1
|
Meroni M, Dongiovanni P, Tiano F, Piciotti R, Alisi A, Panera N. β-Klotho as novel therapeutic target in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A narrative review. Biomed Pharmacother 2024; 180:117608. [PMID: 39490050 DOI: 10.1016/j.biopha.2024.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) represents the most frequent cause of hepatic disorder, and its progressive form defined as Metabolic Dysfunction-Associated Steatohepatitis (MASH) contributes to the development of fibrosis/cirrhosis and hepatocellular carcinoma (HCC). Today effective therapeutic strategies addressing MASH-related comorbidities, inflammation, and fibrosis are needed. The fibroblast growth factor (FGF) 19 and 21 and their fibroblast growth factor receptor/β-Klotho (KLB) complexes have recently emerged as promising druggable targets for MASLD. However, less is known regarding the causative association between KLB activity and advanced stages of liver disease. In the present narrative review, we aimed to provide an up-to-date picture of the role of the KLB co-receptor in MASLD development and progression. We performed a detailed analysis of recently published preclinical and clinical data to decipher the molecular mechanisms underlying KLB function and to correlate the presence of inherited or acquired KLB aberrancies with the predisposition towards MASLD. Moreover, we described ongoing clinical trials evaluating the therapeutic approaches targeting FGF19-21/FGFR/KLB in patients with MASLD and discussed the challenges related to their use. We furtherly described that KLB exhibits protective effects against metabolic disorders by acting in an FGF-dependent and independent manner thus triggering the hypothesis that KLB soluble forms may play a critical role in preserving liver health. Therefore, targeting KLB may provide promising strategies for treating MASLD, as supported by experimental evidence and ongoing clinical trials.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Francesca Tiano
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberto Piciotti
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Nadia Panera
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Amini-Salehi E, Letafatkar N, Norouzi N, Joukar F, Habibi A, Javid M, Sattari N, Khorasani M, Farahmand A, Tavakoli S, Masoumzadeh B, Abbaspour E, Karimzad S, Ghadiri A, Maddineni G, Khosousi MJ, Faraji N, Keivanlou MH, Mahapatro A, Gaskarei MAK, Okhovat P, Bahrampourian A, Aleali MS, Mirdamadi A, Eslami N, Javid M, Javaheri N, Pra SV, Bakhsi A, Shafipour M, Vakilpour A, Ansar MM, Kanagala SG, Hashemi M, Ghazalgoo A, Kheirandish M, Porteghali P, Heidarzad F, Zeinali T, Ghanaei FM, Hassanipour S, Ulrich MT, Melson JE, Patel D, Nayak SS. Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis comprising a Population of 78 million from 38 Countries. Arch Med Res 2024; 55:103043. [PMID: 39094335 DOI: 10.1016/j.arcmed.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a global health challenge, with a rising rate in line with other metabolic diseases. We aimed to assess the global prevalence of NAFLD in adult and pediatric populations. METHODS PubMed, Scopus and Web of Science databases were systematically searched up to May 2023. Heterogeneity was assessed using Cochran's Q test and I2 statistics, and random-effects model was used for meta-analysis. Analyses were performed using STATA version 18. RESULTS A total of 479 studies with 78,001,755 participants from 38 countries were finally included. The global prevalence of NAFLD was estimated to be 30.2% (95% CI: 28.7-31.7%). Regionally, the prevalence of NAFLD was as follows: Asia 30.9% (95% CI: 29.2-32.6%), Australia 16.1% (95% CI: 9.0-24.8%), Europe 30.2% (95% CI: 25.6-35.0%), North America 29% (95% CI: 25.8-32.3%), and South America 34% (95% CI: 16.9-53.5%). Countries with a higher human development index (HDI) had significantly lower prevalence of NAFLD (coefficient = -0.523, p = 0.005). Globally, the prevalence of NAFLD in men and women was 36.6% (95% CI: 34.7-38.4%) and 25.5% (95% CI: 23.9-27.1%), respectively. The prevalence of NAFLD in adults, adults with obesity, children, and children with obesity was 30.2% (95% CI: 28.8-31.7%), 57.5% (95% CI: 43.6-70.9%), 14.3% (95% CI: 10.3-18.8%), and 38.0% (95% CI: 31.5-44.7%), respectively. CONCLUSION The prevalence of NAFLD is remarkably high, particularly in countries with lower HDI. This substantial prevalence in both adults and children underscores the need for disease management protocols to reduce the burden.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Khorasani
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Farahmand
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Shervin Tavakoli
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Behnaz Masoumzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Elaheh Abbaspour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Radiology, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sahand Karimzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghadiri
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Gautam Maddineni
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Mohammad Javad Khosousi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Abinash Mahapatro
- Department of Internal Medicine, Hi-Tech Medical College and Hospital, Rourkela, Odisha, India
| | | | - Paria Okhovat
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Bahrampourian
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohamadreza Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naz Javaheri
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Arash Bakhsi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shafipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Vakilpour
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Malek Moein Ansar
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Biochemistry and Medical Physics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohamad Hashemi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arezoo Ghazalgoo
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Kheirandish
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parham Porteghali
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Taraneh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Michael T Ulrich
- Department of Internal Medicine, Riverside University Health System Medical Center, Moreno Valley, CA, USA
| | - Joshua E Melson
- Division of Gastroenterology, Department of Medicine, University of Arizona Medical Center-Banner Health, Tucson, AZ, USA
| | - Dhruvan Patel
- Division of Gastroenterology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
3
|
Dong W, Lu J, Li Y, Zeng J, Du X, Yu A, Zhao X, Chi F, Xi Z, Cao S. SIRT1: a novel regulator in colorectal cancer. Biomed Pharmacother 2024; 178:117176. [PMID: 39059350 DOI: 10.1016/j.biopha.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The class-III histone deacetylase SIRT1 is the most extensively investigated sirtuin deacetylase. It is resistant to the broad deacetylase inhibitor trichostatin A and depends on oxidized nicotinamide adenine nucleotide (NAD+). SIRT1 plays a crucial role in the tumorigenesis of numerous types of cancers, including colorectal cancer (CRC). Accumulating evidence indicates that SIRT1 is a therapeutic target for CRC; however, the function and underlying mechanism of SIRT1 in CRC still need to be elucidated. Herein, we provide a detailed and updated review to illustrate that SIRT1 regulates many processes that go awry in CRC cells, such as apoptosis, autophagy, proliferation, migration, invasion, metastasis, oxidative stress, resistance to chemo-radio therapy, immune evasion, and metabolic reprogramming. Moreover, we closely link our review to the clinical practice of CRC treatment, summarizing the mechanisms and prospects of SIRT1 inhibitors in CRC therapy. SIRT1 inhibitors as monotherapy in CRC or in combination with chemotherapy, radiotherapy, and immune therapies are comprehensively discussed. From epigenetic regulation to its potential therapeutic effect, we hope to offer novel insights and a comprehensive understanding of SIRT1's role in CRC.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - You Li
- Nursing Department, Liaoning Jinqiu Hospital, Shenyang, Liaoning Province 110016, China
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xiaoyun Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Ao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xuechan Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Shuo Cao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
4
|
Faccioli LA, Sun Y, Animasahun O, Motomura T, Liu Z, Kurihara T, Hu Z, Yang B, Cetin Z, Baratta AM, Shankaran A, Nenwani M, Altay LN, Huang L, Meurs N, Franks J, Stolz D, Gavlock DC, Miedel MT, Ostrowska A, Florentino RM, Fox IJ, Nagrath D, Soto-Gutierrez A. Human induced pluripotent stem cell based hepatic-modeling of lipid metabolism associated TM6SF2 E167K variant. Hepatology 2024:01515467-990000000-01008. [PMID: 39190693 DOI: 10.1097/hep.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND AND AIMS TM6SF2 rs58542926 (E167K) is related to increased prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD). Conflicting mouse study results highlight the need for a human model to understand this mutation's impact. This study aims to create and characterize a reliable human in vitro model to mimic the effects of the TM6SF2-E167K mutation for future studies. APPROACH AND RESULTS We used gene editing on human human-induced pluripotent stem cells (iPSC) from a healthy individual to create cells with the TM6SF2-E167K mutation. After hepatocyte directed differentiation, we observed decreased TM6SF2 protein expression, increased intracellular lipid droplets and total cholesterol in addition to reduced VLDL secretion. Transcriptomics revealed upregulation of genes involved in lipid, fatty acid, and cholesterol transport, flux, and oxidation. Global lipidomics showed increased lipid classes associated with ER stress, mitochondrial dysfunction, apoptosis, and lipid metabolism. Additionally, the TM6SF2-E167K mutation conferred a pro-inflammatory phenotype with signs of mitochondria and ER stress. Importantly, by facilitating protein folding within the ER of hepatocytes carrying TM6SF2-E167K mutation, VLDL secretion and ER stress markers improved. CONCLUSIONS Our findings indicate that induced hepatocytes generated from iPSCs carrying the TM6SF2-E167K recapitulate the effects observed in human hepatocytes from individuals with the TM6SF2 mutation. This study characterizes an in vitro model that can be used as a platform to identify potential clinical targets and highlights the therapeutic potential of targeting protein misfolding to alleviate ER stress and mitigate the detrimental effects of the TM6SF2-E167K mutation on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lanuza Ap Faccioli
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiyue Sun
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, PRC
| | - Olamide Animasahun
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhenghao Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takeshi Kurihara
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo Yang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M Baratta
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ajay Shankaran
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI
| | - Minal Nenwani
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Leyla Nurcihan Altay
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI
| | - Linqi Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI
| | - Noah Meurs
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donna Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dillon C Gavlock
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark T Miedel
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Longo M, Paolini E, Di Benedetto P, Tomassini E, Meroni M, Dongiovanni P. DGAT1 and DGAT2 Inhibitors for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Management: Benefits for Their Single or Combined Application. Int J Mol Sci 2024; 25:9074. [PMID: 39201759 PMCID: PMC11354429 DOI: 10.3390/ijms25169074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Inhibiting diacylglycerol acetyltransferase (DGAT1, DGAT2) enzymes (iDGAT1, iDGAT2), involved in triglyceride (TG) synthesis, improves hepatic steatosis in metabolic dysfunction-associated steatotic liver disease (MASLD) patients. However, their potential synergism in disease onset (SLD) and progression (metabolic dysfunction-associated steatohepatitis, fibrosis) has been poorly explored. We investigated iDGAT1 and iDGAT2 efficacy, alone or combined (iDGAT1/2) on fat accumulation and hepatocellular injury in hepatocytes (HepG2) and on fibrogenic processes in hepatic stellate cells (LX2). We further tested whether the addition of MitoQ antioxidant to iDGAT1/2 would enhance their effects. SLD and MASH conditions were reproduced in vitro by supplementing Dulbecco's Modified Eagle's Medium (DMEM) with palmitic/oleic acids (PAOA) alone (SLD-medium), or plus Lipopolisaccaride (LPS), fructose, and glucose (MASH-medium). In SLD-medium, iDGAT1 and iDGAT2 individually, and even more in combination, reduced TG synthesis in HepG2 cells. Markers of hepatocellular damage were slightly decreased after single iDGAT exposure. Conversely, iDGAT1/2 counteracted ER/oxidative stress and inflammation and enhanced mitochondrial Tricarboxylic acid cycle (TCA) and respiration. In HepG2 cells under a MASH-like condition, only iDGAT1/2 effectively ameliorated TG content and oxidative and inflammatory mediators, further improving bioenergetic balance. LX2 cells, challenged with SLD/MASH media, showed less proliferation and slower migration rates in response to iDGAT1/2 drugs. MitoQ combined with iDGAT1/2 improved cell viability and dampened free fatty acid release by stimulating β-oxidation. Dual DGAT inhibition combined with antioxidants open new perspectives for MASLD management.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.L.); (E.P.); (P.D.B.); (E.T.); (M.M.)
| |
Collapse
|
6
|
Govardhan B, Anand VK, Nagaraja Rao P, Balachandran Menon P, Mithun S, Sasikala M, Sowmya T, Anuradha S, Smita CP, Nageshwar Reddy D, Ravikanth V. 17-Beta-Hydroxysteroid Dehydrogenase 13 Loss of Function Does Not Confer Protection to Nonalcoholic Fatty Liver Disease in Indian Population. J Clin Exp Hepatol 2024; 14:101371. [PMID: 38523737 PMCID: PMC10956055 DOI: 10.1016/j.jceh.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Background A splice variant in HSD17B13 gene is demonstrated to protect against nonalcoholic fatty liver disease (NAFLD), and mitigate the effect of Patatin-like phospholipase domain-containing 3 (PNPLA3-I148M). It is being explored as a putative drug target and in polygenic risk scores. Based on whole exome sequencing (WES) in our cohort of biopsy proven NAFLD and limited data on the variant in our ethnicity, we sought to explore its role. Methods This is a cross-sectional study that recruited 1,020 individuals with ultrasound/biopsy-confirmed NAFLD and matched controls. Liver enzymes and lipid profiles were estimated (Beckman coulter LX750/DXH800); WES was performed in NAFLD patients and controls (Illumina; HiSeqX); HSD17B13-A-INS/I148M-PNPLA3 variants were genotyped (sequencing/qR T-PCR); HSD17B13 protein expression was estimated (immunohistochemistry); the Student's t-test/Mann-Whitney U/Chi-square test and odds ratio (95% confidence interval) were used. Results There was no significant difference (Odds ratio = 0.76; 95% CI -0.57 to 1.03; P = 0.76) in the frequency of the rs72613567-A-INS between controls and patients (17.8% vs. 14.4%). No difference in the ALT (Alanine transaminase; 72.24 ± 65.13 vs. 73.70 ± 60.06; P = 0.51) and AST levels (Aspartate aminotransferase; 60.72 ± 55.59 vs. 61.63 ± 60.33; P = 0.91) between HSD17B13-wild and variant carriers were noted. Significantly elevated liver enzymes were seen in PNPLA3-148-variant/HSD17B13-wild compared with PNPLA3-148-variant/HSD17B13-variant (90.44 ± 59.0 vs. 112.32 ± 61.78; P = 0.02). No difference in steatosis (P = 0.51) between HSD17B13-wild and variant carriers was noted. No other variants in the intron-exon boundaries were identified. Although, protein expression differences were noted between wild and variant carriers, no difference in the extent of steatosis was seen. Conclusion Our study reports lack of association of the splice variant with reduced risk of NAFLD, and mitigating the effect of PNPLA3 variant. Ethnicity-based validation must be carried out before including it in assessing protection against NAFLD.
Collapse
Affiliation(s)
- Bale Govardhan
- Asian Healthcare Foundation, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - V. Kulkarni Anand
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Padaki Nagaraja Rao
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - P. Balachandran Menon
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Sharma Mithun
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Mitnala Sasikala
- Asian Healthcare Foundation, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - T.R. Sowmya
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Sekaran Anuradha
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - C. Pawar Smita
- Department of Genetics, Osmania University, Hyderabad, Telangana 500032, India
| | - D. Nageshwar Reddy
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Vishnubhotla Ravikanth
- Asian Healthcare Foundation, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| |
Collapse
|
7
|
Galasso L, Cerrito L, Maccauro V, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. Inflammatory Response in the Pathogenesis and Treatment of Hepatocellular Carcinoma: A Double-Edged Weapon. Int J Mol Sci 2024; 25:7191. [PMID: 39000296 PMCID: PMC11241080 DOI: 10.3390/ijms25137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent among primary liver tumors (90%) and one of the main causes of cancer-related death. It develops usually in a chronically inflamed environment, ranging from compensatory parenchymal regeneration to fibrosis and cirrhosis: carcinogenesis can potentially happen in each of these stages. Inflammation determined by chronic viral infection (hepatitis B, hepatitis C, and hepatitis delta viruses) represents an important risk factor for HCC etiology through both viral direct damage and immune-related mechanisms. The deregulation of the physiological liver immunological network determined by viral infection can lead to carcinogenesis. The recent introduction of immunotherapy as the gold-standard first-line treatment for HCC highlights the role of the immune system and inflammation as a double-edged weapon in both HCC carcinogenesis and treatment. In this review we highlight how the inflammation is the key for the hepatocarcinogenesis in viral, alcohol and metabolic liver diseases.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
8
|
Li A, Wang R, Zhao Y, Zhao P, Yang J. Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites 2024; 14:325. [PMID: 38921460 PMCID: PMC11205353 DOI: 10.3390/metabo14060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Epigenetic and metabolic reprogramming alterations are two important features of tumors, and their reversible, spatial, and temporal regulation is a distinctive hallmark of carcinogenesis. Epigenetics, which focuses on gene regulatory mechanisms beyond the DNA sequence, is a new entry point for tumor therapy. Moreover, metabolic reprogramming drives hepatocellular carcinoma (HCC) initiation and progression, highlighting the significance of metabolism in this disease. Exploring the inter-regulatory relationship between tumor metabolic reprogramming and epigenetic modification has become one of the hot directions in current tumor metabolism research. As viral etiologies have given way to metabolic dysfunction-associated steatotic liver disease (MASLD)-induced HCC, it is urgent that complex molecular pathways linking them and hepatocarcinogenesis be explored. However, how aberrant crosstalk between epigenetic modifications and metabolic reprogramming affects MASLD-induced HCC lacks comprehensive understanding. A better understanding of their linkages is necessary and urgent to improve HCC treatment strategies. For this reason, this review examines the interwoven landscape of molecular carcinogenesis in the context of MASLD-induced HCC, focusing on mechanisms regulating aberrant epigenetic alterations and metabolic reprogramming in the development of MASLD-induced HCC and interactions between them while also updating the current advances in metabolism and epigenetic modification-based therapeutic drugs in HCC.
Collapse
Affiliation(s)
- Anqi Li
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuqiang Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Peiran Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Jing Yang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| |
Collapse
|
9
|
Chan KM, Rahem SM, Teo HO, Curcio J, Mushiyev S, Faillace R, Bochner R, Bargman R, Raiszadeh F. Understanding family dynamics of obesity: Do parents and children lose and gain weight together? Pediatr Obes 2024; 19:e13097. [PMID: 38583983 DOI: 10.1111/ijpo.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 04/09/2024]
Abstract
BACKGROUND Obesity is prevalent among children and adults. Yet, understanding the relationship between parent and child weight trajectories is limited. OBJECTIVE (1) Examine the association between parent/child undesirable body mass index (BMI) category change. (2) Assess whether parental BMI category predicts child modified BMI z-score (mBMIz) annual change. METHODS We conducted a cross-sectional study of weight trajectories of 3821 parent-child dyads between March 2020 and December 2021 within the NYC Health + Hospitals system. Undesirability of child and parental BMI category change and the magnitude of mBMIz change by parental BMI are analysed. RESULTS Of 3821 children (mean [SD] baseline age, 9.84 [3.51]), 1889 were female. Of the 3220 parents (mean [SD] baseline age, 39.9 [8.51]), 2988 were female. Most children (53.52%) and parents (81.94%) presented with overweight and obesity. Undesirable BMI change in children was associated with concordant change in parents (adjusted OR: 1.7, 95% CI [1.45, 2.01], adjusted p < 0.001). Children of parents with obesity (adjusted coef: 0.076, 95% CI [0.004, 0.147], p < 0.038) and severe obesity (adjusted coef: 0.1317, 95% CI [0.024, 0.239], adjusted p < 0.016) demonstrated greater change in mBMIz than those of parents with normal weight or underweight. CONCLUSION Parents and children have concordant weight trajectories, and public health interventions targeting both populations are essential.
Collapse
Affiliation(s)
- Karina M Chan
- California Northstate University College of Medicine, Department of Medicine, Elk Grove, California, USA
| | - Sarra M Rahem
- Department of Data Sciences and Support, NYC Health + Hospitals, Central Office, New York, New York, USA
| | - Hugo O Teo
- Department of Data Sciences and Support, NYC Health + Hospitals, Central Office, New York, New York, USA
| | - Joan Curcio
- Division of Hospital Medicine, Department of Medicine, NYC Health + Hospitals, Elmhurst Hospital Center, Elmhurst, New York, USA
| | - Savi Mushiyev
- Division of Cardiology, Department of Medicine, NYC Health + Hospitals, Metropolitan Hospital Center, New York, New York, USA
| | - Robert Faillace
- Division of Cardiology, Department of Medicine, NYC Health + Hospitals, Jacobi Medical Center, Bronx, New York, USA
| | - Risa Bochner
- Department of Pediatrics, NYC Health + Hospitals, Harlem Hospital Center, New York, New York, USA
| | - Renee Bargman
- Department of Pediatrics, NYC Health + Hospitals, Kings County Hospital, Brooklyn, New York, USA
- Department of Pediatrics, NYC Health + Hospitals, South Brooklyn Health, Brooklyn, New York, USA
| | - Farbod Raiszadeh
- Division of Cardiology, Department of Medicine, NYC Health + Hospitals, Harlem Hospital Center, New York, New York, USA
| |
Collapse
|
10
|
Meroni M, Longo M, Dongiovanni P. Cardiometabolic risk factors in MASLD patients with HCC: the other side of the coin. Front Endocrinol (Lausanne) 2024; 15:1411706. [PMID: 38846491 PMCID: PMC11153718 DOI: 10.3389/fendo.2024.1411706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) constitutes the commonest cause of chronic liver disorder worldwide, whereby affecting around one third of the global population. This clinical condition may evolve into Metabolic Dysfunction-Associated Steatohepatitis (MASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC), in a predisposed subgroup of patients. The complex pathogenesis of MASLD is severely entangled with obesity, dyslipidemia and type 2 diabetes (T2D), so far so nutritional and lifestyle recommendations may be crucial in influencing the risk of HCC and modifying its prognosis. However, the causative association between HCC onset and the presence of metabolic comorbidities is not completely clarified. Therefore, the present review aimed to summarize the main literature findings that correlate the presence of inherited or acquired hyperlipidemia and metabolic risk factors with the increased predisposition towards liver cancer in MASLD patients. Here, we gathered the evidence underlining the relationship between circulating/hepatic lipids, cardiovascular events, metabolic comorbidities and hepatocarcinogenesis. In addition, we reported previous studies supporting the impact of triglyceride and/or cholesterol accumulation in generating aberrancies in the intracellular membranes of organelles, oxidative stress, ATP depletion and hepatocyte degeneration, influencing the risk of HCC and its response to therapeutic approaches. Finally, our pursuit was to emphasize the link between HCC and the presence of cardiometabolic abnormalities in our large cohort of histologically-characterized patients affected by MASLD (n=1538), of whom 86 had MASLD-HCC by including unpublished data.
Collapse
|
11
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
12
|
Mahmoudi SK, Tarzemani S, Aghajanzadeh T, Kasravi M, Hatami B, Zali MR, Baghaei K. Exploring the role of genetic variations in NAFLD: implications for disease pathogenesis and precision medicine approaches. Eur J Med Res 2024; 29:190. [PMID: 38504356 PMCID: PMC10953212 DOI: 10.1186/s40001-024-01708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases, affecting more than one-quarter of people worldwide. Hepatic steatosis can progress to more severe forms of NAFLD, including NASH and cirrhosis. It also may develop secondary diseases such as diabetes and cardiovascular disease. Genetic and environmental factors regulate NAFLD incidence and progression, making it a complex disease. The contribution of various environmental risk factors, such as type 2 diabetes, obesity, hyperlipidemia, diet, and sedentary lifestyle, to the exacerbation of liver injury is highly understood. Nevertheless, the underlying mechanisms of genetic variations in the NAFLD occurrence or its deterioration still need to be clarified. Hence, understanding the genetic susceptibility to NAFLD is essential for controlling the course of the disease. The current review discusses genetics' role in the pathological pathways of NAFLD, including lipid and glucose metabolism, insulin resistance, cellular stresses, and immune responses. Additionally, it explains the role of the genetic components in the induction and progression of NAFLD in lean individuals. Finally, it highlights the utility of genetic knowledge in precision medicine for the early diagnosis and treatment of NAFLD patients.
Collapse
Affiliation(s)
- Seyedeh Kosar Mahmoudi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Taha Aghajanzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Mohammadreza Kasravi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review aims to discuss the most recent evidence exploring the role of lipid droplets in steatotic liver disease (SLD). We highlight the breadth of mechanisms by which lipid droplets may contribute to the progression of SLD with a particular focus on the role of lipid droplets as inducers of mechanical stress within hepatocytes and genetic mutations in lipid droplet associated proteins. Finally, this review provides an update on clinical trials exploring the therapeutic potential and strategies targeting lipid droplets. RECENT FINDINGS The size, composition and location of hepatic lipid droplets strongly influence the pathological role of these organelles in SLD. Emerging studies are beginning to elucidate the importance of lipid droplet induced hepatocyte mechanical stress. Novel strategies targeting lipid droplets, including the effects of lipid droplet associated protein mutations, show promising therapeutic potential. SUMMARY Much more than a histological feature, lipid droplets are complex heterogenous organelles crucial to cellular metabolism with important causative roles in the development and progression of SLD. Lipid droplet induced mechanical stress may exacerbate hepatic inflammation and fibrogenesis and potentially contribute to the development of a pro-carcinogenic hepatic environment. The integration of advancements in genetics and molecular biology in upcoming treatments aspires to transcend symptomatic alleviation and address the fundamental causes and pathological development of SLD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Choi YJ, Johnson JD, Lee JJ, Song J, Matthews M, Hellerstein MK, McWherter CA. Seladelpar combined with complementary therapies improves fibrosis, inflammation, and liver injury in a mouse model of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G120-G132. [PMID: 38014444 PMCID: PMC11208022 DOI: 10.1152/ajpgi.00158.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Seladelpar, a selective peroxisome proliferator-activated receptor δ (PPARδ) agonist, improves markers of hepatic injury in human liver diseases, but histological improvement of nonalcoholic steatohepatitis (NASH) and liver fibrosis has been challenging with any single agent. To discover how complementary agents could work with seladelpar to achieve optimal outcomes, this study evaluated a variety of therapeutics (alone and in combination) in a mouse model of NASH. Mice on a high-fat amylin liver NASH (AMLN) diet were treated for 12 wk with seladelpar, GLP-1-R (glucagon-like peptide-1 receptor) agonist liraglutide, apoptosis signal-regulating kinase 1 (ASK1) inhibitor selonsertib, farnesoid X receptor (FXR) agonist obeticholic acid, and with seladelpar in combination with liraglutide or selonsertib. Seladelpar treatment markedly improved plasma markers of liver function. Seladelpar alone or in combination resulted in stark reductions in liver fibrosis (hydroxyproline, new collagen synthesis rate, mRNA indices of fibrosis, and fibrosis staining) compared with vehicle and the other single agents. Robust reductions in liver steatosis were also observed. Seladelpar produced a reorganization of metabolic gene expression, particularly for those genes promoting peroxisomal and mitochondrial lipid oxidation. In summary, substantial improvements in NASH and NASH-induced fibrosis were observed with seladelpar alone and in combination with liraglutide in this model. Broad gene expression analysis suggests seladelpar should be effective in concert with diverse mechanisms of action.NEW & NOTEWORTHY NASH is a chronic, progressive, and increasingly problematic liver disease that has been resistant to treatment with individual therapeutics. In this study using a diet-induced mouse model of NASH, we found that the PPARδ agonist seladelpar reduced fibrosis and NASH pathology alone and in combinations with a GLP-1-R agonist (liraglutide) or an ASK1 inhibitor (selonsertib). Liver transcriptome analysis comparing each agent and coadministration suggests seladelpar should be effective in combination with a variety of therapeutics.
Collapse
Affiliation(s)
- Yun-Jung Choi
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Jeff D Johnson
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Jin-Ju Lee
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Jiangao Song
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Marcy Matthews
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, United States
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, United States
| | | |
Collapse
|
15
|
Bilson J, Mantovani A, Byrne CD, Targher G. Steatotic liver disease, MASLD and risk of chronic kidney disease. DIABETES & METABOLISM 2024; 50:101506. [PMID: 38141808 DOI: 10.1016/j.diabet.2023.101506] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
With the rising tide of fatty liver disease related to metabolic dysfunction worldwide, the association of this common liver disease with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the old term non-alcoholic fatty liver disease (NAFLD). In 2023, a modified Delphi process was led by three large pan-national liver associations. There was consensus to change the fatty liver disease nomenclature and definition to include the presence of at least one of five common cardiometabolic risk factors as diagnostic criteria. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). The change of nomenclature from NAFLD to MAFLD and then MASLD has resulted in a reappraisal of the epidemiological trends and associations with the risk of developing CKD. The observed association between MAFLD/MASLD and CKD and our understanding that CKD can be an epiphenomenon linked to underlying metabolic dysfunction support the notion that individuals with MASLD are at substantially higher risk of incident CKD than those without MASLD. This narrative review provides an overview of the literature on (a) the evolution of criteria for diagnosing this highly prevalent metabolic liver disease, (b) the epidemiological evidence linking MASLD to the risk of CKD, (c) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of developing CKD, and (d) the potential drug treatments that may benefit both MASLD and CKD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
16
|
Korpimäki S, Rovio SP, Juonala M, Hutri-Kähönen N, Lehtimäki T, Laitinen TP, Tossavainen P, Jokinen E, Loo BM, Männistö S, Tammelin T, Haarala A, Aatola H, Komar G, Viikari J, Raitakari O, Kähönen M, Pahkala K. Nonalcoholic Fatty Liver Disease Incidence and Remission and Their Predictors During 7 Years of Follow-up Among Finns. J Clin Endocrinol Metab 2023; 109:e291-e305. [PMID: 37463486 PMCID: PMC10735312 DOI: 10.1210/clinem/dgad418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
CONTEXT The incidence and remission of nonalcoholic fatty liver disease (NAFLD) are sparsely studied outside Asia. OBJECTIVE This prospective study aimed to investigate NAFLD incidence and remission, and their predictors among a general Finnish population. METHODS The applied cohort included 1260 repeatedly studied middle-aged participants with data on liver ultrasound and no excessive alcohol intake. Hepatic steatosis was assessed by liver ultrasound with a 7.2-year study interval. Comprehensive data on health parameters and lifestyle factors were available. RESULTS At baseline, 1079 participants did not have NAFLD, and during the study period 198 of them developed NAFLD. Of the 181 participants with NAFLD at baseline, 40 achieved NAFLD remission. Taking multicollinearity into account, key predictors for incident NAFLD were baseline age (odds ratio 1.07; 95% CI, 1.02-1.13; P = .009), waist circumference (WC) (2.77, 1.91-4.01 per 1 SD; P < .001), and triglycerides (2.31, 1.53-3.51 per 1 SD; P < .001) and alanine aminotransferase (ALAT) (1.90, 1.20-3.00 per 1 SD; P = .006) concentrations as well as body mass index (BMI) change (4.12, 3.02-5.63 per 1 SD; P < .001). Predictors of NAFLD remission were baseline aspartate aminotransferase (ASAT) concentration (0.23, 0.08-0.67 per 1 SD; P = .007) and WC change (0.38, 0.25-0.59 per 1 SD; P < .001). CONCLUSION During follow-up, NAFLD developed for every fifth participant without NAFLD at baseline, and one-fifth of those with NAFLD at baseline had achieved NAFLD remission. NAFLD became more prevalent during the follow-up period. From a clinical perspective, key factors predicting NAFLD incidence and remission were BMI and WC change independent of their baseline level.
Collapse
Affiliation(s)
- Satu Korpimäki
- Department of Clinical Physiology and Nuclear Medicine, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Markus Juonala
- Division of Medicine, Turku University Hospital, 20521 Turku, Finland
- Department of Medicine, University of Turku, 20500 Turku, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center—Tampere, Tampere University, 33100 Tampere, Finland
| | - Tomi P Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, 70211 Kuopio, Finland
| | - Päivi Tossavainen
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, MRC Oulu and Research Unit of Clinical Medicine, University of Oulu, 90220 Oulu, Finland
| | - Eero Jokinen
- Department of Pediatric Cardiology, Hospital for Children and Adolescents, University of Helsinki, 00290 Helsinki, Finland
| | - Britt-Marie Loo
- Joint Clinical Biochemistry Laboratory, Turku University Hospital and University of Turku, 20500 Turku, Finland
| | - Satu Männistö
- Department of Chronic Disease Prevention, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Tuija Tammelin
- Likes, School of Health and Social Studies, Jamk University of Applied Sciences, 40101 Jyväskylä, Finland
| | - Atte Haarala
- Department of Clinical Physiology and Nuclear Medicine, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Heikki Aatola
- Department of Clinical Physiology and Nuclear Medicine, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Gaber Komar
- Department of Radiology, Turku University Hospital, 20521 Turku, Finland
| | - Jorma Viikari
- Division of Medicine, Turku University Hospital, 20521 Turku, Finland
- Department of Medicine, University of Turku, 20500 Turku, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital and University of Turku, 20500 Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology and Nuclear Medicine, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland
- Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, 20500 Turku, Finland
| |
Collapse
|
17
|
Goble S, Akambase J, Prieto J, Balderramo D, Ferrer JD, Mattos AZ, Arrese M, Carrera E, Groothuismink ZMA, Oliveira J, Boonstra A, Debes JD. MBOAT7 rs641738 Variant Is Not Associated with an Increased Risk of Hepatocellular Carcinoma in a Latin American Cohort. Dig Dis Sci 2023; 68:4212-4220. [PMID: 37684433 PMCID: PMC10570183 DOI: 10.1007/s10620-023-08104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The rs641738 C > T single-nucleotide polymorphism of MBOAT7 has been associated with hepatocellular carcinoma (HCC) and nonalcoholic fatty liver disease (NAFLD). Latin Americans have high rates of HCC and NAFLD, but no assessment between MBOAT7 and HCC has been performed in this population. AIMS We provide the first assessment of the impact of MBOAT7 on HCC risk in Latin Americans. METHODS Patients were prospectively recruited into the ESCALON network, designed to collect samples from Latin American patients with HCC in 6 South American countries (Argentina, Ecuador, Brazil, Chile, Peru, and Colombia). A European cohort and the general Hispanic population of gnomAD database were included for comparison. Associations between HCC and MBOAT7 were evaluated using logistic regression. RESULTS In total, 310 cases of HCC and 493 cases of cirrhosis without HCC were assessed. The MBOAT7 TT genotype was not predictive of HCC in Latin Americans (TT vs CC OR adjusted = 1.15, 95% CI 0.66-2.01, p = 0.610) or Europeans (TT vs CC OR adjusted = 1.20, 95% CI 0.59-2.43, p = 0.621). No significant association was noted on subgroup analysis for NAFLD, viral hepatitis, or alcohol-related liver disease. The TT genotype was increased in the NAFLD-cirrhosis cohort of Latin Americans compared to a non-cirrhotic NAFLD cohort (TT vs CC + CT OR = 2.75, 95% CI 1.10-6.87, p = 0.031). CONCLUSION The rs631738 C > T allele of MBOAT7 was not associated with increased risk of HCC in Latin Americans or Europeans. An increase in the risk of cirrhosis was noted with the TT genotype in Latin Americans with NAFLD.
Collapse
Affiliation(s)
| | | | - Jhon Prieto
- Centro de Enfermedades Hepaticas y Digestives, Bogotá, Colombia
| | - Domingo Balderramo
- Department of Gastroenterology, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | | | - Angelo Z Mattos
- Graduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Enrique Carrera
- Departamento de Gastroenterologia y Hepatologia, Hospital Eugenio Espejo, Quito, Ecuador
| | - Zwier M A Groothuismink
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeffrey Oliveira
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jose D Debes
- Hennepin Healthcare, Minneapolis, MN, USA.
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Medicine, University of Minnesota, Mayo Memorial Building, MMC 250, 420 Delaware Street S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Struwe MA, Scheidig AJ, Clement B. The mitochondrial amidoxime reducing component-from prodrug-activation mechanism to drug-metabolizing enzyme and onward to drug target. J Biol Chem 2023; 299:105306. [PMID: 37778733 PMCID: PMC10637980 DOI: 10.1016/j.jbc.2023.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is one of five known molybdenum enzymes in eukaryotes. mARC belongs to the MOSC domain superfamily, a large group of so far poorly studied molybdoenzymes. mARC was initially discovered as the enzyme activating N-hydroxylated prodrugs of basic amidines but has since been shown to also reduce a variety of other N-oxygenated compounds, for example, toxic nucleobase analogs. Under certain circumstances, mARC might also be involved in reductive nitric oxide synthesis through reduction of nitrite. Recently, mARC enzymes have received a lot of attention due to their apparent involvement in lipid metabolism and, in particular, because many genome-wide association studies have shown a common variant of human mARC1 to have a protective effect against liver disease. The mechanism linking mARC enzymes with lipid metabolism remains unknown. Here, we give a comprehensive overview of what is currently known about mARC enzymes, their substrates, structure, and apparent involvement in human disease.
Collapse
Affiliation(s)
- Michel A Struwe
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany; Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Axel J Scheidig
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|
19
|
Meroni M, Dongiovanni P. PNPLA3 rs738409 Genetic Variant Inversely Correlates with Platelet Count, Thereby Affecting the Performance of Noninvasive Scores of Hepatic Fibrosis. Int J Mol Sci 2023; 24:15046. [PMID: 37894727 PMCID: PMC10606003 DOI: 10.3390/ijms242015046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Noninvasive tests (NITs) including platelets (PLTs) have been proposed to replace hepatic biopsy for the diagnosis of nonalcoholic fatty liver disease (NAFLD), or as more recently redefined, metabolic dysfunction-associated steatotic liver disease (MASLD). There has been reported an inverse correlation between PLTs and progressive MASLD, which is also affected by the patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 C>G mutation. However, the correlation between low PLTs and PNPLA3 genotype has been poorly investigated. We stratified 1155 biopsy-proven MASLD patients according to PNPLA3 genotype. The hepatic expression of genes involved in megakaryopoiesis was investigated in n = 167 bariatric patients by RNAseq. PLT count progressively decreased according to the number of PNPLA3 at-risk alleles, irrespective of the presence of advanced fibrosis. The hepatic expression of genes involved in PLT biogenesis was associated with the PNPLA3 GG genotype. Finally, the presence of the PNPLA3 homozygosity flattened the accuracy of fibrosis-4 (FIB-4) in discriminating histological fibrosis stages. The PNPLA3 GG genotype may underpower the accuracy of NITs which include PLT count in identifying those patients with potentially reversible stages of fibrosis.
Collapse
Affiliation(s)
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy;
| |
Collapse
|
20
|
Shi F, Zhao M, Zheng S, Zheng L, Wang H. Advances in genetic variation in metabolism-related fatty liver disease. Front Genet 2023; 14:1213916. [PMID: 37753315 PMCID: PMC10518415 DOI: 10.3389/fgene.2023.1213916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is the most common form of chronic liver disease in the world. Its pathogenesis is influenced by both environmental and genetic factors. With the upgrading of gene screening methods and the development of human genome project, whole genome scanning has been widely used to screen genes related to MAFLD, and more and more genetic variation factors related to MAFLD susceptibility have been discovered. There are genetic variants that are highly correlated with the occurrence and development of MAFLD, and there are genetic variants that are protective of MAFLD. These genetic variants affect the development of MAFLD by influencing lipid metabolism and insulin resistance. Therefore, in-depth analysis of different mechanisms of genetic variation and targeting of specific genetic variation genes may provide a new idea for the early prediction and diagnosis of diseases and individualized precision therapy, which may be a promising strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Fan Shi
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
21
|
Kosmalski M, Śliwińska A, Drzewoski J. Non-Alcoholic Fatty Liver Disease or Type 2 Diabetes Mellitus—The Chicken or the Egg Dilemma. Biomedicines 2023; 11:biomedicines11041097. [PMID: 37189715 DOI: 10.3390/biomedicines11041097] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
In clinical practice, we often deal with patients who suffer from non-alcoholic fatty liver disease (NAFLD) concurrent with type 2 diabetes mellitus (T2DM). The etiopathogenesis of NAFLD is mainly connected with insulin resistance (IR) and obesity. Similarly, the latter patients are in the process of developing T2DM. However, the mechanisms of NAFLD and T2DM coexistence have not been fully elucidated. Considering that both diseases and their complications are of epidemic proportions and significantly affect the length and quality of life, we aimed to answer which of these diseases appears first and thereby highlight the need for their diagnosis and treatment. To address this question, we present and discuss the epidemiological data, diagnoses, complications and pathomechanisms of these two coexisting metabolic diseases. This question is difficult to answer due to the lack of a uniform procedure for NAFLD diagnosis and the asymptomatic nature of both diseases, especially at their beginning stages. To conclude, most researchers suggest that NAFLD appears as the first disease and starts the sequence of circumstances leading ultimately to the development of T2DM. However, there are also data suggesting that T2DM develops before NAFLD. Despite the fact that we cannot definitively answer this question, it is very important to bring the attention of clinicians and researchers to the coexistence of NAFLD and T2DM in order to prevent their consequences.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
| | - Józef Drzewoski
- Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
22
|
Sharpe MC, Pyles KD, Hallcox T, Kamm DR, Piechowski M, Fisk B, Albert CJ, Carpenter DH, Ulmasov B, Ford DA, Neuschwander-Tetri BA, McCommis KS. Enhancing Hepatic MBOAT7 Expression in Mice With Nonalcoholic Steatohepatitis. GASTRO HEP ADVANCES 2023; 2:558-572. [PMID: 37293574 PMCID: PMC10249591 DOI: 10.1016/j.gastha.2023.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Polymorphisms near the membrane bound O-acyltransferase domain containing 7 (MBOAT7) genes are associated with worsened nonalcoholic fatty liver (NASH), and nonalcoholic fatty liver disease (NAFLD)/NASH may decrease MBOAT7 expression independent of these polymorphisms. We hypothesized that enhancing MBOAT7 function would improve NASH. METHODS Genomic and lipidomic databases were mined for MBOAT7 expression and hepatic phosphatidylinositol (PI) abundance in human NAFLD/NASH. Male C57BL6/J mice were fed either choline-deficient high-fat diet or Gubra Amylin NASH diet and subsequently infected with adeno-associated virus expressing MBOAT7 or control virus. NASH histological scoring and lipidomic analyses were performed to assess MBOAT7 activity, hepatic PI, and lysophosphatidylinositol (LPI) abundance. RESULTS Human NAFLD/NASH decreases MBOAT7 expression and hepatic abundance of arachidonate-containing PI. Murine NASH models display subtle changes in MBOAT7 expression, but significantly decreased activity. After MBOAT7 overexpression, liver weights, triglycerides, and plasma alanine and aspartate transaminase were modestly improved by MBOAT7 overexpression, but NASH histology was not improved. Despite confirmation of increased activity with MBOAT7 overexpression, content of the main arachidonoylated PI species was not rescued by MBOAT7 although the abundance of many PI species was increased. Free arachidonic acid was elevated but the MBOAT7 substrate arachidonoyl-CoA was decreased in NASH livers compared to low-fat controls, likely due to the decreased expression of long-chain acyl-CoA synthetases. CONCLUSION Results suggest decreased MBOAT7 activity plays a role in NASH, but MBOAT7 overexpression fails to measurably improve NASH pathology potentially due to the insufficient abundance of its arachidonoyl-CoA substrate.
Collapse
Affiliation(s)
- Martin C. Sharpe
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kelly D. Pyles
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Taylor Hallcox
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Dakota R. Kamm
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michaela Piechowski
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Bryan Fisk
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Carolyn J. Albert
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | - Barbara Ulmasov
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David A. Ford
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Brent A. Neuschwander-Tetri
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kyle S. McCommis
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
23
|
Guo C, Li Q, Chen R, Fan W, Zhang X, Zhang Y, Guo L, Wang X, Qu X, Dong H. Baicalein alleviates non-alcoholic fatty liver disease in mice by ameliorating intestinal barrier dysfunction. Food Funct 2023; 14:2138-2148. [PMID: 36752061 DOI: 10.1039/d2fo03015b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease, and its pathological development is closely related to the gut-liver axis. The intestinal barrier, an important component of the gut-liver axis, can prevent gut microbes and endotoxins from entering the liver. Intestinal barrier function is impaired in patients with NAFLD. Baicalein, which is the main flavonoid in Scutellariae Radix, can improve NAFLD. However, whether baicalein alleviates NAFLD by ameliorating intestinal barrier dysfunction remains unclear. In this study, a methionine-choline deficient (MCD) diet-induced NAFLD mouse model is used. The effects of baicalein on lipid accumulation, inflammation and the intestinal barrier in MCD-fed mice were evaluated by detecting blood lipid levels, lipid accumulation, liver pathological changes, inflammatory factors, inflammatory signaling pathways, the three main short-chain fatty acids (acetate, propionate and butyrate), intestinal permeability and intestinal tight junction protein expression. Compared with the MCD-only group, baicalein intake decreased the serum and liver lipid levels. Moreover, the accumulation of lipid droplets and steatosis in the liver were also alleviated; all these results demonstrated that baicalein could alleviate NAFLD. Meanwhile, the levels of inflammatory cytokines decreased in the baicalein group. Further investigation of the mucosal permeability to 4 kDa fluorescein isothiocyanate-dextran, concentrations of short-chain fatty acids in feces, and the expression of intestinal zonula occluden 1 and claudin-1 indicated that a baicalein diet could decrease the intestinal permeability caused by a MCD diet. Moreover, the protein levels of p-NF-κB p65 and the ratio of p-NF-κB p65/NF-κB p65 increased, and IκB-α and PPARα decreased in NAFLD mice, while the administration of baicalein could alleviate these changes. The above results indicated that the mechanism of baicalein in the alleviation of NAFLD lies in the regulation of the intestinal barrier.
Collapse
Affiliation(s)
- Chunyu Guo
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China. .,Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rihong Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenhui Fan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lanping Guo
- Resource Center of Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China.
| | - Xinyan Qu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China.
| | - Hongjing Dong
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China.
| |
Collapse
|
24
|
An Overview of Hepatocellular Carcinoma Surveillance Focusing on Non-Cirrhotic NAFLD Patients: A Challenge for Physicians. Biomedicines 2023; 11:biomedicines11020586. [PMID: 36831120 PMCID: PMC9953185 DOI: 10.3390/biomedicines11020586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide and it ranges from simple steatosis to hepatocellular carcinoma (HCC). HCC represents the first liver tumor and the third source of cancer death. In the next few years, the prevalence of NAFLD and consequently of HCC is estimated to increase, becoming a major public health problem. The NAFLD-HCC shows several differences compared to other causes of chronic liver disease (CLD), including the higher percentage of patients that develop HCC in the absence of liver cirrhosis. In HCC surveillance, the international guidelines suggest a six months abdominal ultrasound (US), with or without alpha-fetoprotein (AFP) evaluation, in patients with cirrhosis and in a subgroup of patients with chronic hepatitis B infection. However, this screening program reveals several limitations, especially in NAFLD patients. Thus, new biomarkers and scores have been proposed to overcome the limits of HCC surveillance. In this narrative review we aimed to explore the differences in the HCC features between NAFLD and non-NAFLD patients, and those between NAFLD-HCC developed in the cirrhotic and non-cirrhotic liver. Finally, we focused on the limits of tumor surveillance in NAFLD patients, and we explored the new biomarkers for the early diagnosis of HCC.
Collapse
|
25
|
Paolini E, Longo M, Corsini A, Dongiovanni P. The Non-Invasive Assessment of Circulating D-Loop and mt-ccf Levels Opens an Intriguing Spyhole into Novel Approaches for the Tricky Diagnosis of NASH. Int J Mol Sci 2023; 24:ijms24032331. [PMID: 36768654 PMCID: PMC9916898 DOI: 10.3390/ijms24032331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest liver disease worldwide affecting both adults and children. Nowadays, no therapeutic strategies have been approved for NAFLD management, and hepatic biopsy remains the gold standard procedure for its diagnosis. NAFLD is a multifactorial disease whose pathogenesis is affected by environmental and genetic factors, and it covers a spectrum of conditions ranging from simple steatosis up to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several studies underlined the urgent need to develop an NAFLD risk prediction model based on genetics, biochemical indicators, and metabolic disorders. The loss of mitochondrial dynamics represents a typical feature of progressive NAFLD. The imbalance of mitochondrial lifecycle together with the impairment of mitochondrial biomass and function trigger oxidative stress, which in turn damages mitochondrial DNA (mtDNA). We recently demonstrated that the main genetic predictors of NAFLD led to mitochondrial dysfunction. Moreover, emerging evidence shows that variations in the displacement loop (D-loop) region impair mtDNA replication, and they have been associated with advanced NAFLD. Finally, lower levels of mitophagy foster the overload of damaged mitochondria, resulting in the release of cell-free circulating mitochondrial DNA (mt-ccf) that exacerbates liver injury. Thus, in this review we summarized what is known about D-loop region alterations and mt-ccf content during NAFLD to propose them as novel non-invasive biomarkers.
Collapse
Affiliation(s)
- Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- IRCCS Multimedica, 20099 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5032-0296
| |
Collapse
|
26
|
Tovo CV, de Mattos AZ, Coral GP, Sartori GDP, Nogueira LV, Both GT, Villela-Nogueira CA, de Mattos AA. Hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis. World J Gastroenterol 2023; 29:343-356. [PMID: 36687125 PMCID: PMC9846942 DOI: 10.3748/wjg.v29.i2.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 11/19/2022] [Indexed: 01/06/2023] Open
Abstract
Cirrhosis is an emerging major cause of the development of hepatocellular carcinoma (HCC), but in non-alcoholic fatty liver disease (NAFLD), up to 50% of patients with HCC had no clinical or histological evidence of cirrhosis. It is currently challenging to propose general recommendations for screening patients with NAFLD without cirrhosis, and each patient should be evaluated on a case-by-case basis based on the profile of specific risk factors identified. For HCC screening in NAFLD, a valid precision-based screening is needed. Currently, when evaluating this population of patients, the use of non-invasive methods can guide the selection of those who should undergo a screening and surveillance program. Hence, the objective of the present study is to review the epidemiology, the pathophysiology, the histopathological aspects, the current recommendations, and novel perspectives in the surveillance of non-cirrhotic NAFLD-related HCC.
Collapse
Affiliation(s)
- Cristiane Valle Tovo
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Angelo Zambam de Mattos
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Gabriela Perdomo Coral
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Giovana D P Sartori
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Livia Villela Nogueira
- Department of Internal Medicine, Fundação Técnico Educacional Souza Marques, RJ 21491-630, RJ, Brazil
| | - Gustavo Tovo Both
- Department of Internal Medicine, Universidade Luterana do Brasil, Canoas 92425-350, RS, Brazil
| | | | - Angelo A de Mattos
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| |
Collapse
|
27
|
Ismaiel A, Spinu M, Osan S, Leucuta DC, Popa SL, Chis BA, Farcas M, Popp RA, Olinic DM, Dumitrascu DL. MBOAT7 rs641738 variant in metabolic-dysfunction-associated fatty liver disease and cardiovascular risk. Med Pharm Rep 2023; 96:41-51. [PMID: 36818318 PMCID: PMC9924805 DOI: 10.15386/mpr-2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Although metabolic-dysfunction-associated fatty liver disease (MAFLD) is associated with an increased cardiovascular risk, MAFLD predisposing genetic variants were not steadily related to cardiovascular events. Therefore, we aimed to assess whether membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) rs641738 variant is associated with an increased cardiovascular risk in in MAFLD patients. Methods We conducted an observational cross-sectional study including 77 subjects (38 MAFLD patients, 39 controls), between January-September 2020 using hepatic ultrasonography and SteatoTestTM to assess hepatic steatosis. Echocardiographic and Doppler ultrasound parameters were evaluated. Genomic DNA was extracted and rs641738 SNP was genotyped using TaqMan assays. Results The rs641738 variant was not significantly associated with MAFLD, with a p-value of 0.803, 0.5265, 0.9535, and 0.5751 for codominant, dominant, recessive, and overdominant genotypes, respectively. The rs641738 variant overdominant genotype significantly predicted atherosclerotic cardiovascular disease (ASCVD) risk algorithm in univariate analysis (-4.3 [95% CI -8.55 - -0.55, p-value= 0.048]), but lost significance after multivariate analysis (-3.98 [95% CI -7.9 - -0.05, p-value= 0.053]). The rs641738 variant recessive genotype significantly predicted ActiTest in univariate analysis (0.0963 [95% CI 0.0244 - 0.1681, p-value= 0.009]), but lost significance after multivariate analysis (0.0828 [95% CI -0.016 - 0.1816, p-value= 0.105]). Conclusion No significant association was observed between rs641738 variant and MAFLD in the studied population. The rs641738 variant was found to predict ASCVD risk score and ActiTest in univariate linear regression analysis. However, the significance of both associations was lost after performing multivariate analysis.
Collapse
|
28
|
Houttu V, Bouts J, Vali Y, Daams J, Grefhorst A, Nieuwdorp M, Holleboom AG. Does aerobic exercise reduce NASH and liver fibrosis in patients with non-alcoholic fatty liver disease? A systematic literature review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1032164. [PMID: 36407307 PMCID: PMC9669057 DOI: 10.3389/fendo.2022.1032164] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background Exercise is an effective strategy for the prevention and regression of hepatic steatosis in patients with non-alcoholic fatty liver disease (NAFLD), but it is unclear whether it can reduce advanced stages of NAFLD, i.e., steatohepatitis and liver fibrosis. Furthermore, it is not evident which modality of exercise is optimal to improve/attenuate NAFLD. Objectives The aim is to systematically review evidence for the effect of aerobic exercise (AE) on NAFLD, in particular non-alcoholic steatohepatitis (NASH) and liver fibrosis. Methods A systematic literature search was conducted in Medline and Embase. Studies were screened and included according to predefined criteria, data were extracted, and the quality was assessed by Cochrane risk of bias tools by two researchers independently according to the protocol registered in the PROSPERO database (CRD42021270059). Meta-analyses were performed using a bivariate random-effects model when there were at least three randomized intervention studies (RCTs) with similar intervention modalities and outcome. Results The systematic review process resulted in an inclusion a total of 24 studies, 18 RCTs and six non-RCTs, encompassing 1014 patients with NAFLD diagnosed by histological or radiological findings. Studies were grouped based on the type of AE: moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT). A total of twelve meta-analyses were conducted. Compared to controls, MICT resulted in a mean difference (MD) in the NAFLD biomarkers alanine transaminase (ALT) and aspartate aminotransferase (AST) of -3.59 (CI: -5.60, -1.59, p<0.001) and -4.05 (CI: -6.39, -1.71, p<0.001), respectively. HIIT resulted in a MD of -4.31 (95% CI: -9.03, 0.41, p=0.07) and 1.02 (95% CI: -6.91, 8.94, p=0.8) for ALT and AST, respectively. Moreover, both AE types compared to controls showed a significantly lower magnetic resonance spectroscopy (MRS) determined liver fat with a MD of -5.19 (95% CI: -7.33, -3.04, p<0.001) and -3.41 (95% CI: -4.74, -2.08, p<0.001), for MICT and HIIT respectively. MICT compared to controls resulted in a significantly higher cardiorespiratory fitness (MD: 4.43, 95% CI: 0.31, 8.55, p=0.03). Conclusion Liver fat is decreased by AE with a concomitant decrease of liver enzymes. AE improved cardiorespiratory fitness. Further studies are needed to elucidate the impact of different types of AE on hepatic inflammation and fibrosis. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier (CRD42021270059).
Collapse
Affiliation(s)
- Veera Houttu
- Department of Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Julia Bouts
- Department of Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Yasaman Vali
- Department of Epidemiology and Data Science, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Joost Daams
- Medical Library, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Potential Therapeutic Implication of Herbal Medicine in Mitochondria-Mediated Oxidative Stress-Related Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11102041. [PMID: 36290765 PMCID: PMC9598588 DOI: 10.3390/antiox11102041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are double-membrane organelles that play a role in ATP synthesis, calcium homeostasis, oxidation-reduction status, apoptosis, and inflammation. Several human disorders have been linked to mitochondrial dysfunction. It has been found that traditional therapeutic herbs are effective on alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which are leading causes of liver cirrhosis and hepatocellular carcinoma. The generation of reactive oxygen species (ROS) in response to oxidative stress is caused by mitochondrial dysfunction and is considered critical for treatment. The role of oxidative stress, lipid toxicity, and inflammation in NAFLD are well known. NAFLD is a chronic liver disease that commonly progresses to cirrhosis and chronic liver disease, and people with obesity, insulin resistance, diabetes, hyperlipidemia, and hypertension are at a higher risk of developing NAFLD. NAFLD is associated with a number of pathological factors, including insulin resistance, lipid metabolic dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. As a result, the improvement in steatosis and inflammation is enough to entice researchers to look into liver disease treatment. However, antioxidant treatment has not been very effective for liver disease. Additionally, it has been suggested that the beneficial effects of herbal medicines on immunity and inflammation are governed by various mechanisms for lipid metabolism and inflammation control. This review provided a summary of research on herbal medicines for the therapeutic implementation of mitochondria-mediated ROS production in liver disease as well as clinical applications through herbal medicine. In addition, the pathophysiology of common liver disorders such as ALD and NAFLD would be investigated in the role that mitochondria play in the process to open new therapeutic avenues in the management of patients with liver disease.
Collapse
|
30
|
Xu R, Pan J, Zhou W, Ji G, Dang Y. Recent advances in lean NAFLD. Biomed Pharmacother 2022; 153:113331. [PMID: 35779422 DOI: 10.1016/j.biopha.2022.113331] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/09/2023] Open
Abstract
As the predominant type of chronic liver disease, the growing prevalence of nonalcoholic fatty liver disease (NAFLD) has become a concern worldwide. Although obesity plays the most pivotal role in NAFLD, approximately 10-20% of individuals with NAFLD who are not overweight or obese (BMI < 25 kg/m2, or BMI < 23 kg/m2 in Asians) have "lean NAFLD." Lean individuals with NAFLD have a lower prevalence of diabetes, hypertension, hypertriglyceridemia, central obesity, and metabolic syndrome than nonlean individuals with NAFLD, but higher fibrosis scores and rates of cardiovascular morbidity and all-cause mortality in advanced stages. The pathophysiological mechanisms of lean NAFLD remain poorly understood. Studies have shown that lean NAFLD is more correlated with factors such as environmental, genetic susceptibility, and epigenetic regulation. This review will examine the way in which the research progress and characteristic of lean NAFLD, and explore the function of epigenetic modification to provide the basis for the clinical treatment and diagnosis of lean NAFLD.
Collapse
Affiliation(s)
- Ruohui Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
31
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
32
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) can develop in lean individuals. Despite a better metabolic profile, the risk of disease progression to hepatic inflammation, fibrosis, and decompensated cirrhosis in the lean is similar to that in obesity-related NAFLD and lean individuals may experience more severe hepatic consequences and higher mortality relative to those with a higher body mass index (BMI). In the absence of early symptoms and abnormal laboratory findings, lean individuals are not likely to be screened for NAFLD or related comorbidities; however, given the progressive nature of the disease and the increased risk of morbidity and mortality, a clearer understanding of the natural history of NAFLD in lean individuals, as well as efforts to raise awareness of the potential health risks of NAFLD in lean individuals, are warranted. In this review, we summarize available data on NAFLD prevalence, clinical characteristics, outcomes, and mortality in lean individuals and discuss factors that may contribute to the development of NAFLD in this population, including links between dietary and genetic factors, menopausal status, and ethnicity. We also highlight the need for greater representation of lean individuals in NAFLD-related clinical trials, as well as more studies to better characterize lean NAFLD, develop improved screening algorithms, and determine specific treatment strategies based on underlying etiology.
Collapse
Affiliation(s)
- Johanna K. DiStefano
- Diabetes and Fibrotic Disease Research Unit, Translational Genomics Research Institute, Phoenix, USA
| | - Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA 19140 USA
| |
Collapse
|
33
|
Lombardi R, Piciotti R, Dongiovanni P, Meroni M, Fargion S, Fracanzani AL. PD-1/PD-L1 Immuno-Mediated Therapy in NAFLD: Advantages and Obstacles in the Treatment of Advanced Disease. Int J Mol Sci 2022; 23:2707. [PMID: 35269846 PMCID: PMC8910930 DOI: 10.3390/ijms23052707] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by an enhanced activation of the immune system, which predispose the evolution to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Resident macrophages and leukocytes exert a key role in the pathogenesis of NAFLD. In particular, CD4+ effector T cells are activated during the early stages of liver inflammation and are followed by the increase of natural killer T cells and of CD8+ T cytotoxic lymphocytes which contribute to auto-aggressive tissue damage. To counteract T cells activation, programmed cell death 1 (PD-1) and its ligand PDL-1 are exposed respectively on lymphocytes and liver cells' surface and can be targeted for therapy by using specific monoclonal antibodies, such as of Nivolumab, Pembrolizumab, and Atezolizumab. Despite the combination of Atezolizumab and Bevacizumab has been approved for the treatment of advanced HCC, PD-1/PD-L1 blockage treatment has not been approved for NAFLD and adjuvant immunotherapy does not seem to improve survival of patients with early-stage HCC. In this regard, different ongoing phase III trials are testing the efficacy of anti-PD-1/PD-L1 antibodies in HCC patients as first line therapy and in combination with other treatments. However, in the context of NAFLD, immune checkpoints inhibitors may not improve HCC prognosis, even worse leading to an increase of CD8+PD-1+ T cells and effector cytokines which aggravate liver damage. Here, we will describe the main pathogenetic mechanisms which characterize the immune system involvement in NAFLD discussing advantages and obstacles of anti PD-1/PDL-1 immunotherapy.
Collapse
Affiliation(s)
- Rosa Lombardi
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Roberto Piciotti
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
34
|
Zhang HB, Su W, Xu H, Zhang XY, Guan YF. HSD17B13: A Potential Therapeutic Target for NAFLD. Front Mol Biosci 2022; 8:824776. [PMID: 35071330 PMCID: PMC8776652 DOI: 10.3389/fmolb.2021.824776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially in its inflammatory form (steatohepatitis, NASH), is closely related to the pathogenesis of chronic liver disease. Despite substantial advances in the management of NAFLD/NASH in recent years, there are currently no efficacious therapies for its treatment. The biogenesis and expansion of lipid droplets (LDs) are critical pathophysiological processes in the development of NAFLD/NASH. In the past decade, increasing evidence has demonstrated that lipid droplet-associated proteins may represent potential therapeutic targets for the treatment of NAFLD/NASH given the critical role they play in regulating the biogenesis and metabolism of lipid droplets. Recently, HSD17B13, a newly identified liver-enriched, hepatocyte-specific, lipid droplet-associated protein, has been reported to be strongly associated with the development and progression of NAFLD/NASH in both mice and humans. Notably, human genetic studies have repeatedly reported a robust association of HSD17B13 single nucleotide polymorphisms (SNPs) with the occurrence and severity of NAFLD/NASH and other chronic liver diseases (CLDs). Here we briefly overview the discovery, tissue distribution, and subcellular localization of HSD17B13 and highlight its important role in promoting the pathogenesis of NAFLD/NASH in both experimental animal models and patients. We also discuss the potential of HSD17B13 as a promising target for the development of novel therapeutic agents for NAFLD/NASH.
Collapse
Affiliation(s)
- Hai-Bo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Wen Su
- Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
35
|
Anand AC, Acharya SK. Nonalcoholic Steatohepatitis, Peroxisome Proliferator-Activated Receptors and Our Good Glitazar: Proof of the Pudding is in the Eating. J Clin Exp Hepatol 2022; 12:263-267. [PMID: 35535098 PMCID: PMC9077217 DOI: 10.1016/j.jceh.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Anil C. Anand
- Address for correspondence: Anil C Anand, Professor and Head, Department of Gastroenterology & Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024 Odisha, India.
| | | |
Collapse
|
36
|
TM6SF2/PNPLA3/MBOAT7 Loss-of-Function Genetic Variants Impact on NAFLD Development and Progression Both in Patients and in In Vitro Models. Cell Mol Gastroenterol Hepatol 2021; 13:759-788. [PMID: 34823063 PMCID: PMC8783129 DOI: 10.1016/j.jcmgh.2021.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The I148M Patatin-like Phospholipase Domain-containing 3 (PNPLA3), the rs641738 in the Membrane bound O-acyltransferase domain containing 7-transmembrane channel-like 4 (MBOAT7-TMC4) locus, and the E167K Transmembrane 6 Superfamily Member 2 (TM6SF2) polymorphisms represent the main predisposing factors to nonalcoholic fatty liver disease (NAFLD) development and progression. We previously generated a full knockout of MBOAT7 in HepG2 cells (MBOAT7-/-), homozygous for I148M PNPLA3. Therefore, we aimed to investigate the synergic impact of the 3 at-risk variants on liver injury and hepatocellular carcinoma (HCC) in a large cohort of NAFLD patients, and create in vitro models of genetic NAFLD by silencing TM6SF2 in both HepG2 and MBOAT7-/- cells. METHODS NAFLD patients (n = 1380), of whom 121 had HCC, were stratified with a semiquantitative score ranging from 0 to 3 according to the number of PNPLA3, TM6SF2, and MBOAT7 at-risk variants. TM6SF2 was silenced in HepG2 (TM6SF2-/-) and MBOAT7-/- (MBOAT7-/-TM6SF2-/-) through Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). RESULTS In NAFLD patients, the additive weight of these mutations was associated with liver disease severity and an increased risk of developing HCC. In HepG2 cells, TM6SF2 silencing altered lipid composition and induced the accumulation of microvesicular lipid droplets (LDs), whereas the MBOAT7-/-TM6SF2-/- cells showed a mixed microvesicular/macrovesicular pattern of LDs. TM6SF2 deletion strongly affected endoplasmic reticulum and mitochondria ultrastructures, thus increasing endoplasmic reticulum/oxidative stress. The mitochondrial number was increased in both TM6SF2-/- and MBOAT7-/-TM6SF2-/- models, suggesting an unbalancing in mitochondrial dynamics, and the silencing of both MBOAT7 and TM6SF2 impaired mitochondrial activity with a shift toward anaerobic glycolysis. MBOAT7-/-TM6SF2-/- cells also showed the highest proliferation rate. Finally, the re-overexpression of MBOAT7 and/or TM6SF2 reversed the metabolic and tumorigenic features observed in the compound knockout model. CONCLUSIONS The co-presence of the 3 at-risk variants impacts the NAFLD course in both patients and experimental models, affecting LD accumulation, mitochondrial functionality, and metabolic reprogramming toward HCC.
Collapse
|
37
|
Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. Genetics, Immunity and Nutrition Boost the Switching from NASH to HCC. Biomedicines 2021; 9:1524. [PMID: 34829753 PMCID: PMC8614742 DOI: 10.3390/biomedicines9111524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading contributor to the global burden of chronic liver diseases. The phenotypic umbrella of NAFLD spans from simple and reversible steatosis to nonalcoholic steatohepatitis (NASH), which may worsen into cirrhosis and hepatocellular carcinoma (HCC). Notwithstanding, HCC may develop also in the absence of advanced fibrosis, causing a delayed time in diagnosis as a consequence of the lack of HCC screening in these patients. The precise event cascade that may precipitate NASH into HCC is intricate and it entails diverse triggers, encompassing exaggerated immune response, endoplasmic reticulum (ER) and oxidative stress, organelle derangement and DNA aberrancies. All these events may be accelerated by both genetic and environmental factors. On one side, common and rare inherited variations that affect hepatic lipid remodeling, immune microenvironment and cell survival may boost the switching from steatohepatitis to liver cancer, on the other, diet-induced dysbiosis as well as nutritional and behavioral habits may furtherly precipitate tumor onset. Therefore, dietary and lifestyle interventions aimed to restore patients' health contribute to counteract NASH progression towards HCC. Even more, the combination of therapeutic strategies with dietary advice may maximize benefits, with the pursuit to improve liver function and prolong survival.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|