1
|
Zhang Q, Zhu L, Li H, Chen Q, Li N, Li J, Zhao Z, Xiao D, Tang T, Bi C, Zhang Y, Zhang H, Zhang G, Li M, Zhu Y, Zhang J, Kong J. Insights and progress on the biosynthesis, metabolism, and physiological functions of gamma-aminobutyric acid (GABA): a review. PeerJ 2024; 12:e18712. [PMID: 39703920 PMCID: PMC11657192 DOI: 10.7717/peerj.18712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
GABA (γ-aminobutyric acid) is a non-protein amino acid that occurs naturally in the human brain, animals, plants and microorganisms. It is primarily produced by the irreversible action of glutamic acid decarboxylase (GAD) on the α-decarboxylation of L-glutamic acid. As a major neurotransmitter in the brain, GABA plays a crucial role in behavior, cognition, and the body's stress response. GABA is mainly synthesized through the GABA shunt and the polyamine degradation pathways. It works through three receptors (GABAA, GABAB, and GABAC), each exhibiting different pharmacological and physiological characteristics. GABA has a variety of physiological roles and applications. In plants, it regulates growth, development and stress responses. In mammals, it influences physiological functions such as nervous system regulation, blood pressure equilibrium, liver and kidneys enhancement, hormone secretion regulation, immunity enhancement, cancer prevention, as well as anti-aging effects. As a biologically active ingredient, GABA possesses unique physiological effects and medicinal value, leading to its widespread application and substantially increased market demand in the food and pharmaceutical industries. GABA is primarily produced through chemical synthesis, plant enrichment and microbial fermentation. In this review, we first make an overview of GABA, focusing on its synthesis, metabolism, GABA receptors and physiological functions. Next, we describe the industrial production methods of GABA. Finally, we discuss the development of ligands for the GABA receptor binding site, the prospects of GABA production and application, as well as its clinical trials in potential drugs or compounds targeting GABA for the treatment of epilepsy. The purpose of this review is to attract researchers from various fields to focus on GABA research, promote multidisciplinary communications and collaborations, break down disciplinary barriers, stimulate innovative research ideas and methods, and advance the development and application of GABA in medicine, agriculture, food and other fields.
Collapse
Affiliation(s)
- Qingli Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Lei Zhu
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Hailong Li
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Qu Chen
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Nan Li
- Department of Rehabilitation, Qingdao Binhai College Affiliated Hospital, Qingdao, China
| | - Jiansheng Li
- Department of Nephrology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Zichu Zhao
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Di Xiao
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Tingting Tang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Chunhua Bi
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Yan Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Haili Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Guizhen Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Mingyang Li
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Yanli Zhu
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingjing Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Jingjing Kong
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Kosenkov AM, Mal'tseva VN, Maiorov SA, Gaidin SG. The role of the endocannabinoid system in the pathogenesis and treatment of epilepsy. Rev Neurosci 2024:revneuro-2024-0114. [PMID: 39660979 DOI: 10.1515/revneuro-2024-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Epilepsy is a group of chronic neurological brain disorders characterized by recurrent spontaneous unprovoked seizures, which are accompanied by significant neurobiological, cognitive, and psychosocial impairments. With a global prevalence of approximately 0.5-1 % of the population, epilepsy remains a serious public health concern. Despite the development and widespread use of over 20 anticonvulsant drugs, around 30 % of patients continue to experience drug-resistant seizures, leading to a substantial reduction in quality of life and increased mortality risk. Given the limited efficacy of current treatments, exploring new therapeutic approaches is critically important. In recent years, Gi-protein-coupled receptors, particularly cannabinoid receptors CB1 and CB2, have garnered increasing attention as promising targets for the treatment seizures and prevention of epilepsy. Emerging evidence suggests a significant role of the cannabinoid system in modulating neuronal activity and protecting against hyperexcitability, underscoring the importance of further research in this area. This review provides up-to-date insights into the pathogenesis and treatment of epilepsy, with a special focus on the role of the cannabinoid system, highlighting the need for continued investigation to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Artem M Kosenkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Valentina N Mal'tseva
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Sergei A Maiorov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Sergei G Gaidin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| |
Collapse
|
3
|
Pikor D, Hurła M, Słowikowski B, Szymanowicz O, Poszwa J, Banaszek N, Drelichowska A, Jagodziński PP, Kozubski W, Dorszewska J. Calcium Ions in the Physiology and Pathology of the Central Nervous System. Int J Mol Sci 2024; 25:13133. [PMID: 39684844 DOI: 10.3390/ijms252313133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Calcium ions play a key role in the physiological processes of the central nervous system. The intracellular calcium signal, in nerve cells, is part of the neurotransmission mechanism. They are responsible for stabilizing membrane potential and controlling the excitability of neurons. Calcium ions are a universal second messenger that participates in depolarizing signal transduction and contributes to synaptic activity. These ions take an active part in the mechanisms related to memory and learning. As a result of depolarization of the plasma membrane or stimulation of receptors, there is an extracellular influx of calcium ions into the cytosol or mobilization of these cations inside the cell, which increases the concentration of these ions in neurons. The influx of calcium ions into neurons occurs via plasma membrane receptors and voltage-dependent ion channels. Calcium channels play a key role in the functioning of the nervous system, regulating, among others, neuronal depolarization and neurotransmitter release. Channelopathies are groups of diseases resulting from mutations in genes encoding ion channel subunits, observed including the pathophysiology of neurological diseases such as migraine. A disturbed ability of neurons to maintain an appropriate level of calcium ions is also observed in such neurodegenerative processes as Alzheimer's disease, Parkinson's disease, Huntington's disease, and epilepsy. This review focuses on the involvement of calcium ions in physiological and pathological processes of the central nervous system. We also consider the use of calcium ions as a target for pharmacotherapy in the future.
Collapse
Affiliation(s)
- Damian Pikor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Joanna Poszwa
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Alicja Drelichowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
4
|
Tyagi SC. Epigenetics of Homocystinuria, Hydrogen Sulfide, and Circadian Clock Ablation in Cardiovascular-Renal Disease. Curr Issues Mol Biol 2024; 46:13783-13797. [PMID: 39727952 DOI: 10.3390/cimb46120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep. Interestingly, HHcy is generated during the epigenetic gene turning off and turning on (i.e., imprinting) by methylation of the DNA promoter. The mitochondrial sulfur metabolism by 3-mercaptopyruvate sulfur transferase (3MST), ATP citrate lyase (ACYL), and epigenetic rhythmic methylation are regulated by folate 1-carbon metabolism (FOCM), i.e., the methionine (M)-SAM-SAH-Hcy, adenosine, and uric acid cycle. Epigenetic gene writer (DNMT), gene eraser (TET/FTO), and editor de-aminase (ADAR) regulate the rhythmic, i.e., reversible methylation/demethylation of H3K4, H3K9, H4K20, m6A, and m5C. The mitochondrial ATP citrate cycle and creatine kinase (CK) regulate chromatin transcription, maturation, and accessibility as well as muscle function. The transcription is regulated by methylation. The maturation and accessibility are controlled by acetylation. However, it is unclear whether a high fat dysbiotic diet (HFD) causes dysrhythmic expression of the gene writer, eraser, and editor, creating hyperuricemia and cardiac and renal dysfunction. We hypothesized that an HFD increases the gene writer (DNMT1) and editor (ADAR), decreases the eraser (TET/FTO), and increases uric acid to cause chronic diseases. This increases the levels of H3K4, H3K9, H4K20, m6A, and m5C. Interestingly, the DNMT1KO mitigates. Further, the DNMT1KO and ADAR inhibition attenuate HFD-induced NGAL/FGF23/TMPRSS2/MMP2, 9, 13, and uric acid levels and improve cardiac and renal remodeling. Although the novel role of nerve endings by the Piezo channels (i.e., the combination of ENaC, VDAC, TRPV, K+, and Mg2+ channels) in the interoception is suggested, interestingly, we and others have shown mechanisms independent of the nerve, by interoception, such as the cargo of the exosome in denervation models of heart failure. If proper and appropriate levels of these enzymes are available to covert homocysteine to hydrogen sulfide (H2S) during homocystinuria, then the H2S can potentially serve as a newer form of treatment for morning heart attacks and renal sulfur transsulfuration transport diseases.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Puranik N, Song M. Glutamate: Molecular Mechanisms and Signaling Pathway in Alzheimer's Disease, a Potential Therapeutic Target. Molecules 2024; 29:5744. [PMID: 39683904 DOI: 10.3390/molecules29235744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Gamma-glutamate is an important excitatory neurotransmitter in the central nervous system (CNS), which plays an important role in transmitting synapses, plasticity, and other brain activities. Nevertheless, alterations in the glutamatergic signaling pathway are now accepted as a central element in Alzheimer's disease (AD) pathophysiology. One of the most prevalent types of dementia in older adults is AD, a progressive neurodegenerative illness brought on by a persistent decline in cognitive function. Since AD has been shown to be multifactorial, a variety of pharmaceutical targets may be used to treat the condition. N-methyl-D-aspartic acid receptor (NMDAR) antagonists and acetylcholinesterase inhibitors (AChEIs) are two drug classes that the Food and Drug Administration has authorized for the treatment of AD. The AChEIs approved to treat AD are galantamine, donepezil, and rivastigmine. However, memantine is the only non-competitive NMDAR antagonist that has been authorized for the treatment of AD. This review aims to outline the involvement of glutamate (GLU) at the molecular level and the signaling pathways that are associated with AD to demonstrate the drug target therapeutic potential of glutamate and its receptor. We will also consider the opinion of the leading authorities working in this area, the drawback of the existing therapeutic strategies, and the direction for the further investigation.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Lincy SA, Richard YA, Jeyavani J, Vaseeharan B, Dharuman V. In-vitro sensing of traumatic brain tissue by electrochemical impedance for diagnosis and therapeutic. Bioelectrochemistry 2024; 163:108871. [PMID: 39642769 DOI: 10.1016/j.bioelechem.2024.108871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Traumatic brain injury (TBI) induces neurogenerative disorders affecting severely daily human activities and early diagnosis is a critical requirement for prevention and cure. Here, we induced TBI formation in the Zebra fish, a model organism, by both mechanical (ultrasonic cleaner generated convulsive shock, UGCS) and chemical (pentylenetetrazol, PTZ) methods. The TBI induced cellular and neuronal changes are monitored by measuring the activities of the indicator biomarkers viz., superoxide anion (O2-) and glutamate by electrochemical techniques. For this, the α-lipoic acid (α-LA, LA) functionalized gold-silver (LA-Au/Ag) is used as an electrochemical sensor to diagnose the presence of these markers in physiological phosphate buffer saline (PBS, pH 7.4), 0.1 M KCl solutions and in TBI tissues. While the oxidation of glutamate is observed in the potential window 0.2-0.5 V, the metal mediated oxidation of O2- is observed at the potential window 0.6-1.0 V. The sensor showed good linear ranges for O2- (from 4 to 48 μM with the LOD of 4 μM for the O2- detection) and glutamate (from 20 to 130 μM with the LOD 19 μM). The TBI tissue modified electrode showed lower resistance than the normal brain tissue ((NBT), as control) due to the presence of higher amount of O2- and occurrence of Fenton's and Heber-Weise's reactions in the presence of [Fe(CN)6]3-/4-. For theragnostic application, the LA-Au/Ag nanoparticles is delivered into the UGCS and PTZ treated Zebrafish and electrochemical signal changes are monitored by cyclic voltammetry and impedance spectroscopy. Electrochemical data further corroborated with the activities of superoxide dismutase (SOD), Catalase (CAT) and lipid peroxidase (MDA) in parallel. The developed method of electrochemical sensing of TBI may provide alternative for the early TBI diagnosis and therapeutics for the prevention of TBI.
Collapse
Affiliation(s)
- Sebastinbaskar Aniu Lincy
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Yesurajan Allwin Richard
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Jeyaraj Jeyavani
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Venkataraman Dharuman
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
7
|
Tumdam R, Hussein Y, Garin-Shkolnik T, Stern S. NMDA Receptors in Neurodevelopmental Disorders: Pathophysiology and Disease Models. Int J Mol Sci 2024; 25:12366. [PMID: 39596430 PMCID: PMC11594297 DOI: 10.3390/ijms252212366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical components of the mammalian central nervous system, involved in synaptic transmission, plasticity, and neurodevelopment. This review focuses on the structural and functional characteristics of NMDARs, with a particular emphasis on the GRIN2 subunits (GluN2A-D). The diversity of GRIN2 subunits, driven by alternative splicing and genetic variants, significantly impacts receptor function, synaptic localization, and disease manifestation. The temporal and spatial expression of these subunits is essential for typical neural development, with each subunit supporting distinct phases of synaptic formation and plasticity. Disruptions in their developmental regulation are linked to neurodevelopmental disorders, underscoring the importance of understanding these dynamics in NDD pathophysiology. We explore the physiological properties and developmental regulation of these subunits, highlighting their roles in the pathophysiology of various NDDs, including ASD, epilepsy, and schizophrenia. By reviewing current knowledge and experimental models, including mouse models and human-induced pluripotent stem cells (hiPSCs), this article aims to elucidate different approaches through which the intricacies of NMDAR dysfunction in NDDs are currently being explored. The comprehensive understanding of NMDAR subunit composition and their mutations provides a foundation for developing targeted therapeutic strategies to address these complex disorders.
Collapse
Affiliation(s)
- Roshan Tumdam
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
8
|
Gupta V, Singh S, Singh TG. Pervasive expostulation of p53 gene promoting the precipitation of neurogenic convulsions: A journey in therapeutic advancements. Eur J Pharmacol 2024; 983:176990. [PMID: 39251181 DOI: 10.1016/j.ejphar.2024.176990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Epilepsy, a neurological disorder characterized by prolonged and excessive seizures, has been linked to elevated levels of the tumor suppressor gene p53, which contributes to neuronal dysfunction. This review explores the molecular mechanisms of p53 in epilepsy and discusses potential future therapeutic strategies. Research indicates that changes in p53 expression during neuronal apoptosis, neuroinflammation, and oxidative stress play a significant role in the pathogenesis of epilepsy. Elevated p53 disrupts glutamatergic neurotransmission and hyperactivates NMDA and AMPA receptors, leading to increased neuronal calcium influx, mitochondrial oxidative stress, and activation of apoptotic pathways mediated neuronal dysfunction, exacerbating epileptogenesis. The involvement of p53 in epilepsy suggests that targeting this protein could be beneficial in mitigating neuronal damage and preventing seizure recurrence. Pharmacological agents like pifithrin-α have shown promise in reducing p53-mediated apoptosis and seizure severity. Gene therapy approaches, such as viral vector-mediated delivery of wild-type p53 or RNA interference targeting mutant p53, have also been effective in restoring normal p53 function and reducing seizure susceptibility. Despite these advances, the heterogeneous nature of epilepsy and potential long-term side effects of p53 modulation present challenges. Future research should focus on elucidating the precise molecular mechanisms of p53 and developing personalized therapeutic strategies. Modulating p53 activity holds promise for reducing seizure susceptibility and improving the quality of life for individuals with epilepsy. The current review provides the understanding the intricate role of p53 in neuroinflammatory pathways, including JAK-STAT, JNK, NF-κB, Sonic Hedgehog, and Wnt, is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Vrinda Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
9
|
Shaikh I, Bhatt LK. Targeting Adipokines: A Promising Therapeutic Strategy for Epilepsy. Neurochem Res 2024; 49:2973-2987. [PMID: 39060767 DOI: 10.1007/s11064-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Epilepsy affects 65 million people globally and causes neurobehavioral, cognitive, and psychological defects. Although research on the disease is progressing and a wide range of treatments are available, approximately 30% of people have refractory epilepsy that cannot be managed with conventional medications. This underlines the importance of further understanding the condition and exploring cutting-edge targets for treatment. Adipokines are peptides secreted by adipocyte's white adipose tissue, involved in controlling food intake and metabolism. Their regulatory functions in the central nervous system (CNS) are multifaceted and identified in several physiology and pathologies. Adipokines play a role in oxidative stress and neuroinflammation which are associated with brain degeneration and connected neurological diseases. This review aims to highlight the potential impacts of leptin, adiponectin, apelin, vaspin, visfatin, and chimerin in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Iqraa Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
10
|
Jahanabadi S, Madvar MR. Unraveling the Interplay of 5-hydroxytryptamine-3 and N-methyl-d-aspartate Receptors in Seizure Susceptibility. Drug Res (Stuttg) 2024; 74:456-463. [PMID: 39299250 DOI: 10.1055/a-2406-5340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, presents significant challenges in treatment and management. This study aimed to evaluate the effect of tropisetron, a selective 5-HT3 receptor antagonist on pentylenetetrazole (PTZ) - induced seizure in mice by exploring the potential role of the NMDA receptor and inflammatory responses. METHODS For this purpose, seizures were induced by intravenous PTZ infusion. Tropisetron at 1-, 2-, 3-, 5-, 10- mg/kg were administered intraperitoneally 30 minutes before PTZ. To evaluate probable role of NMDA signaling, selective NMDAR antagonists, ketamine and MK-801, were injected 15 minutes before tropisetron. Also, TNF-α level of hippocampus were measured following administration of mentioned drugs in mice. RESULTS Our results demonstrate that tropisetron displayed a dose-dependent impact on seizure threshold, with certain doses (5 and 10 mg/kg) exhibiting anticonvulsant properties. In addition, the noncompetitive NMDAR antagonists, ketamine (1 mg/kg) and MK-801 (0.5 mg/kg), at doses that had no effect on seizure threshold, augmented the anticonvulsant effect of tropisetron (3 mg/kg). Also, tropisetron led to a reduction in hippocampal TNF-α levels, indicating its anti-inflammatory potential independent of 5-HT receptor activity. CONCLUSION In conclusion, we demonstrated that the anticonvulsant effect of tropisetron is mediated by the inhibition of NMDA receptors and a decline in hippocampal TNF-α level. These findings highlight a potential connection between 5-HT3 and NMDA receptors in the pharmacological treatment of inflammatory diseases, such as seizure, warranting further investigation into their combined therapeutic effects.
Collapse
Affiliation(s)
- Samane Jahanabadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Riahi Madvar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Monteiro ÁB, Alves AF, Ribeiro Portela AC, Oliveira Pires HF, Pessoa de Melo M, Medeiros Vilar Barbosa NM, Bezerra Felipe CF. Pentylenetetrazole: A review. Neurochem Int 2024; 180:105841. [PMID: 39214154 DOI: 10.1016/j.neuint.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Pentylenetetrazole (PTZ), a tetrazole derivative, is commonly used as a chemical agent to induce neurological disorders and replicate the characteristics of human epileptic seizures in animal models. This review offers a comprehensive analysis of the behavioral, neurophysiological, and neurochemical changes induced by PTZ. The epileptogenic and neurotoxic mechanisms of PTZ are associated with an imbalance between the GABAergic and glutamatergic systems. At doses exceeding 60 mg/kg, PTZ exerts its epileptic effects by non-competitively antagonizing GABAA receptors and activating NMDA receptors, resulting in an increased influx of cations such as Na+ and Ca2+. Additionally, PTZ promotes oxidative stress, microglial activation, and the synthesis of pro-inflammatory mediators, all of which are features characteristic of glutamatergic excitotoxicity. These mechanisms ultimately lead to epileptic seizures and neuronal cell death, which depend on the dosage and method of administration. The behavioral, electroencephalographic, and histological changes associated with PTZ further establish it as a valuable preclinical model for the study of epileptic seizures, owing to its simplicity, cost-effectiveness, and reproducibility.
Collapse
Affiliation(s)
- Álefe Brito Monteiro
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | - Alan Ferreira Alves
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | | - Mayara Pessoa de Melo
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | |
Collapse
|
12
|
Aleksandrova EP, Ivlev AP, Kulikov AA, Naumova AA, Glazova MV, Chernigovskaya EV. Aging of Krushinsky-Molodkina audiogenic rats is accompanied with pronounced neurodegeneration and dysfunction of the glutamatergic system in the hippocampus. Brain Res 2024; 1846:149294. [PMID: 39461667 DOI: 10.1016/j.brainres.2024.149294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Advancing age strongly correlates with an increased risk of epilepsy development. On the other hand, epilepsy may exacerbate the negative effects of aging making it pathological. In turn, the possible link between aging and epileptogenesis is dysregulation of glutamatergic transmission. In the present study, we analyzed the functional state of the glutamatergic system in the hippocampus of aging (18-month-old) Krushinsky-Molodkina (KM) audiogenic rats to disclose alterations associated with aging on the background of inherited predisposition to audiogenic seizures (AGS). Naïve KM rats with no AGS experience were recruited in the experiments. Wistar rats of the corresponding age were used as a control. First of all, aging KM rats demonstrated a significant decrease in cell population and synaptopodin expression in the hippocampus indicating enhanced loss of cells and synapses. Meanwhile, elevated phosphorylation of ERK1/2 and CREB and increased glutamate in the neuronal perikarya were revealed indicating increased activity of the rest hippocampal cells and increased glutamate production. However, glutamate in the fibers and synapses was mainly unchanged, and the proteins regulating glutamate exocytosis showed variable changes which could compensate each other and maintain glutamate release at the unchanged level. In addition, we revealed downregulation of NMDA-receptor subunit GluN2B and upregulation of AMPA-receptor GluA2 subunit, which could also prevent overexcitation and support cell survival in the hippocampus of aging KM rats. Nevertheless, abnormally high glutamate production, observed in aging KM rats, may provide the basis for hyperexcitability of the hippocampus and increased seizure susceptibility in old age.
Collapse
Affiliation(s)
- Ekaterina P Aleksandrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Andrey P Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
13
|
Varlamova EG, Kuldaeva VP, Mitina NN, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Generation and Characterization of Three Novel Mouse Mutant Strains Susceptible to Audiogenic Seizures. Cells 2024; 13:1747. [PMID: 39513854 PMCID: PMC11545774 DOI: 10.3390/cells13211747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of epileptogenesis after brain injury, ischemic stroke, or brain tumors have been extensively studied. As a result, many effective antiseizure drugs have been developed. However, there are still many patients who are resistant to therapy. The molecular and genetic bases regarding such drug-resistant seizures have been poorly elucidated. In many cases, heavy seizures are instigated by brain development malformations and often caused by gene mutations. Such malformations can be demonstrated in mouse models by generating mutant strains. One of the most potent mutagens is ENU (N-ethyl-N-nitrosourea). In the present study, we describe three novel mutant strains generated by ENU-directed mutagenesis. Two of these strains present a very strong epileptic phenotype triggered by audiogenic stimuli (G9-1 and S5-1 strains). The third mouse strain is characterized by behavioral disorders and hyperexcitation of neuronal networks. We identified changes in the expression of those genes encoding neurotransmission proteins in the cerebral cortexes of these mice. It turned out that the G9-1 strain demonstrated the strongest disruptions in the expression of those genes encoding plasma membrane channels, excitatory glutamate receptors, and protein kinases. On the other hand, the number of GABAergic neurons was also affected by the mutation. All three lines are characterized by increased anxiety, excitability, and suppressed motor and orientational-exploratory activities. On the other hand, the strains with an epileptic phenotype-G9-1 and S5-1ave reduced learning ability, and the A9-2 mice line retains high learning ability.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Natalia N. Mitina
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Alexei A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| |
Collapse
|
14
|
Kim HK, Chung KM, Xing J, Kim HY, Youn DH. The Trigeminal Sensory System and Orofacial Pain. Int J Mol Sci 2024; 25:11306. [PMID: 39457088 PMCID: PMC11508441 DOI: 10.3390/ijms252011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The trigeminal sensory system consists of the trigeminal nerve, the trigeminal ganglion, and the trigeminal sensory nuclei (the mesencephalic nucleus, the principal nucleus, the spinal trigeminal nucleus, and several smaller nuclei). Various sensory signals carried by the trigeminal nerve from the orofacial area travel into the trigeminal sensory system, where they are processed into integrated sensory information that is relayed to higher sensory brain areas. Thus, knowledge of the trigeminal sensory system is essential for comprehending orofacial pain. This review elucidates the individual nuclei that comprise the trigeminal sensory system and their synaptic transmission. Additionally, it discusses four types of orofacial pain and their relationship to the system. Consequently, this review aims to enhance the understanding of the mechanisms underlying orofacial pain.
Collapse
Affiliation(s)
- Hyung Kyu Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ki-myung Chung
- Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Juping Xing
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Dong-ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
15
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
16
|
A Hassan H, Al-Saraireh Y. Aprepitant's roles in abating seizures, behavioral, and cognitive deficits in mice model of epilepsy. Epilepsy Behav 2024; 159:110028. [PMID: 39217758 DOI: 10.1016/j.yebeh.2024.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Aprepitant (APR), a neurokinin 1 receptor antagonist, is an approved drug for treating chemotherapy-induced nausea and vomiting. OBJECTIVES Investigate the beneficial roles of APR alone or in combination with sodium valproate (VPA) against lithium pilocarpine [li-pilo]-induced seizures, behavioral changes, and cognitive deficits. METHODS Thirty male mice were divided into five groups, each containing 6. "Vehicle Group I," "Control Group II "li-pilo, " Valproate (VPA) group III (400 mg/kg/i.p.), "APR group IV, " and "Combination Group V." Videos of mice were recorded, and they were watched for episodes of spontaneous recurring seizures (SRS). Behavioral Tests were performed. At the end of the study, animal brains were taken for biochemical assays and gene expression studies. RESULTS APR partially protected against SRS with partial restoration of average behavioral and standard cognitive skills associated with a significant increase in brain SOD activity and a significant decrease in MDA, IL-1β, NF-КB, and SP-3 levels in relation to the control group. Interestingly, a combination of APR with VPA in epileptic mice showed complete protection against li-pilo-induced behavioral changes and cognitive deficits, a significant increase in brain SOD activity, and a considerable decrease in MDA, IL-1β, NF-ΚB, and SP levels to normal. CONCLUSION Using APR as an adjuvant to VPA is more effective in protecting against li-pilo-induced seizures, behavioral changes, and cognitive deficits due to its antioxidant, anti-inflammatory, and NK1 antagonist effects than using APR alone as drug therapy.
Collapse
Affiliation(s)
- Heba A Hassan
- Pharmacology Department, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan.
| | - Yousef Al-Saraireh
- Pharmacology Department, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| |
Collapse
|
17
|
Reddy DS, Vadassery A, Ramakrishnan S, Singh T, Clossen B, Wu X. Kindling Models of Epileptogenesis for Developing Disease-Modifying Drugs for Epilepsy. Curr Protoc 2024; 4:e70020. [PMID: 39436626 PMCID: PMC11498896 DOI: 10.1002/cpz1.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Kindling models are widely used animal models to study the pathobiology of epilepsy and epileptogenesis. These models exhibit distinctive features whereby sub-threshold stimuli instigate the initial induction of brief focal seizures. Over time, the severity and duration of these seizures progressively increase, leading to a fully epileptic state, which is marked by consistent development of generalized tonic-clonic seizures. Kindling involves focal stimulation via implanted depth electrodes or repeated administration of chemoconvulsants such as pentylenetetrazol. Comparative analysis of preclinical and clinical findings has confirmed a high predictive validity of fully kindled animals for testing novel antiseizure medications. Thus, kindling models remain an essential component of anticonvulsant drug development programs. This article provides a comprehensive guide to working protocols, testing of therapeutic drugs, outcome parameters, troubleshooting, and data analysis for various electrical and chemical kindling epileptogenesis models for new therapeutic development and optimization. The use of pharmacological agents or genetically modified mice in kindling experiments is valuable, offering insights into the impact of a specific target on various aspects of seizures, including thresholds, initiation, spread, termination, and the generation of a hyperexcitable network. These kindling epileptogenesis paradigms are helpful in identifying mechanisms and disease-modifying interventions for epilepsy. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Hippocampal kindling Basic Protocol 2: Amygdala kindling Basic Protocol 3: Rapid hippocampal kindling Basic Protocol 4: Chemical kindling.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Abhinav Vadassery
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Bryan Clossen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
18
|
Gao Y, Ma L, Yuan J, Huang Y, Ban Y, Zhang P, Tan D, Liang M, Li Z, Gong C, Xu T, Yang X, Chen Y. GLS2 reduces the occurrence of epilepsy by affecting mitophagy function in mouse hippocampal neurons. CNS Neurosci Ther 2024; 30:e70036. [PMID: 39404053 PMCID: PMC11474837 DOI: 10.1111/cns.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Altered mitophagy has been observed in various neurological disorders, such as epilepsy. The role of mitophagy in causing neuronal damage during epileptic episodes is significant, and recent research has indicated that GLS2 plays a crucial role in regulating autophagy. However, exactly how GLS2 affects epilepsy is still unclear. AIMS To investigate the expression and distribution characteristics of GLS2 in epilepsy, and then observed the changes in behavior and electrophysiology caused by overexpression of GLS2 in epileptic mice, and determined whether GLS2 regulated seizure-like changes in the mouse model through the protective mechanism of mitophagy. RESULTS The expression of GLS2 in a kainic acid (KA)-induced epileptic mouse model and aglutamate-inducedneuronal excitatory damage in HT22 cells model was downregulation. In brief, overexpression of GLS2 can alleviate epileptic activity. Subsequently, we demonstrated that GLS2 interacts with mitophagy-related proteins in a KA-induced epilepsy mouse model. Mechanistically, overexpression of GLS2 inhibited mitophagy in epileptic mice, downregulating the expression of LC3 and reducing ROS production. CONCLUSIONS This study proves the GLS2 expression pattern is abnormal in epileptic mice. The function of mitophagy in hippocampal neurons is affected by GLS2, and overexpression of GLS2 can reduce the occurrence of seizure-like events (SLEs) by altering mitophagy function. Thus, GLS2 might control seizures, and our findings provide a fresh avenue for antiepileptic treatment and offer novel insights into treating and preventing epilepsy.
Collapse
Affiliation(s)
- Yuan Gao
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Limin Ma
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GerontologyChongqing University Three Gorges HospitalChongqingChina
| | - Jinxian Yuan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yunyi Huang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yuenan Ban
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Peng Zhang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Dandan Tan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Minxue Liang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhipeng Li
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chen Gong
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tao Xu
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaolan Yang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of NeurologyChongqing Medical University Affiliated Second Hospital Affiliated Fengjie HospitalChongqingChina
| | - Yangmei Chen
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
19
|
Turovskaya MV, Gavrish MS, Tarabykin VS, Babaev AA. Overexpression of BDNF Suppresses the Epileptiform Activity in Cortical Neurons of Heterozygous Mice with a Transcription Factor Sip1 Deletion. Int J Mol Sci 2024; 25:10537. [PMID: 39408863 PMCID: PMC11476396 DOI: 10.3390/ijms251910537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Since genetic mutations during brain development play a significant role in the genesis of epilepsy, and such genetically determined epilepsies are the most difficult to treat, there is a need to study the mechanisms of epilepsy development with deletions of various transcription factors. We utilized heterozygous mice (Sip1wt/fl) with a neuronal deletion of the transcription factor Sip1 (Smad interacting protein 1) in the cerebral cortex. These mice are characterized by cognitive impairment and are prone to epilepsy. It is known that the brain-derived neurotrophic factor (BDNF) has a neuroprotective effect in various neurodegenerative diseases. Therefore, we created and applied an adeno-associated construct carrying the BDNF sequence selectively in neurons. Using in vitro and in vivo research models, we were able to identify a key gen, the disruption of whose expression accompanies the deletion of Sip1 and contributes to hyperexcitation of neurons in the cerebral cortex. Overexpression of BDNF in cortical neurons eliminated epileptiform activity in neurons obtained from heterozygous Sip1 mice in a magnesium-free model of epileptiform activity (in vitro). Using PCR analysis, it was possible to identify correlations in the expression profile of genes encoding key proteins responsible for neurotransmission and neuronal survival. The effects of BDNF overexpression on the expression profiles of these genes were also revealed. Using BDNF overexpression in cortical neurons of heterozygous Sip1 mice, it was possible to achieve 100% survival in the pilocarpine model of epilepsy. At the level of gene expression in the cerebral cortex, patterns were established that may be involved in the protection of brain cells from epileptic seizures and the restoration of cognitive functions in mice with Sip1 deletion.
Collapse
Affiliation(s)
- Maria V. Turovskaya
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603022 Nizhny Novgorod, Russia; (M.S.G.); (A.A.B.)
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya st. building 3, 142290 Pushchino, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603022 Nizhny Novgorod, Russia; (M.S.G.); (A.A.B.)
| | - Viktor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexei A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603022 Nizhny Novgorod, Russia; (M.S.G.); (A.A.B.)
| |
Collapse
|
20
|
Viana R, Rubio T, Campos-Rodríguez Á, Sanz P. Glial alterations in the glutamatergic and GABAergic signaling pathways in a mouse model of Lafora disease, a severe form of progressive myoclonus epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612874. [PMID: 39314331 PMCID: PMC11419120 DOI: 10.1101/2024.09.13.612874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies (LBs), in the brain but also in peripheral tissues. It is assumed that the accumulation of LBs is related to the appearance of the characteristic pathological features of the disease. In mouse models of LD, we and others have reported an increase in the levels of reactive astrocytes and activated microglia, which triggers the expression of the different pro-inflammatory mediators. Recently, we have demonstrated that the TNF and IL-6 inflammatory signaling pathways are the main mediators of the neuroinflammatory phenotype associated with the disease. In this work, we present evidence that the activation of these pathways produces a dysregulation in the levels of different subunits of the excitatory ionotropic glutamatergic receptors (phopho-GluN2B, phospho-GluA2, GluK2) and also an increase in the levels of the GABA transporter GAT1 in the hippocampus of the Epm2b-/- mice. In addition, we present evidence of the presence of activated forms of the Src and Lyn protein kinases in this area. These effects may increase the excitatory glutamatergic signaling and decrease the inhibitory GABAergic tone, leading to hyper-excitability. More importantly, the enhanced production of these subunits occurs in non-neuronal cells such as activated microglia and reactive astrocytes, pointing out a key role of glia in the pathophysiology of LD.
Collapse
|
21
|
Sonawane S, Všianský V, Brázdil M. MicroRNA-mediated regulation of neurotransmitter receptors in epilepsy: A systematic review. Epilepsy Behav 2024; 158:109912. [PMID: 38924965 DOI: 10.1016/j.yebeh.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Pathogenesis of epilepsy involves dysregulation of the neurotransmitter system contributing to hyper-excitability of neuronal cells. MicroRNA (miRNAs) are small non-coding RNAs known to play a crucial role in post-transcriptional regulation of gene expression. METHODS The present review was prepared following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, employing a comprehensive search strategy to identify and extract data from published research articles. Keywords suchas epilepsy, micro RNA (micro RNAs, miRNA, miRNAs, miR), neurotransmitters (specific names), and neurotransmitter receptors (specific names) were used to construct the query. RESULTS A total of 724 articles were identified using the keywords epilepsy, microRNA along with select neurotransmitter and neurotransmitter receptor names. After exclusions, the final selection consisted of 17 studies, most of which centered on glutamate and gamma-aminobutyric acid (GABA) receptors. Singular studies also investigated miRNAs affecting cholinergic, purinergic, and glycine receptors. CONCLUSION This review offers a concise overview of the current knowledge on miRNA-mediated regulation of neurotransmitter receptors in epilepsy and highlights their potential for future clinical application.
Collapse
Affiliation(s)
- Shivani Sonawane
- Brno Epilepsy Center, 1st Department of Neurology, Faculty of Medicine, Masaryk University and St. Annés University Hospital, Brno, Czech Republic; Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology Masaryk University, Brno, Czech Republic
| | - Vít Všianský
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Member of the ERN EpiCARE, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, 1st Department of Neurology, Faculty of Medicine, Masaryk University and St. Annés University Hospital, Brno, Czech Republic; Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology Masaryk University, Brno, Czech Republic.
| |
Collapse
|
22
|
Khanal P, Patil VS, Bhattacharya K, Patil BM. Multifaceted targets of cannabidiol in epilepsy: Modulating glutamate signaling and beyond. Comput Biol Med 2024; 179:108898. [PMID: 39047503 DOI: 10.1016/j.compbiomed.2024.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Cannabidiol has been reported to interact with broad-spectrum biological targets with pleiotropic pharmacology including epilepsy although a cohesive mechanism is yet to be determined. Even though some studies propose that cannabidiol may manipulate glutamatergic signals, there is insufficient evidence to support cannabidiol direct effect on glutamate signaling, which is important in intervening epilepsy. Therefore, the present study aimed to analyze the epilepsy-related targets for cannabidiol, assess the differentially expressed genes with its treatment, and identify the possible glutamatergic signaling target. In this study, the epileptic protein targets of cannabidiol were identified using the Tanimoto coefficient and similarity index-based targets fishing which were later overlapped with the altered expression, epileptic biomarkers, and genetically altered proteins in epilepsy. The common proteins were then screened for possible glutamatergic signaling targets with differentially expressed genes. Later, molecular docking and simulation were performed using AutoDock Vina and GROMACS to evaluate binding affinity, ligand-protein stability, hydrophilic interaction, protein compactness, etc. Cannabidiol identified 30 different epilepsy-related targets of multiple protein classes including G-protein coupled receptors, enzymes, ion channels, etc. Glutamate receptor 2 was identified to be genetically varied in epilepsy which was targeted by cannabidiol and its expression was increased with its treatment. More importantly, cannabidiol showed a direct binding affinity with Glutamate receptor 2 forming a stable hydrophilic interaction and comparatively lower root mean squared deviation and residual fluctuations, increasing protein compactness with broad conformational changes. Based on the cheminformatic target fishing, evaluation of differentially expressed genes, molecular docking, and simulations, it can be hypothesized that cannabidiol may possess glutamate receptor 2-mediated anti-epileptic activities.
Collapse
Affiliation(s)
- Pukar Khanal
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India; Silicon Script Sciences Private Limited, Bharatpur, Ghorahi, Dang, Nepal.
| | - Vishal S Patil
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| | | | - B M Patil
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India; PRES's Pravara Rural College of Pharmacy Pravaranagar, Loni, Maharashtra, India
| |
Collapse
|
23
|
Hakimi Naeini S, Rajabi-Maham H, Azizi V, Hosseini A. Anticonvulsant effect of glycitin in pentylenetetrazol induced male Wistar rat model by targeting oxidative stress and Nrf2/HO-1 signaling. Front Pharmacol 2024; 15:1392325. [PMID: 39246658 PMCID: PMC11377222 DOI: 10.3389/fphar.2024.1392325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
24
|
Garner S, Davies E, Barkus E, Kraeuter AK. Ketogenic diet has a positive association with mental and emotional well-being in the general population. Nutrition 2024; 124:112420. [PMID: 38669832 DOI: 10.1016/j.nut.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVES A ketogenic diet reduces pathologic stress and improves mood in neurodegenerative and neurodevelopmental disorders. However, the effects of a ketogenic diet for people from the general population have largely been unexplored. A ketogenic diet is increasingly used for weight loss. Research in healthy individuals primarily focuses on the physical implications of a ketogenic diet. It is important to understand the holistic effects of a ketogenic diet, not only the physiological but also the psychological effects, in non-clinical samples. The aim of this cross-sectional study with multiple cohorts was to investigate the association of a ketogenic diet with different aspects of mental health, including calmness, contentedness, alertness, cognitive and emotional stress, depression, anxiety, and loneliness, in a general healthy population. METHODS Two online surveys were distributed: cohort 1 used Bond-Lader visual analog scales and Perceived Stress Scale (n = 147) and cohort 2 the Depression Anxiety Stress Scale and revised UCLA Loneliness Scale (n = 276). RESULTS A ketogenic diet was associated with higher self-reported mental and emotional well-being behaviors, including calmness, contentedness, alertness, cognitive and emotional stress, depression, anxiety, and loneliness, compared with individuals on a non-specific diet in a general population. CONCLUSION This research found that a ketogenic diet has potential psychological benefits in the general population.
Collapse
Affiliation(s)
- Sarah Garner
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Evan Davies
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK; Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle upon Tyne, UK
| | - Emma Barkus
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Ann-Katrin Kraeuter
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK; Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle upon Tyne, UK; NUTRAN, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|
25
|
Cristiano N, Cabayé A, Brabet I, Glatthar R, Tora A, Goudet C, Bertrand HO, Goupil-Lamy A, Flor PJ, Pin JP, McCort-Tranchepain I, Acher FC. Novel Inhibitory Site Revealed by XAP044 Mode of Action on the Metabotropic Glutamate 7 Receptor Venus Flytrap Domain. J Med Chem 2024; 67:11662-11687. [PMID: 38691510 DOI: 10.1021/acs.jmedchem.3c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Metabotropic glutamate (mGlu) receptors play a key role in modulating most synapses in the brain. The mGlu7 receptors inhibit presynaptic neurotransmitter release and offer therapeutic possibilities for post-traumatic stress disorders or epilepsy. Screening campaigns provided mGlu7-specific allosteric modulators as the inhibitor XAP044 (Gee et al. J. Biol. Chem. 2014). In contrast to other mGlu receptor allosteric modulators, XAP044 does not bind in the transmembrane domain but to the extracellular domain of the mGlu7 receptor and not at the orthosteric site. Here, we identified the mode of action of XAP044, combining synthesis of derivatives, modeling and docking experiments, and mutagenesis. We propose a unique mode of action of these inhibitors, preventing the closure of the Venus flytrap agonist binding domain. While acting as a noncompetitive antagonist of L-AP4, XAP044 and derivatives act as apparent competitive antagonists of LSP4-2022. These data revealed more potent XAP044 analogues and new possibilities to target mGluRs.
Collapse
Affiliation(s)
- Nunzia Cristiano
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS UMR 8601, 75006 Paris, France
| | - Alexandre Cabayé
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS UMR 8601, 75006 Paris, France
- BIOVIA Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Isabelle Brabet
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Ralf Glatthar
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Amelie Tora
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Cyril Goudet
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | | | - Anne Goupil-Lamy
- BIOVIA Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Peter J Flor
- Laboratory of Molecular and Cellular Neurobiology, Faculty of Biology and Preclinical Medicine, University of Regensburg, 93053 Regensburg, Germany
| | - Jean-Philippe Pin
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS UMR 8601, 75006 Paris, France
| | - Francine C Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS UMR 8601, 75006 Paris, France
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, CNRS UMR 8003, 75006 Paris, France
| |
Collapse
|
26
|
AlAseeri AA, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, Bahaa MM, Alruwaili M, Batiha GES. The compelling role of allopurinol in hyperuricemia-induced epilepsy: Unrecognized like tears in rain. Brain Res Bull 2024; 213:110973. [PMID: 38723694 DOI: 10.1016/j.brainresbull.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
Epilepsy is a common neurological disease characterized by the recurrent, paroxysmal, and unprovoked seizures. It has been shown that hyperuricemia enhances and associated with the development and progression of epilepsy through induction of inflammation and oxidative stress. In addition, uric acid is released within the brain and contributes in the development of neuronal hyperexcitability and epileptic seizure. Brain uric acid acts as damage associated molecular pattern (DAMP) activates the immune response and induce the development of neuroinflammation. Therefore, inhibition of xanthine oxidase by allopurinol may reduce hyperuricemia-induced epileptic seizure and associated oxidative stress and inflammation. However, the underlying mechanism of allopurinol in the epilepsy was not fully elucidated. Therefore, this review aims to revise from published articles the link between hyperuricemia and epilepsy, and how allopurinol inhibits the development of epileptic seizure.
Collapse
Affiliation(s)
- Ali Abdullah AlAseeri
- Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens 11741, Greece; Department of Research & Development, AFNP Med, Wien 1030, Austria; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
27
|
Wasnik K, Gupta PS, Singh G, Maity S, Patra S, Pareek D, Kumar S, Rai V, Prakash R, Acharya A, Maiti P, Mukherjee S, Mastai Y, Paik P. Neurogenic and angiogenic poly( N-acryloylglycine)- co-(acrylamide)- co-( N-acryloyl-glutamate) hydrogel: preconditioning effect under oxidative stress and use in neuroregeneration. J Mater Chem B 2024; 12:6221-6241. [PMID: 38835196 DOI: 10.1039/d4tb00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Traumatic injuries, neurodegenerative diseases and oxidative stress serve as the early biomarkers for neuronal damage and impede angiogenesis and subsequently neuronal growth. Considering this, the present work aimed to develop a poly(N-acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) hydrogel [p(NAG-Ac-NAE)] with angiogenesis/neurogenesis properties. As constituents of this polymer modulate their vital role in biological functions, inhibitory neurotransmitter glycine regulates neuronal homeostasis, and glutamatergic signalling regulates angiogenesis. The p(NAG-Ac-NAE) hydrogel is a highly branched, biodegradable and pH-responsive polymer with a very high swelling behavior of 6188%. The mechanical stability (G', 2.3-2.7 kPa) of this polymeric hydrogel is commendable in the differentiation of mature neurons. This hydrogel is biocompatible (as tested in HUVEC cells) and helps to proliferate PC12 cells (152.7 ± 13.7%), whereas it is cytotoxic towards aggressive cancers such as glioblastoma (LN229 cells) and triple negative breast cancer (TNBC; MDA-MB-231 cells) and helps to maintain the healthy cytoskeleton framework structure of primary cortical neurons by facilitating the elongation of the axonal pathway. Furthermore, FACS results revealed that the synthesized hydrogel potentiates neurogenesis by inducing the cell cycle (G0/G1) and arresting the sub-G1 phase by limiting apoptosis. Additionally, RT-PCR results revealed that this hydrogel induced an increased level of HIF-1α expression, providing preconditioning effects towards neuronal cells under oxidative stress by scavenging ROS and initiating neurogenic and angiogenic signalling. This hydrogel further exhibits more pro-angiogenic activities by increasing the expression of VEGF isoforms compared to previously reported hydrogels. In conclusion, the newly synthesized p(NAG-Ac-NAE) hydrogel can be one of the potential neuroregenerative materials for vasculogenesis-assisted neurogenic applications and paramount for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Somedutta Maity
- School of Engineering Sciences and Technology, University of Hyderabad, Telangana State 500 046, India
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Sandeep Kumar
- Department of Zoology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Ravi Prakash
- School of Material Science, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Arbind Acharya
- Department of Zoology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Pralay Maiti
- School of Material Science, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Yitzhak Mastai
- Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| |
Collapse
|
28
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
29
|
Stasiłowicz-Krzemień A, Nogalska W, Maszewska Z, Maleszka M, Dobroń M, Szary A, Kępa A, Żarowski M, Hojan K, Lukowicz M, Cielecka-Piontek J. The Use of Compounds Derived from Cannabis sativa in the Treatment of Epilepsy, Painful Conditions, and Neuropsychiatric and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:5749. [PMID: 38891938 PMCID: PMC11171823 DOI: 10.3390/ijms25115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties. Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery. This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies. Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Wiktoria Nogalska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Zofia Maszewska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Mateusz Maleszka
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Maria Dobroń
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Agnieszka Szary
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Aleksandra Kępa
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Swięcickiego 6, 61-847 Poznan, Poland;
- Department of Rehabilitation, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Malgorzata Lukowicz
- Department of Rehabilitation, Centre of Postgraduate Medical Education, Konarskiego 13, 05-400 Otwock, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
30
|
Waris A, Ullah A, Asim M, Ullah R, Rajdoula MR, Bello ST, Alhumaydhi FA. Phytotherapeutic options for the treatment of epilepsy: pharmacology, targets, and mechanism of action. Front Pharmacol 2024; 15:1403232. [PMID: 38855752 PMCID: PMC11160429 DOI: 10.3389/fphar.2024.1403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Epilepsy is one of the most common, severe, chronic, potentially life-shortening neurological disorders, characterized by a persisting predisposition to generate seizures. It affects more than 60 million individuals globally, which is one of the major burdens in seizure-related mortality, comorbidities, disabilities, and cost. Different treatment options have been used for the management of epilepsy. More than 30 drugs have been approved by the US FDA against epilepsy. However, one-quarter of epileptic individuals still show resistance to the current medications. About 90% of individuals in low and middle-income countries do not have access to the current medication. In these countries, plant extracts have been used to treat various diseases, including epilepsy. These medicinal plants have high therapeutic value and contain valuable phytochemicals with diverse biomedical applications. Epilepsy is a multifactorial disease, and therefore, multitarget approaches such as plant extracts or extracted phytochemicals are needed, which can target multiple pathways. Numerous plant extracts and phytochemicals have been shown to treat epilepsy in various animal models by targeting various receptors, enzymes, and metabolic pathways. These extracts and phytochemicals could be used for the treatment of epilepsy in humans in the future; however, further research is needed to study the exact mechanism of action, toxicity, and dosage to reduce their side effects. In this narrative review, we comprehensively summarized the extracts of various plant species and purified phytochemicals isolated from plants, their targets and mechanism of action, and dosage used in various animal models against epilepsy.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ata Ullah
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Asim
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Rafi Ullah
- Department of Botany, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Md. Rafe Rajdoula
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Stephen Temitayo Bello
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
31
|
Silva JDN, Beserra Filho JIA, Acha BT, Almeida FRDC, Batista EKF, Silva VR, Bomfim LM, Soares MBP, Bezerra DP, dos Santos AG, de Andrade FDCP, Mendes AN, Arcanjo DDR, Ferreira PMP. Promising Effects of Casearins in Tumor-Bearing Mice and Antinociceptive Action against Oncologic Pain: Molecular Docking and In Vivo Findings. Pharmaceuticals (Basel) 2024; 17:633. [PMID: 38794204 PMCID: PMC11124378 DOI: 10.3390/ph17050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Safer analgesic drugs remain a hard challenge because of cardiovascular and/or gastrointestinal toxicity, mainly. So, this study evaluated in vivo the antiproliferative actions of a fraction with casearins (FC) from Casearia sylvestris leaves against human colorectal carcinomas and antihyperalgesic effects on inflammatory- or opiate-based pain relief and oncologic pain in Sarcoma 180 (S180)-bearing mice. Moreover, docking investigations evaluated the binding among Casearin X and NMDA(N-methyl-D-aspartate)-type glutamate receptors. HCT-116 colorectal carcinoma-xenografted mice were treated with FC for 15 days. Antinociceptive assays included chemically induced algesia and investigated mechanisms by pharmacological blockade. Intraplantar region S180-bearing animals received a single dose of FC and were examined for mechanical allodynia and behavior alterations. AutoDock Vina determined molecular interactions among Cas X and NMDA receptor subunits. FC reduced tumor growth at i.p. (5 and 10 mg/kg) and oral (25 mg/kg/day) doses (31.12-39.27%). FC reduced abdominal pain, as confirmed by formalin and glutamate protocols, whose antinociception activity was blocked by naloxone and L-NAME (neurogenic phase) and naloxone, atropine, and flumazenil (inflammatory phase). Meanwhile, glibenclamide potentiated the FC analgesic effects. FC increased the paw withdrawal threshold without producing changes in exploratory parameters or motor coordination. Cas X generated a more stable complex with active sites of the NMDA receptor GluN2B subunits. FC is a promising antitumor agent against colorectal carcinomas, has peripheral analgesic effects by desensitizing secondary afferent neurons, and inhibits glutamate release from presynaptic neurons and/or their action on cognate receptors. These findings emphasize the use of clerodane diterpenes against cancer-related pain conditions.
Collapse
Affiliation(s)
- Jurandy do Nascimento Silva
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil; (J.d.N.S.); (J.I.A.B.F.)
- Department of Chemistry, Federal University of Piauí, Teresina 64049-550, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil; (J.d.N.S.); (J.I.A.B.F.)
| | - Boris Timah Acha
- Laboratory of Functional and Molecular Studies in Physiopharmacology (Lafmol), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil;
- Laboratory of Pain Pharmacology, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina 64049-550, Brazil;
| | - Fernanda Regina de Castro Almeida
- Laboratory of Pain Pharmacology, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina 64049-550, Brazil;
| | | | - Valdenizia Rodrigues Silva
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Salvador 40296-710, Brazil; (V.R.S.); (L.M.B.); (M.B.P.S.); (D.P.B.)
| | - Larissa Mendes Bomfim
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Salvador 40296-710, Brazil; (V.R.S.); (L.M.B.); (M.B.P.S.); (D.P.B.)
| | - Milena Botelho Pereira Soares
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Salvador 40296-710, Brazil; (V.R.S.); (L.M.B.); (M.B.P.S.); (D.P.B.)
| | - Daniel Pereira Bezerra
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Salvador 40296-710, Brazil; (V.R.S.); (L.M.B.); (M.B.P.S.); (D.P.B.)
| | - André Gonzaga dos Santos
- Laboratory of Pharmacognosy, Faculty of Pharmaceutical Sciences, State University Júlio de Mesquita Filho, Araraquara 14800-700, Brazil;
| | - Francisco das Chagas Pereira de Andrade
- Laboratory of Innovation in Science and Technology (Lacitec), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil; (F.d.C.P.d.A.); (A.N.M.)
| | - Anderson Nogueira Mendes
- Laboratory of Innovation in Science and Technology (Lacitec), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil; (F.d.C.P.d.A.); (A.N.M.)
| | - Daniel Dias Rufino Arcanjo
- Laboratory of Functional and Molecular Studies in Physiopharmacology (Lafmol), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil;
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil; (J.d.N.S.); (J.I.A.B.F.)
| |
Collapse
|
32
|
Oliveira RN, Carvalhinho-Lopes PS, Carvalho CPF, Hirata RYS, Vaz SH, Sebastião AM, Armada-Moreira A, Rosário BA, Lemes JA, Soares-Silva B, de Andrade JS, Santos JR, Ribeiro AM, Viana MB. Neuroprotective effects of platinum nanoparticle-based microreactors in bicuculline-induced seizures. Behav Brain Res 2024; 465:114956. [PMID: 38479475 DOI: 10.1016/j.bbr.2024.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Epilepsy designates a group of chronic brain disorders, characterized by the recurrence of hypersynchronous, repetitive activity, of neuronal clusters. Epileptic seizures are the hallmark of epilepsy. The primary goal of epilepsy treatment is to eliminate seizures with minimal side effects. Nevertheless, approximately 30% of patients do not respond to the available drugs. An imbalance between excitatory/inhibitory neurotransmission, that leads to excitotoxicity, seizures, and cell death, has been proposed as an important mechanism regarding epileptogenesis. Recently, it has been shown that microreactors composed of platinum nanoparticles (Pt-NP) and glutamate dehydrogenase possess in vitro and in vivo activity against excitotoxicity. This study investigates the in vivo effects of these microreactors in an animal model of epilepsy induced by the administration of the GABAergic antagonist bicuculline. Male Wistar rats were administered intracerebroventricularly (i.c.v.) with the microreactors or saline and, five days later, injected with bicuculline or saline. Seizure severity was evaluated in an open field. Thirty min after behavioral measurements, animals were euthanized, and their brains processed for neurodegeneration evaluation and for neurogenesis. Treatment with the microreactors significantly increased the time taken for the onset of seizures and for the first tonic-clonic seizure, when compared to the bicuculline group that did not receive the microreactor. The administration of the microreactors also increased the time spent in total exploration and grooming. Treatment with the microreactors decreased bicuculline-induced neurodegeneration and increased neurogenesis in the dorsal and ventral hippocampus. These observations suggest that treatment with Pt-NP-based microreactors attenuates the behavioral and neurobiological consequences of epileptiform seizure activity.
Collapse
Affiliation(s)
- Roberto N Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Patrícia S Carvalhinho-Lopes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Carolina P F Carvalho
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Rafael Y S Hirata
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, Lisboa 1649-028, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, Lisboa 1649-028, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Adam Armada-Moreira
- Neuronal Dynamics Laboratory, Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, Trieste 265 - 34136, Italy
| | - Bárbara A Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Jéssica A Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Beatriz Soares-Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - José S de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - José Ronaldo Santos
- Departamento de Biociências, Universidade Federal de Sergipe, Rua Cláudio Batista, s/n, Cidade Nova Aracaju, Aracaju, Sergipe 49060-108, Brazil
| | - Alessandra M Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil.
| |
Collapse
|
33
|
Rosean S, Sosa EA, O'Shea D, Raj SM, Seoighe C, Greally JM. Regulatory landscape enrichment analysis (RLEA): a computational toolkit for non-coding variant enrichment and cell type prioritization. BMC Bioinformatics 2024; 25:179. [PMID: 38714913 PMCID: PMC11075237 DOI: 10.1186/s12859-024-05794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND As genomic studies continue to implicate non-coding sequences in disease, testing the roles of these variants requires insights into the cell type(s) in which they are likely to be mediating their effects. Prior methods for associating non-coding variants with cell types have involved approaches using linkage disequilibrium or ontological associations, incurring significant processing requirements. GaiaAssociation is a freely available, open-source software that enables thousands of genomic loci implicated in a phenotype to be tested for enrichment at regulatory loci of multiple cell types in minutes, permitting insights into the cell type(s) mediating the studied phenotype. RESULTS In this work, we present Regulatory Landscape Enrichment Analysis (RLEA) by GaiaAssociation and demonstrate its capability to test the enrichment of 12,133 variants across the cis-regulatory regions of 44 cell types. This analysis was completed in 134.0 ± 2.3 s, highlighting the efficient processing provided by GaiaAssociation. The intuitive interface requires only four inputs, offers a collection of customizable functions, and visualizes variant enrichment in cell-type regulatory regions through a heatmap matrix. GaiaAssociation is available on PyPi for download as a command line tool or Python package and the source code can also be installed from GitHub at https://github.com/GreallyLab/gaiaAssociation . CONCLUSIONS GaiaAssociation is a novel package that provides an intuitive and efficient resource to understand the enrichment of non-coding variants across the cis-regulatory regions of different cells, empowering studies seeking to identify disease-mediating cell types.
Collapse
Affiliation(s)
- Samuel Rosean
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eric A Sosa
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dónal O'Shea
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Srilakshmi M Raj
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Cathal Seoighe
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
34
|
Juliá-Palacios N, Olivella M, Sigatullina Bondarenko M, Ibáñez-Micó S, Muñoz-Cabello B, Alonso-Luengo O, Soto-Insuga V, García-Navas D, Cuesta-Herraiz L, Andreo-Lillo P, Aguilera-Albesa S, Hedrera-Fernández A, González Alguacil E, Sánchez-Carpintero R, Martín Del Valle F, Jiménez González E, Cean Cabrera L, Medina-Rivera I, Perez-Ordoñez M, Colomé R, Lopez L, Engracia Cazorla M, Fornaguera M, Ormazabal A, Alonso-Colmenero I, Illescas KS, Balsells-Mejía S, Mari-Vico R, Duffo Viñas M, Cappuccio G, Terrone G, Romano R, Manti F, Mastrangelo M, Alfonsi C, de Siqueira Barros B, Nizon M, Gjerulfsen CE, Muro VL, Karall D, Zeiner F, Masnada S, Peterlongo I, Oyarzábal A, Santos-Gómez A, Altafaj X, García-Cazorla Á. L-serine treatment in patients with GRIN-related encephalopathy: a phase 2A, non-randomized study. Brain 2024; 147:1653-1666. [PMID: 38380699 DOI: 10.1093/brain/awae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
GRIN-related disorders are rare developmental encephalopathies with variable manifestations and limited therapeutic options. Here, we present the first non-randomized, open-label, single-arm trial (NCT04646447) designed to evaluate the tolerability and efficacy of L-serine in children with GRIN genetic variants leading to loss-of-function. In this phase 2A trial, patients aged 2-18 years with GRIN loss-of-function pathogenic variants received L-serine for 52 weeks. Primary end points included safety and efficacy by measuring changes in the Vineland Adaptive Behavior Scales, Bayley Scales, age-appropriate Wechsler Scales, Gross Motor Function-88, Sleep Disturbance Scale for Children, Pediatric Quality of Life Inventory, Child Behavior Checklist and the Caregiver-Teacher Report Form following 12 months of treatment. Secondary outcomes included seizure frequency and intensity reduction and EEG improvement. Assessments were performed 3 months and 1 day before starting treatment and 1, 3, 6 and 12 months after beginning the supplement. Twenty-four participants were enrolled (13 males/11 females, mean age 9.8 years, SD 4.8), 23 of whom completed the study. Patients had GRIN2B, GRIN1 and GRIN2A variants (12, 6 and 5 cases, respectively). Their clinical phenotypes showed 91% had intellectual disability (61% severe), 83% had behavioural problems, 78% had movement disorders and 58% had epilepsy. Based on the Vineland Adaptive Behavior Composite standard scores, nine children were classified as mildly impaired (cut-off score > 55), whereas 14 were assigned to the clinically severe group. An improvement was detected in the Daily Living Skills domain (P = 0035) from the Vineland Scales within the mild group. Expressive (P = 0.005), Personal (P = 0.003), Community (P = 0.009), Interpersonal (P = 0.005) and Fine Motor (P = 0.031) subdomains improved for the whole cohort, although improvement was mostly found in the mild group. The Growth Scale Values in the Cognitive subdomain of the Bayley-III Scale showed a significant improvement in the severe group (P = 0.016), with a mean increase of 21.6 points. L-serine treatment was associated with significant improvement in the median Gross Motor Function-88 total score (P = 0.002) and the mean Pediatric Quality of Life total score (P = 0.00068), regardless of severity. L-serine normalized the EEG pattern in five children and the frequency of seizures in one clinically affected child. One patient discontinued treatment due to irritability and insomnia. The trial provides evidence that L-serine is a safe treatment for children with GRIN loss-of-function variants, having the potential to improve adaptive behaviour, motor function and quality of life, with a better response to the treatment in mild phenotypes.
Collapse
Affiliation(s)
- Natalia Juliá-Palacios
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Mireia Olivella
- Bioinformatics and Bioimaging Group. Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, 08500 Vic, Spain
- Institute for Research and Innovation in Life and Health Sciences (IRIS-CC), University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - Mariya Sigatullina Bondarenko
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | | | - Beatriz Muñoz-Cabello
- Department of Pediatrics, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Olga Alonso-Luengo
- Department of Pediatrics, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | | | - Deyanira García-Navas
- Department of Pediatric Neurology, Complejo Hospitalario Universitario de Cáceres, 10003 Cáceres, Spain
| | | | - Patricia Andreo-Lillo
- Neuropediatric Unit, Pediatric Department, University Hospital of Sant Joan d'Alacant, 03550 Sant Joan d'Alacant, Spain
| | - Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Pediatrics, Hospital Universitario de Navarra, 31008, Pamplona, Spain
| | - Antonio Hedrera-Fernández
- Child Neurology Unit, Pediatrics Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | | | | | | | | | - Ines Medina-Rivera
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Marta Perez-Ordoñez
- Child and Adolescent Mental Health Area, Psychiatry and Psychology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Roser Colomé
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Laura Lopez
- Department of Rehabilitation, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - María Engracia Cazorla
- Department of Rehabilitation, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Montserrat Fornaguera
- Department of Rehabilitation, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Aida Ormazabal
- Department of Clinical Biochemistry, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- European Reference Network for Hereditary Metabolic Diseases (MetabERN), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Itziar Alonso-Colmenero
- Pediatric Neurology Department, Hospital Sant Joan de Déu, Full Member of ERN EpiCare, Barcelona University, 08950 Barcelona, Spain
| | - Katia Sofía Illescas
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Sol Balsells-Mejía
- Department of Research Promotion and Management. Statistical Support, Hospital Sant Joan de Déu (HSJD), 08950 Barcelona, Spain
| | - Rosanna Mari-Vico
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Maria Duffo Viñas
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
- Child and Adolescent Mental Health Area, Psychiatry and Psychology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Gerarda Cappuccio
- Department of Translational Medical Sciences, Università degli Studi di Napoli 'Federico II', 80125 Naples, Italy
- Telethon Institute of Genetics and Medicine, Department of Pediatrics, Pozzuoli, 80131 Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Università degli Studi di Napoli 'Federico II', 80125 Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Università degli Studi di Napoli 'Federico II', 80125 Naples, Italy
| | - Filippo Manti
- Department of Human Neuroscience, University of Rome La Sapienza, 00185 Roma, Lazio, Italy
| | - Mario Mastrangelo
- Department of Women and Child Health and Uroginecological Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Child Neurology and Psychiatry Unit, Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Chiara Alfonsi
- Department of Human Neuroscience, University of Rome La Sapienza, 00185 Roma, Lazio, Italy
| | - Bruna de Siqueira Barros
- Núcleo de Estudos da Saúde do Adolescente, Programa de Pós-Graduação em Ciências Médicas, Universidade do Estado do Rio de Janeiro, Faculdade de Ciência Médicas, 56066 Rio de Janeiro, RJ, Brazil
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 44093 Nantes, France
| | | | - Valeria L Muro
- Pediatric Neurology Unit, Hospital Britanico Buenos Aires, C1280AEB Buenos Aires, Argentina
| | - Daniela Karall
- Clinic for Paediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Fiona Zeiner
- Clinic for Paediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Silvia Masnada
- Department of Child Neurology, V. Buzzi Children's Hospital, 20125 Milan, Italy
| | - Irene Peterlongo
- Department of Child Neurology, V. Buzzi Children's Hospital, 20125 Milan, Italy
| | - Alfonso Oyarzábal
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Ana Santos-Gómez
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Xavier Altafaj
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Ángeles García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| |
Collapse
|
35
|
Brunetti V, Soda T, Berra-Romani R, De Sarro G, Guerra G, Scarpellino G, Moccia F. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age. Biomedicines 2024; 12:880. [PMID: 38672234 PMCID: PMC11048239 DOI: 10.3390/biomedicines12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88110 Catanzaro, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
36
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
37
|
Boleti APDA, Cardoso PHDO, Frihling BEF, de Moraes LFRN, Nunes EAC, Mukoyama LTH, Nunes EAC, Carvalho CME, Macedo MLR, Migliolo L. Pathophysiology to Risk Factor and Therapeutics to Treatment Strategies on Epilepsy. Brain Sci 2024; 14:71. [PMID: 38248286 PMCID: PMC10813806 DOI: 10.3390/brainsci14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Epilepsy represents a condition in which abnormal neuronal discharges or the hyperexcitability of neurons occur with synchronicity, presenting a significant public health challenge. Prognostic factors, such as etiology, electroencephalogram (EEG) abnormalities, the type and number of seizures before treatment, as well as the initial unsatisfactory effects of medications, are important considerations. Although there are several third-generation antiepileptic drugs currently available, their multiple side effects can negatively affect patient quality of life. The inheritance and etiology of epilepsy are complex, involving multiple underlying genetic and epigenetic mechanisms. Different neurotransmitters play crucial roles in maintaining the normal physiology of different neurons. Dysregulations in neurotransmission, due to abnormal transmitter levels or changes in their receptors, can result in seizures. In this review, we address the roles played by various neurotransmitters and their receptors in the pathophysiology of epilepsy. Furthermore, we extensively explore the neurological mechanisms involved in the development and progression of epilepsy, along with its risk factors. Furthermore, we highlight the new therapeutic targets, along with pharmacological and non-pharmacological strategies currently employed in the treatment of epileptic syndromes, including drug interventions employed in clinical trials related to epilepsy.
Collapse
Affiliation(s)
- Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Luiz Filipe Ramalho Nunes de Moraes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Ellynes Amancio Correia Nunes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Lincoln Takashi Hota Mukoyama
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Ellydberto Amancio Correia Nunes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Cristiano Marcelo Espinola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
38
|
Rodrigues TCML, Dias AL, dos Santos AMF, Messias Monteiro AF, Oliveira MCN, Oliveira Pires HF, de Sousa NF, Salvadori MGDSS, Scotti MT, Scotti L. Multi-target Phenylpropanoids Against Epilepsy. Curr Neuropharmacol 2024; 22:2168-2190. [PMID: 38847378 PMCID: PMC11337686 DOI: 10.2174/1570159x22666240524160126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 06/13/2024] Open
Abstract
Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Aline Matilde Ferreira dos Santos
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Alex France Messias Monteiro
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Mayara Cecile Nascimento Oliveira
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | | | - Marcus Tullius Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
- Teaching and Research Management, University Hospital Lauro Wanderley, Federal University of Paraíba, 58050-585, João Pessoa, PB, Brazil
| |
Collapse
|
39
|
Muhammad A, Hamman LL, Chiroma SM, Attah MOO, Dibal NI. Adansonia digitata L. Stem Bark Attenuates Epileptic Seizure, Depression, and Neurodegeneration by Mediating GABA and Glutamate in Pentylenetetrazol-Kindled Rats. J Pharmacopuncture 2023; 26:327-337. [PMID: 38162471 PMCID: PMC10739472 DOI: 10.3831/kpi.2023.26.4.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives Epilepsy is a neurological condition characterized by repeated seizures attributable to synchronous neuronal activity in the brain. The study evaluated the effect of acetone extract of Adansonia digitata stem bark (ASBE) on seizure score, cognition, depression, and neurodegeneration as well as the level of Gamma-Aminobutyrate acid (GABA) and glutamate in Pentylenetetrazol-kindled rats. Methods Thirty-five rats were assigned into five groups (n = 7). Groups 1-2 received normal saline and 35 mg/kg PTZ every other day. Groups 3-4 received 125 mg/kg and 250 mg/kg ASBE orally while group 5 received 5 mg/kg diazepam daily for twenty-six days. Group 3-5 received PTZ every other day, 30 mins after ASBE and diazepam. Results The results showed that Pentylenetetrazol (PTZ) induces seizure, reduces mobility time in force swim test and decreases the normal cell number in the brain. It also significantly decreases (p < 0.05) catalase, superoxide dismutase and reduced glutathione activities compared to the ASBE pre-treated rats. Pre-treatment with ASBE reportedly decreases seizure activities significantly (p < 0.05) and increases mobility time in the force swim test. ASBE also significantly elevate (p < 0.05) the normal cell number in the hippocampus, temporal lobe, and dentate gyrus. Conclusion ASBE reduced seizure activity and prevented depression in PTZ-treated rats. It also prevented neurodegeneration by regulating glutamate and GABA levels in the brain as well as preventing lipid peroxidation.
Collapse
Affiliation(s)
- Adamu Muhammad
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Nigeria
| | | | - Samaila Musa Chiroma
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Nigeria
- Anatomy Working Group, Newcastle University Medicine Malaysia, Johor, Malaysia
| | - Martha Orendu Oche Attah
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Nigeria
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Nathan Isaac Dibal
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
40
|
Varlamova EG, Borisova EV, Evstratova YA, Newman AG, Kuldaeva VP, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy. Int J Mol Sci 2023; 24:17104. [PMID: 38069426 PMCID: PMC10707124 DOI: 10.3390/ijms242317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Ekaterina V. Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Yuliya A. Evstratova
- Federal State Budgetary Educational Institution of Higher Education “MIREA—Russian Technological University”, 78, Vernadskogo Ave., 119454 Moscow, Russia;
| | - Andrew G. Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Victor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Alexey A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| |
Collapse
|
41
|
Faizan M, Jahan I, Ishaq M, Alhalmi A, Khan R, Noman OM, Hasson S, Mothana RA. Neuroprotective effects of trigonelline in kainic acid-induced epilepsy: Behavioral, biochemical, and functional insights. Saudi Pharm J 2023; 31:101843. [PMID: 37961069 PMCID: PMC10638067 DOI: 10.1016/j.jsps.2023.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Trigonelline, an alkaloid found in the seeds of Trigonella foenum-graecum L. (fenugreek), has been recognized for its potential in treating various diseases. Notably, trigonelline has demonstrated a neuroprotective impact by reducing intrasynaptosomal calcium levels, inhibiting the production of reactive oxygen species (ROS), and regulating cytokines. Kainic acid, an agonist of kainic acid receptors, is utilized for inducing temporal lobe epilepsy and is a common choice for establishing kainic acid-induced status epilepticus, a widely used epileptic model. The neuroprotective effect of trigonelline in the context of kainic acid-induced epilepsy remains unexplored. This study aimed to induce epilepsy by administering kainic acid (10 mg/kg, single subcutaneous dose) and subsequently evaluate the potential anti-epileptic effect of trigonelline (100 mg/kg, intraperitoneal administration for 14 days). Ethosuccimide (ETX) (187.5 mg/kg) served as the standard drug for comparison. The anti-epileptic effect of trigonelline over a 14-day administration period was examined. Behavioral assessments, such as the Novel Object Recognition (NOR) test, Open Field Test (OFT), and Plus Maze tests, were conducted 2 h after kainic acid administration to investigate spatial and non-spatial acquisition abilities in rats. Additionally, biochemical analysis encompassing intrasynaptosomal calcium levels, LDH activity, serotonin levels, oxidative indicators, and inflammatory cytokines associated with inflammation were evaluated. Trigonelline exhibited significant behavioral improvements by reducing anxiety in open field and plus maze tests, along with an amelioration of memory impairment. Notably, trigonelline substantially lowered intrasynaptosomal calcium levels and LDH activity, indicating its neuroprotective effect by mitigating cytotoxicity and neuronal injury within the hippocampus tissue. Moreover, trigonelline demonstrated a remarkable reduction in inflammatory cytokines and oxidative stress indicators. In summary, this study underscores the potential of trigonelline as an anti-epileptic agent in the context of kainic acid-induced epilepsy. The compound exhibited beneficial effects on behavior, neuroprotection, and inflammation, shedding light on its therapeutic promise for epilepsy management.
Collapse
Affiliation(s)
- Mohammad Faizan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Iram Jahan
- Department of Physiology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Ishaq
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
42
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
43
|
Díaz-Rodríguez SM, Ivorra I, Espinosa J, Vegar C, Herrero-Turrión MJ, López DE, Gómez-Nieto R, Alberola-Die A. Enhanced Membrane Incorporation of H289Y Mutant GluK1 Receptors from the Audiogenic Seizure-Prone GASH/Sal Model: Functional and Morphological Impacts on Xenopus Oocytes. Int J Mol Sci 2023; 24:16852. [PMID: 38069190 PMCID: PMC10706347 DOI: 10.3390/ijms242316852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte's membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model.
Collapse
Affiliation(s)
- Sandra M. Díaz-Rodríguez
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Isabel Ivorra
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| | - Javier Espinosa
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| | - Celia Vegar
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| | - M. Javier Herrero-Turrión
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
- Neurological Tissue Bank INCYL (BTN-INCYL), University of Salamanca, E-37007 Salamanca, Spain
| | - Dolores E. López
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Armando Alberola-Die
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| |
Collapse
|
44
|
Santibáñez A, Jiménez-Ferrer E, Angulo-Bejarano PI, Sharma A, Herrera-Ruiz M. Coriandrum sativum and Its Utility in Psychiatric Disorders. Molecules 2023; 28:5314. [PMID: 37513187 PMCID: PMC10385770 DOI: 10.3390/molecules28145314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The negative impact on worldwide social well-being by the increasing rate of psychiatric diseases has led to a continuous new drug search. Even though the current therapeutic options exert their activity on multiple neurological targets, these have various adverse effects, causing treatment abandonment. Recent research has shown that Coriandrum sativum offers a rich source of metabolites, mainly terpenes and flavonoids, as useful agents against central nervous system disorders, with remarkable in vitro and in vivo activities on models related to these pathologies. Furthermore, studies have revealed that some compounds exhibit a chemical interaction with γ-aminobutyric acid, 5-hydroxytryptamine, and N-methyl-D-aspartate receptors, which are key components in the pathophysiology associated with psychiatric and neurological diseases. The current clinical evaluations of standardized extracts of C. sativum are scarce; however, one or more of its compounds represents an area of opportunity to test the efficacy of the plant as an anxiolytic, antidepressant, antiepileptic, or sleep enhancer. For this, the aim of the review was based on the pharmacological activities offered by the compounds identified and isolated from coriander and the processes involved in achieving their effect. In addition, lines of technological research, like molecular docking and nanoparticles, are proposed for the future development of phytomedicines, based on the bioactive molecules of C. sativum, for the treatment of psychiatric and neurological disorders addressed in the present study.
Collapse
Affiliation(s)
- Anislada Santibáñez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| | - Paola Isabel Angulo-Bejarano
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Ashutosh Sharma
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| |
Collapse
|
45
|
Phoswa WN, Mokgalaboni K. Immunological Imbalances Associated with Epileptic Seizures in Type 2 Diabetes Mellitus. Brain Sci 2023; 13:brainsci13050732. [PMID: 37239204 DOI: 10.3390/brainsci13050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE OF THE REVIEW Type 2 diabetes mellitus (T2DM) is a global health burden that leads to an increased morbidity and mortality rate arising from microvascular and macrovascular complications. Epilepsy leads to complications that cause psychological and physical distress to patients and carers. Although these conditions are characterized by inflammation, there seems to be a lack of studies that have evaluated inflammatory markers in the presence of both conditions (T2DM and epilepsy), especially in low-middle-income countries where T2DM is epidemic. Summary findings: In this review, we describe the role of immunity in the seizure generation of T2DM. Current evidence shows an increase in the levels of biomarkers such as interleukin (IL-1β, IL-6, and IL-8), tumour necrosis factor-α (TNF-α), high mobility group box-1 (HMGB1), and toll-like receptors (TLRs) in epileptic seizures and T2DM. However, there is limited evidence to show a correlation between inflammatory markers in the central and peripheral levels of epilepsy. CONCLUSIONS Understanding the pathophysiological mechanism behind epileptic seizures in T2DM through an investigation of immunological imbalances might improve diagnosis and further counter the risks of developing complications. This might also assist in delivering safe and effective therapies to T2DM patients affected, thus reducing morbidity and mortality by preventing or reducing associated complications. Moreover, this review also provides an overview approach on inflammatory cytokines that can be targeted when developing alternative therapies, in case these conditions coexist.
Collapse
Affiliation(s)
- Wendy N Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| |
Collapse
|