Decade of Mighty Lipophagy: What We Know and What Facts We Need to Know? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5539161. [PMID: 34777688 PMCID: PMC8589519 DOI: 10.1155/2021/5539161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
Lipids are integral cellular components that act as substrates for energy provision, signaling molecules, and essential constituents of biological membranes along with a variety of other biological functions. Despite their significance, lipid accumulation may result in lipotoxicity, impair autophagy, and lysosomal function that may lead to certain diseases and metabolic syndromes like obesity and even cell death. Therefore, these lipids are continuously recycled and redistributed by the process of selective autophagy specifically termed as lipophagy. This selective form of autophagy employs lysosomes for the maintenance of cellular lipid homeostasis. In this review, we have reviewed the current literature about how lipid droplets (LDs) are recruited towards lysosomes, cross-talk between a variety of autophagy receptors present on LD surface and lysosomes, and lipid hydrolysis by lysosomal enzymes. In addition to it, we have tried to answer most of the possible questions related to lipophagy regulation at different levels. Moreover, in the last part of this review, we have discussed some of the pathological states due to the accumulation of these LDs and their possible treatments under the light of currently available findings.
Collapse
|
14
|
Yang SC. A New Perspective on Fish Oil: The Prevention of Alcoholic Liver Disease. J Oleo Sci 2021; 70:1531-1538. [PMID: 34732632 DOI: 10.5650/jos.ess21216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanisms of alcoholic liver diseases (ALD) are very complex and interrelated, including abnormal lipid metabolism, oxidative stress, and gut-derived endotoxin pathway. On the other hand, fish oil is rich in n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which decrease blood triglyceride concentration in hypertriglycemia patients and show protective effects against fatty liver. However, there is limited evidence from studies of the relationship between fish oil and ALD based on the viewpoint of the intestinal integrity and microflora. Therefore, this review discusses the mechanism of amelioration for ALD by fish oil. Based on our previous studies, partial replacement of olive oil by fish oil in alcohol-containing liquid diet ameliorated the liver damage including fatty liver and inflammation in rats. Based on these results, the mechanisms of hepatoprotective effects due to fish oil substitution were discussed in three parts, such as regulating lipid metabolism, decreasing oxidative stress and maintaining intestinal health. First of all, we found that fish oil substitution increased plasma adiponectin levels, and then increasing MCAD and CPT-1 mRNA levels to accelerate fatty acid oxidation in liver, then further prevent ethanol-induced hepatosteatosis in rats with chronic alcohol-feeding. Fish oil replacement also enhanced hepatic autophagy flux, which enhanced lipid degradation, then inhibited lipid accumulation in liver. Secondly, the appreciable proportion of fish oil decreased lipid peroxidation by reducing the protein expression of cytochrome p450 2E1 in chronic alcohol-feeding rats. We also speculated that the appropriate proportion of n-6 and n-3 PUFAs is very important for preventing alcoholic liver disease. At last, substituting fish oil for olive oil normalized the intestinal permeability and fecal microbiota composition, thus providing a low plasma endotoxin level and inflammatory responses, which exert ameliorative effects on ethanol-induced liver injuries in rats.
Collapse
Affiliation(s)
- Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University.,Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University.,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University.,School of Gerontology Health Management, College of Nursing, Taipei Medical University.,Nutrition Research Center, Taipei Medical University Hospital
| |
Collapse
|
15
|
Petagine L, Zariwala MG, Patel VB. Alcoholic liver disease: Current insights into cellular mechanisms. World J Biol Chem 2021; 12:87-103. [PMID: 34630912 PMCID: PMC8473419 DOI: 10.4331/wjbc.v12.i5.87] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) due to chronic alcohol consumption is a significant global disease burden and a leading cause of mortality. Alcohol abuse induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of ALD is widely recognized, the precise triggers for disease progression are still to be fully elucidated. Oxidative stress, mitochondrial dysfunction, gut dysbiosis and altered immune system response plays an important role in disease pathogenesis, triggering the activation of inflammatory pathways and apoptosis. Despite many recent clinical studies treatment options for ALD are limited, especially at the alcoholic hepatitis stage. We have therefore reviewed some of the key pathways involved in the pathogenesis of ALD and highlighted current trials for treating patients.
Collapse
Affiliation(s)
- Lucy Petagine
- Center for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Mohammed Gulrez Zariwala
- Center for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Vinood B Patel
- Center for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| |
Collapse
|
16
|
Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med 2021; 10:jcm10143011. [PMID: 34300175 PMCID: PMC8303854 DOI: 10.3390/jcm10143011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is known to be an inseparable factor involved in the presentation of liver disorders. Free radicals interfere with DNA, proteins, and lipids, which are crucial in liver metabolism, changing their expression and biological functions. Additionally, oxidative stress modifies the function of micro-RNAs, impairing the metabolism of hepatocytes. Free radicals have also been proven to influence the function of certain transcriptional factors and to alter the cell cycle. The pathological appearance of alcohol-related liver disease (ALD) constitutes an ideal example of harmful effects due to the redox state. Finally, ethanol-induced toxicity and overproduction of free radicals provoke irreversible changes within liver parenchyma. Understanding the underlying mechanisms associated with the redox state in the course of ALD creates new possibilities of treatment for patients. The future of hepatology may become directly dependent on the effective action against reactive oxygen species. This review summarizes current data on the redox state in the natural history of ALD, highlighting the newest reports on this topic.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-601377656; Fax: +48-814796135
| |
Collapse
|
17
|
Hou R, Liu X, Wu X, Zheng M, Fu J. Therapeutic effect of natural melanin from edible fungus Auricularia auricula on alcohol-induced liver damage in vitro and in vivo. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Niture S, Lin M, Rios-Colon L, Qi Q, Moore JT, Kumar D. Emerging Roles of Impaired Autophagy in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Hepatol 2021; 2021:6675762. [PMID: 33976943 PMCID: PMC8083829 DOI: 10.1155/2021/6675762] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved catabolic process that eliminates dysfunctional cytosolic biomolecules through vacuole-mediated sequestration and lysosomal degradation. Although the molecular mechanisms that regulate autophagy are not fully understood, recent work indicates that dysfunctional/impaired autophagic functions are associated with the development and progression of nonalcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), and hepatocellular carcinoma (HCC). Autophagy prevents NAFLD and AFLD progression through enhanced lipid catabolism and decreasing hepatic steatosis, which is characterized by the accumulation of triglycerides and increased inflammation. However, as both diseases progress, autophagy can become impaired leading to exacerbation of both pathological conditions and progression into HCC. Due to the significance of impaired autophagy in these diseases, there is increased interest in studying pathways and targets involved in maintaining efficient autophagic functions as potential therapeutic targets. In this review, we summarize how impaired autophagy affects liver function and contributes to NAFLD, AFLD, and HCC progression. We will also explore how recent discoveries could provide novel therapeutic opportunities to effectively treat these diseases.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Minghui Lin
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China 750021
| | - Leslimar Rios-Colon
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - John T. Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| |
Collapse
|
19
|
Nan B, Yang C, Li L, Ye H, Yan H, Wang M, Yuan Y. Allicin alleviated acrylamide-induced NLRP3 inflammasome activation via oxidative stress and endoplasmic reticulum stress in Kupffer cells and SD rats liver. Food Chem Toxicol 2021; 148:111937. [PMID: 33348049 DOI: 10.1016/j.fct.2020.111937] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Acrylamide (AA) in heat-processed food leads to widespread concerns due to its hepatotoxicity. Allicin, a plant-derived antioxidant, possesses a significant protective effect on AA-induced hepatotoxicity, but the mechanism is still unclear. Herein, we investigated the mechanism in Kupffer cells and SD rats liver. Molecular docking, molecular dynamics simulation and LigPlus software speculated that allicin inhibited the activity of CYP2E1 expression by binding to its amino acid residues Phe116, Phe207, Leu210, Phe298, Ala299, Thr303, Val364 and Phe478 through hydrophobic interactions. Allicin decreased the reactive oxygen species (ROS) release and CYP2E1 protein expression and then alleviated the appearance of OS. Meanwhile, allicin significantly reduced ERS characteristic proteins GRP78, CHOP and UPR branch IRE1α pathway key proteins p-IRE, p-ASK, TRAF2 and XBP-1s expression. Simultaneously, allicin ameliorated OS and ERS activation, which inhibited the activation of the MAPK and NF-κB pathways, and down-regulated JNK, ERK, p38, p65 and IκBα phosphorylation. Allicin pre-treatment inhibited AA-induced inflammation as evidenced by reducing NLRP3 inflammasome activation, decreasing Cleaved-Caspase-1 expression as well as IL-1β, IL-18, IL-6 and TNF-α secretion. Taken together, our data provide new insights into possible signaling pathways involved in allicin attenuating AA-induced hepatotoxicity in vivo and in vitro.
Collapse
Affiliation(s)
- Bo Nan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Chaoyue Yang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Lu Li
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Minghua Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
20
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
21
|
Liu F, Duan C, Zhang J, Li X. Cantharidin‐induced LO2 cell autophagy and apoptosis via endoplasmic reticulum stress pathway in vitro. J Appl Toxicol 2020; 40:1622-1635. [DOI: 10.1002/jat.4022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Fang Liu
- Basic Medical School Zunyi Medical University Zunyi China
| | - Cancan Duan
- Key Lab Basic Pharmacology of Ministry of Education and Joint International Research laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi China
| | - Jianyong Zhang
- Key Lab Basic Pharmacology of Ministry of Education and Joint International Research laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi China
- School of pharmacy Zunyi Medical University Zunyi China
| | - Xiaofei Li
- Basic Medical School Zunyi Medical University Zunyi China
| |
Collapse
|
22
|
Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De la Mata M. Activation of mTOR Signaling Pathway in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21041266. [PMID: 32070029 PMCID: PMC7072933 DOI: 10.3390/ijms21041266] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and occurs mainly in patients with liver cirrhosis. The mammalian target of rapamycin (mTOR) signaling pathway is involved in many hallmarks of cancer including cell growth, metabolism re-programming, proliferation and inhibition of apoptosis. The mTOR pathway is upregulated in HCC tissue samples as compared with the surrounding liver cirrhotic tissue. In addition, the activation of mTOR is more intense in the tumor edge, thus reinforcing its role in HCC proliferation and spreading. The inhibition of the mTOR pathway by currently available pharmacological compounds (i.e., sirolimus or everolimus) is able to hamper tumor progression both in vitro and in animal models. The use of mTOR inhibitors alone or in combination with other therapies is a very attractive approach, which has been extensively investigated in humans. However, results are contradictory and there is no solid evidence suggesting a true benefit in clinical practice. As a result, neither sirolimus nor everolimus are currently approved to treat HCC or to prevent tumor recurrence after curative surgery. In the present comprehensive review, we analyzed the most recent scientific evidence while providing some insights to understand the gap between experimental and clinical studies.
Collapse
Affiliation(s)
- Gustavo Ferrín
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
| | - Marta Guerrero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Víctor Amado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Correspondence: ; Tel.: +34-617854692
| | - Manuel De la Mata
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| |
Collapse
|
23
|
Role of autophagy in alcohol and drug-induced liver injury. Food Chem Toxicol 2019; 136:111075. [PMID: 31877367 DOI: 10.1016/j.fct.2019.111075] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ALD) and drug-induced liver injury (DILI) are common causes of severe liver disease, and successful treatments are lacking. Autophagy plays a protective role in both ALD and DILI by selectively removing damaged mitochondria (mitophagy), lipid droplets (lipophagy), protein aggregates and adducts in hepatocytes. Autophagy also protects against ALD by degrading interferon regulatory factor 1 (IRF1) and damaged mitochondria in hepatic macrophages. Specifically, we will discuss selective autophagy for removal of damaged mitochondria and lipid droplets in hepatocytes and autophagy-mediated degradation of IRF1 in hepatic macrophages as protective mechanisms against alcohol-induced liver injury and steatosis. In addition, selective autophagy for removal of damaged mitochondria and protein adducts for protection against DILI is discussed in this review. Development of new therapeutics for ALD and DILI is greatly needed, and selective autophagy pathways may provide promising targets. Drug and alcohol effects on autophagy regulation as well as protective mechanisms of autophagy against DILI and ALD are highlighted in this review.
Collapse
|
24
|
Fish oil up-regulates hepatic autophagy in rats with chronic ethanol consumption. J Nutr Biochem 2019; 77:108314. [PMID: 31884243 DOI: 10.1016/j.jnutbio.2019.108314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In this study, we examined the regulation of autophagy by fish oil in rats under ethanol-containing diets. Thirty male Wistar rats (8-week-old) were divided into six groups and fed a control diet or an ethanol-containing diet, which was adjusted with fish oil to replace 25% or 57% of the olive oil. After 8 weeks, rats in the E (ethanol diet) group showed the significantly higher plasma aspartate transaminase (AST) and alanine transaminase (ALT) activities, protein expression of cytochrome P450 2E1 (CYP2E1), and levels of hepatic inflammatory cytokines. However, all of those items had significantly decreased in the EF25 (ethanol with 25% fish oil) and EF57 (ethanol with 57% fish oil) groups. As to autophagic indicators, protein expressions of mammalian target of rapamycin (mTOR), Unc-51-like autophagy activating kinase 1 (ULK1) and p62 were significantly increased in the E group. Conversely, the protein expressions of light chain 3II (LC3II)/LC3I and Beclin1 were significantly decreased in the E group. On the other hand, protein expressions of phosphorylated Akt, mTOR, ULK1, and p62 were down-regulated, protein expressions of LC3II/LC3I and Beclin1 were conversely up-regulated in the EF25 and EF57 groups. Fish oil activated hepatic autophagy via inhibiting the Akt signaling pathway, which exerted protective effects against ethanol-induced liver injury in rats.
Collapse
|
25
|
Luo J, Long Y, Ren G, Zhang Y, Chen J, Huang R, Yang L. Punicalagin Reversed the Hepatic Injury of Tetrachloromethane by Antioxidation and Enhancement of Autophagy. J Med Food 2019; 22:1271-1279. [PMID: 31718395 PMCID: PMC6918856 DOI: 10.1089/jmf.2019.4411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic injury is significant in the pathogenesis and development of many types of liver diseases. Punicalagin (PU) is a bioactive antioxidant polyphenol found in pomegranates. To explore its protective effect against carbon tetrachloride (CCl4)-induced liver injury and the mechanism, Institute of Cancer Research (ICR) mice and L02 cells were used to observe the changes of serum biochemical indicators, histopathological liver structure, cell viability, antioxidative indices, and autophagy-related proteins were assessed. In ICR mice, PU ameliorated the CCl4-induced increase of the serum aspartate aminotransferase, alanine aminotransferase, the activity of liver lactate dehydrogenase, and the damage of histopathological structure, and exhibited a hepatoprotective effect against CCl4. PU attenuated oxidative stress by decreasing the liver malondialdehyde level and increasing the activities of liver superoxide dismutase, glutathione peroxidase, and the expression of the liver nuclear factor E2-related factor (Nrf2) protein. Furthermore, according to the vivo and vitro experiments, PU might activate autophagy through the mediation of the Akt/FOXO3a and P62/Nrf2 signaling pathway. Taken together, these results suggest that PU may protect against CCl4-induced liver injury through the upregulation of antioxidative activities and autophagy.
Collapse
Affiliation(s)
- Jingfang Luo
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yi Long
- Children's Medical Center, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Guofeng Ren
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yahui Zhang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Lina Yang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Wang KL, Lu ZM, Mao X, Chen L, Gong JS, Ren Y, Geng Y, Li H, Xu HY, Xu GH, Shi JS, Xu ZH. Structural characterization and anti-alcoholic liver injury activity of a polysaccharide from Coriolus versicolor mycelia. Int J Biol Macromol 2019; 137:1102-1111. [DOI: 10.1016/j.ijbiomac.2019.06.242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/19/2019] [Accepted: 06/29/2019] [Indexed: 12/31/2022]
|
27
|
Wang J, Han SL, Lu DL, Li LY, Limbu SM, Li DL, Zhang ML, Du ZY. Inhibited Lipophagy Suppresses Lipid Metabolism in Zebrafish Liver Cells. Front Physiol 2019; 10:1077. [PMID: 31496957 PMCID: PMC6713122 DOI: 10.3389/fphys.2019.01077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Lipophagy degrades lipid droplets (LDs) through the lysosomal degradative pathway, thus plays important roles in regulating lipid metabolism in mammals. However, information on the existence and functions of lipophagy in fish lipid metabolism is still limited. In the present study, we confirmed the existence of lipophagy by observing the structures of LDs sequestered in autophagic vacuoles in the zebrafish liver cell line (ZFL) via electronic microscopy. Moreover, starved cells increased the mRNA expression of the microtubule-associated protein 1A/1B light chain 3 beta (LC3), which is a marker protein for autophagy and protein conversion from LC3-I to LC3-II. Inhibiting autophagy with chloroquine increased significantly the LDs content and decreased fatty acid β-oxidation and esterification activities in the ZFL cells cultured in the fed state. Furthermore, inhibiting autophagy function downregulated the mRNA expression of the genes and their proteins related to lipid metabolism. Altogether, the present study verified the existence of lipophagy and its essential regulatory roles in lipid metabolism in fish cells.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Si-Lan Han
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Lu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling-Yu Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
28
|
Chen J, Jiang S, Wang J, Renukuntla J, Sirimulla S, Chen J. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab Rev 2019; 51:178-195. [PMID: 31203697 DOI: 10.1080/03602532.2019.1632889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) plays a vital role in drug-induced hepatotoxicity and cancers (e.g. lung and bladder cancer), since it is responsible for metabolizing a number of medications and environmental toxins to reactive intermediate metabolites. CYP2E1 was recently found to be the highest expressed CYP enzyme in human livers using a proteomics approach, and CYP2E1-related toxicity is strongly associated with its protein level that shows significant inter-individual variability related to ethnicity, age, and sex. Furthermore, the expression of CYP2E1 demonstrates regulation by extensive genetic polymorphism, endogenous hormones, cytokines, xenobiotics, and varying pathological states. Over the past decade, the knowledge of pharmacology, toxicology, and biology about CYP2E1 has grown remarkably, but the research progress has yet to be summarized. This study presents a timely systematic review on CYP2E1's xenobiotic metabolism, genetic polymorphism, and inhibitors, with the focus on their clinical relevance for the efficacy and toxicity of various CYP2E1 substrates. Moreover, several knowledge gaps have been identified towards fully understanding the potential interactions among different CYP2E1 substrates in clinical settings. Through in-depth analyses of these knowns and unknowns, we expect this review will aid in future drug development and improve management of CYP2E1 related clinical toxicity.
Collapse
Affiliation(s)
- Jingxuan Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University , Guangzhou , China
| | - Sibo Jiang
- Department of Pharmaceutics, University of Florida , Orlando , FL , USA
| | - Jin Wang
- AbbVie Inc , North Chicago , IL , USA
| | - Jwala Renukuntla
- School of Pharmacy, The University of Texas at El Paso , El Paso , TX , USA
| | - Suman Sirimulla
- School of Pharmacy, The University of Texas at El Paso , El Paso , TX , USA
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University , Guangzhou , China
| |
Collapse
|
29
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS, Kwon T. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci 2019; 20:ijms20112712. [PMID: 31159489 PMCID: PMC6600448 DOI: 10.3390/ijms20112712] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| |
Collapse
|
30
|
Marshall S, Chen Y, Singh S, Berrios-Carcamo P, Heit C, Apostolopoulos N, Golla JP, Thompson DC, Vasiliou V. Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1032:203-221. [PMID: 30362100 PMCID: PMC6743736 DOI: 10.1007/978-3-319-98788-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Excessive consumption of alcohol is a leading cause of lifestyle-induced morbidity and mortality worldwide. Although long-term alcohol abuse has been shown to be detrimental to the liver, brain and many other organs, our understanding of the exact molecular mechanisms by which this occurs is still limited. In tissues, ethanol is metabolized to acetaldehyde (mainly by alcohol dehydrogenase and cytochrome p450 2E1) and subsequently to acetic acid by aldehyde dehydrogenases. Intracellular generation of free radicals and depletion of the antioxidant glutathione (GSH) are believed to be key steps involved in the cellular pathogenic events caused by ethanol. With continued excessive alcohol consumption, further tissue damage can result from the production of cellular protein and DNA adducts caused by accumulating ethanol-derived aldehydes. Much of our understanding about the pathophysiological consequences of ethanol metabolism comes from genetically-engineered mouse models of ethanol-induced tissue injury. In this review, we provide an update on the current understanding of important mouse models in which ethanol-metabolizing and GSH-synthesizing enzymes have been manipulated to investigate alcohol-induced disease.
Collapse
Affiliation(s)
- Stephanie Marshall
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Surendra Singh
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Pablo Berrios-Carcamo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claire Heit
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Oxidative Stress-Driven Autophagy acROSs Onset and Therapeutic Outcome in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6050123. [PMID: 31205585 PMCID: PMC6530208 DOI: 10.1155/2019/6050123] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species- (ROS-) mediated autophagy physiologically contributes to management of cell homeostasis in response to mild oxidative stress. Cancer cells typically engage autophagy downstream of ROS signaling derived from hypoxia and starvation, which are harsh environmental conditions that need to be faced for cancer development and progression. Hepatocellular carcinoma (HCC) is a solid tumor for which several environmental risk factors, particularly viral infections and alcohol abuse, have been shown to promote carcinogenesis via augmentation of oxidative stress. In addition, ROS burst in HCC cells frequently takes place after administration of therapeutic compounds that promote apoptotic cell death or even autophagic cell death. The interplay between ROS and autophagy (i) in the disposal of dysfunctional mitochondria via mitophagy, as a tumor suppressor mechanism, or (ii) in the cell survival adaptive response elicited by chemotherapeutic interventions, as a tumor-promoting event, will be depicted in this review in relation to HCC development and progression.
Collapse
|
32
|
Gao H, Lv Y, Liu Y, Li J, Wang X, Zhou Z, Tipoe GL, Ouyang S, Guo Y, Zhang J, Hao X, Li W, Koike K, So KF, Xiao J. Wolfberry-Derived Zeaxanthin Dipalmitate Attenuates Ethanol-Induced Hepatic Damage. Mol Nutr Food Res 2019; 63:e1801339. [PMID: 30938072 DOI: 10.1002/mnfr.201801339] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/06/2019] [Indexed: 11/11/2022]
Abstract
SCOPE Besides abstinence and nutritional support, there is no proven clinical treatment for patients with alcoholic fatty liver disease (AFLD). Here, the therapeutic effects and mechanisms of action of wolfberry-derived zeaxanthin dipalmitate (ZD) on AFLD models are demonstrated. METHODS AND RESULTS The hepatoprotective effects of ZD are evaluated in vitro and in vivo. Direct interacting receptors of ZD on cell membranes are identified by liver-specific knockdown and biophysical measurements. Downstream signaling pathways are delineated using molecular and cellular biological methods. It is demonstrated that ZD attenuates hepatocyte and whole-liver injury in ethanol-treated cells (dose: 1 µm) and a chronic binge AFLD rat model (dose: 10 mg kg-1 ), respectively. The direct targets of ZD on the cell membrane include receptor P2X7 and adiponectin receptor 1 (adipoR1). Signals from P2X7 and adipoR1 modulate the phosphatidylinositide 3-kinase-Akt and/or AMP-activated protein kinase-FoxO3a pathways, to restore mitochondrial autophagy (mitophagy) functions suppressed by ethanol intoxication. In addition, ZD alleviates hepatic inflammation partially via the inhibition of Nod-like receptor 3 inflammasome, whose activation is a direct consequence of suppressed mitophagy. Liver-specific inhibition of receptors or mitophagy significantly impairs the beneficial effects of ZD. CONCLUSIONS ZD is an effective and promising agent for the potential treatment of AFLD.
Collapse
Affiliation(s)
- Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.,Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Lv
- Laboratory of Neuroendocrinology, School of Biological Sciences, Fujian Normal University, Fuzhou, China
| | - Yingxia Liu
- State Key Discipline of Infectious Diseases, Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Jingjing Li
- GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - Xiaogang Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Zhengqun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - George L Tipoe
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Songying Ouyang
- Laboratory of Neuroendocrinology, School of Biological Sciences, Fujian Normal University, Fuzhou, China
| | - Yutong Guo
- Yinchuan Bairuiyuan Biotechnology, Yinchuan, China
| | | | | | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kwok-Fai So
- GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - Jia Xiao
- Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
33
|
Chao X, Ding WX. Role and mechanisms of autophagy in alcohol-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:109-131. [PMID: 31307584 PMCID: PMC7141786 DOI: 10.1016/bs.apha.2019.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is one of the major causes of chronic liver disease worldwide. Currently, no successful treatments are available for ALD. The pathogenesis of ALD is characterized as simple steatosis, fibrosis, cirrhosis, alcoholic hepatitis (AH), and eventually hepatocellular carcinoma (HCC). Autophagy is a highly conserved intracellular catabolic process, which aims at recycling cellular components and removing damaged organelles in response to starvation and stresses. Therefore, autophagy is considered as an important cellular adaptive and survival mechanism under various pathophysiological conditions. Recent studies from our lab and others suggest that chronic alcohol consumption may impair autophagy and contribute to the pathogenesis of ALD. In this chapter, we summarize recent progress on the role and mechanisms of autophagy in the development of ALD. Understanding the roles of autophagy in ALD may offer novel therapeutic avenues against ALD by targeting these pathways.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
34
|
Abstract
Hepatic lipid metabolism is a series of complex processes that control influx and efflux of not only hepatic lipid pools, but also organismal pools. Lipid homeostasis is usually tightly controlled by expression, substrate supply, oxidation and secretion that keep hepatic lipid pools relatively constant. However, perturbations of any of these processes can lead to lipid accumulation in the liver. Although it is thought that these responses are hepatic arms of the 'thrifty genome', they are maladaptive in the context of chronic fatty liver diseases. Ethanol is likely unique among toxins, in that it perturbs almost all aspects of hepatic lipid metabolism. This complex response is due in part to the large metabolic demand placed on the organ by alcohol metabolism, but also appears to involve more nuanced changes in expression and substrate supply. The net effect is that steatosis is a rapid response to alcohol abuse. Although transient steatosis is largely an inert pathology, the chronicity of alcohol-related liver disease seems to require steatosis. Better and more specific understanding of the mechanisms by which alcohol causes steatosis may therefore translate into targeted therapies to treat alcohol-related liver disease and/or prevent its progression.
Collapse
|
35
|
Zeng H, Guo X, Zhou F, Xiao L, Liu J, Jiang C, Xing M, Yao P. Quercetin alleviates ethanol-induced liver steatosis associated with improvement of lipophagy. Food Chem Toxicol 2018; 125:21-28. [PMID: 30580029 DOI: 10.1016/j.fct.2018.12.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Although emerging evidence demonstrated that quercetin could be explored as a potential candidate for the early intervention of alcoholic liver disease (ALD), the exact mechanisms against ethanol-induced hepatic steatosis haven't been fully elucidated. Herein, we investigated the effect of quercetin on liver steatosis caused by chronic-plus-single-binge ethanol feeding, focusing on lipophagy. Adult male mice were pair-fed with liquid diets containing ethanol (28% of total calories) and treated with quercetin for 12 weeks. Chronic-plus-binge ethanol consumption led to lipid droplets accumulation and liver damage as evidenced by histopathological changes, the increased content of triglyceride in serum and liver, and the elevated of serum ALT and AST level, which were greatly attenuated by quercetin. Moreover, quercetin blocked autophagy suppression by chronic-binge ethanol intake as manifested by the morphological improvement of mitochondrial characteristics, the increased number of autolysosome and restoration of autophagy-related protein expression. Furthermore, quercetin promoted lipophagy confirmed by the decreased perilipin 2 (PLIN2) level, activated AMPK activity and increased co-localization of liver LC3II and PLIN2 proteins. Collectively, these findings suggest that regular consumption of dietary quercetin has a role in preventing hepatic steatosis induced by chronic-plus-binge ethanol feeding, which mechanism may associate with the evident regulatory effect of quercetin on lipophagy.
Collapse
Affiliation(s)
- Hongmei Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingjing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunjie Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingyou Xing
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
36
|
Khambu B, Yan S, Huda N, Liu G, Yin XM. Autophagy in non-alcoholic fatty liver disease and alcoholic liver disease. LIVER RESEARCH 2018; 2:112-119. [PMID: 31123622 PMCID: PMC6528826 DOI: 10.1016/j.livres.2018.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular degradative function that is important for liver homeostasis. Accumulating evidence suggests that autophagy is deregulated during the progression and development of alcoholic and non-alcoholic liver diseases. Impaired autophagy prevents the clearance of excessive lipid droplets (LDs), damaged mitochondria, and toxic protein aggregates, which can be generated during the progression of various liver diseases, thus contributing to the development of steatosis, injury, steatohepatitis, fibrosis, and tumors. In this review, we look at the status of hepatic autophagy during the pathogenesis of alcoholic and non-alcoholic liver diseases. We also examine the mechanisms of defects in autophagy, and the hepato-protective roles of autophagy in non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD), focusing mainly on steatosis and liver injury. Finally, we discuss the therapeutic potential of autophagy modulating agents for the treatment of these two common liver diseases.
Collapse
|
37
|
Yuan X, Wang B, Yang L, Zhang Y. The role of ROS-induced autophagy in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2018; 42:306-312. [PMID: 29544680 DOI: 10.1016/j.clinre.2018.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a main cause of cancer-related mortality and its etiology is not fully understood. As prominent factors that regulate cellular homeostasis, both reactive oxygen species (ROS) and autophagy are considered to play an essential role in the liver carcinogenesis. However, the crosstalk between ROS and autophagy is not well characterized in the pathogenesis of HCC. This review summarizes the roles of autophagy in ROS-mediated hepatocarcinogenesis and discusses the role of ROS-induced autophagy in HCC cell fate decision following treatment with chemotherapeutic agents in preclinical settings, which may allow the identification of novel strategies for the treatment of HCC.
Collapse
Affiliation(s)
- Xingxing Yuan
- Department of Gastroenterology, Nangang branch of Heilongjiang Academy of Traditional Chinese Medicine, No. 33 West Dazhi Road, Nangang District, Harbin, Heilongjiang 150006, China
| | - Bingyu Wang
- Department of Gastroenterology, Nangang branch of Heilongjiang Academy of Traditional Chinese Medicine, No. 33 West Dazhi Road, Nangang District, Harbin, Heilongjiang 150006, China
| | - Lei Yang
- Department of Gastroenterology, Nangang branch of Heilongjiang Academy of Traditional Chinese Medicine, No. 33 West Dazhi Road, Nangang District, Harbin, Heilongjiang 150006, China
| | - Yali Zhang
- Department of Gastroenterology, Nangang branch of Heilongjiang Academy of Traditional Chinese Medicine, No. 33 West Dazhi Road, Nangang District, Harbin, Heilongjiang 150006, China.
| |
Collapse
|
38
|
Williams JA, Ding WX. Mechanisms, pathophysiological roles and methods for analyzing mitophagy - recent insights. Biol Chem 2018; 399:147-178. [PMID: 28976892 DOI: 10.1515/hsz-2017-0228] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
In 2012, we briefly summarized the mechanisms, pathophysiological roles and methods for analyzing mitophagy. As then, the mitophagy field has continued to grow rapidly, and many new molecular mechanisms regulating mitophagy and molecular tools for monitoring mitophagy have been discovered and developed. Therefore, the purpose of this review is to update information regarding these advances in mitophagy while focusing on basic molecular mechanisms of mitophagy in different organisms and its pathophysiological roles. We also discuss the advantage and limitations of current methods to monitor and quantify mitophagy in cultured cells and in vivo mouse tissues.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
39
|
Lu Y, Cederbaum AI. Cytochrome P450s and Alcoholic Liver Disease. Curr Pharm Des 2018; 24:1502-1517. [PMID: 29637855 PMCID: PMC6053342 DOI: 10.2174/1381612824666180410091511] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Alcohol consumption causes liver diseases, designated as Alcoholic Liver Disease (ALD). Because alcohol is detoxified by alcohol dehydrogenase (ADH), a major ethanol metabolism system, the development of ALD was initially believed to be due to malnutrition caused by alcohol metabolism in liver. The discovery of the microsomal ethanol oxidizing system (MEOS) changed this dogma. Cytochrome P450 enzymes (CYP) constitute the major components of MEOS. Cytochrome P450 2E1 (CYP2E1) in MEOS is one of the major ROS generators in liver and is considered to be contributive to ALD. Our labs have been studying the relationship between CYP2E1 and ALD for many years. Recently, we found that human CYP2A6 and its mouse analog CYP2A5 are also induced by alcohol. In mice, the alcohol induction of CYP2A5 is CYP2E1-dependent. Unlike CYP2E1, CYP2A5 protects against the development of ALD. The relationship of CYP2E1, CYP2A5, and ALD is a major focus of this review.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Health Sciences, College of Public Health, East Tennessee State University
- Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University
| | - Arthur I. Cederbaum
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
40
|
Guan MJ, Zhao N, Xie KQ, Zeng T. Hepatoprotective effects of garlic against ethanol-induced liver injury: A mini-review. Food Chem Toxicol 2018; 111:467-473. [DOI: 10.1016/j.fct.2017.11.059] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/01/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
|
41
|
Zhang Z, Yao Z, Chen Y, Qian L, Jiang S, Zhou J, Shao J, Chen A, Zhang F, Zheng S. Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomed Pharmacother 2017; 97:339-348. [PMID: 29091883 DOI: 10.1016/j.biopha.2017.07.168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Intracellular lipid droplets (LDs) are remarkably dynamic and complex organelles that enact regulated storage and release of lipids to fulfil their fundamental roles in energy metabolism, membrane synthesis and provision of lipid-derived signaling molecules. The recent finding that LDs can be selectively degraded by the lysosomal pathway of autophagy through a process termed lipophagy has opened up a new understanding of how lipid metabolism regulates cellular physiology and pathophysiology. Many new functions for autophagic lipid metabolism have now been defined in various diseases including liver disease. Lipophagy was originally described in hepatocytes, where it is critical for maintaining cellular energy homeostasis in obesity and metabolic syndrome. In vitro and in vivo studies have demonstrated the selective uptake of LDs by autophagosomes, and inhibition of autophagy has been shown to reduce the β-oxidation of free fatty acids due to the increased accumulation of lipids and LDs. The identification of lipophagy as a new process dedicated to cellular lipid removal has mapped autophagy as an emerging player in cellular lipid metabolism. Pharmacological or genetic modulation of lipophagy might point to possible therapeutic strategies for combating a broad range of liver diseases. This review summarizes recent work focusing on lipophagy and liver disease as well as highlighting challenges and future directions of research. On the other hand, it also offers a glimpse into different strategies that have been used in experimental models to counteract excessive pathological lipophagy in the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen Yao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifan Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Qian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuoyi Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyi Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
42
|
Activation of autophagy attenuates EtOH-LPS-induced hepatic steatosis and injury through MD2 associated TLR4 signaling. Sci Rep 2017; 7:9292. [PMID: 28839246 PMCID: PMC5571015 DOI: 10.1038/s41598-017-09045-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy serves as a protective mechanism to degrade damaged organelles and proteins. Acute alcohol exposure is known to activate the hepatic autophagy response, whereas chronic alcohol exposure slows autophagosome formation along with an elevation of gut-derived endotoxin. In the current study, we examined whether lipopolysaccharide (LPS) administration decreased autophagic response in the liver of mice treated by short-term alcohol and whether activation of autophagy by rapamycin attenuates EtOH-LPS-induced liver steatosis and injury. We demonstrated that ten-day alcohol feeding primed the liver to LPS-induced lipid accumulation and liver injury with significantly increased hepatic steatosis and serum AST level as well as hepatic cellular NF-κB activation. LPS increased alcohol-mediated reactive oxygen species (ROS) formation while reducing autophagy activation. These deleterious effects were attenuated by rapamycin administration in mice. The protective effects of rapamycin are associated with decreased cellular MD2/TLR4 expression and interaction in Raw264.7 cells. Taken together, our results demonstrated that enhanced gut-derived LPS decreases the hepatic autophagosome numbers in response to alcohol exposure, and activation of autophagy by rapamycin protects from EtOH-LPS-induced liver injury, probably through reduced macrophage expression and interaction of TLR4/MD2 signaling complex.
Collapse
|
43
|
Onal G, Kutlu O, Gozuacik D, Dokmeci Emre S. Lipid Droplets in Health and Disease. Lipids Health Dis 2017; 16:128. [PMID: 28662670 PMCID: PMC5492776 DOI: 10.1186/s12944-017-0521-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Lipids are essential building blocks synthesized by complex molecular pathways and deposited as lipid droplets (LDs) in cells. LDs are evolutionary conserved organelles found in almost all organisms, from bacteria to mammals. They are composed of a hydrophobic neutral lipid core surrounding by a phospholipid monolayer membrane with various decorating proteins. Degradation of LDs provide metabolic energy for divergent cellular processes such as membrane synthesis and molecular signaling. Lipolysis and autophagy are two main catabolic pathways of LDs, which regulate lipid metabolism and, thereby, closely engaged in many pathological conditons. In this review, we first provide an overview of the current knowledge on the structural properties and the biogenesis of LDs. We further focus on the recent findings of their catabolic mechanism by lipolysis and autophagy as well as their connection ragarding the regulation and function. Moreover, we discuss the relevance of LDs and their catabolism-dependent pathophysiological conditions.
Collapse
Affiliation(s)
- Gizem Onal
- Department of Medical Biology, Hacettepe University, 06100, Ankara, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM) & Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Molecular Biology, Genetics, and Bioengineering Program & Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, 34956, Istanbul, Turkey
| | - Serap Dokmeci Emre
- Department of Medical Biology, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
44
|
The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4680732. [PMID: 28163821 PMCID: PMC5259652 DOI: 10.1155/2017/4680732] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023]
Abstract
Organisms have metabolic pathways that are responsible for removing toxic agents. We always associate the liver as the major organ responsible for detoxification of the body; however this process occurs in many tissues. In the same way, as in the liver, the brain expresses metabolic pathways associated with the elimination of xenobiotics. Besides the detoxifying role of CYP2E1 for compounds such as electrophilic agents, reactive oxygen species, free radical products, and the bioactivation of xenobiotics, CYP2E1 is also related in several diseases and pathophysiological conditions. In this review, we describe the presence of phase I monooxygenase CYP2E1 in regions of the brain. We also explore the conditions where protein, mRNA, and the activity of CYP2E1 are induced. Finally, we describe the relation of CYP2E1 in brain disorders, including the behavioral relations for alcohol consumption via CYP2E1 metabolism.
Collapse
|
45
|
Hydroethanolic extract of Baccharis trimera ameliorates alcoholic fatty liver disease in mice. Chem Biol Interact 2016; 260:22-32. [DOI: 10.1016/j.cbi.2016.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022]
|
46
|
Cingolani F, Czaja MJ. Regulation and Functions of Autophagic Lipolysis. Trends Endocrinol Metab 2016; 27:696-705. [PMID: 27365163 PMCID: PMC5035575 DOI: 10.1016/j.tem.2016.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
The selective breakdown by autophagy of lipid droplet (LD)-stored lipids, termed lipophagy, is a lysosomal lipolytic pathway that complements the actions of cytosolic neutral lipases. The physiological importance of lipophagy has been demonstrated in multiple mammalian cell types, as well as in lower organisms, and this pathway has many functions in addition to supplying free fatty acids to maintain cellular energy stores. Recent studies have begun to delineate the molecular mechanisms of the selective recognition of LDs by the autophagic machinery, as well as the intricate crosstalk between the different forms of autophagy and neutral lipases. These studies have led to increased interest in the role of lipophagy in both human disease pathogenesis and therapy.
Collapse
Affiliation(s)
- Francesca Cingolani
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine. 615 Michael Street, Suite 201, Atlanta, GA 30322, USA
| | - Mark J Czaja
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine. 615 Michael Street, Suite 201, Atlanta, GA 30322, USA.
| |
Collapse
|
47
|
Souza-Smith FM, Lang CH, Nagy LE, Bailey SM, Parsons LH, Murray GJ. Physiological processes underlying organ injury in alcohol abuse. Am J Physiol Endocrinol Metab 2016; 311:E605-19. [PMID: 27436613 PMCID: PMC5142006 DOI: 10.1152/ajpendo.00270.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023]
Abstract
This review summarizes the American Physiological Society (APS) Presidential Symposium 1 entitled "Physiological Processes Underlying Organ Injury in Alcohol Abuse" at the 2016 Experimental Biology meeting. The symposium was organized by Dr. Patricia Molina, past president of the APS, was held on April 3 at the Convention Center in San Diego, CA, and was funded by the National Institute on Alcohol Abuse and Alcoholism. The "Physiological Processes Underlying Organ Injury in Alcohol Abuse Symposium" assembled experts and leaders in the field and served as a platform to discuss and share knowledge on the latest developments and scientific advances on the mechanisms underlying organ injury in alcohol abuse. This symposium provided unique, interdisciplinary alcohol research, including several organs, liver, muscle, adipose, and brain, affected by excessive alcohol use.
Collapse
Affiliation(s)
- Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana;
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio
| | - Shannon M Bailey
- Department of Pathology, University of Alabama, Birmingham, Alabama
| | | | - Gary J Murray
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| |
Collapse
|
48
|
Flores-Toro JA, Go KL, Leeuwenburgh C, Kim JS. Autophagy in the liver: cell's cannibalism and beyond. Arch Pharm Res 2016; 39:1050-61. [PMID: 27515049 DOI: 10.1007/s12272-016-0807-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Chronic liver disease and its progression to liver failure are induced by various etiologies including viral infection, alcoholic and nonalcoholic hepatosteatosis. It is anticipated that the prevalence of fatty liver disease will continue to rise due to the growing incidence of obesity and metabolic disorder. Evidence is accumulating to indicate that the onset of fatty liver disease is causatively linked to mitochondrial dysfunction and abnormal lipid accumulation. Current treatment options for this disease are limited. Autophagy is an integral catabolic pathway that maintains cellular homeostasis both selectively and nonselectively. As mitophagy and lipophagy selectively remove dysfunctional mitochondria and excess lipids, respectively, stimulation of autophagy could have therapeutic potential to ameliorate liver function in steatotic patients. This review highlights our up-to-date knowledge on mechanistic roles of autophagy in the pathogenesis of fatty liver disease and its vulnerability to surgical stress, with an emphasis on mitophagy and lipophagy.
Collapse
Affiliation(s)
- Joseph A Flores-Toro
- Department of Surgery, University of Florida, R4-204 ARB, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Kristina L Go
- Department of Surgery, University of Florida, R4-204 ARB, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32610, USA
- Institute on Aging, University of Florida, Gainesville, FL, 32610, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, R4-204 ARB, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
- Institute on Aging, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
49
|
Osna NA, Kharbanda KK. Multi-Organ Alcohol-Related Damage: Mechanisms and Treatment. Biomolecules 2016; 6:biom6020020. [PMID: 27092531 PMCID: PMC4919915 DOI: 10.3390/biom6020020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 02/05/2023] Open
Abstract
Alcohol consumption causes damage to various organs and systems.[...].
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|