1
|
Sturnieks DL, Chan LL, Cerda MTE, Arbona CH, Pinilla BH, Martinez PS, Seng NW, Smith N, Menant JC, Lord SR. Cognitive functioning and falls in older people: A systematic review and meta-analysis. Arch Gerontol Geriatr 2025; 128:105638. [PMID: 39340961 DOI: 10.1016/j.archger.2024.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE To identify which cognitive functions and specific neuropsychological assessments predict falls in older people living in the community. METHODS Five electronic databases were searched until 30/08/2022 for studies assessing the association between specific cognitive functions and faller status (prospective and retrospective), in community-dwelling older people. Risk of bias was assessed with the Newcastle-Ottawa Scale. Meta-analyses synthesised the evidence regarding the associations between different neurocognitive subdomains and faller status. RESULTS Thirty-eight studies (20 retrospective, 18 prospective) involving 37,101 participants were included. All but one study was rated high or medium quality. Meta-analyses were performed with data from 28 studies across 11 neurocognitive subdomains and four specific neuropsychological tests. Poor cognitive flexibility, processing speed, free recall, working memory and sustained attention were significantly associated with faller status, but poor verbal fluency, visual perception, recognition memory, visuo-constructional reasoning and language were not. The Trail Making Test B was found to have the strongest association with faller status. CONCLUSION Poor performance in neurocognitive subdomains spanning processing speed, attention, executive function and aspects of memory are associated with falls in older people, albeit with small effect sizes. The Trail Making Test, a free-to-use, simple assessment of processing speed and mental flexibility, is recommended as the cognitive screening test for fall risk in older people.
Collapse
Affiliation(s)
- Daina L Sturnieks
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences - Faculty of Medicine and Health, The University of New South Wales, Sydney, NSW, Australia.
| | - Lloyd Ly Chan
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; School of Population Health - Faculty of Medicine and Health, The University of New South Wales, Sydney, NSW, Australia
| | - Maria Teresa Espinoza Cerda
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Carmen Herrera Arbona
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Beatriz Herrero Pinilla
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Paula Santiago Martinez
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Nigel Wei Seng
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Natassia Smith
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Jasmine C Menant
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; School of Population Health - Faculty of Medicine and Health, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen R Lord
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; School of Population Health - Faculty of Medicine and Health, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Hagen AC, Tracy BL, Stephens JA. Altered neural recruitment during single and dual tasks in athletes with repeat concussion. Front Hum Neurosci 2024; 18:1515514. [PMID: 39723417 PMCID: PMC11668694 DOI: 10.3389/fnhum.2024.1515514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Sports-related concussions (SRCs) pose significant challenges to college-aged athletes, eliciting both immediate symptoms and subacute cognitive and motor function impairment. While most symptoms and impairments resolve within weeks, athletes with repeat SRCs may experience heightened risk for prolonged recovery trajectories, future musculoskeletal injuries, and long-term neurocognitive deficits. This study aimed to investigate the impact of repeat SRCs on dual task performance and associated neural recruitment using functional near-infrared spectroscopy (fNIRS). A total of 37 college-aged athletes (ages 18-24) participated in this cross-sectional observational study, 20 with a history of two or more SRCs, and 17 controls that had never sustained an SRC. Participants completed the Neuroimaging-Compatible Dual Task Screen (NC-DTS) while neural recruitment in the frontoparietal attention network and the primary motor and sensory cortices was measured using fNIRS. Athletes with repeat SRCs exhibited comparable single task and dual task performance to control athletes. Neuroimaging results indicated altered neural recruitment patterns in athletes with repeat SRCs during both single and dual tasks. Specifically, athletes with repeat SRCs demonstrated increased prefrontal cortex (PFC) activation during single motor tasks compared to controls (p < 0.001, d = 0.47). Conversely, during dual tasks, these same athletes exhibited reduced PFC activation (p < 0.001, d = 0.29) compared to their single task activation. These findings emphasize that while athletes with repeat SRCs demonstrate typical single and dual task performance, persistent alterations in neural recruitment patterns suggest ongoing neurophysiological changes, possibly indicating compensatory neural strategies and inefficient neural resource allocation, even beyond symptom resolution and medical clearance.
Collapse
Affiliation(s)
- Andrew C. Hagen
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | - Brian L. Tracy
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | - Jaclyn A. Stephens
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
- Molecular Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Gao C, Li G, Wang Z, Jiang Q, He R, Sun J, You Y, Zhu Y, Zhao J, Zhang X, Zhou C. The therapeutic effects of theta burst stimulation on negative symptoms in chronic schizophrenia using functional near-infrared spectroscopy. J Psychiatr Res 2024; 181:484-491. [PMID: 39675131 DOI: 10.1016/j.jpsychires.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND To explore the efficacy of theta burst stimulation (TBS) on the negative symptoms in patients with chronic schizophrenia, and to investigate the alterations of local brain activity using functional near-infrared spectroscopy (fNIRS). METHODS 100 patients with chronic schizophrenia were enrolled and divided into the real group (50 subjects) and sham group (50 subjects). The real group was given real stimulation of TBS for 4 weeks, and the sham group was sham-stimulated with the same site. The Positive and Negative Symptom Scale (PANSS) and the Scale for Assessment of Negative Symptoms (SANS) were used to assess the clinical symptoms. fNIRS was used to detect the amplitude of low frequency fluctuation (ALFF) of cortical hemoglobin before and after TBS. Repeated analysis of variance (ANOVA) was used to compare the changes in clinical features between the two groups. Correlation analysis was used to explore the associations between altered ALFF and clinical features. RESULTS Repeated ANOVA revealed that the interaction effect of group∗time showed significant influence on the scores of PANSS-total, PANSS-negative, and SANS in the two groups of patients. Test of within-subjects effects showed that significant reductions in scores of PANSS-total, PANSS-negative, and SANS were found between the real group and sham group after TBS, as well as in the real group before and after TBS. fNIRS revealed that the normalized ALFF (zALFF) of deoxyhemoglobin in the left dorsolateral prefrontal cortex was decreased in the real group after TBS. Furthermore, the zALFF of oxyhemoglobin was increased in the right and left frontal pole regions, and decreased in the right superior temporal gyrus in the real group compared to the sham group after TBS. Correlation analysis showed that the alterations of zALFF in frontal regions after treatment were associated with the improvement of negative symptoms in chronic schizophrenia patients. CONCLUSIONS Short-term TBS is effective in the improvement of negative symptoms of chronic schizophrenia. fNIRS could reveal the changes in brain activity after TBS treatment, providing an effective technique for exploring the efficacy of TBS in schizophrenia.
Collapse
Affiliation(s)
- Chunying Gao
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Guangjian Li
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Zhou Wang
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Qingwei Jiang
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Rongrong He
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Jingjing Sun
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Yangyang You
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Yingzhi Zhu
- Department of Psychiatry, Changzhou Dean Hospital, Changzhou, China
| | - Jing Zhao
- Department of Psychiatry, Pujiang Hospital of Shanghai Mental Health Center, Shanghai, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Chao Zhou
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Santinelli FB, Veldkamp R, Vitório R, Kos D, Vos M, Nijssen R, DeLuca J, Ramari C, Feys P. Hemodynamics of the Frontopolar and Dorsolateral Pre-Frontal Cortex in People with Multiple Sclerosis During Walking, Cognitive Subtraction, and Cognitive-Motor Dual-Task. Neurorehabil Neural Repair 2024; 38:820-831. [PMID: 39256995 DOI: 10.1177/15459683241279066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Higher cortical activity has been observed in people with multiple sclerosis (pwMS) during walking and dual-tasking. However, further studies in overground walking and considering pre-frontal cortex (PFC) sub-areas are necessary. OBJECTIVES To investigate PFC activity during a cognitive-motor dual-task (DT) and its single component tasks, in combination with behavioral outcomes in pwMS. METHODS Fifteen pwMS (EDSS 3.5 [2-5.5], 42 ± 11 years) and 16 healthy controls (HC, 45.2 ± 13.2 years) performed 3 conditions: single motor-walking (SWT), single cognitive - subtracting sevens (SCT), and a DT. Meters walked and the number of correct answers were obtained from which, respectively, the motor (mDTC) and cognitive (cDTC) DT costs were calculated. A functional Near-Infrared Spectroscopy covering the frontopolar and dorsolateral PFC (DLPFC) areas was used to concentration of relative oxyhemoglobin (ΔHbO2) and deoxyhemoglobin (ΔHHb) in the PFC. A repeated 2-way ANOVA (group × conditions) was used to compare ΔHbO2/ΔHHb and behavioral outcomes. RESULTS PwMS walked shorter distances (P < .002) and answered fewer correct numbers (P < .03) than HC in all conditions, while cDTC and mDTC were similar between groups. PwMS presented higher ΔHbO2 in the frontopolar area than HC in the SWT (P < .001). HC increased ΔHbO2 in frontopolar during the SCT (P < .029) and DT (P < .037) compared with the SWT. CONCLUSION Higher frontopolar activity in pwMS compared to HC in the SWT suggests reduced gait automaticity. Furthermore, it seems that only HC increased neural activity in the frontopolar in the SCT and DT, which might suggest a limit of cognitive resources to respond to DT in pwMS.
Collapse
Affiliation(s)
| | - Renee Veldkamp
- REVAL Rehabilitation Research Center, University of Hasselt, Hasselt, Belgium
| | - Rodrigo Vitório
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
| | - Daphne Kos
- National MS Center Melsbroek, Melsbroek, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Maxine Vos
- REVAL Rehabilitation Research Center, University of Hasselt, Hasselt, Belgium
| | - Ruth Nijssen
- REVAL Rehabilitation Research Center, University of Hasselt, Hasselt, Belgium
| | - John DeLuca
- Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Cintia Ramari
- REVAL Rehabilitation Research Center, University of Hasselt, Hasselt, Belgium
- UMSC, Hasselt/Pelt, Belgium
| | - Peter Feys
- REVAL Rehabilitation Research Center, University of Hasselt, Hasselt, Belgium
- UMSC, Hasselt/Pelt, Belgium
| |
Collapse
|
5
|
Hernandez ME, Motl RW, Foley FW, Picone MA, Izzetoglu M, Lipton ML, Wagshul M, Holtzer R. Disability Moderates Dual Task Walking Performance and Neural Efficiency in Older Adults With Multiple Sclerosis. Neurorehabil Neural Repair 2024; 38:795-807. [PMID: 39177188 DOI: 10.1177/15459683241273411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Mobility and cognitive impairment are prevalent and co-occurring in older adults with multiple sclerosis (OAMS), yet there is limited research concerning the role of disability status in the cognitive control of gait among OAMS. OBJECTIVE We investigated the levels of prefrontal cortex (PFC) activation, using oxygenated hemoglobin (HbO2), during cognitively-demanding tasks in OAMS with lower and higher disability using functional near-infrared spectroscopy (fNIRS) to: (1) identify PFC activation differences in single task walk and cognitively-demanding tasks in OAMS with different levels of disability; and (2) evaluate if disability may moderate practice-related changes in neural efficiency in OAMS. METHODS We gathered data from OAMS with lower (n = 51, age = 65 ± 4 years) or higher disability (n = 48, age = 65 ± 5 years), using a cutoff of 3 or more, in the Patient Determined Disease Steps, for higher disability, under 3 different conditions (single-task walk, Single-Task-Alpha, and Dual-Task-Walk [DTW]) administered over 3 counterbalanced, repeated trials. RESULTS OAMS who had a lower disability level exhibited decreased PFC activation levels during Single-Task-Walk (STW) and larger increases in PFC activation levels, when going from STW to a cognitively-demanding task, such as a DTW, than those with higher disability. OAMS with a lower disability level exhibited greater declines in PFC activation levels with additional within session practice than those with a higher disability level. CONCLUSIONS These findings suggest that disability moderates brain adaptability to cognitively-demanding tasks and demonstrate the potential for fNIRS-derived outcome measures to complement neurorehabilitation outcomes.
Collapse
Affiliation(s)
- Manuel E Hernandez
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Mary Ann Picone
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Meltem Izzetoglu
- Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Michael L Lipton
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
Al-Shargie F, Glassen M, DeLuca J, Saleh S. Obstacle Avoidance in Healthy Adults and People With Multiple Sclerosis: Preliminary fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3966-3976. [PMID: 39466870 DOI: 10.1109/tnsre.2024.3487526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This study examined how gait adaptation during predictable and non-predictable obstacle avoidance affects the sensorimotor network in both healthy controls (HC) and persons with multiple sclerosis (pwMS). We utilized fNIRS measurements of HbO2 and HHb to estimate cortical activations and connectivity networks, which were then analyzed using power spectral density (PSD) and partial directed coherence (PDC). The findings revealed distinct patterns of cortical activation and connectivity for each task condition in both groups. Healthy individuals displayed lower cortical activations in the bilateral motor cortex (MC) during non-predictable obstacle avoidance, indicating efficient neural processing. On the other hand, pwMS exhibited lower cortical activations across most brain areas during non-predictable tasks, suggesting potential limitations in neural resource allocation. When tasks were combined, pwMS demonstrated higher cortical activation across all recorded brain areas compared to HC, indicating a compensatory mechanism to maintain gait stability. Functional connectivity analysis revealed that pwMS recruited higher bilateral somatosensory association cortex (SAC) than HC, whereas healthy individuals engaged more bilateral premotor cortices (PMC). These findings suggest alterations in sensorimotor integration and motor planning in pwMS. Four machine learning models (KNN, SVM, DT, and DA) achieved high classification accuracies (92-99%) in differentiating between task conditions within each group. These results highlight the potential of integrating fNIRS-based cortical activation and connectivity measures with machine learning as biomarkers for MS-related impairments in cognitive-motor interaction. Such biomarkers could aid in predicting future mobility decline, fall risk, and disease progression.
Collapse
|
7
|
Holtzer R, Foley FW, Motl RW, Wagshul ME, Hernandez ME, Lipton ML, Picone MA, Izzetoglu M. Brain hemodynamic responses and fall prediction in older adults with multiple sclerosis. Mult Scler 2024; 30:1664-1673. [PMID: 39258434 DOI: 10.1177/13524585241277400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
OBJECTIVE We examined whether brain hemodynamic responses, gait, and cognitive performances under single- and dual-task conditions predict falls during longitudinal follow-up in older adults with multiple sclerosis (OAMS) with relapsing-remitting and progressive subtypes. METHODS Participants with relapsing-remitting (n = 53, mean age = 65.02 ± 4.17 years, %female = 75.5) and progressive (n = 28, mean age = 64.64 ± 4.31 years, %female = 50) multiple sclerosis (MS) subtypes completed a dual-task-walking paradigm and reported falls during longitudinal follow-up using a monthly structured telephone interview. We used functional near-infrared spectroscopy (fNIRS) to assess oxygenated hemoglobin (HbO) in the prefrontal cortex during active walking and while performing a cognitive test under single- and dual-task conditions. RESULTS Adjusted general estimating equations models indicated that higher HbO under dual-task walking was significantly associated with a reduction in the odds of reporting falls among participants with relapsing-remitting (odds ratio (OR) = 0.472, p = 0.004, 95% confidence interval (CI) = 0.284-0.785), but not progressive (OR = 1.056, p = 0.792, 95% CI = 0.703-1.588) MS. In contrast, faster stride velocity under dual-task walking was significantly associated with a reduction in the odds of reporting falls among progressive (OR = 0.658, p = 0.004, 95% CI = 0.495-0.874), but not relapsing-remitting (OR = 0.998, p = 0.995, 95% CI = 0.523-1.905) MS. CONCLUSION Findings suggest that higher prefrontal cortex activation levels during dual-task walking, which may represent compensatory reallocation of brain resources, provide protection against falls for OAMS with relapsing-remitting subtype.
Collapse
Affiliation(s)
- Roee Holtzer
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Manuel E Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Mary Ann Picone
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| |
Collapse
|
8
|
Grosboillot N, Gallou-Guyot M, Lamontagne A, Bonnyaud C, Perrot A, Allali G, Perrochon A. Towards a comprehensive framework for complex walking tasks: Characterization, behavioral adaptations, and clinical implications in ageing and neurological populations. Ageing Res Rev 2024; 101:102458. [PMID: 39153599 DOI: 10.1016/j.arr.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Complex walking tasks, including change of direction, patterns and rhythms, require more attentional resources than simple walking and significantly impact walking performance, especially among ageing and neurological populations. More studies have been focusing on complex walking situations, with or without the addition of cognitive tasks, creating a multitude of walking situations. Given the lack of a clear and extensive definition of complex walking, this narrative review aims to identify and more precisely characterize situations and related tests, improve understanding of behavioral adaptations in ageing and neurological populations, and report the clinical applications of complex walking. Based on the studies collected, we are proposing a framework that categorizes the different forms of complex walking, considering whether a cognitive task is added or not, as well as the number of distinct objectives within a given situation. We observed that combining complex walking tasks with a cognitive assignment places even greater strain on attentional resources, resulting in a more pronounced decline in walking and/or cognitive performance. This work highlights the relevance of complex walking as a simple tool for early detection of cognitive impairments and risk of falls, and its potential value in cognitive-motor rehabilitation. Future studies should explore various complex walking tasks in ageing and neurological populations, under varied conditions in real-life or in extended virtual environments.
Collapse
Affiliation(s)
- N Grosboillot
- Université de Limoges, HAVAE, UR 20217, Limoges F-87000, France
| | - M Gallou-Guyot
- Université de Limoges, HAVAE, UR 20217, Limoges F-87000, France; Department of Human Life and Environmental Sciences, Ochanomizu University, Tokyo, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - A Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Site-CISSS Laval, Laval, Canada
| | - C Bonnyaud
- Laboratoire d'analyse du mouvement, Explorations fonctionnelles, Hôpital Raymond Poincaré Garches, GHU Paris Saclay APHP, France; Université Paris-Saclay, UVSQ, Erphan Research unit, Versailles 78000, France
| | - A Perrot
- CIAMS, Université Paris Saclay, Orsay, France
| | - G Allali
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Perrochon
- Université de Limoges, HAVAE, UR 20217, Limoges F-87000, France.
| |
Collapse
|
9
|
Evancho A, Do M, Fortenberry D, Billings R, Sartayev A, Tyler WJ. Vagus nerve stimulation in Parkinson's disease: a scoping review of animal studies and human subjects research. NPJ Parkinsons Dis 2024; 10:199. [PMID: 39448636 PMCID: PMC11502766 DOI: 10.1038/s41531-024-00803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent, progressive neurodegenerative disease with motor and non-motor symptoms. Vagus Nerve Stimulation (VNS) has emerged as a potential therapeutic approach for PD, but published research on this topic varies widely. This scoping review maps existing literature on VNS for PD, highlighting stimulation methods, operational parameters, safety profiles, neurophysiological mechanisms, and clinical outcomes in human and animal models. Online databases were used to identify 788 papers published between 2013 and 2023, from which 17 publications on invasive and non-invasive VNS in PD were selected. Studies showed high variability in VNS parameters and study design. Evidence in animal models and human subjects suggests potential neurophysiological effects on PD-related pathology and motor function improvements. However, significant gaps in the literature remain. Future research should include rigorous reporting of study design, standardization of stimulation parameters, and larger sample sizes to ultimately facilitate translation of VNS into clinical practice.
Collapse
Affiliation(s)
- Alexandra Evancho
- University of Alabama at Birmingham School of Health Professions, Birmingham, AL, USA.
| | - Melissa Do
- University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
| | | | - Rebecca Billings
- University of Alabama at Birmingham Libraries, Birmingham, AL, USA
| | - Alibek Sartayev
- University of Alabama at Birmingham Graduate Biomedical Sciences, Birmingham, AL, USA
| | - William J Tyler
- University of Alabama at Birmingham School of Health Professions, Birmingham, AL, USA
- University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
10
|
Noreen A, Lu J, Xu X, Jiang H, Hua Y, Shi X, Tang X, Bai Z, Liang Q, Tian Y, Han T, Lu Y, Ao L, Yang L. Comparing the effects of Swiss-ball training and virtual reality training on balance, mobility, and cortical activation in individuals with chronic stroke: study protocol for a multi-center randomized controlled trial. Trials 2024; 25:677. [PMID: 39396963 PMCID: PMC11472495 DOI: 10.1186/s13063-024-08532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Balance and mobility deficits are major concerns in stroke rehabilitation. Virtual reality (VR) training and Swiss-ball training are commonly used approaches to improve balance and mobility. However, no study has compared the efficacy of VR training, Swiss-ball training, and their combination in improving balance and mobility function or investigated cortical activation and connectivity in individuals with stroke. METHODS A prospective, single-blinded, parallel-armed, multi-center randomized controlled trial with factorial design will be conducted. Seventy-six participants aged 30-80 years with stroke will be recruited. Participants will be allocated to one of the four groups: (A) the VR training + Swiss-ball training + conventional physical therapy group; (B) the Swiss-ball training + conventional physical therapy group; (C) the VR training + conventional physical therapy group; or (D) the conventional physical therapy group. All participants will receive 50 min of training per day, 5 times per week, for a total of 4 weeks. The primary outcomes will be balance and mobility measures. Secondary outcomes will include the 10-min walk test, dynamic gait index, and cortical activation. Outcomes will be measured on three occasions: at baseline, after the training, and at the 4-week follow-up. DISCUSSION This trial will provide evidence to determine whether there are differences in clinical outcomes and cortical activation following two different types of exercise programs and their combination, and to elucidate the recovery mechanisms of balance and mobility function in individuals with stroke. TRIAL REGISTRATION Chinese Clinical Trial Registry reference: www.chictr.org.cn (No. ChiCTR2400082135). Registered on May 24, 2024.
Collapse
Affiliation(s)
- Alisha Noreen
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiani Lu
- Department of Rehabilitation, School of Medicine, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, China
| | - Xuan Xu
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Huihui Jiang
- Department of Rehabilitation, School of Medicine, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, China
| | - Yuanyuan Hua
- Department of Rehabilitation, Kunming LIH Skycity Rehabilitation Hospital, Kunming, Yunnan Province, China
| | - Xiaoyu Shi
- Department of Rehabilitation, School of Medicine, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, China
| | - Xin Tang
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhongfei Bai
- Department of Rehabilitation, School of Medicine, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, China
| | - Qihui Liang
- Yunnan Rehabilitation Center for The Disabled, Kunming, Yunnan Province, China
| | - Yuan Tian
- Yunnan Rehabilitation Center for The Disabled, Kunming, Yunnan Province, China
| | - Tao Han
- Department of Rehabilitation, Kunming LIH Skycity Rehabilitation Hospital, Kunming, Yunnan Province, China
| | - Yi Lu
- Department of Rehabilitation, Kunming LIH Skycity Rehabilitation Hospital, Kunming, Yunnan Province, China
| | - Lijuan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China.
| | - Lei Yang
- Department of Rehabilitation Medicine, The Second People's Hospital of Kunming, Kunming, Yunnan Province, China.
| |
Collapse
|
11
|
Yang Z, Ye L, Yang L, Lu Q, Yu A, Bai D. Early screening of post-stroke fall risk: A simultaneous multimodal fNIRs-EMG study. CNS Neurosci Ther 2024; 30:e70041. [PMID: 39315509 PMCID: PMC11420627 DOI: 10.1111/cns.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Stroke is the third-leading cause of death and disability, and poststroke falls (PSF) are common at all stages after stroke and could even lead to injuries or death. Brain information from functional near-infrared spectroscopy (fNIRs) may precede conventional imaging and clinical symptoms but has not been systematically considered in PSF risk prediction. This study investigated the difference in brain activation between stroke patients and healthy subjects, and this study was aimed to explore fNIRs biomarkers for early screening of PSF risk by comparing the brain activation in patients at and not at PSF risk. METHODS In this study, we explored the differences in brain activation and connectivity between stroke and healthy subjects by synchronizing the detection of fNIRs and EMG tests during simple (usual sit-to-stand) and difficult tasks (sit-to-stand based on EMG feedback). Thereby further screened for neuroimaging biomarkers for early prediction of PSF risk by comparing brain activation variability in poststroke patients at and not at fall risk during simple and difficult tasks. The area under the ROC curve (AUROC), sensitivity, and specificity were used to compare the diagnostic effect. RESULTS A total of 40 patients (22 not at and 18 at PSF risk) and 38 healthy subjects were enrolled. As the difficulty of standing task increased, stroke patients compared with healthy subjects further increased the activation of the unaffected side of supplementary motor area (H-SMA) and dorsolateral prefrontal cortex-Brodmann area 46 (H-DLFC-BA46) but were unable to increase functional connectivity (Group*Task: p < 0.05). More importantly, the novel finding showed that hyperactivation of the H-SMA during a simple standing task was a valid fNIRs predictor of PSF risk [AUROC 0.74, p = 0.010, sensitivity 77.8%, specificity 63.6%]. CONCLUSIONS This study provided novel evidence that fNIR-derived biomarkers could early predict PSF risk that can facilitate the widespread use of real-time assessment tools in early screening and rehabilitation. Meanwhile, this study demonstrated that the higher brain activation and inability to increase the brain functional connectivity in stroke patients during difficult task indicated the inefficient use of brain resources.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Ye
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lining Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyi Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anqi Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Bishnoi A, Hu Y, Hernandez ME. Perturbation walking effects on prefrontal cortical activation and walking performance in older women with and without osteoarthritis: a FNIRS study. Front Aging Neurosci 2024; 16:1403185. [PMID: 39239356 PMCID: PMC11374618 DOI: 10.3389/fnagi.2024.1403185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Perturbation walking (PW) has been shown to improve gait, however its effect on the cortical control of gait might provide insights on neural mechanisms underlying falls in adults with osteoarthritis. The objective of this study is to investigate the effect of PW on prefrontal cortical (PFC) activation in older women with (OA) and without osteoarthritis (HOA). We hypothesized that there would be an increase in PFC activation during PW relative to comfortable walking (CW) and higher increase in PFC activation during PW in HOA compared to OA. Methods Twenty community-dwelling older women (66.7 ± 5.41 years old) walked on an instrumented treadmill that provided perturbations at pseudo-random intervals between 5-25 s using a counterbalanced design. Functional Near Infrared Spectroscopy was used to quantify PFC oxygenated hemoglobin (HbO2) and deoxyhemoglobin (Hb) levels, while standing prior to the task as a baseline. A linear mixed effects model was conducted to investigate the effects of cohort (HOA vs OA), task (PW vs CW), and their interaction on HbO2 (μM) and Hb (μM) levels. Results HbO2 and Hb levels differed significantly between CW and PW tasks for both cohorts (P < 0.001) and demonstrated significant task by cohort interaction (P < 0.05). In addition, we found changes in walking performance (stride time, stride length, stride width and stance time) during and after PW. Spearman correlation demonstrated a strong association between increased stance time, increased body mass index and decreased PFC activation during PW. No other significant results were found. Discussion This study found increase in PFC activation during PW and gait adaptation after a short bout of PW in HOA and OA. This increase in PFC activation was higher in HOA compared to OA, particularly during PW tasks, and was consistent with theory of limitations in mobility affecting neural activation in older adults. Further work remains to examine how pain, obesity, and mobility impacts cortical control in older adults with and without osteoarthritis.
Collapse
Affiliation(s)
- Alka Bishnoi
- Department of Physical Therapy, College of Health Professions and Human Services, Kean University, Union, NJ, United States
| | - Yang Hu
- Department of Kinesiology, San Jose State University, San Jose, CA, United States
| | - Manuel E Hernandez
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
13
|
Yang K, Ding Y, Chu L, Cheng C, Yu X, Xu H, Tao Y, Liu T, Yin L, Wu X, Liu B, Jiang L. Altered activation patterns of the sensory-motor cortex in patients with knee osteoarthritis during knee isokinetic movement at different speeds. Front Bioeng Biotechnol 2024; 12:1444731. [PMID: 39234272 PMCID: PMC11371690 DOI: 10.3389/fbioe.2024.1444731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024] Open
Abstract
Background Abnormal brain activation patterns in patients with knee osteoarthritis (KOA) at rest have been revealed, but it is unclear how brain activation patterns change during movement. This study aimed to investigate the alterations in brain activation patterns in KOA patients during knee isokinetic movement, and the correlation between cortical activity changes and pain severity and dysfunction. Methods Eighteen patients with KOA and 18 healthy controls (HC) were recruited, and to performed the knee isokinetic test with three speeds. Functional near-infrared spectroscopy (fNIRS) was used to detect the cerebral cortex hemodynamics changes of primary somatosensory (S1), primary motor (M1) and somatosensory association cortex (SAC) in the region of interest (ROI) during movement. Then, we evaluated potential correlations between M1, S1 and SAC values and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and visual analog scale (VAS) scores. Results The results showed that peak torque of knee extension in KOA patients was significantly smaller than that in HC. For HC, unilateral knee movement activated bilateral ROIs. The contralateral activation was dominant, showing the phenomenon of high contralateral activation. For KOA patients, there were no statistical difference in the activation level between the left and right of the cerebral cortex, with both sides showing lower activation levels compared to HC. Further analysis found that the contralateral M1, S1, and SAC of the affected knee in KOA patients were significantly lower than those in HC, while no difference was found on the ipsilateral side. Moreover, during isokinetic movement at 180°/s, VAS score in KOA patients was negatively correlated with the activation level of the contralateral S1 and M1 values, and WOMAC was negatively correlated with the activation level of the contralateral M1 value. Conclusion Contralateral activation of the sensorimotor cortex exists during unilateral knee movement, but in KOA patients, this contralateral cortical activation is suppressed. Furthermore, the clinical pain and dysfunction in KOA patients are associated with activation levels of specific brain regions. These findings can provide a better understanding of KOA brain science and are expected to contribute to the development of central intervention for the disease.
Collapse
Affiliation(s)
- Kun Yang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwu Ding
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixi Chu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changfeng Cheng
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoming Yu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haichen Xu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Tao
- Department of Traditional Chinese Medicine, Shanghai Puxing Community Healthcare Center, Shanghai, China
| | - Tiantian Liu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yin
- Department of Orthopedics and Traumatology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xubo Wu
- Department of Orthopedics and Traumatology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingli Liu
- Department of Orthopedics and Traumatology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liming Jiang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Hagen AC, Tracy BL, Stephens JA. Altered neural recruitment despite dual task performance recovery in athletes with repeat concussion. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.19.24312271. [PMID: 39228732 PMCID: PMC11370505 DOI: 10.1101/2024.08.19.24312271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sports-related concussions (SRCs) pose significant challenges to college-aged athletes, eliciting both immediate symptoms and subacute cognitive and motor function impairment. While most symptoms and impairments resolve within weeks, athletes with repeat SRCs may experience heightened risk for prolonged recovery trajectories, future musculoskeletal injuries, and long-term neurocognitive deficits. This includes impaired dual task performance and altered neurophysiology that could persist across the lifespan and elicit future pathophysiology and neurodegeneration. Thus, it is imperative to improve our understanding of neurophysiology after SRC. This study aimed to investigate the impact of repeat SRCs on dual task performance and associated neural recruitment using functional near-infrared spectroscopy (fNIRS). A total of 37 college-aged athletes (ages 18-24) participated in this cross-sectional observational study. Among these athletes, 20 had a history of two or more SRCs, while 17 had never sustained a SRC and served as controls. Participants completed the Neuroimaging-Compatible Dual Task Screen (NC-DTS) while fNIRS measured neural recruitment in the frontoparietal attention network and the primary motor and sensory cortices. Behavioral analysis revealed that athletes with repeat SRCs exhibited comparable single task and dual task performance to control athletes. Additionally, dual task effects (DTE), which capture performance declines in dual tasks versus single tasks, did not significantly differ between groups. Notably, the cohort of athletes with repeat SRC in this study had a longer time since their last SRC (mean = 1.75 years) than majority of previous SRC studies. Neuroimaging results indicated altered neural recruitment patterns in athletes with multiple repeat SRCs during both single and dual tasks. Specifically, athletes with repeat SRCs demonstrated increased prefrontal cortex (PFC) activation during single motor tasks compared to controls (P < 0.001, d = 0.47). Conversely, during dual tasks, these same athletes exhibited reduced PFC activation (P < 0.001, d = 0.29) and primary motor cortex (M1) activation (P = 0.038, d = 0.16) compared to their single task activation. These findings emphasize the complex relationship between SRC history, dual task performance, and changes in neurophysiology. While athletes with repeat SRCs demonstrate recovery in behavioral dual task performance, persistent alterations in neural recruitment patterns suggest ongoing neurophysiological changes, possibly indicating compensatory neural strategies and inefficient neural resource allocation, even beyond symptom resolution and medical clearance. Understanding the compensatory neural recruitment strategies that support behavioral performance following repeat SRCs can inform return-to-play decisions, future musculoskeletal injury risk, and the long-term impact of SRCs on neurocognitive function.
Collapse
Affiliation(s)
- Andrew C. Hagen
- Department of Health and Exercise Science, Colorado State University, Fort Collins CO, 80523, USA
| | - Brian L Tracy
- Department of Health and Exercise Science, Colorado State University, Fort Collins CO, 80523, USA
| | - Jaclyn A. Stephens
- Department of Health and Exercise Science, Colorado State University, Fort Collins CO, 80523, USA
- Molecular Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, 80523
| |
Collapse
|
15
|
Richer N, Bradford JC, Ferris DP. Mobile neuroimaging: What we have learned about the neural control of human walking, with an emphasis on EEG-based research. Neurosci Biobehav Rev 2024; 162:105718. [PMID: 38744350 DOI: 10.1016/j.neubiorev.2024.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Our understanding of the neural control of human walking has changed significantly over the last twenty years and mobile brain imaging methods have contributed substantially to current knowledge. High-density electroencephalography (EEG) has the advantages of being lightweight and mobile while providing temporal resolution of brain changes within a gait cycle. Advances in EEG hardware and processing methods have led to a proliferation of research on the neural control of locomotion in neurologically intact adults. We provide a narrative review of the advantages and disadvantages of different mobile brain imaging methods, then summarize findings from mobile EEG studies quantifying electrocortical activity during human walking. Contrary to historical views on the neural control of locomotion, recent studies highlight the widespread involvement of many areas, such as the anterior cingulate, posterior parietal, prefrontal, premotor, sensorimotor, supplementary motor, and occipital cortices, that show active fluctuations in electrical power during walking. The electrocortical activity changes with speed, stability, perturbations, and gait adaptation. We end with a discussion on the next steps in mobile EEG research.
Collapse
Affiliation(s)
- Natalie Richer
- Department of Kinesiology and Applied Health, University of Winnipeg, Winnipeg, Manitoba, Canada.
| | - J Cortney Bradford
- US Army Combat Capabilities Development Command US Army Research Laboratory, Adelphi, MD, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Kvist A, Bezuidenhout L, Johansson H, Albrecht F, Moulaee Conradsson D, Franzén E. Validation of fNIRS measurement of executive demand during walking with and without dual-task in younger and older adults and people with Parkinson's disease. Neuroimage Clin 2024; 43:103637. [PMID: 38964222 PMCID: PMC11278929 DOI: 10.1016/j.nicl.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Walking with a concurrent cognitive task (dual-task walking) can pose a challenge to some populations due to aging or neurodegenerative disease. These tasks require cognitive resources involving the prefrontal cortex and can be studied using functional near-infrared spectroscopy (fNIRS). An important step in understanding fNIRS measures during such walking tasks is validating that measures reflect the demands of the tasks and not confounding sources or movement artifacts. AIM This study aimed to investigate the validity of fNIRS measures of prefrontal cortex activity as an indicator of executive demand during usual walking (single-task) and dual-task walking against clinical and objective measures of motor behavior in young adults, older adults, and people with Parkinson's disease (PD), by evaluating several validation hypotheses. METHODS In total, 133 participants were recruited from younger adults (18-50 years, n = 42), older adults (≥60 years, n = 49) and people with PD (≥60 years, n = 42). Activity in the prefrontal cortex during walking with and without an auditory Stroop task was measured with fNIRS. A combined hemoglobin measure (correlation-based signal improvement, CBSI) was calculated for use in a region of interest analysis in the dorsolateral prefrontal cortex (dlPFC). Pre-registered hypotheses regarding convergent validity, discriminant validity and known group validity were tested. An exploratory analysis of different hemoglobin measures was also performed. RESULTS Increases in dlPFC activity were found from single- to dual-task walking in the younger adults group and from rest to single-task walking in the older adults and PD groups. In line with hypotheses, a positive relationship was found between between dlPFC activity during dual-task walking and dual-task cost in the younger adults group, as well as a positive relationship to step time variability during single-task walking and a negative relationship to walking speed during single-task walking in the PD group. However, several clinical and gait measures lacked a relationship with dlPFC activity. CONCLUSION The fNIRS results point towards the CBSI measure of dlPFC activity being a valid measure of executive demand during both single and dual-task walking. Some relationships between clinical and gait measures and brain activity during walking need further investigation.
Collapse
Affiliation(s)
- Alexander Kvist
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden.
| | - Lucian Bezuidenhout
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Department of Health and Rehabilitation Sciences, Division of Physiotherapy, Stellenbosch University, Cape Town, South Africa
| | - Hanna Johansson
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden; Stockholm Sjukhem Foundation, Mariebergsgatan 22, 112 19 Stockholm, Sweden
| | - Franziska Albrecht
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - David Moulaee Conradsson
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Franzén
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden; Stockholm Sjukhem Foundation, Mariebergsgatan 22, 112 19 Stockholm, Sweden
| |
Collapse
|
17
|
Zhao YN, Han PP, Zhang XY, Bi X. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging During Rehabilitation Following Stroke: A Review. Med Sci Monit 2024; 30:e943785. [PMID: 38879751 PMCID: PMC11188690 DOI: 10.12659/msm.943785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 06/22/2024] Open
Abstract
Stroke is a cerebrovascular disease that impairs blood supply to localized brain tissue regions due to various causes. This leads to ischemic and hypoxic lesions, necrosis of the brain tissue, and a variety of functional disorders. Abnormal cortical activation and functional connectivity occur in the brain after a stroke, but the activation patterns and functional reorganization are not well understood. Rehabilitation interventions can enhance functional recovery in stroke patients. However, clinicians require objective measures to support their practice, as outcome measures for functional recovery are based on scale scores. Furthermore, the most effective rehabilitation measures for treating patients are yet to be investigated. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method that detects changes in cerebral hemodynamics during task performance. It is widely used in neurological research and clinical practice due to its safety, portability, high motion tolerance, and low cost. This paper briefly introduces the imaging principle and the advantages and disadvantages of fNIRS to summarize the application of fNIRS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
| |
Collapse
|
18
|
Holtzer R, Choi J, Motl RW, Foley FW, Wagshul ME, Hernandez ME, Izzetoglu M. Brain control of dual-task walking can be improved in aging and neurological disease. GeroScience 2024; 46:3169-3184. [PMID: 38221528 PMCID: PMC11009168 DOI: 10.1007/s11357-023-01054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
The peak prevalence of multiple sclerosis has shifted into older age groups, but co-occurring and possibly synergistic motoric and cognitive declines in this patient population are poorly understood. Dual-task-walking performance, subserved by the prefrontal cortex, and compromised in multiple sclerosis and aging, predicts health outcomes. Whether acute practice can improve dual-task walking performance and prefrontal cortex hemodynamic response efficiency in multiple sclerosis has not been reported. To address this gap in the literature, the current study examined task- and practice-related effects on dual-task-walking and associated brain activation in older adults with multiple sclerosis and controls. Multiple sclerosis (n = 94, mean age = 64.76 ± 4.19 years) and control (n = 104, mean age = 68.18 ± 7.01 years) participants were tested under three experimental conditions (dual-task-walk, single-task-walk, and single-task-alpha) administered over three repeated counterbalanced trials. Functional near-infrared-spectroscopy was used to evaluate task- and practice-related changes in prefrontal cortex oxygenated hemoglobin. Gait and cognitive performances declined, and prefrontal cortex oxygenated hemoglobin was higher in dual compared to both single task conditions in both groups. Gait and cognitive performances improved over trials in both groups. There were greater declines over trials in oxygenated hemoglobin in dual-task-walk compared to single-task-walk in both groups. Among controls, but not multiple sclerosis participants, declines over trials in oxygenated hemoglobin were greater in dual-task-walk compared to single-task-alpha. Dual-task walking and associated prefrontal cortex activation efficiency improved during a single session, but improvement in neural resource utilization, although significant, was attenuated in multiple sclerosis participants. These findings suggest encouraging brain adaptability in aging and neurological disease.
Collapse
Affiliation(s)
- Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
| | - Jaeun Choi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois, Chicago, IL, USA
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Manuel E Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Meltem Izzetoglu
- Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| |
Collapse
|
19
|
Wang S, Wang W, Chen J, Yu X. Alterations in brain functional connectivity in patients with mild cognitive impairment: A systematic review and meta-analysis of functional near-infrared spectroscopy studies. Brain Behav 2024; 14:e3414. [PMID: 38616330 PMCID: PMC11016629 DOI: 10.1002/brb3.3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/16/2024] Open
Abstract
Emerging evidences suggest that cognitive deficits in individuals with mild cognitive impairment (MCI) are associated with disruptions in brain functional connectivity (FC). This systematic review and meta-analysis aimed to comprehensively evaluate alterations in FC between MCI individuals and healthy control (HC) using functional near-infrared spectroscopy (fNIRS). Thirteen studies were included in qualitative analysis, with two studies synthesized for quantitative meta-analysis. Overall, MCI patients exhibited reduced resting-state FC, predominantly in the prefrontal, parietal, and occipital cortex. Meta-analysis of two studies revealed a significant reduction in resting-state FC from the right prefrontal to right occipital cortex (standardized mean difference [SMD] = -.56; p < .001), left prefrontal to left occipital cortex (SMD = -.68; p < .001), and right prefrontal to left occipital cortex (SMD = -.53; p < .001) in MCI patients compared to HC. During naming animal-walking task, MCI patients exhibited enhanced FC in the prefrontal, motor, and occipital cortex, whereas a decrease in FC was observed in the right prefrontal to left prefrontal cortex during calculating-walking task. In working memory tasks, MCI predominantly showed increased FC in the medial and left prefrontal cortex. However, a decreased in prefrontal FC and a shifted in distribution from the left to the right prefrontal cortex were noted in MCI patients during a verbal frequency task. In conclusion, fNIRS effectively identified abnormalities in FC between MCI and HC, indicating disrupted FC as potential markers for the early detection of MCI. Future studies should investigate the use of task- and region-specific FC alterations as a sensitive biomarker for MCI.
Collapse
Affiliation(s)
- Shuangyan Wang
- Department of Geriatric Neurology, Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| | - Weijia Wang
- Department of LibrarySun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jinglong Chen
- Department of Geriatric Neurology, Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| | - Xiaoqi Yu
- Department of Geriatric Neurology, Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| |
Collapse
|
20
|
Saway BF, Palmer C, Hughes C, Triano M, Suresh RE, Gilmore J, George M, Kautz SA, Rowland NC. The evolution of neuromodulation for chronic stroke: From neuroplasticity mechanisms to brain-computer interfaces. Neurotherapeutics 2024; 21:e00337. [PMID: 38377638 PMCID: PMC11103214 DOI: 10.1016/j.neurot.2024.e00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Stroke is one of the most common and debilitating neurological conditions worldwide. Those who survive experience motor, sensory, speech, vision, and/or cognitive deficits that severely limit remaining quality of life. While rehabilitation programs can help improve patients' symptoms, recovery is often limited, and patients frequently continue to experience impairments in functional status. In this review, invasive neuromodulation techniques to augment the effects of conventional rehabilitation methods are described, including vagus nerve stimulation (VNS), deep brain stimulation (DBS) and brain-computer interfaces (BCIs). In addition, the evidence base for each of these techniques, pivotal trials, and future directions are explored. Finally, emerging technologies such as functional near-infrared spectroscopy (fNIRS) and the shift to artificial intelligence-enabled implants and wearables are examined. While the field of implantable devices for chronic stroke recovery is still in a nascent stage, the data reviewed are suggestive of immense potential for reducing the impact and impairment from this globally prevalent disorder.
Collapse
Affiliation(s)
- Brian F Saway
- Department of Neurosurgery, Medical University of South Carolina, SC 29425, USA.
| | - Charles Palmer
- Department of Psychiatry, Medical University of South Carolina, SC 29425, USA
| | - Christopher Hughes
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew Triano
- Department of Neurosurgery, Medical University of South Carolina, SC 29425, USA
| | - Rishishankar E Suresh
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jordon Gilmore
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Mark George
- Department of Psychiatry, Medical University of South Carolina, SC 29425, USA; Ralph H Johnson VA Health Care System, Charleston, SC 29425, USA
| | - Steven A Kautz
- Department of Health Science and Research, Medical University of South Carolina, SC 29425, USA; Ralph H Johnson VA Health Care System, Charleston, SC 29425, USA
| | - Nathan C Rowland
- Department of Neurosurgery, Medical University of South Carolina, SC 29425, USA; MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, SC 29425, USA
| |
Collapse
|
21
|
Ross D, Wagshul ME, Izzetoglu M, Holtzer R. Cortical thickness moderates intraindividual variability in prefrontal cortex activation patterns of older adults during walking. J Int Neuropsychol Soc 2024; 30:117-127. [PMID: 37366047 PMCID: PMC10751394 DOI: 10.1017/s1355617723000371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Increased intraindividual variability (IIV) in behavioral and cognitive performance is a risk factor for adverse outcomes but research concerning hemodynamic signal IIV is limited. Cortical thinning occurs during aging and is associated with cognitive decline. Dual-task walking (DTW) performance in older adults has been related to cognition and neural integrity. We examined the hypothesis that reduced cortical thickness would be associated with greater increases in IIV in prefrontal cortex oxygenated hemoglobin (HbO2) from single tasks to DTW in healthy older adults while adjusting for behavioral performance. METHOD Participants were 55 healthy community-dwelling older adults (mean age = 74.84, standard deviation (SD) = 4.97). Structural MRI was used to quantify cortical thickness. Functional near-infrared spectroscopy (fNIRS) was used to assess changes in prefrontal cortex HbO2 during walking. HbO2 IIV was operationalized as the SD of HbO2 observations assessed during the first 30 seconds of each task. Linear mixed models were used to examine the moderation effect of cortical thickness throughout the cortex on HbO2 IIV across task conditions. RESULTS Analyses revealed that thinner cortex in several regions was associated with greater increases in HbO2 IIV from the single tasks to DTW (ps < .02). CONCLUSIONS Consistent with neural inefficiency, reduced cortical thickness in the PFC and throughout the cerebral cortex was associated with increases in HbO2 IIV from the single tasks to DTW without behavioral benefit. Reduced cortical thickness and greater IIV of prefrontal cortex HbO2 during DTW may be further investigated as risk factors for developing mobility impairments in aging.
Collapse
Affiliation(s)
- Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Mark E. Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
22
|
Takahashi T, Iwata K, Yamada K, Maekawa Y, Inagaki Y, Takahara N, Kitai T, Kohara N, Tsubaki A. Prefrontal Cortex Oxygenation During Walking in an Acute Ischaemic Stroke Patient with Severe Internal Carotid Artery Stenosis: A Case Report. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1463:179-184. [PMID: 39400820 DOI: 10.1007/978-3-031-67458-7_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This study investigated the oxygenation in the prefrontal cortex (PFC) during walking in a 75-year-old male patient in the acute phase of a left frontal lobe cerebral infarction complicated by severe left internal carotid artery stenosis. The patient regained independent ambulation on the fifth day after the onset of symptoms, and the study was conducted on the eighth day after the onset of symptoms. The patient rested for 10 s before walking for 70 s. Then he rested for 60 s. The levels of oxyhaemoglobin (O2Hb), deoxyhaemoglobin (HHb), and total haemoglobin (THb) in the PFC were quantified during the rest and walking phases using a wearable near-infrared spectroscopy device. Comparative analysis with baseline values during rest revealed decreases in the O2Hb, HHb, and THb in both hemispheres of the PFC during walking (O2Hb: -19.76/ -14.88 μmol/L, HHb: -1.18/ -2.00 μmol/L, THb: -20.96/ -16.88 μmol/L, right/left, respectively). The recovery of the O2Hb was delayed by 15.8 seconds in the affected hemisphere. These findings support the effectiveness of wearable NIRS for the evaluation of cerebral oxygenation during rehabilitation in patients with acute stroke to facilitate evaluations and individualise patient care.
Collapse
Affiliation(s)
- Tomoya Takahashi
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan
| | - Kentaro Iwata
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Kanji Yamada
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yukihiro Maekawa
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuta Inagaki
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Natsuki Takahara
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan
| | - Takeshi Kitai
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Nobuo Kohara
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
23
|
Zhang H, Cao X, Wang L, Tong Q, Sun H, Gan C, Shan A, Yuan Y, Zhang K. Transcutaneous auricular vagus nerve stimulation improves gait and cortical activity in Parkinson's disease: A pilot randomized study. CNS Neurosci Ther 2023; 29:3889-3900. [PMID: 37311693 PMCID: PMC10651956 DOI: 10.1111/cns.14309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVE In this randomized, double-blind, sham-controlled trial, we explored the effect of 20 Hz transcutaneous auricular vagus nerve stimulation (taVNS) on gait impairments in Parkinson's disease (PD) patients and investigated the underlying neural mechanism. METHODS In total, 22 PD patients and 14 healthy controls were enrolled. PD patients were randomized (1:1) to receive active or sham taVNS (same position as active taVNS group but without releasing current) twice a day for 1 week. Meanwhile, all subjects were measured activation in the bilateral frontal and sensorimotor cortex during usual walking by functional near-infrared spectroscopy. RESULTS PD patients showed instable gait with insufficient range of motion during usual walking. Active taVNS improved gait characteristics including step length, stride velocity, stride length, and step length variability compared with sham taVNS after completion of the 7-day therapy. No difference was found in the Unified Parkinson's Disease Rating Scale III, Timed Up and Go, Tinetti Balance, and Gait scores. Moreover, PD patients had higher relative change of oxyhemoglobin in the left dorsolateral prefrontal cortex, pre-motor area, supplementary motor area, primary motor cortex, and primary somatosensory cortex than HCs group during usual walking. Hemodynamic responses in the left primary somatosensory cortex were significantly decreased after taVNS therapy. CONCLUSION taVNS can relieve gait impairments and remodel sensorimotor integration in PD patients.
Collapse
Affiliation(s)
- Heng Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xing‐yue Cao
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Li‐na Wang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qing Tong
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hui‐min Sun
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Cai‐ting Gan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ai‐di Shan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yong‐sheng Yuan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ke‐zhong Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
24
|
Baek CY, Kim HD, Yoo DY, Kang KY, Lee JW. Change in activity patterns in the prefrontal cortex in different phases during the dual-task walking in older adults. J Neuroeng Rehabil 2023; 20:86. [PMID: 37420235 PMCID: PMC10327141 DOI: 10.1186/s12984-023-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Studies using functional near-infrared spectroscopy (fNIRS) have shown that dual-task walking leads to greater prefrontal cortex (PFC) activation compared to the single-task walking task. However, evidence on age-related changes in PFC activity patterns is inconsistent. Therefore, this study aimed to explore the changes in the activation patterns of PFC subregions in different activation phases (early and late phases) during both single-task and dual-task walking in both older and younger adults. METHODS Overall, 20 older and 15 younger adults performed a walking task with and without a cognitive task. The activity of the PFC subregions in different phases (early and late phases) and task performance (gait and cognitive task) were evaluated using fNIRS and a gait analyzer. RESULTS The gait (slower speed and lower cadence) and cognitive performance (lower total response, correct response and accuracy rate, and higher error rate) of older adults was poorer during the dual task than that of younger adults. Right dorsolateral PFC activity in the early period in older adults was higher than that in younger adults, which declined precipitously during the late period. Conversely, the activity level of the right orbitofrontal cortex in the dual-task for older adults was lower than for younger adults. CONCLUSIONS These altered PFC subregion-specific activation patterns in older adults would indicate a decline in dual-task performance with aging.
Collapse
Affiliation(s)
- Chang Yoon Baek
- Department of Physical Therapy and School of Health and Environmental Science, College of Health Science, Korea University, Seoul, South Korea
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| | - Hyeong Dong Kim
- Department of Physical Therapy and School of Health and Environmental Science, College of Health Science, Korea University, Seoul, South Korea
| | - Dong Yup Yoo
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| | - Kyoung Yee Kang
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| | - Jang Woo Lee
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| |
Collapse
|
25
|
Belluscio V, Cartocci G, Terbojevich T, Di Feo P, Inguscio BMS, Ferrari M, Quaresima V, Vannozzi G. Facilitating or disturbing? An investigation about the effects of auditory frequencies on prefrontal cortex activation and postural sway. Front Neurosci 2023; 17:1197733. [PMID: 37425019 PMCID: PMC10324668 DOI: 10.3389/fnins.2023.1197733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Auditory stimulation activates brain areas associated with higher cognitive processes, like the prefrontal cortex (PFC), and plays a role in postural control regulation. However, the effects of specific frequency stimuli on upright posture maintenance and PFC activation patterns remain unknown. Therefore, the study aims at filling this gap. Twenty healthy adults performed static double- and single-leg stance tasks of 60s each under four auditory conditions: 500, 1000, 1500, and 2000 Hz, binaurally delivered through headphones, and in quiet condition. Functional near-infrared spectroscopy was used to measure PFC activation through changes in oxygenated hemoglobin concentration, while an inertial sensor (sealed at the L5 vertebra level) quantified postural sway parameters. Perceived discomfort and pleasantness were rated through a 0-100 visual analogue scale (VAS). Results showed that in both motor tasks, different PFC activation patterns were displayed at the different auditory frequencies and the postural performance worsened with auditory stimuli, compared to quiet conditions. VAS results showed that higher frequencies were considered more discomfortable than lower ones. Present data prove that specific sound frequencies play a significant role in cognitive resources recruitment and in the regulation of postural control. Furthermore, it supports the importance of exploring the relationship among tones, cortical activity, and posture, also considering possible applications with neurological populations and people with hearing dysfunctions.
Collapse
Affiliation(s)
- Valeria Belluscio
- Department of Movement, Human and Health Sciences, Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, Rome, Italy
- Fondazione Santa Lucia, Rome, Italy
| | - Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- BrainSigns Ltd, Rome, Italy
| | | | - Paolo Di Feo
- Department of Movement, Human and Health Sciences, Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, Rome, Italy
| | | | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giuseppe Vannozzi
- Department of Movement, Human and Health Sciences, Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, Rome, Italy
- Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
26
|
Magnúsdóttir BB, Gylfason HF, Jóhannsdóttir KR. Blunted Cardiovascular Reactivity Predicts Worse Performance in Working Memory Tasks. Brain Sci 2023; 13:brainsci13040649. [PMID: 37190615 DOI: 10.3390/brainsci13040649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
When we experience psychological challenges in the environment, our heart rate usually rises to make us more able to solve the task, but there is an individual difference in cardiovascular reactivity (CVR). Extreme CVR to environmental demands has been associated with worse health outcomes, with blunted CVR (little or no rise in heart rate) related to maladaptive behavior, including depression. The blunted CVR has been explained by motivational disengagement, which involves giving up on a task when facing obstacles. Disengagement is thought to be a habitual response that people might not be aware of, and, therefore, objective measures such as test performance might serve as a good measure of engagement. In this study, 66 participants solved different cognitive tasks while their CVR was measured. The aim was to test the association between test performance and reactivity, measured with the difference in heart rate at baseline and the mean heart rate while solving the tasks. Our results show a significant association between reactivity scores and performance in all tests, of various difficulty, indicating that blunted cardiovascular reactivity predicts poorer cognitive performance. Furthermore, we find an association between reactivity in one test and the performance in the other tests, suggesting that disengagement from environmental demands can be more general and not depend on the task at hand. The results, therefore, support earlier research suggesting that blunted CVR is associated with worse cognitive performance, and extends the literature by indicating that disengagement could be a more general maladaptive response to the environment.
Collapse
|
27
|
Kvist A, Bezuidenhout L, Johansson H, Albrecht F, Ekman U, Conradsson DM, Franzén E. Using functional near-infrared spectroscopy to measure prefrontal cortex activity during dual-task walking and navigated walking: A feasibility study. Brain Behav 2023; 13:e2948. [PMID: 36917560 PMCID: PMC10097069 DOI: 10.1002/brb3.2948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION While functional near-infrared spectroscopy (fNIRS) can provide insight into motor-cognitive deficits during ecologically valid gait conditions, the feasibility of using fNIRS during complex walking remains unknown. We tested the process and scientific feasibility of using an fNIRS device to measure cortical activity during complex walking tasks consisting of straight walking and navigated walking under single and dual-task (DT) conditions. METHODS Nineteen healthy people from 18 to 64 years (mean age: 45.7 years) participated in this study which consisted of three complex walking protocols: (i) straight walking, DT walking (walking while performing an auditory Stroop task) and single-task auditory Stroop, (ii) straight and navigated walking, and (iii) navigated walking and navigated DT walking. A rest condition (standing still) was also included in each protocol. Process feasibility outcomes included evaluation of the test procedures and participant experience during and after each protocol. Scientific feasibility outcomes included signal quality measures, and the ability to measure changes in concentration of deoxygenated and oxygenated hemoglobin in the prefrontal cortex. RESULTS All participants were able to complete the three protocols with most agreeing that the equipment was comfortable (57.9%) and that the testing duration was adequate (73.7%). Most participants did not feel tired (94.7%) with some experiencing pain (42.1%) during the protocols. The signal qualities were high for each protocol. Compared to the rest condition, there was an increase in oxygenated hemoglobin in the prefrontal cortex when performing dual-task walking and navigation. CONCLUSION We showed that our experimental setup was feasible for assessing activity in the prefrontal cortex with fNIRS during complex walking. The experimental setup was deemed acceptable and practicable. Signal quality was good during complex walking conditions and findings suggest that the different tasks elicit a differential brain activity, supporting scientific feasibility.
Collapse
Affiliation(s)
- Alexander Kvist
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
| | - Lucian Bezuidenhout
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Faculty of Community and Health SciencesUniversity of Western CapeCape TownSouth Africa
| | - Hanna Johansson
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & PhysiotherapyKarolinska University HospitalStockholmSweden
| | - Franziska Albrecht
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & PhysiotherapyKarolinska University HospitalStockholmSweden
| | - Urban Ekman
- Department of Neurobiology, Care Sciences and Society, Division of Clinical GeriatricsKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Medical PsychologyKarolinska University HospitalStockholmSweden
| | - David Moulaee Conradsson
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & PhysiotherapyKarolinska University HospitalStockholmSweden
| | - Erika Franzén
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & PhysiotherapyKarolinska University HospitalStockholmSweden
| |
Collapse
|
28
|
Wu Y, Dong Y, Tang Y, Wang W, Bo Y, Zhang C. Relationship between motor performance and cortical activity of older neurological disorder patients with dyskinesia using fNIRS: A systematic review. Front Physiol 2023; 14:1153469. [PMID: 37051020 PMCID: PMC10083370 DOI: 10.3389/fphys.2023.1153469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Neurological disorders with dyskinesia would seriously affect older people’s daily activities, which is not only associated with the degeneration or injury of the musculoskeletal or the nervous system but also associated with complex linkage between them. This study aims to review the relationship between motor performance and cortical activity of typical older neurological disorder patients with dyskinesia during walking and balance tasks.Methods: Scopus, PubMed, and Web of Science databases were searched. Articles that described gait or balance performance and cortical activity of older Parkinson’s disease (PD), multiple sclerosis, and stroke patients using functional near-infrared spectroscopy were screened by the reviewers. A total of 23 full-text articles were included for review, following an initial yield of 377 studies.Results: Participants were mostly PD patients, the prefrontal cortex was the favorite region of interest, and walking was the most popular test motor task, interventional studies were four. Seven studies used statistical methods to interpret the relationship between motor performance and cortical activation. The motor performance and cortical activation were simultaneously affected under difficult walking and balance task conditions. The concurrent changes of motor performance and cortical activation in reviewed studies contained the same direction change and different direction change.Conclusion: Most of the reviewed studies reported poor motor performance and increased cortical activation of PD, stroke and multiple sclerosis older patients. The external motor performance such as step speed were analyzed only. The design and results were not comprehensive and profound. More than 5 weeks walking training or physiotherapy can contribute to motor function promotion as well as cortices activation of PD and stroke patients. Thus, further study is needed for more statistical analysis on the relationship between motor performance and activation of the motor-related cortex. More different type and program sports training intervention studies are needed to perform.
Collapse
Affiliation(s)
- Yunzhi Wu
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yuqi Dong
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yunqi Tang
- College of Art and Design, Shaanxi University of Science and Technology, Xi’an, Shaanxi, China
| | - Weiran Wang
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yulong Bo
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Cui Zhang
- Graduate School, Shandong Sport University, Jinan, Shandong, China
- Laboratory of Sports Biomechanics, Shandong Institute of Sport Science, Jinan, Shandong, China
- *Correspondence: Cui Zhang,
| |
Collapse
|
29
|
Stojan R, Mack M, Bock O, Voelcker-Rehage C. Inefficient frontal and parietal brain activation during dual-task walking in a virtual environment in older adults. Neuroimage 2023; 273:120070. [PMID: 37004827 DOI: 10.1016/j.neuroimage.2023.120070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Walking while performing an additional cognitive task (dual-task walking; DT walking) is a common yet highly demanding behavior in daily life. Previous neuroimaging studies have shown that performance declines from single- (ST) to DT conditions are accompanied by increased prefrontal cortex (PFC) activity. This increment is particularly pronounced in older adults and has been explained either by compensation, dedifferentiation, or ineffective task processing in fronto-parietal circuits. However, there is only limited evidence for the hypothesized fronto-parietal activity changes measured under real life conditions such as walking. In this study, we therefore assessed brain activity in PFC and parietal lobe (PL), to investigate whether higher PFC activation during DT walking in older adults is related to compensation, dedifferentiation, or neural inefficiency. Fifty-six healthy older adults (69.11 ± 4.19 years, 30 female) completed three tasks (treadmill walking at 1 m/s, Stroop task, Serial 3's task) under ST and DT conditions (Walking + Stroop, Walking + Serial 3's), and a baseline Standing task. Behavioral outcomes were step time variability (Walking), Balance Integration Score BIS (Stroop), and number of correct calculations S3corr (Serial 3's). Brain activity was measured using functional near-infrared spectroscopy (fNIRS) over ventrolateral and dorsolateral PFC (vlPFC, dlPFC) and inferior and superior PL (iPL, sPL). Neurophysiological outcome measures were oxygenated (HbO2) and deoxygenated hemoglobin (HbR). Linear mixed models with follow-up estimated marginal means contrasts were applied to investigate region-specific upregulations of brain activation from ST to DT conditions. Furthermore, the relationships of DT-specific activations across all brain regions was analyzed as well as the relationship between changes in brain activation and changes in behavioral performance from ST to DT. Data indicated the expected upregulation from ST to DT and that DT-related upregulation was more pronounced in PFC (particularly in vlPFC) than in PL regions. Activation increases from ST to DT were positively correlated between all brain regions, and higher brain activation changes predicted higher declines in behavioral performance from ST to DT. Results were largely consistent for both DTs (Stroop and Serial 3's). These findings more likely suggest neural inefficiency and dedifferentiation in PFC and PL rather than fronto-parietal compensation during DT walking in older adults. Findings have implications for interpreting and promoting efficacy of long-term interventions to improve DT walking in older persons.
Collapse
|
30
|
Kitatani R, Furukawa K, Sakaue D, Otsuru N, Onishi H. Influences of different cognitive loads on central common neural drives to the ankle muscles during dual-task walking. Neurosci Lett 2023; 804:137214. [PMID: 36990269 DOI: 10.1016/j.neulet.2023.137214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
While dual-task walking with additional cognitive tasks may decrease walking performance, many studies have also shown increases in walking performance during dual tasks, especially as cognitive load increases. However, the neural mechanisms that cause changes in postural control during dual tasks according to the difference in cognitive load remain unclear. Therefore, this study aimed to investigate the influence of different cognitive loads on the neural control of muscle activity during dual-task walking using intra- and intermuscular coherence analyses. Eighteen healthy young adults were subjected to treadmill walking measurements in a single-task condition (normal walking without cognitive load) and two dual-task conditions (watching digits and digit 2-back task) with the measurements of reaction time to auditory stimulation. During walking with the digit 2-back task, stride-time variability was significantly reduced compared to that during normal walking, and reaction time was significantly delayed compared to those during normal walking and walking with watching digits. The peak value of the tibialis anterior intramuscular coherence in the beta band (15-35 Hz) significantly increased during walking with the digit 2-back task than that during walking with watching digits. The present results suggest that young adults can increase their central common neural drive and decrease their walking variability for concentration on cognitive tasks during dual-task walking.
Collapse
|
31
|
Holtzer R, Feldman JM, Jariwala SP, Izzetoglu M. Asthma history influences gait performance and associated prefrontal cortex activation patterns in older adults. Aging Clin Exp Res 2023; 35:407-411. [PMID: 36401064 PMCID: PMC10039461 DOI: 10.1007/s40520-022-02306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/12/2022] [Indexed: 11/20/2022]
Abstract
Walking and cognition are interrelated due to dependence on shared brain regions that include the prefrontal cortex (PFC). Limited literature indicates that asthma is associated with poor mobility in older adults but the mechanisms underlying this relationship are unknown. Therefore, we tested the hypothesis that asthma history was associated with poor gait performance due to limited attention resources and neural inefficiency. Participants, older adults age ≥ 65 years reporting positive (n = 36) and negative (n = 36) history of asthma, walked under single and dual-task conditions with a functional near-infrared-spectroscopy (fNIRS) sensor placed on their forehead to assess task-related changes in PFC oxygenated hemoglobin (HbO2). Results showed that positive asthma history was associated with slower gait and higher fNIRS-derived HbO2 under dual-task walking. These findings suggest that limited attention resources and neural inefficiency underlie the association between asthma and poor walking performance in older adults.
Collapse
Affiliation(s)
- Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Jonathan M Feldman
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Pediatrics (Division of Academic General Pediatrics), Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY, USA
| | - Sunit P Jariwala
- Department of Medicine (Division of Allergy/Immunology), Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| |
Collapse
|
32
|
He X, Lei L, Yu G, Lin X, Sun Q, Chen S. Asymmetric cortical activation in healthy and hemiplegic individuals during walking: A functional near-infrared spectroscopy neuroimaging study. Front Neurol 2023; 13:1044982. [PMID: 36761919 PMCID: PMC9905619 DOI: 10.3389/fneur.2022.1044982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
Background This study investigated the cortical activation mechanism underlying locomotor control during healthy and hemiplegic walking. Methods A total of eight healthy individuals with right leg dominance (male patients, 75%; mean age, 40.06 ± 4.53 years) and six post-stroke patients with right hemiplegia (male patients, 86%; mean age, 44.41 ± 7.23 years; disease course, 5.21 ± 2.63 months) completed a walking task at a treadmill speed of 2 km/h and a functional electrical stimulation (FES)-assisted walking task, respectively. Functional near-infrared spectroscopy (fNIRS) was used to detect hemodynamic changes in neuronal activity in the bilateral sensorimotor cortex (SMC), supplementary motor area (SMA), and premotor cortex (PMC). Results fNIRS cortical mapping showed more SMC-PMC-SMA locomotor network activation during hemiplegic walking than during healthy gait. Furthermore, more SMA and PMC activation in the affected hemisphere was observed during the FES-assisted hemiplegic walking task than during the non-FES-assisted task. The laterality index indicated asymmetric cortical activation during hemiplegic gait, with relatively greater activation in the unaffected (right) hemisphere during hemiplegic gait than during healthy walking. During hemiplegic walking, the SMC and SMA were predominantly activated in the unaffected hemisphere, whereas the PMC was predominantly activated in the affected hemisphere. No significant differences in the laterality index were noted between the other groups and regions (p > 0.05). Conclusion An important feature of asymmetric cortical activation was found in patients with post-stroke during the walking process, which was the recruitment of more SMC-SMA-PMC activation than in healthy individuals. Interestingly, there was no significant lateralized activation during hemiplegic walking with FES assistance, which would seem to indicate that FES may help hemiplegic walking recover the balance in cortical activation. These results, which are worth verifying through additional research, suggest that FES used as a potential therapeutic strategy may play an important role in motor recovery after stroke.
Collapse
Affiliation(s)
- Xiaokuo He
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China
| | - Lei Lei
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China
| | - Guo Yu
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China
| | - Xin Lin
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China
| | - Qianqian Sun
- Department of Rehabilitative Medicine, Xiangyang Central Hospital, Xiangyang, Hubei, China,Qianqian Sun ✉
| | - Shanjia Chen
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China,Department of Rehabilitative Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China,*Correspondence: Shanjia Chen ✉
| |
Collapse
|
33
|
Wang Q, Dai W, Xu S, Zhu S, Sui Y, Kan C, Shen Y, Zhu Y, Guo C, Wang T. Brain activation of the PFC during dual-task walking in stroke patients: A systematic review and meta-analysis of functional near-infrared spectroscopy studies. Front Neurosci 2023; 17:1111274. [PMID: 36875661 PMCID: PMC9980909 DOI: 10.3389/fnins.2023.1111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background Dual-task walking is a good paradigm to measure the walking ability of stroke patients in daily life. It allows for a better observation of brain activation under dual-task walking to assess the impact of the different tasks on the patient when combining with functional near-infrared spectroscopy (fNIRS). This review aims to summarize the cortical change of the prefrontal cortex (PFC) detected in single-task and dual-task walking in stroke patients. Methods Six databases (Medline, Embase, PubMed, Web of Science, CINAHL, and Cochrane Library) were systematically searched for relevant studies, from inception to August 2022. Studies that measured the brain activation of single-task and dual-task walking in stroke patients were included. The main outcome of the study was PFC activity measured using fNIRS. In addition, a subgroup analysis was also performed for study characteristics based on HbO to analyze the different effects of disease duration and the type of dual task. Results Ten articles were included in the final review, and nine articles were included in the quantitative meta-analysis. The primary analysis showed more significant PFC activation in stroke patients performing dual-task walking than single-task walking (SMD = 0.340, P = 0.02, I 2 = 7.853%, 95% CI = 0.054-0.626). The secondary analysis showed a significant difference in PFC activation when performing dual-task walking and single-task walking in chronic patients (SMD = 0.369, P = 0.038, I 2 = 13.692%, 95% CI = 0.020-0.717), but not in subacute patients (SMD = 0.203, P = 0.419, I 2 = 0%, 95% CI = -0.289-0.696). In addition, performing walking combining serial subtraction (SMD = 0.516, P < 0.001, I 2 = 0%, 95% CI = 0.239-0.794), obstacle crossing (SMD = 0.564, P = 0.002, I 2 = 0%, 95% CI = 0.205-0.903), or a verbal task (SMD = 0.654, P = 0.009, I 2 = 0%, 95% CI = 0.164-1.137) had more PFC activation than single-task walking, while performing the n-back task did not show significant differentiation (SMD = 0.203, P = 0.419, I 2 = 0%, 95% CI = -0.289-0.696). Conclusions Different dual-task paradigms produce different levels of dual-task interference in stroke patients with different disease durations, and it is important to choose the matching dual-task type in relation to the walking ability and cognitive ability of the patient, in order to better improve the assessment and training effects. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42022356699.
Collapse
Affiliation(s)
- Qinglei Wang
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Wenjun Dai
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Xu
- Department of Rehabilitation, Changzhou Dean Hospital, Changzhou, China
| | - Shizhe Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Youxin Sui
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Chaojie Kan
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China.,Department of Rehabilitation, Changzhou Dean Hospital, Changzhou, China
| | - Ying Shen
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan Guo
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Bonilauri A, Sangiuliano Intra F, Rossetto F, Borgnis F, Baselli G, Baglio F. Whole-Head Functional Near-Infrared Spectroscopy as an Ecological Monitoring Tool for Assessing Cortical Activity in Parkinson's Disease Patients at Different Stages. Int J Mol Sci 2022; 23:14897. [PMID: 36499223 PMCID: PMC9736501 DOI: 10.3390/ijms232314897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is increasingly employed as an ecological neuroimaging technique in assessing age-related chronic neurological disorders, such as Parkinson's disease (PD), mainly providing a cross-sectional characterization of clinical phenotypes in ecological settings. Current fNIRS studies in PD have investigated the effects of motor and non-motor impairment on cortical activity during gait and postural stability tasks, but no study has employed fNIRS as an ecological neuroimaging tool to assess PD at different stages. Therefore, in this work, we sought to investigate the cortical activity of PD patients during a motor grasping task and its relationship with both the staging of the pathology and its clinical variables. This study considered 39 PD patients (age 69.0 ± 7.64, 38 right-handed), subdivided into two groups at different stages by the Hoehn and Yahr (HY) scale: early PD (ePD; N = 13, HY = [1; 1.5]) and moderate PD (mPD; N = 26, HY = [2; 2.5; 3]). We employed a whole-head fNIRS system with 102 measurement channels to monitor brain activity. Group-level activation maps and region of interest (ROI) analysis were computed for ePD, mPD, and ePD vs. mPD contrasts. A ROI-based correlation analysis was also performed with respect to contrasted subject-level fNIRS data, focusing on age, a Cognitive Reserve Index questionnaire (CRIQ), disease duration, the Unified Parkinson's Disease Rating Scale (UPDRS), and performances in the Stroop Color and Word (SCW) test. We observed group differences in age, disease duration, and the UPDRS, while no significant differences were found for CRIQ or SCW scores. Group-level activation maps revealed that the ePD group presented higher activation in motor and occipital areas than the mPD group, while the inverse trend was found in frontal areas. Significant correlations with CRIQ, disease duration, the UPDRS, and the SCW were mostly found in non-motor areas. The results are in line with current fNIRS and functional and anatomical MRI scientific literature suggesting that non-motor areas-primarily the prefrontal cortex area-provide a compensation mechanism for PD motor impairment. fNIRS may serve as a viable support for the longitudinal assessment of therapeutic and rehabilitation procedures, and define new prodromal, low-cost, and ecological biomarkers of disease progression.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
- Faculty of Education, Free University of Bolzano-Bozen, 39042 Brixen, Italy
| | - Federica Rossetto
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Francesca Borgnis
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| |
Collapse
|
35
|
Saraiva M, Castro MA, Vilas-Boas JP. The Role of Sleep Quality and Physical Activity Level on Gait Speed and Brain Hemodynamics Changes in Young Adults-A Dual-Task Study. Eur J Investig Health Psychol Educ 2022; 12:1673-1681. [PMID: 36421323 PMCID: PMC9689950 DOI: 10.3390/ejihpe12110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Walking requires attentional resources, and the studies using neuroimage techniques have grown to understand the interaction between cortical activity and motor performance. Previous studies reported a decline in gait performance and changes in the prefrontal cortex (PFC) activity during a dual-task performance compared to walking only. Some lifestyle factors, such as sleep and physical activity (PA) levels, can compromise walking performance and brain activity. Nonetheless, the studies are scarce. This study aimed to assess gait speed and hemodynamic response in the PFC during a cognitive dual-task (cog-DT) compared to walking only, and to analyze the correlation between PA and sleep quality (SQ) with gait performance and hemodynamic response in the PFC during a single task (ST) and cog-DT performance in young adults. A total of 18 healthy young adults (mean age ± SD = 24.11 ± 4.11 years) participated in this study. They performed a single motor task (mot-ST)—normal walking—and a cog-DT—walking while performing a cognitive task on a smartphone. Gait speed was collected using a motion capture system coupled with two force plates. The hemoglobin differences (Hb-diff), oxyhemoglobin ([oxy-Hb]) and deoxyhemoglobin ([deoxy-Hb]) concentrations in the PFC were obtained using functional near-infrared spectroscopy. The SQ and PA were assessed through the Pittsburg Sleep Quality Index and International Physical Activity Questionnaire-Short Form questionnaires, respectively. The results show a decrease in gait speed (p < 0.05), a decrease in [deoxy-Hb] (p < 0.05), and an increase in Hb-diff (p < 0.05) and [oxy-Hb] (p > 0.05) in the prefrontal cortex during the cog-DT compared to the single task. A positive correlation between SQ and Hb-diff during the cog-DT performance was found. In conclusion, the PFC’s hemodynamic response during the cog-DT suggests that young adults prioritize cognitive tasks over motor performance. SQ only correlates with the Hb-diff during the cog-DT, showing that poor sleep quality was associated with increased Hb-diff in the PFC. The gait performance and hemodynamic response do not correlate with physical activity level.
Collapse
Affiliation(s)
- Marina Saraiva
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Faculty of Sports and CIAFEL, University of Porto, 4200-450 Porto, Portugal
- Correspondence:
| | - Maria António Castro
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, 3030-788 Coimbra, Portugal
- Sector of Physiotherapy, School of Health Sciences, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - João Paulo Vilas-Boas
- Faculty of Sports and CIAFEL, University of Porto, 4200-450 Porto, Portugal
- LABIOMEP-UP, Faculty of Sports and CIFI2D, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
36
|
Chen Y, Cao Z, Mao M, Sun W, Song Q, Mao D. Increased cortical activation and enhanced functional connectivity in the prefrontal cortex ensure dynamic postural balance during dual-task obstacle negotiation in the older adults: A fNIRS study. Brain Cogn 2022; 163:105904. [PMID: 36063567 DOI: 10.1016/j.bandc.2022.105904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE By analyzing the cortical activation and functional connectivity of the prefrontal cortex (PFC) during dual-task obstacle negotiation in the older adults, cognitive resources allocation and neural regulatory mechanisms of aging brain were shed light on in complex walking conditions. METHODS Twenty-eight healthy right-handed subjects participated in the study, including 15 men and 13 women (age: 68.6 ± 4.1 years, height: 162.96 ± 6.05 cm, weight: 63.63 ± 9.64 kg). There were four tasks: Normal Walk (NW), Obstacle Negotiation during Normal Walk (NW + ON), Walk while performing Cognitive Task (WCT), and Obstacle Negotiation during Walk while performing Cognitive Task (WCT + ON). Participants wore functional near-infrared spectroscopy (fNIRS) to collect hemodynamic signals from various regions of interest (ROIs) in the PFC, while the three-dimensional motion capture system was used to test the gait velocity. Cognitive task data was recorded. RESULTS In WCT + ON, the HbO2 concentration change value (△HbO2) of the left dorsolateral prefrontal cortex was significantly greater than that in the other three tasks (p < 0.05), and the△HbO2 of the right dorsolateral prefrontal cortex was significantly greater than that in NW + ON (p < 0.05). The gait velocities in the four tasks were significantly different (p < 0.05) (NW > WCT > NW + ON > WCT + ON). There was no significant difference in cognitive performance between in the WCT and WCT + ON (p > 0.05). In WCT + ON, the left and right dorsolateral prefrontal areas had strong functional connectivity and the left frontal pole was most widely connected to the other ROIs. Compared to that in NW, the functional connectivity of the left prefrontal lobe was significantly enhanced in WCT + ON (p < 0.05). CONCLUSIONS As walking difficulty increased, the PFC activation in the older adults changed from right-sided to bilateral activation, indicating that the left PFC cognitive resources compensated for the right PFC in dual-task obstacle negotiation. The cognitive resources recruitment in dual-task obstacle negotiation might be achieved by synchronization and coordination of associated brain areas in the PFC, primarily to maintain dynamic postural balance when walking.
Collapse
Affiliation(s)
- Yan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China.
| | - Zhenjing Cao
- College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China
| | - Min Mao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Sun
- College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China
| | - Qipeng Song
- College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China
| | - Dewei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China.
| |
Collapse
|
37
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Bonnal J, Monnet F, Le BT, Pila O, Grosmaire AG, Ozsancak C, Duret C, Auzou P. Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS). SENSORS (BASEL, SWITZERLAND) 2022; 22:5542. [PMID: 35898041 PMCID: PMC9329983 DOI: 10.3390/s22155542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Force and effort are important components of a motor task that can impact rehabilitation effectiveness. However, few studies have evaluated the impact of these factors on cortical activation during gait. The purpose of the study was to investigate the relation between cortical activation and effort required during exoskeleton-mediated gait at different levels of physical assistance in healthy individuals. Twenty-four healthy participants walked 10 m with an exoskeleton that provided four levels of assistance: 100%, 50%, 0%, and 25% resistance. Functional near-infrared spectroscopy (fNIRS) was used to measure cerebral flow dynamics with a 20-channel (plus two reference channels) device that covered most cortical motor regions bilaterally. We measured changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). According to HbO2 levels, cortical activation only differed slightly between the assisted conditions and rest. In contrast, bilateral and widespread cortical activation occurred during the two unassisted conditions (somatosensory, somatosensory association, primary motor, premotor, and supplementary motor cortices). A similar pattern was seen for HbR levels, with a smaller number of significant channels than for HbO2. These results confirmed the hypothesis that there is a relation between cortical activation and level of effort during gait. This finding should help to optimize neurological rehabilitation strategies to drive neuroplasticity.
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Fanny Monnet
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
- Institut Denis Poisson, Université d’Orléans Collegium Sciences et Techniques Bâtiment de Mathématiques, Rue de Chartres, B.P. 6759, CEDEX 2, 45067 Orleans, France
| | - Ba-Thien Le
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Ophélie Pila
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Anne-Gaëlle Grosmaire
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Christophe Duret
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| |
Collapse
|
39
|
Sui SX, Hendy AM, Teo WP, Moran JT, Nuzum ND, Pasco JA. A Review of the Measurement of the Neurology of Gait in Cognitive Dysfunction or Dementia, Focusing on the Application of fNIRS during Dual-Task Gait Assessment. Brain Sci 2022; 12:brainsci12080968. [PMID: 35892409 PMCID: PMC9331540 DOI: 10.3390/brainsci12080968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/07/2022] Open
Abstract
Poor motor function or physical performance is a predictor of cognitive decline. Additionally, slow gait speed is associated with poor cognitive performance, with gait disturbances being a risk factor for dementia. Parallel declines in muscular and cognitive performance (resulting in cognitive frailty) might be driven primarily by muscle deterioration, but bidirectional pathways involving muscle–brain crosstalk through the central and peripheral nervous systems are likely to exist. Following screening, early-stage parallel declines may be manageable and modifiable through simple interventions. Gait–brain relationships in dementia and the underlying mechanisms are not fully understood; therefore, the current authors critically reviewed the literature on the gait–brain relationship and the underlying mechanisms and the feasibility/accuracy of assessment tools in order to identify research gaps. The authors suggest that dual-task gait is involved in concurrent cognitive and motor activities, reflecting how the brain allocates resources when gait is challenged by an additional task and that poor performance on dual-task gait is a predictor of dementia onset. Thus, tools or protocols that allow the identification of subtle disease- or disorder-related changes in gait are highly desirable to improve diagnosis. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, cost-effective, safe, simple, portable, and non-motion-sensitive neuroimaging technique, widely used in studies of clinical populations such as people suffering from Alzheimer’s disease, depression, and other chronic neurological disorders. If fNIRS can help researchers to better understand gait disturbance, then fNIRS could form the basis of a cost-effective means of identifying people at risk of cognitive dysfunction and dementia. The major research gap identified in this review relates to the role of the central/peripheral nervous system when performing dual tasks.
Collapse
Affiliation(s)
- Sophia X. Sui
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia; (J.T.M.); (J.A.P.)
- Correspondence: ; Tel.: +61-3-4215-3306-53306; Fax: +61-3-4215-3491
| | - Ashlee M. Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3216, Australia; (A.M.H.); (N.D.N.)
| | - Wei-Peng Teo
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 308232, Singapore;
| | - Joshua T. Moran
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia; (J.T.M.); (J.A.P.)
| | - Nathan D. Nuzum
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3216, Australia; (A.M.H.); (N.D.N.)
| | - Julie A. Pasco
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia; (J.T.M.); (J.A.P.)
- Department of Medicine—Western Campus, The University of Melbourne, St Albans, VIC 3010, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
| |
Collapse
|
40
|
Dreyer-Alster S, Menascu S, Aloni R, Givon U, Dolev M, Achiron A, Kalron A. Motoric cognitive risk syndrome in people with multiple sclerosis: prevalence and correlations with disease-related factors. Ther Adv Neurol Disord 2022; 15:17562864221109744. [PMID: 35813608 PMCID: PMC9260572 DOI: 10.1177/17562864221109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background: The motoric cognitive risk (MCR) syndrome, defined as the coexistence of slow
gait and subjective cognitive complaints, has as yet not been researched in
people with multiple sclerosis (pwMS). Objective: To examine the prevalence of the MCR syndrome in pwMS and its association
with disability, disease duration, perceived fatigue, and fear of
falling. Methods: The study comprised 618 pwMS [43.7 (SD = 12.6) years, 61.7% females]. Gait
speed was measured by the GAITRite™ electronic walkway (CIR Systems, Inc.
Haverton, PA, USA). Cognitive status was defined according to the global
cognitive score computed by the NeuroTrax™ cognitive battery (NeuroTrax
Corporation, Medina, NY, USA). The sample was divided into four main groups:
‘normal’, ‘cognitively impaired’, ‘gait impaired’ or ‘MCR’. Perceived
fatigue was assessed by the Modified Fatigue Impact Scale; fear of falling
by the Falls Efficacy Scale International. Results: Sixty-three (10.2%) patients were diagnosed with MCR. The percentage of
subjects categorized as MCR was 26.0% in severely disabled pwMS compared
with 10.9%, 6.0%, and 4.6% in moderately, mildly and very mildly disabled
pwMS, respectively. Subjects in the MCR group presented with elevated
fatigue compared with patients classified as normal [49.7 (SD = 23.3) vs
26.5 (SD = 19.2), p < 0.001]. Fear of falling was
significantly higher in the MCR and gait impairment groups compared with the
cognitively impaired and normal groups. Conclusions: The current study corroborates the presence of MCR in pwMS. Nevertheless,
future longitudinal research is warranted to better understand its
application.
Collapse
Affiliation(s)
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Roy Aloni
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Uri Givon
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Mark Dolev
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Alon Kalron
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
41
|
St George RJ, Jayakody O, Healey R, Breslin M, Hinder MR, Callisaya ML. Cognitive inhibition tasks interfere with dual-task walking and increase prefrontal cortical activity more than working memory tasks in young and older adults. Gait Posture 2022; 95:186-191. [PMID: 35525151 DOI: 10.1016/j.gaitpost.2022.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prior work suggests there may be greater reliance on executive function for walking in older people. The pre-frontal cortex (PFC), which controls aspects of executive function, is known to be active during dual-task walking (DTW). However, there is debate on how PFC activity during DTW is impacted by ageing and the requirements of the cognitive task. RESEARCH QUESTION Functional near infrared spectroscopy, was used to investigate how PFC activity during walking was affected by (i) healthy ageing; and (ii) dual-tasks that utilise inhibition or working memory aspects of executive function. METHODS Young (n = 26, 16 females, mean 20.9 years) and older (n = 26, 16 females, mean 70.3 years) adults performed five conditions: normal walking; Reciting Alternate Letters of the alphabet (RAL, requiring cognitive inhibition and working memory) during standing and walking; and serial subtraction by threes (SS3, requiring working memory alone) during standing and walking. Walking speed, cognitive performance, the PFC haemodynamic response, and fear of falling ratings were analysed using linear mixed-effects modelling. RESULTS Compared to quiet standing, PFC activity increased during normal walking for older adults but decreased for young adults (p < 0.01). Across both groups, fear of falling contributed to higher PFC activity levels when walking (p < 0.01). PFC activity increased during DTW, and this increase was greater when performing RAL compared to the SS3 task (p < 0.01). Although the rate of correct responses was higher for RAL, walking speed reduced more with RAL than SS3 in the young group (p = 0.01), and the rate of correct responses reduced more when walking with RAL than SS3 in the older group (p < 0.01). SIGNIFICANCE Older adults have increased levels of PFC activation during walking compared to younger adults and fear of falling is a cofounding factor. The interference between gait and a concurrent cognitive task is higher when the cognitive task requires inhibition.
Collapse
Affiliation(s)
- Rebecca J St George
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Sandy Bay, Australia; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia.
| | - Oshadi Jayakody
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Rebecca Healey
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Sandy Bay, Australia
| | - Monique Breslin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Sandy Bay, Australia
| | - Michele L Callisaya
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Holtzer R. Volitional control of walking in aging. Aging (Albany NY) 2022; 14:2440-2441. [PMID: 35344509 PMCID: PMC9004554 DOI: 10.18632/aging.203986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
43
|
Prefrontal Cortex Brain Activation During Texting and Walking: A Functional Near-Infrared Spectroscopy Feasibility Study. Motor Control 2022; 26:487-496. [DOI: 10.1123/mc.2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/20/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022]
Abstract
Texting while walking is an increasingly common, potentially dangerous task but its functional brain correlates have yet to be reported. Therefore, we evaluated prefrontal cortex (PFC) activation patterns during single- and dual-task texting and walking in healthy adults. Thirteen participants (29–49 years) walked under single- and dual-task conditions involving mobile phone texting or a serial-7s subtraction task, while measuring PFC activation (functional near-infrared spectroscopy) and behavioral task performance (inertial sensors, mobile application). Head lowering during texting increased PFC activation. Texting further increased PFC activation, and decreased gait performance similarly to serial-7 subtraction. Our results support the key role of executive control in texting while walking.
Collapse
|
44
|
Bishnoi A, Chaparro GN, Hernandez ME. Effect of Heart Rate Reserve on Prefrontal Cortical Activation While Dual-Task Walking in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:47. [PMID: 35010305 PMCID: PMC8751037 DOI: 10.3390/ijerph19010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Hypertension is considered a risk factor for cardiovascular health and non-amnestic cognitive impairment in older adults. While heart rate reserve (HRR) has been shown to be a risk factor for hypertension, how impaired HRR in older adults can lead to cognitive impairment is still unclear. The objective of this study was to examine the effects of HRR on prefrontal cortical (PFC) activation under varying dual-task demands in older adults. Twenty-eight older adults (50-82 years of age) were included in this study and divided into higher (n = 14) and lower (n = 14) HRR groups. Participants engaged in the cognitive task which was the Modified Stroop Color Word Test (MSCWT) on a self-paced treadmill while walking. Participants with higher HRR demonstrated increased PFC activation in comparison to lower HRR, even after controlling for covariates in analysis. Furthermore, as cognitive task difficulty increased (from neutral to congruent to incongruent to switching), PFC activation increased. In addition, there was a significant interaction between tasks and HRR group, with older adults with higher HRR demonstrating increases in PFC activation, faster gait speed, and increased accuracy, relative to those with lower HRR, when going from neutral to switching tasks. These results provide evidence of a relationship between HRR and prefrontal cortical activation and cognitive and physical performance, suggesting that HRR may serve as a biomarker for cognitive health of an older adult with or without cardiovascular risk.
Collapse
Affiliation(s)
- Alka Bishnoi
- Department of Kinesiology and Community Health, College of Applied Health Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Gioella N. Chaparro
- Department of Kinesiology, California State University, Dominguez Hills, Carson, CA 90747, USA;
| | - Manuel E. Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| |
Collapse
|
45
|
Maidan I, Hacham R, Galperin I, Giladi N, Holtzer R, Hausdorff JM, Mirelman A. Neural Variability in the Prefrontal Cortex as a Reflection of Neural Flexibility and Stability in Patients With Parkinson Disease. Neurology 2021; 98:e839-e847. [PMID: 34906983 DOI: 10.1212/wnl.0000000000013217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Functional Near-Infrared Spectroscopy (fNIRS) studies provide direct evidence to the important role of the prefrontal cortex (PFC) during walking in aging and Parkinson's disease (PD). Most studies mainly explored mean HbO2 levels, while moment-to-moment variability measures have been rarely investigated. Variability measures can inform on flexibility that is imperative for adaptive function. We hypothesized that patients with PD will show less variability in HbO2 signals during walking compared to healthy controls. METHODS 206 participants, 57 healthy controls (age: 68.9±1.0 years; 27 women) and 149 idiopathic PD patients (age: 69.8±0.6 years, 50 women, disease duration: 8.27±5.51 years) performed usual walking and dual-task walking (serial 3 subtractions) with an fNIRS system placed on the forehead. HbO2 variability was calculated using the standard deviation (SD), range, and mean detrended time series of fNIRS-derived HbO2 signal evaluated during each walking task. HbO2 variability was compared between groups and between walking tasks using mixed model analyses. RESULTS Higher variability (SD, range, mean detrended time series) was observed during dual-task walking, compared to usual walking (p<0.025), but this was derived from the differences within the healthy control group (group X task interaction: p<0.007). On the other hand, task repetition demonstrated reduced variability in healthy controls but increased variability in patients with PD (interaction group*walk-repetition: p<0.048). The MDS-UPDRS motor score correlated with HbO2 range (r=0.142, p=0.050) and HbO2 SD (r=0.173, p=0.018) during usual walking in all participants. DISCUSSION In this study, we suggest a new way to interpret changes in HbO2 variability. We relate increased HbO2 variability to flexible adaptation to environmental challenges and decreased HbO2 variability to the stability of performance. Our results show that both are limited in PD however, further investigation of these concepts is required. Moreover, HbO2 variability measures are an important aspect of brain function that adds new insights into the role of PFC during walking with aging and PD. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that patients with PD have more variability within Hb02 signals during usual-walking, compared to healthy controls, but not during dual-task walking.
Collapse
Affiliation(s)
- Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel .,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Hacham
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ira Galperin
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roee Holtzer
- Yeshiva University and Albert Einstein College of Medicine, New York, USA
| | - Jeffrey M Hausdorff
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel.,Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Holtzer R, Ross D, O'Brien C, Izzetoglu M, Wagshul ME. Cognitive Reserve Moderates the Efficiency of Prefrontal Cortex Activation Patterns of Gait in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 77:1836-1844. [PMID: 34606598 DOI: 10.1093/gerona/glab288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cognitive Reserve (CR) protects against cognitive decline, but whether CR influences the efficiency of cortical control of gait has not been reported. The current study addressed this important gap in the literature. Specifically, we determined the role of CR in moderating the efficiency of functional Near-Infrared-Spectroscopy (fNIRS)-derived HbO2 in the prefrontal cortex (PFC) assessed during active walking. We hypothesized that higher CR would be associated with more efficient brain activation patterns. METHODS Participants were 55 (mean age=74.84; %female=49.1) older adults who underwent the combined walking/fNIRS protocol and had MRI data. We used an established dual-task walking paradigm that consisted of three task conditions: Single-Task-Walk (STW), Single-Task-Alpha (STA, cognitive task) and Dual-Task-Walk (DTW). Using the residuals approach, CR was derived from a word-reading test score by removing variance accounted for by socio-demographic variables, tests of current cognitive functions and a measure of structural brain integrity. RESULTS CR moderated the change in fNIRS-derived HbO2 in the PFC across tasks. Higher CR was associated with smaller increases in fNIRS-derived HbO2 from the single tasks to dual task walking (CR x DTW compared to STW: estimate = .183; p < .001; CR x DTW compared to STA: estimate =.257; p < .001). The moderation effect of CR remained significant when adjusting for multiple covariates and concurrent moderation effects of measures of gait performance, current cognitive functions and structural integrity of the brain. CONCLUSION The current study provided first evidence that higher CR was associated with better neural efficiency of walking in older adults.
Collapse
Affiliation(s)
- Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University.,Department of Neurology, Albert Einstein College of Medicine
| | - Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University
| | | | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University
| | - Mark E Wagshul
- Department of Radiology, Albert Einstein College of Medicine
| |
Collapse
|
47
|
Ross D, Wagshul ME, Izzetoglu M, Holtzer R. Prefrontal cortex activation during dual-task walking in older adults is moderated by thickness of several cortical regions. GeroScience 2021; 43:1959-1974. [PMID: 34165696 DOI: 10.1007/s11357-021-00379-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Dual tasking, a defined facet of executive control processes, is subserved, in part, by the prefrontal cortex (PFC). Previous functional near-infrared spectroscopy (fNIRS) studies revealed elevated PFC oxygenated hemoglobin (HbO2) under Dual-Task-Walk (DTW) compared to Single-Task Walk (STW) conditions. Based on the concept of neural inefficiency (i.e., greater activation coupled with similar or worse performance), we hypothesized that decreased cortical thickness across multiple brain regions would be associated with greater HbO2 increases from STW to DTW. Participants were 55 healthy community-dwelling older adults, whose cortical thickness was measured via MRI. HbO2 levels in the PFC, measured via fNIRS, were assessed during active walking under STW and DTW conditions. Statistical analyses were adjusted for demographics and behavioral performance. Linear mixed-effects models revealed that the increase in HbO2 from STW to DTW was moderated by cortical thickness in several regions. Specifically, thinner cortex in specific regions of the frontal, parietal, temporal, and occipital lobes, cingulate cortex, and insula was associated with greater increases in HbO2 levels from single to dual-task walking. In conclusion, participants with thinner cortex in regions implicated in higher order control of walking employed greater neural resources, as measured by increased HbO2, in the PFC during DTW, without demonstrating benefits to behavioral performance. To our knowledge, this is the first study to examine cortical thickness as a marker of neural inefficiency during active walking.
Collapse
Affiliation(s)
- Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University, 1225 Morris Park Avenue, Van Etten Building, Bronx, NY, 10461, USA
| | - Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, 1225 Morris Park Avenue, Van Etten Building, Bronx, NY, 10461, USA. .,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
48
|
Motor Cortical Activation Assessment in Progressive Multiple Sclerosis Patients Enrolled in Gait Rehabilitation: A Secondary Analysis of the RAGTIME Trial Assisted by Functional Near-Infrared Spectroscopy. Diagnostics (Basel) 2021; 11:diagnostics11061068. [PMID: 34207923 PMCID: PMC8227480 DOI: 10.3390/diagnostics11061068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
This study aimed to determine cortical activation responses to two different rehabilitative programs, as measured through functional near-infrared spectroscopy (fNIRS). As a secondary analysis of the RAGTIME trial, we studied 24 patients with progressive multiple sclerosis (MS) and severe disability who were randomized to a regimen of robot-assisted gait training (RAGT) or overground walking (OW). Cortical activation during a treadmill walking task, assessed through fNIRS recordings from the motor and premotor cortexes (M1/PM), was calculated as the area under the curve (AUC) of oxyhemoglobin for each hemisphere and the total area (Tot-OxyAUC). Gait speed, endurance, and balance were also measured, along with five healthy control subjects. At baseline, Tot-OxyAUC during walking was significantly increased in MS patients compared to healthy people and was significantly higher for those with more severe disabilities; it was also inversely correlated with physical performance. After rehabilitation, significant opposite variations in Tot-OxyAUC were observed, with activity levels being increased after OW and decreased after RAGT (+242,080 ± 361,902 and −157,031 ± 172,496 arbitrary units, respectively; p = 0.002), particularly in patients who were trained at a lower speed. Greater reductions in the cortical activation of the more affected hemisphere were significantly related to improvements in gait speed (r = −0.42) and endurance (r = −0.44). Cortical activation, assessed through fNIRS, highlighted the brain activity in response to the type and intensity of rehabilitation.
Collapse
|