1
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
2
|
Xu H, Liu Z, Du M, Chen Z. Progression in low-intensity ultrasound-induced tumor radiosensitization. Cancer Med 2024; 13:e7332. [PMID: 38967145 PMCID: PMC11224918 DOI: 10.1002/cam4.7332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is a widely utilized tumor treatment approach, while a significant obstacle in this treatment modality is the radioresistance exhibited by tumor cells. To enhance the effectiveness of RT, scientists have explored radiosensitization approaches, including the use of radiosensitizers and physical stimuli. Nevertheless, several approaches have exhibited disappointing results including adverse effects and limited efficacy. A safer and more effective method of radiosensitization involves low-intensity ultrasound (LIUS), which selectively targets tumor tissue and enhances the efficacy of radiation therapy. METHODS This review summarized the tumor radioresistance reasons and explored LIUS potential radiosensitization mechanisms. Moreover, it covered diverse LIUS application strategies in radiosensitization, including the use of LIUS alone, ultrasound-targeted intravascular microbubble destruction, ultrasound-mediated targeted radiosensitizers delivery, and sonodynamic therapy. Lastly, the review presented the limitations and prospects of employing LIUS-RT combined therapy in clinical settings, emphasizing the need to connect research findings with practical applications. RESULTS AND CONCLUSION LIUS employs cost-effective equipment to foster tumor radiosensitization, curtail radiation exposure, and elevate the quality of life for patients. This efficacy is attributed to LIUS's ability to utilize thermal, cavitation, and mechanical effects to overcome tumor cell resistance to RT. Multiple experimental analyses have underscored the effectiveness of LIUS in inducing tumor radiosensitization using diverse strategies. While initial studies have shown promising results, conducting more comprehensive clinical trials is crucial to confirm its safety and effectiveness in real-world situations.
Collapse
Affiliation(s)
- Haonan Xu
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| | - Zichao Liu
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| |
Collapse
|
3
|
La'ah AS, Chiou SH. Cutting-Edge Therapies for Lung Cancer. Cells 2024; 13:436. [PMID: 38474400 DOI: 10.3390/cells13050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Lung cancer remains a formidable global health challenge that necessitates inventive strategies to improve its therapeutic outcomes. The conventional treatments, including surgery, chemotherapy, and radiation, have demonstrated limitations in achieving sustained responses. Therefore, exploring novel approaches encompasses a range of interventions that show promise in enhancing the outcomes for patients with advanced or refractory cases of lung cancer. These groundbreaking interventions can potentially overcome cancer resistance and offer personalized solutions. Despite the rapid evolution of emerging lung cancer therapies, persistent challenges such as resistance, toxicity, and patient selection underscore the need for continued development. Consequently, the landscape of lung cancer therapy is transforming with the introduction of precision medicine, immunotherapy, and innovative therapeutic modalities. Additionally, a multifaceted approach involving combination therapies integrating targeted agents, immunotherapies, or traditional cytotoxic treatments addresses the heterogeneity of lung cancer while minimizing its adverse effects. This review provides a brief overview of the latest emerging therapies that are reshaping the landscape of lung cancer treatment. As these novel treatments progress through clinical trials are integrated into standard care, the potential for more effective, targeted, and personalized lung cancer therapies comes into focus, instilling renewed hope for patients facing challenging diagnoses.
Collapse
Affiliation(s)
- Anita Silas La'ah
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
4
|
Soeiro JF, Sousa FL, Monteiro MV, Gaspar VM, Silva NJO, Mano JF. Advances in screening hyperthermic nanomedicines in 3D tumor models. NANOSCALE HORIZONS 2024; 9:334-364. [PMID: 38204336 PMCID: PMC10896258 DOI: 10.1039/d3nh00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D in vitro models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional 3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of top-performing hyperthermic therapies in a preclinical setting before their in vivo screening.
Collapse
Affiliation(s)
- Joana F Soeiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa L Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Nuno J O Silva
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Tong Q, Zhou J. Construction of a 12-gene prognostic model for colorectal cancer based on heat shock protein-related genes. Int J Hyperthermia 2024; 41:2290913. [PMID: 38191150 DOI: 10.1080/02656736.2023.2290913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Some heat shock proteins (HSPs) have been shown to influence tumor prognosis, but their prognostic significance in colorectal cancer (CRC) remains unclear. This study explored the prognostic significance of HSP-related genes in CRC. Transcriptional data and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) database, and a literature search was conducted to identify HSP-related genes. Using Least Absolute Selection and Shrinkage Operator (LASSO) regression and univariate/multivariate Cox regression analyses, 12 HSP-related genes demonstrating significant associations with CRC survival were successfully identified and employed to formulate a predictive risk score model. The efficacy and precision of this model were validated utilizing TCGA and Gene Expression Omnibus (GEO) datasets, demonstrating its reliability in CRC prognosis prediction. gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significant disparities between high- and low-risk groups in chromatin remodeling biological functions and neutrophil extracellular trap formation pathways. Single sample gene set enrichment analysis (ssGSEA) further revealed differences in immune cell types and immune functional status between the two risk groups. Differential analysis showed higher expression of immune checkpoints within the low-risk group, while the high-risk group exhibited notably higher Tumor Immune Dysfunction and Exclusion (TIDE) scores. Additionally, we predicted the sensitivity of different prognosis risk patients to various drugs, providing potential drug choices for tailored treatment. Combined, our study successfully crafted a novel CRC prognostic model that can effectively predict patient survival, immune landscape, and treatment response, providing important support and guidance for CRC patient prognosis.
Collapse
Affiliation(s)
- Qin Tong
- Department of Gastrointestinal Surgery, Jinhua Guangfu Hospital, Jinhua, China
| | - Junchao Zhou
- Department of Gastrointestinal Surgery, Jinhua Guangfu Hospital, Jinhua, China
| |
Collapse
|
6
|
Singh K, Agrawal L, Gupta R, Singh D, Kathpalia M, Kaur N. Lectins as a promising therapeutic agent for breast cancer: A review. Breast Dis 2024; 43:193-211. [PMID: 38905027 PMCID: PMC11307042 DOI: 10.3233/bd-230047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Efficient treatment of cancer has been a subject of research by scientists for many years. Current treatments for cancer, such as radiotherapy, chemotherapy and surgery have been used in traditional combination therapy, but they have major setbacks like non-specificity, non-responsiveness in certain cancer types towards treatment, tumor recurrence, etc. Epidemiological data has shown that breast cancer accounts for 14% of cancer cases occurring in Indian women. In recent years, scientists have started to focus on the use of natural compounds like lectins obtained from various sources to counter the side effects of traditional therapy. Lectins like Sambucus nigra Agglutinin, Maackia amurensis lectin, Okra lectins, Haliclona caerulea lectin, Sclerotium rolfsii lectin, etc., have been discovered to have both diagnostic and therapeutic potential for breast cancer patients. Lectins have been found to have inhibitory effects on various cancer cell activities such as neo-angiogenesis, causing cell cycle arrest at the G1 phase, and inducing apoptosis. The major idea behind the use of lectins in cancer diagnostics and therapeutics is their capability to bind to glycosylated proteins that are expressed on the cell surface. This review focuses on an exploration of the roles of post-translational modification in cancer cells, especially glycosylation, and the potential of lectins in cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Keerti Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Lokita Agrawal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rhea Gupta
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Divyam Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meghavi Kathpalia
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Navkiran Kaur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Priyam J, Saxena U. Therapeutic applications of carbon nanomaterials in renal cancer. Biotechnol Lett 2023; 45:1395-1416. [PMID: 37864745 DOI: 10.1007/s10529-023-03429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/23/2023]
Abstract
Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene, and nanodiamonds (NDs), have shown great promise in detecting and treating numerous cancers, including kidney cancer. CNMs can increase the sensitivity of diagnostic techniques for better kidney cancer identification and surveillance. They enable targeted medicine delivery specifically to tumour locations, with little effect on healthy tissue. Because of their unique chemical and physical characteristics, they can avoid the body's defence mechanisms, making it easier to accumulate where tumours exist. Consequently, CNMs provide more effective drug delivery to kidney cancer cells. It also helps in improving the efficacy of treatment. This review explores the potential of several CNMs in improving therapeutic strategies for kidney cancer. We briefly covered the physicochemical properties and therapeutic applications of CNMs. Additionally, we discussed how structural modifications in CNMs enhance their precision in treating renal cancer. A thorough overview of CNM-based gene, peptide, and drug delivery strategies for the treatment of renal cancer is presented in this review. It covers information on other CNM-based therapeutic approaches, such as hyperthermia, photodynamic therapy, and photoacoustic therapy. Also, the interactions of CNMs with the tumour microenvironment (TME) are explored, including modulation of the immune response, regulation of tumour hypoxia, interactions between CNMs and TME cells, effects of TME pH on CNMs, and more. Finally, potential side effects of CNMs, such as toxicity, bio corona formation, enzymatic degradation, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Jyotsna Priyam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Urmila Saxena
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
8
|
Overgaard CB, Reaz F, Sitarz M, Poulsen P, Overgaard J, Bassler N, Grau C, Sørensen BS. An experimental setup for proton irradiation of a murine leg model for radiobiological studies. Acta Oncol 2023; 62:1566-1573. [PMID: 37603112 DOI: 10.1080/0284186x.2023.2246641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The purpose of this study was to introduce an experimental radiobiological setup used for in vivo irradiation of a mouse leg target in multiple positions along a proton beam path to investigate normal tissue- and tumor models with varying linear energy transfer (LET). We describe the dosimetric characterizations and an acute- and late-effect assay for normal tissue damage. METHODS The experimental setup consists of a water phantom that allows the right hind leg of three to five mice to be irradiated at the same time. Absolute dosimetry using a thimble (Semiflex) and a plane parallel (Advanced Markus) ionization chamber and Monte Carlo simulations using Geant4 and SHIELD-HIT12A were applied for dosimetric validation of positioning along the spread-out Bragg peak (SOBP) and at the distal edge and dose fall-off. The mice were irradiated in the center of the SOBP delivered by a pencil beam scanning system. The SOBP was 2.8 cm wide, centered at 6.9 cm depth, with planned physical single doses from 22 to 46 Gy. The biological endpoint was acute skin damage and radiation-induced late damage (RILD) assessed in the mouse leg. RESULTS The dose-response curves illustrate the percentage of mice exhibiting acute skin damage, and at a later point, RILD as a function of physical doses (Gy). Each dose-response curve represents a specific severity score of each assay, demonstrating a higher ED50 (50% responders) as the score increases. Moreover, the results reveal the reversible nature of acute skin damage as a function of time and the irreversible nature of RILD as time progresses. CONCLUSIONS We want to encourage researchers to report all experimental details of their radiobiological setups, including experimental protocols and model descriptions, to facilitate transparency and reproducibility. Based on this study, more experiments are being performed to explore all possibilities this radiobiological experimental setup permits.
Collapse
Affiliation(s)
- Cathrine Bang Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fardous Reaz
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Mateusz Sitarz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Bassler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Cai Grau
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
9
|
Das SS, Mahapatra SK. Effect of collision, size, and oscillation of RBCs on blood heat transfer in a bifurcated vessel. Comput Methods Biomech Biomed Engin 2023; 26:1620-1634. [PMID: 36214764 DOI: 10.1080/10255842.2022.2130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
This study attempts to analyze the effect of red blood cells (RBCs) on blood heat transfer in a three-dimensional bifurcated vessel when treated with hyperthermia procedure. A two-phase granular model is used in this paper to study the various underlying factors that affect the flow dynamics of RBCs in a blood vessel. Separate cases are analyzed to study the effect of RBC size, RBC-RBC, and RBC-wall collision and oscillation on heat transfer in a three-dimensional bifurcated vessel under pulsatile flow condition. Blood temperature and transient Nusselt number are used as heat transfer representative parameters. A good agreement with the experimental results from the existing literature is observed when the numerical model used in this study is compared for accuracy. From this study, it has been found that an increase in the size of RBCs of a blood disorder patient can decrease the temperature of blood compared to a normal patient when subjected to hyperthermia treatment. A change in the nature of collision between RBCs does not affect the heat transfer of blood under pulsatile flow condition in a bifurcated vessel. Also, an increase in granular temperature or oscillation of RBCs slightly increases the blood temperature when exposed to thermal treatment.
Collapse
|
10
|
Cardoso BD, Fernandes DEM, Amorim CO, Amaral VS, Coutinho PJG, Rodrigues ARO, Castanheira EMS. Magnetoliposomes with Calcium-Doped Magnesium Ferrites Anchored in the Lipid Surface for Enhanced DOX Release. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2597. [PMID: 37764626 PMCID: PMC10535675 DOI: 10.3390/nano13182597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Nanotechnology has provided a new insight into cancer treatment by enabling the development of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This work presents the design, development, and characterization of magnetoliposomes (MLs), wherein superparamagnetic nanoparticles are coupled to the lipid surface. For this purpose, dimercaptosuccinic acid (DMSA)-functionalized Ca0.25Mg0.75Fe2O4 superparamagnetic nanoparticles were prepared for the first time. The magnetic nanoparticles demonstrated a cubic shape with an average size of 13.36 nm. Furthermore, their potential for photothermal hyperthermia was evaluated using 4 mg/mL, 2 mg/mL, and 1 mg/mL concentrations of NPs@DMSA, which demonstrated a maximum temperature variation of 20.4 °C, 11.4 °C, and 7.3 °C, respectively, during a 30 min NIR-laser irradiation. Subsequently, these nanoparticles were coupled to the lipid surface of DPPC/DSPC/CHEMS and DPPC/DSPC/CHEMS/DSPE-PEG-based MLs using a new synthesis methodology, exhibiting average sizes of 153 ± 8 nm and 136 ± 2 nm, respectively. Doxorubicin (DOX) was encapsulated with high efficiency, achieving 96% ± 2% encapsulation in non-PEGylated MLs and 98.0% ± 0.6% in stealth MLs. Finally, drug release assays of the DOX-loaded DPPC/DSPC/CHEMS MLs were performed under different conditions of temperature (37 °C and 42 °C) and pH (5.5 and 7.4), simulating physiological and therapeutic conditions. The results revealed a higher release rate at 42 °C and acidic pH. Release rates significantly increased when introducing the stimulus of laser-induced photothermal hyperthermia at 808 nm (1 W/cm2) for 5 min. After 48 h of testing, at pH 5.5, 67.5% ± 0.5% of DOX was released, while at pH 7.4, only a modest release of 27.0% ± 0.1% was achieved. The results demonstrate the potential of the MLs developed in this work to the controlled release of DOX under NIR-laser stimulation and acidic environments and to maintain a sustained and reduced release profile in physiological environments with pH 7.4.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- CMEMS—UMinho, Universidade do Minho, DEI, 4800-058 Guimarães, Portugal
- LABBELS—Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Diana E. M. Fernandes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor S. Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo J. G. Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Injectable nano-composite hydrogels based on hyaluronic acid-chitosan derivatives for simultaneous photothermal-chemo therapy of cancer with anti-inflammatory capacity. Carbohydr Polym 2023; 310:120721. [PMID: 36925247 DOI: 10.1016/j.carbpol.2023.120721] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Nowadays, the photothermal therapy (PTT) has received widespread attention and research by rapidly killing tumors with local high temperature. However, due to the irregular edges of tumor and the blurred boundary between normal and necrotic tissues, the desirable treatment cannot be achieved by the single PTT, and excessive heat will cause serious inflammation in local tissues. Herein, an injectable composite hydrogel is prepared by the oxidized hyaluronic acid (OHA) and hydroxypropyl chitosan (HPCS) via the imine bonds, which is employed as the delivery substrate for functional substances. In the gel medium, the mesoporous polydopamine (MPDA) nanoparticles are incorporated as the high efficiency photothermal agent and a reservoir of DOX, which can achieve the good photothermal conversion performance and pulsed drug release. Besides, the addition of the curcumin-cyclodextrin host-guest inclusion complex (CUR@NH2-CD) in the composite hydrogel could reduce the inflammation caused by PTT. The composite hydrogel shows favorable the Hepa1-6 tumor inhibition in vivo by virtue of the comprehensive effect of the admired photothermal efficacy of MPDA, chemotherapy of DOX and anti-inflammatory of CUR. It can be predicted that the composite hydrogel has a broad prospect in the field of comprehensive therapy for tumor.
Collapse
|
12
|
Yunusova NV, Svarovsky DA, Konovalov AI, Kostromitsky DN, Startseva ZA, Cheremisina OV, Afanas'ev SG, Kondakova IV, Grigor'eva AE, Vtorushin SV, Sereda EE, Usova AV, Tamkovich SN. The Composition of Small Extracellular Vesicles (sEVs) in the Blood Plasma of Colorectal Cancer Patients Reflects the Presence of Metabolic Syndrome and Correlates with Angiogenesis and the Effectiveness of Thermoradiation Therapy. J Pers Med 2023; 13:jpm13040684. [PMID: 37109070 PMCID: PMC10143749 DOI: 10.3390/jpm13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The majority of colorectal cancer patients (CRCPs) develop tumors on the background of "metabolically healthy obesity" or metabolic syndrome. The aim of the work was to study the levels of matrix metalloproteinases (MMPs) and heat shock proteins (HSPs) on the surface of blood plasma CD9-positive and FABP4-positive small extracellular vesicles (sEVs) from CRCPs depending on metabolic status and tumor angiogenesis, as well as to evaluate the sEVs markers as predictors of the effectiveness of thermoradiotherapy. In CRCPs, compared with patients with colorectal polyps (CPPs), the proportion of triple positive EVs and EVs with the MMP9+MMP2-TIMP1+ phenotype increased significantly among FABP4-positive EVs (adipocyte-derived EVs), which in general may indicate the overexpression of MMP9 and TIMP1 by adipocytes or adipose tissue macrophages in CRCPs. The results obtained have prospects for use as markers to clarify cancer risk in CPPs. One can assume that for CRCPs with metabolic syndrome or metabolically healthy obesity, it is the FABP4+MMP9+MMP2-TIMP1- population of circulating sEVs that is the most optimal biomarker reflecting tumor angiogenesis. Determining this population in the blood will be useful in monitoring patients after treatment for the early detection of tumor progression. CD9+MMP9+MMP2-TIMP1- and MMP9+MMP2-TIMP1+ subpopulations of circulating sEVs are the most promising predictors of the efficacy of thermoradiation therapy because their levels at baseline differ significantly in CRCPs with different tumor responses.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Department of Biochemistry and Molecular Biology, Central Research Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
| | - Dmitry A Svarovsky
- Department of Biochemistry and Molecular Biology, Central Research Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
| | - Artem I Konovalov
- Department of Biochemistry and Molecular Biology, Central Research Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
| | - Dmitry N Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Zhanna A Startseva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Olga V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Irina V Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alina E Grigor'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey V Vtorushin
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena E Sereda
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Anna V Usova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Svetlana N Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Mohammadi A, Hashemi B, Mehdi Mahdavi SR, Solimani M, Banaei A. Radiosensitization effect of radiofrequency hyperthermia in the presence of PEGylated-gold nanoparticles on the MCF-7 breast cancer cells under 6 MeV electron irradiation. J Cancer Res Ther 2023; 19:S67-S73. [PMID: 37147985 DOI: 10.4103/jcrt.jcrt_1087_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Purpose The purpose of the study was to investigate the radiosensitization effect of radiofrequency (RF) hyperthermia in combination with PEGylated gold nanoparticles (PEG-GNPs) on MCF-7 breast cancer cells under electron beam radiotherapy (EBRT) based on the clonogenic assay. Materials and Methods The cell death of MCF-7 breast cancer cells treated with 13.56 MHz capacitive RF hyperthermia (power: 150W) for 2, 5, 10, and 15 min combined with 6 MeV EBRT, with a dose of 2 Gy, was evaluated in the presence of 20 nm PEG-GNPs with a low nontoxic concentration (20 mg/l). All the treatment groups were incubated for 14 days. Thereafter, survival fractions and viability of the cells were calculated and analyzed against the control group. Results The presence of PEG-GNPs inside the MCF-7 cancer cells during electron irradiation decreased cell survival significantly (16.7%) compared to irradiated cells without GNPs. Applying hyperthermia before electron irradiation with a capacitive RF system decreased cell survival by about 53.7%, while hyperthermia without irradiation did not show any significant effect on cell survival. Combining the hyperthermia with the presence of PEG-GNPs in the cells decreased the cell survival by about 67% at the electron irradiation, showing their additive radiosensitization effect. Conclusion Low nontoxic concentration of 20 nm PEG-GNPs increases the radiosensitization effect of combining 6 MeV EBRT and RF hyperthermia on MCF-7 cancer cells. Combining hyperthermia with PEG-GNPs in electron radiotherapy could be an appropriate method for enhancing radiotherapy effectiveness on cancerous cells which can be studied on different cells and electron energies in future research.
Collapse
Affiliation(s)
- Akram Mohammadi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bijan Hashemi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seied Rabi Mehdi Mahdavi
- Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Solimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Banaei
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
198Au-Coated Superparamagnetic Iron Oxide Nanoparticles for Dual Magnetic Hyperthermia and Radionuclide Therapy of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24065282. [PMID: 36982357 PMCID: PMC10049102 DOI: 10.3390/ijms24065282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
This study was performed to synthesize a radiopharmaceutical designed for multimodal hepatocellular carcinoma (HCC) treatment involving radionuclide therapy and magnetic hyperthermia. To achieve this goal, the superparamagnetic iron oxide (magnetite) nanoparticles (SPIONs) were covered with a layer of radioactive gold (198Au) creating core–shell nanoparticles (SPION@Au). The synthesized SPION@Au nanoparticles exhibited superparamagnetic properties with a saturation magnetization of 50 emu/g, which is lower than reported for uncoated SPIONs (83 emu/g). Nevertheless, the SPION@Au core–shell nanoparticles showed a sufficiently high saturation magnetization value which allows them to reach a temperature of 43 °C at a magnetic field frequency of 386 kHz. The cytotoxic effect of nonradioactive and radioactive SPION@Au–polyethylene glycol (PEG) bioconjugates was carried out by treating HepG2 cells with various concentrations (1.25–100.00 µg/mL) of the compound and radioactivity in range of 1.25–20 MBq/mL. The moderate cytotoxic effect of nonradioactive SPION@Au-PEG bioconjugates on HepG2 was observed. The cytotoxic effect associated with the β− radiation emitted by 198Au was much greater and already reaches a cell survival fraction below 8% for 2.5 MBq/mL of radioactivity after 72 h. Thus, the killing of HepG2 cells in HCC therapy should be possible due to the combination of the heat-generating properties of the SPION-198Au–PEG conjugates and the radiotoxicity of the radiation emitted by 198Au.
Collapse
|
15
|
Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractResearch on cancer treatment is always of great importance because of the extensive and difficult treatment options and side effects of chemotherapeutic agents. Due to this, novel techniques for cancer treatment are the need of the day. Nowadays, nanotechnology is of great interest for its applications as diagnostic tools, theragnostic, contrasting agents, and vehicles for delivering drugs. Nanoparticles (NPs) are made up of biocompatible and biodegradable polymers that improve the pharmacokinetic and pharmacodynamic properties of drugs, reduce side effects, improve stability, prolong the release of drug, and reduce the dosing frequency. Poly (lactic-co-glycolic acid) (PLGA) is FDA-approved synthetic polymer which can be used to formulate NPs that can be targeted to a specific site for the safe and effective delivery of drugs. PLGA-based NPs can be used for a variety of cancer therapies including tumor-targeted drug delivery, gene therapy, hyperthermia, and photodynamic therapy. This article discusses the method of preparation, characterization, encapsulation of chemotherapeutic drugs, effect of physicochemical properties of PLGA- based NPs, and how we can exploit these aspects through various methods of preparation for drug loading, biodistribution, target specificity, and their use in cancer treatment. Along with these targeting strategies, gene therapy, cancer immunotherapy, and various applications have also been discussed. This article also aims to discuss the incorporation of diagnostic tools and therapeutic moiety in one versatile formulation of PLGA-NPs and the difficulties faced in translating this promising tool to clinical use.
Collapse
|
16
|
Global Stability and Thermal Optimal Control Strategies for Hyperthermia Treatment of Malignant Tumors. MATHEMATICS 2022. [DOI: 10.3390/math10132188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant tumor (cancer) is the leading cause of death globally and the annual cost of managing cancer is trillions of dollars. Although, there are established therapies including radiotherapy, chemotherapy and phototherapy for malignant tumors, the hypoxic environment of tumors and poor perfusion act as barriers to these therapies. Hyperthermia takes advantage of oxygen deficiency and irregular perfusion in the tumor environment to destroy malignant cells. Despite successes recorded with hyperthermia, there are concerns with the post-treatment condition of patients as well as the required thermal dose to prevent harm. The investigation of the dynamics of tumor-induced immune suppression with hyperthermia treatment using mathematical analysis and optimal control theory is potentially valuable in the development of hyperthermia treatment. The role of novel tumor-derived cytokines in counterattacking immune cells is considered in this study as a mechanism accounting for the aggressiveness of malignant tumors. Since biological processes are not instantaneous, a discrete time delay is used to model biological processes involved in tumor inhibitory mechanisms by secretion, the elaboration of suppressive cells, and effector cell differentiation to produce suppressive cells. Analytical results obtained using Lyapunov’s function indicate the conditions required for global stability of the tumor-present steady-state. A thermal optimal control strategy is pursued based on optimal control theory, and the best strategy to avoid adverse outcomes is obtained. We validate the analytical results numerically and demonstrate the impact of both inadequate and excessive heat on the dynamics of interactive cell functioning.
Collapse
|
17
|
Simón M, Jørgensen JT, Khare HA, Christensen C, Nielsen CH, Kjaer A. Combination of [ 177Lu]Lu-DOTA-TATE Targeted Radionuclide Therapy and Photothermal Therapy as a Promising Approach for Cancer Treatment: In Vivo Studies in a Human Xenograft Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14061284. [PMID: 35745856 PMCID: PMC9227845 DOI: 10.3390/pharmaceutics14061284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) relies on α- and β-emitting radionuclides bound to a peptide that commonly targets somatostatin receptors (SSTRs) for the localized killing of tumors through ionizing radiation. A Lutetium-177 (177Lu)-based probe linked to the somatostatin analog octreotate ([177Lu]Lu-DOTA-TATE) is approved for the treatment of certain SSTR-expressing tumors and has been shown to improve survival. However, a limiting factor of PRRT is the potential toxicity derived from the high doses needed to kill the tumor. This could be circumvented by combining PRRT with other treatments for an enhanced anti-tumor effect. Photothermal therapy (PTT) relies on nanoparticle-induced hyperthermia for cancer treatment and could be a useful add-on to PRRT. Here, we investigate a strategy combining [177Lu]Lu-DOTA-TATE PRRT and nanoshell (NS)-based PTT for the treatment of SSTR-expressing small-cell lung tumors in mice. Our results showed that the combination treatment improved survival compared to PRRT alone, but only when PTT was performed one day after [177Lu]Lu-DOTA-TATE injection (one of the timepoints examined), showcasing the effect of treatment timing in relation to outcome. Furthermore, the combination treatment was well-tolerated in the mice. This indicates that strategies involving NS-based PTT as an add-on to PRRT could be promising and should be investigated further.
Collapse
Affiliation(s)
- Marina Simón
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
| | - Harshvardhan A. Khare
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
| | - Camilla Christensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
- Minerva Imaging, 3650 Ølstykke, Denmark
| | - Carsten Haagen Nielsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
- Minerva Imaging, 3650 Ølstykke, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
- Correspondence:
| |
Collapse
|
18
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
19
|
Sheyi R, de la Torre BG, Albericio F. Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics 2022; 14:pharmaceutics14020396. [PMID: 35214128 PMCID: PMC8874516 DOI: 10.3390/pharmaceutics14020396] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
As one of the major therapeutic options for cancer treatment, chemotherapy has limited selectivity against cancer cells. Consequently, this therapeutic strategy offers a small therapeutic window with potentially high toxicity and thus limited efficacy of doses that can be tolerated by patients. Antibody-drug conjugates (ADCs) are an emerging class of anti-cancer therapeutic drugs that can deliver highly cytotoxic molecules directly to cancer cells. To date, twelve ADCs have received market approval, with several others in clinical stages. ADCs have become a powerful class of therapeutic agents in oncology and hematology. ADCs consist of recombinant monoclonal antibodies that are covalently bound to cytotoxic chemicals via synthetic linkers. The linker has a key role in ADC outcomes because its characteristics substantially impact the therapeutic index efficacy and pharmacokinetics of these drugs. Stable linkers and ADCs can maintain antibody concentration in blood circulation, and they do not release the cytotoxic drug before it reaches its target, thus resulting in minimum off-target effects. The linkers used in ADC development can be classified as cleavable and non-cleavable. The former, in turn, can be grouped into three types: hydrazone, disulfide, or peptide linkers. In this review, we highlight the various linkers used in ADC development and their design strategy, release mechanisms, and future perspectives.
Collapse
Affiliation(s)
- Rotimi Sheyi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Beatriz G. de la Torre
- Kwazulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614-047-528 (B.G.d.l.T.); +27-6140-09144 (F.A.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614-047-528 (B.G.d.l.T.); +27-6140-09144 (F.A.)
| |
Collapse
|
20
|
Nizam-Uddin N, Abdulkawi WM, Elshafiey I, Sheta AFA. Towards an efficient system for hyperthermia treatment of breast tumors. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Braude S, Varghese J. The oncoprotective fever hypothesis: Have antibiotics, antimalarials and antipyrectics contributed to the global rise in cancer over the past century? Med Hypotheses 2021; 158:110720. [PMID: 34753009 DOI: 10.1016/j.mehy.2021.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/19/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
The adaptive and therapeutic nature of fever has been recognized for centuries and both local and systemic thermotherapy are now used to enhance the effectiveness of both chemotherapy and radiation therapy for cancer. We propose that the success of antiseptic, antibiotic, antipyretic and antimalarial strategies and medications over the past century and a half may have had the unintended effect of releasing precancerous growths and neoplastic foci from the inhibitory effects of intermittent fever. This may be a previously unrecognized factor in the overall rise in cancer rates in the late 19th and early 20th centuries.
Collapse
Affiliation(s)
- S Braude
- SB Washington University, JV Cleveland Clinic, USA.
| | - J Varghese
- SB Washington University, JV Cleveland Clinic, USA
| |
Collapse
|
22
|
Singh P, Eley J, Saeed A, Bhandary B, Mahmood N, Chen M, Dukic T, Mossahebi S, Rodrigues DB, Mahmood J, Vujaskovic Z, Shukla HD. Effect of hyperthermia and proton beam radiation as a novel approach in chordoma cells death and its clinical implication to treat chordoma. Int J Radiat Biol 2021; 97:1675-1686. [PMID: 34495790 DOI: 10.1080/09553002.2021.1976861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Chordoma is a locally aggressive tumor that most commonly affects the base of the skull/clivus, cervical, and sacral spine. Conventional radiotherapy (RT), cannot be safely increased further to improve disease control due to the risk of toxicity to the surrounding critical structures. Tumor-targeted hyperthermia (HT) combined with Proton Beam Radiation Therapy (PBRT) is known to act as a potent radiosensitizer in cancer control. In this study, we investigated whether PBRT efficacy for chordoma can be enhanced in combination with HT as a radiosensitizer. MATERIAL AND METHODS Human chordoma cell lines, U-CH2 and Mug-chor1 were treated in vitro with HT followed by PBRT with variable doses. The colony-forming assay was performed, and dose-response was characterized by linear-quadratic model fits. HSP-70 and Brachyury (TBXT) biomarkers for chordoma aggression levels were quantified by western blot analysis. Gene microarray analysis was performed by U133 Arrays. Pathway Analysis was also performed using IPA bioinformatic software. RESULTS Our findings in both U-CH2 and Mug-Chor1 cell lines demonstrate that hyperthermia followed by PBRT has an enhanced cell killing effect when compared with PBRT-alone (p < .01). Western blot analysis showed HT decreased the expression of Brachyury protein (p < .05), which is considered a biomarker for chordoma tumor aggression. HT with PBRT also exhibited an RT-dose-dependent decrease of Brachyury expression (p < .05). We also observed enhanced HSP-70 expression due to HT, RT, and HT + RT combined in both cell lines. Interestingly, genomic data showed 344 genes expressed by the treatment of HT + RT compared to HT (68 genes) or RT (112 genes) as individual treatment. We also identified activation of death receptor and apoptotic pathway in HT + RT treated cells. CONCLUSION We found that Hyperthermia (HT) combined with Proton Beam Radiation (PBRT) could significantly increase chordoma cell death by activating the death receptor pathway and apoptosis which has the promise to treat metastatic chordoma.
Collapse
Affiliation(s)
- Prerna Singh
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ali Saeed
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Binny Bhandary
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nayab Mahmood
- College of Information Science, University of Maryland College Park, MD, USA
| | - Minjie Chen
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tijana Dukic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sina Mossahebi
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dario B Rodrigues
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Javed Mahmood
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hem D Shukla
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Tretbar SH, Fournelle M, Speicher D, Becker FJ, Anastasiadis P, Landgraf L, Roy U, Melzer A. A novel matrix-array-based MR-conditional ultrasound system for local hyperthermia of small animals. IEEE Trans Biomed Eng 2021; 69:758-770. [PMID: 34398748 DOI: 10.1109/tbme.2021.3104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The goal of this work was to develop a novel modular focused ultrasound hyperthermia (FUS-HT) system for preclinical applications with the following characteristics: MR-compatible, compact probe for integration into a PET/MR small animal scanner, 3D-beam steering capabilities, high resolution focusing for generation of spatially confined FUS-HT effects. METHODS For 3D-beam steering capabilities, a matrix array approach with 11 11 elements was chosen. For reaching the required level of integration, the array was mounted with a conductive backing directly on the interconnection PCB. The array is driven by a modified version of our 128 channel ultrasound research platform DiPhAS. The system was characterized using sound field measurements and validated using tissue-mimicking phantoms. Preliminary MR-compatibility tests were performed using a 7T Bruker MRI scanner. RESULTS Four 11 11 arrays between 0.5 and 2 MHz were developed and characterized with respect to sound field properties and HT generation. Focus sizes between 1 and 4 mm were reached depending on depth and frequency. We showed heating by 4C within 60 s in phantoms. The integration concept allows a probe thickness of less than 12 mm. CONCLUSION We demonstrated FUS-HT capabilities of our modular system based on matrix arrays and a 128 channel electronics system within a 3D-steering range of up to 30. The suitability for integration into a small animal MR could be demonstrated in basic MR-compatibility tests. SIGNIFICANCE The developed system presents a new generation of FUS-HT for preclinical and translational work providing safe, reversible, localized, and controlled HT.
Collapse
|
24
|
Ximendes E, Marin R, Shen Y, Ruiz D, Gómez‐Cerezo D, Rodríguez‐Sevilla P, Lifante J, Viveros‐Méndez PX, Gámez F, García‐Soriano D, Salas G, Zalbidea C, Espinosa A, Benayas A, García‐Carrillo N, Cussó L, Desco M, Teran FJ, Juárez BH, Jaque D. Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100077. [PMID: 34117667 PMCID: PMC11468761 DOI: 10.1002/adma.202100077] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/10/2021] [Indexed: 05/05/2023]
Abstract
Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.
Collapse
Affiliation(s)
- Erving Ximendes
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Yingli Shen
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Diego Ruiz
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Present address:
Madrid Institute of Materials Science(ICMM)CSIC. Sor Juana Inés de la CruzMadridCantoblanco28049Spain
| | | | | | - Jose Lifante
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Perla X. Viveros‐Méndez
- Universidad Autónoma de ZacatecasUnidad Académica de Ciencia y Tecnología de la Luz y la MateriaCarretera Zacatecas‐Guadalajara km. 6Ejido la escondidaZacatecasZacatecas98160México
| | - Francisco Gámez
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
- Present address:
Department of Physical Chemistry, Faculty of ScienceUniversity of GranadaAvenida de la Fuente Nueva S/NGranada18071Spain
| | | | - Gorka Salas
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Carmen Zalbidea
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Ana Espinosa
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Antonio Benayas
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | | | - Lorena Cussó
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Francisco J. Teran
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Beatriz H. Juárez
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| |
Collapse
|
25
|
Efficient Heat Shock Response Affects Hyperthermia-Induced Radiosensitization in a Tumor Spheroid Control Probability Assay. Cancers (Basel) 2021; 13:cancers13133168. [PMID: 34201993 PMCID: PMC8269038 DOI: 10.3390/cancers13133168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Hyperthermia (HT) combined with irradiation is a well-known concept to improve the curative potential of radiotherapy. Technological progress has opened new avenues for thermoradiotherapy, even for recurrent head and neck squamous cell carcinomas (HNSCC). Preclinical evaluation of the curative radiosensitizing potential of various HT regimens remains ethically, economically, and technically challenging. One key objective of our study was to refine an advanced 3-D assay setup for HT + RT research and treatment testing. For the first time, HT-induced radiosensitization was systematically examined in two differently radioresponsive HNSCC spheroid models using the unique in vitro "curative" analytical endpoint of spheroid control probability. We further investigated the cellular stress response mechanisms underlying the HT-related radiosensitization process with the aim to unravel the impact of HT-induced proteotoxic stress on the overall radioresponse. HT disrupted the proteome's thermal stability, causing severe proteotoxic stress. It strongly enhanced radiation efficacy and affected paramount survival and stress response signaling networks. Transcriptomics, q-PCR, and western blotting data revealed that HT + RT co-treatment critically triggers the heat shock response (HSR). Pre-treatment with chemical chaperones intensified the radiosensitizing effect, thereby suppressing HT-induced Hsp27 expression. Our data suggest that HT-induced radiosensitization is adversely affected by the proteotoxic stress response. Hence, we propose the inhibition of particular heat shock proteins as a targeting strategy to improve the outcome of combinatorial HT + RT.
Collapse
|
26
|
Morozov VN, Belousov AV, Zverev VI, Shtil AA, Kolyvanova MA, Krivoshapkin PV. The Prospects of Metal Oxide Nanoradiosensitizers: The Effect of the Elemental Composition of Particles and Characteristics of Radiation Sources on Enhancement of the Adsorbed Dose. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920040107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Safari A, Sarikhani A, Shahbazi-Gahrouei D, Alamzadeh Z, Beik J, Dezfuli AS, Mahabadi VP, Tohfeh M, Shakeri-Zadeh A. Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy. Photodiagnosis Photodyn Ther 2020; 32:102061. [PMID: 33068822 DOI: 10.1016/j.pdpdt.2020.102061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023]
Abstract
Maximal synergistic effect between photothermal therapy and radiotherapy (RT) may be achieved when the interval between these two modalities is optimal. In this study, we tried to determine the optimal schedule of the combined regime of RT and nano-photothermal therapy (NPTT), based on the cell cycle distribution and kinetics of cell death. To this end, alginate-coated iron oxide-gold core-shell nanoparticles (Fe3O4@Au/Alg NPs) were synthesized, characterized, and their photo-radio sensitization potency was evaluated on human nasopharyngeal cancer KB cells. Our results demonstrated that synthesized NPs have a good potential in radiotherapy and near-infrared (NIR) photothermal therapy. However, results from flow cytometry analysis indicated that a major portion of KB cells were accumulated in the most radiosensitive phases of cell cycle (G2/M) 24 h after NPTT. Moreover, the maximal synergistic anticancer efficacy (12.3% cell viability) was observed when RT was applied 24 h following the administration of NPTT (NPs [30 μg/mL, 4 h incubation time] + Laser [808 nm, 1 W/cm2, 5 min] + RT [6 Gy]). It is noteworthy that apoptosis was the dominant cell death pathway in the group of cells treated by combination of NPTT and RT. This highly synergistic anticancer efficacy provides a mechanistic basis for Fe3O4@Au/Alg NPs-mediated photothermal therapy combined with RT. Knowing such a basis is helpful to promote novel nanotechnology cancer treatment strategies.
Collapse
Affiliation(s)
- Arash Safari
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolfazl Sarikhani
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Alamzadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Jaber Beik
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Tohfeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Heat stress induced arginylation of HuR promotes alternative polyadenylation of Hsp70.3 by regulating HuR stability and RNA binding. Cell Death Differ 2020; 28:730-747. [PMID: 32929216 DOI: 10.1038/s41418-020-00619-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/08/2022] Open
Abstract
Arginylation was previously found to promote stabilization of heat shock protein 70.3 (Hsp70.3) mRNA and cell survival in mouse embryonic fibroblasts (MEFs) on exposure to heat stress (HS). In search of a factor responsible for these phenomena, the current study identified human antigen R (HuR) as a direct target of arginylation. HS induced arginylation of HuR affected its stability and RNA binding activity. Arginylated HuR failed to bind Hsp70.3 3' UTR, allowing the recruitment of cleavage stimulating factor 64 (CstF64) in the proximal poly-A-site (PAS), generating transcripts with short 3'UTR. However, HuR from Ate1 knock out (KO) MEFs bound to proximal PAS region with higher affinity, thus excluded CstF64 recruitment. This inhibited the alternative polyadenylation (APA) of Hsp70.3 mRNA and generated the unstable transcripts with long 3'UTR. The inhibition of RNA binding activity of HuR was traced to arginylation-coupled phosphorylation of HuR, by check point kinase 2 (Chk2). Arginylation of HuR occurred at the residue D15 and the arginylation was needed for the phosphorylation. Accumulation of HuR also decreased cell viability upon HS. In conclusion, arginylation dependent modifications of HuR maintained its cellular homeostasis, and promoted APA of Hsp70.3 pre-mRNA, during early HS response.
Collapse
|
29
|
Vieira Rocha C, Costa da Silva M, Bañobre-López M, Gallo J. (Para)magnetic hybrid nanocomposites for dual MRI detection and treatment of solid tumours. Chem Commun (Camb) 2020; 56:8695-8698. [PMID: 32613977 DOI: 10.1039/d0cc03020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a hybrid magnetic nanocomposite (mHNCs-Dox) incorporating a chemotherapeutic drug and dual superparamagnetic and paramagnetic cargo. This system exhibits dual contrast behaviour in magnetic resonance imaging as well as enhanced therapeutic anti-cancer capabilities as a thermo-enhanced chemotherapy effector.
Collapse
Affiliation(s)
- Cátia Vieira Rocha
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | | | | | | |
Collapse
|
30
|
Chen Y, Shen X, Han S, Wang T, Zhao J, He Y, Chen S, Deng S, Wang C, Wang J. Irradiation pretreatment enhances the therapeutic efficacy of platelet-membrane-camouflaged antitumor nanoparticles. J Nanobiotechnology 2020; 18:101. [PMID: 32690018 PMCID: PMC7372815 DOI: 10.1186/s12951-020-00660-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cell membrane-based nanocarriers are promising candidates for delivering antitumor agents. The employment of a simple and feasible method to improve the tumor-targeting abilities of these systems is appealing for further application. Herein, we prepared a platelet membrane (PM)-camouflaged antitumor nanoparticle. The effects of irradiation pretreatment on tumor targeting of the nanomaterial and on its antitumor action were evaluated. RESULTS The biomimetic nanomaterial constructed by indocyanine green, poly(d,l-lactide-co-glycolide), and PM is termed PINPs@PM. A 4-Gy X-ray irradiation increased the proportions of G2/M phase and Caveolin-1 content in 4T1 breast cancer cells, contributing to an endocytic enhancement of PINPs@PM. PINPs@PM produced hyperthermia and reactive oxygen species upon excitation by near-infrared irradiation, which were detrimental to the cytoplasmic lysosome and resulted in cell death. Irradiation pretreatment thus strengthened the antitumor activity of PINPs@PM in vitro. Mice experiments revealed that irradiation enhanced the tumor targeting capability of PINPs@PM in vivo. When the same dose of PINPs@PM was intravenously administered, irradiated mice had a better outcome than did mice without X-ray pretreatment. CONCLUSION The study demonstrates an effective strategy combining irradiation pretreatment and PM camouflage to deliver antitumor nanoparticles, which may be instrumental for targeted tumor therapy.
Collapse
Affiliation(s)
- Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xue Shen
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Tao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jianqi Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yongwu He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.,College of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shengqi Deng
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
31
|
Zhang S, Wang B, Xiao H, Dong J, Li Y, Zhu C, Jin Y, Li H, Cui M, Fan S. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thorac Cancer 2020; 11:1801-1816. [PMID: 32374522 PMCID: PMC7327697 DOI: 10.1111/1759-7714.13450] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Breast cancer (BRCA) is the leading cause of cancer-related death in women worldwide. Pre- and postoperative radiotherapy play a pivotal role in BRCA treatment but its efficacy remains limited and plagued by the emergence of radiation resistance, which aggravates patient prognosis. The long noncoding RNA (lncRNA)-implicated mechanisms underlying radiation resistance are rarely reported. The aim of this study was to determine whether lncRNA HOX transcript antisense RNA (HOTAIR) modulated the radiosensitivity of breast cancer through HSPA1A. METHODS A Gammacell 40 Exactor was used for irradiation treatment. Bioinformatic tools and luciferase reporter assay were adopted to explore gene expression profile and demonstrate the interactions between lncRNA, miRNA and target mRNA 3'-untranslated region (3'-UTR). The expression levels of certain genes were determined by real-time PCR and western-blot analyses. in vitro and in vivo functional assays were conducted by cell viability and tumorigenicity assays. RESULTS The levels of oncogenic lncRNA HOTAIR were positively correlated with the malignancy of BRCA but reversely correlated with the radiosensitivity of breast cancer cells. Moreover, the expression levels of HOTAIR were positively associated with those of heat shock protein family A (Hsp70) member 1A (HSPA1A) in clinical BRCA tissues and HOTAIR upregulated HSPA1A at the mRNA and protein levels in irradiated BRCA cells. Mechanistically, miR-449b-5p restrained HSPA1A expression through targeting the 3'-UTR of HSPA1A mRNA, whereas HOTAIR acted as a competing sponge to sequester miR-449b-5p and thereby relieved the miR-449b-5p-mediated HSPA1A repression. Functionally, HOTAIR conferred decreased radiosensitivity on BRCA cells, while miR-449b-5p overexpression or HSPA1A knockdown abrogated the HOTAIR-enhanced BRCA growth under the irradiation exposure both in vitro and in vivo. CONCLUSIONS LncRNA HOTAIR facilitates the expression of HSPA1A by sequestering miR-449b-5p post-transcriptionally and thereby endows BRCA with radiation resistance. KEY POINTS Therapeutically, HOTAIR and HSPA1A may be employed as potential targets for BRCA radiotherapy. Our findings shed new light into the mechanism by which lncRNAs modulate the radiosensitivity of tumors.
Collapse
Affiliation(s)
- Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuxiao Jin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
32
|
Gao Y, Shang Q, Li W, Guo W, Stojadinovic A, Mannion C, Man YG, Chen T. Antibiotics for cancer treatment: A double-edged sword. J Cancer 2020; 11:5135-5149. [PMID: 32742461 PMCID: PMC7378927 DOI: 10.7150/jca.47470] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
Various antibiotics have been used in the treatment of cancers, via their anti-proliferative, pro-apoptotic and anti-epithelial-mesenchymal-transition (EMT) capabilities. However, increasingly studies have indicated that antibiotics may also induce cancer generation by disrupting intestinal microbiota, which further promotes chronic inflammation, alters normal tissue metabolism, leads to genotoxicity and weakens the immune response to bacterial malnutrition, thereby adversely impacting cancer treatment. Despite the advent of high-throughput sequencing technology in recent years, the potential adverse effects of antibiotics on cancer treatments via causing microbial imbalance has been largely ignored. In this review, we discuss the double-edged sword of antibiotics in the field of cancer treatments, explore their potential mechanisms and provide solutions to reduce the potential negative effects of antibiotics.
Collapse
Affiliation(s)
- Yuan Gao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Qingyao Shang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenxuan Guo
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
| | - Alexander Stojadinovic
- Department of Pathology, Hackensack University Medical Center, 30 Prospec Avenue, Hackensack, NJ 07601, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack University Medical Center, 30 Prospec Avenue, Hackensack, NJ 07601, USA
- Department of Pathology, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Yan-gao Man
- Department of Pathology, Hackensack University Medical Center, 30 Prospec Avenue, Hackensack, NJ 07601, USA
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
| |
Collapse
|
33
|
Fabijańska M, Orzechowska M, Rybarczyk-Pirek AJ, Dominikowska J, Bieńkowska A, Małecki M, Ochocki J. Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. Int J Mol Sci 2020; 21:ijms21062116. [PMID: 32204470 PMCID: PMC7139614 DOI: 10.3390/ijms21062116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023] Open
Abstract
Following previous studies devoted to trans–Pt(3-af)2Cl2, in this paper, the molecular structure and intermolecular interactions of the title complex are compared with other cisplatin analogues of which the crystal structures are presented in the Cambridge Structural Database (CSD). Molecular Hirshfeld surface analysis and computational methods were used to examine a possible relationship between the structure and anticancer activity of trans–Pt(3-af)2Cl2. The purpose of the article was also to investigate the effect of hyperthermia on the anticancer activity of cisplatin, cytostatics used in the treatment of patients with ovarian cancer and a new analogue of cisplatin-trans–Pt(3-af)2Cl2. The study was conducted on two cell lines of ovarian cancer sensitive to Caov-3 cytostatics and the OVCAR-3 resistant cisplatin line. The study used the MTT (3-(4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide) cell viability assay, LDH (lactate dehydrogenase), and the quantitative evaluation method for measuring gene expression, i.e., qPCR with TagMan probes. Reduced survivability of OVCAR-3 and Caov-3 cells exposed to cytostatics at elevated temperatures (37 °C, 40 °C, 43 °C) was observed. Hyperthermia may increase the sensitivity of cells to platinum-based antineoplastic drugs and paclitaxel, which may be associated with the reduction of gene expression related to apoptotic processes.
Collapse
Affiliation(s)
- Małgorzata Fabijańska
- Department of Bioinorganic Chemistry, Medical University of Lodz, 1 Muszynskiego St., 90-151 Łódź, Poland
- Correspondence: (M.F.); (J.O.); Tel.: +48-(42)-6779220 (J.O.)
| | - Magdalena Orzechowska
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Agnieszka J. Rybarczyk-Pirek
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland; (A.J.R.-P.); (J.D.)
| | - Justyna Dominikowska
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland; (A.J.R.-P.); (J.D.)
| | - Alicja Bieńkowska
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Maciej Małecki
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Justyn Ochocki
- Department of Bioinorganic Chemistry, Medical University of Lodz, 1 Muszynskiego St., 90-151 Łódź, Poland
- Correspondence: (M.F.); (J.O.); Tel.: +48-(42)-6779220 (J.O.)
| |
Collapse
|
34
|
Cheng Y, Weng S, Yu L, Zhu N, Yang M, Yuan Y. The Role of Hyperthermia in the Multidisciplinary Treatment of Malignant Tumors. Integr Cancer Ther 2020; 18:1534735419876345. [PMID: 31522574 PMCID: PMC7242805 DOI: 10.1177/1534735419876345] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hyperthermia is often used in combination with chemotherapy and radiotherapy for
cancer treatment. Recently, immunotherapy has become a popular research area,
breaking exciting new ground with concurrent immunotherapy and hyperthermia.
Much evidence has demonstrated the effectiveness of multidisciplinary
synergistic therapy, and the underlying mechanism has been gradually explored.
In this review, we focus on the mechanism of various cancer treatments in the
current literature and recent advances in hyperthermia. Additionally, we review
clinical studies of hyperthermia combined with other therapies in the previous
10 years and propose future prospects for hyperthermia in multidisciplinary
synergistic therapy.
Collapse
Affiliation(s)
- Yi Cheng
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shanshan Weng
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Linzhen Yu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ning Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Mengyuan Yang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Yuan
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
35
|
Garanina AS, Naumenko VA, Nikitin AA, Myrovali E, Petukhova AY, Klimyuk SV, Nalench YA, Ilyasov AR, Vodopyanov SS, Erofeev AS, Gorelkin PV, Angelakeris M, Savchenko AG, Wiedwald U, Majouga Dr AG, Abakumov MA. Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102171. [PMID: 32084594 DOI: 10.1016/j.nano.2020.102171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/30/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.
Collapse
Affiliation(s)
- Anastasiia S Garanina
- National University of Science and Technology «MISiS», Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia.
| | - Victor A Naumenko
- National University of Science and Technology «MISiS», Moscow, Russia; National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Aleksey A Nikitin
- National University of Science and Technology «MISiS», Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Y Petukhova
- National University of Science and Technology «MISiS», Moscow, Russia
| | | | - Yulia A Nalench
- National University of Science and Technology «MISiS», Moscow, Russia
| | - Artem R Ilyasov
- National University of Science and Technology «MISiS», Moscow, Russia
| | | | - Alexander S Erofeev
- National University of Science and Technology «MISiS», Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Peter V Gorelkin
- Medical Nanotechnology LLC, Skolkovo Innovation Center, Moscow, Russia
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ulf Wiedwald
- National University of Science and Technology «MISiS», Moscow, Russia; Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Alexander G Majouga Dr
- National University of Science and Technology «MISiS», Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia; D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Maxim A Abakumov
- National University of Science and Technology «MISiS», Moscow, Russia; Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
36
|
Ozada C, Tekin V, Barlas FB, Timur S, Unak P. Protoporphyrin‐IX and Manganese Oxide Nanoparticles Encapsulated in Niosomes as Theranostic. ChemistrySelect 2020. [DOI: 10.1002/slct.201901620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cagatay Ozada
- Department of Nuclear Applications, Institute of Nuclear Sciences Ege University 35100 Bornova Izmir Turkey
| | - Volkan Tekin
- Department of Nuclear Applications, Institute of Nuclear Sciences Ege University 35100 Bornova Izmir Turkey
| | - F. Baris Barlas
- Department of Biochemistry, Faculty of Science Ege University, Bornova, Izmir Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science Ege University, Bornova, Izmir Turkey
| | - Perihan Unak
- Department of Nuclear Applications, Institute of Nuclear Sciences Ege University 35100 Bornova Izmir Turkey
| |
Collapse
|
37
|
Sarkar S, Levi-Polyachenko N. Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Adv Drug Deliv Rev 2020; 163-164:40-64. [PMID: 32001326 DOI: 10.1016/j.addr.2020.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/28/2019] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Hyperthermia has shown tremendous therapeutic efficiency in the treatment of cancer due to its controllability, minimal invasiveness and limited side effects compared to the conventional treatment techniques like surgery, radiotherapy and chemotherapy. To improve the precision of hyperthermia specifically to a tumor location, near infra-red (NIR) light activatable inorganic metal nanoparticles have served as effective photothermal therapy materials, but toxicity and non-biodegradability have limited their clinical applications. Conjugated polymer nanoparticles have overcome these limitations and are emerging as superior photothermal materials owing to their excellent light harvesting nature, biocompatibility and tunable absorption properties. In this review we focus on the development of organic conjugated polymers (polyaniline, polypyrrole, polydopamine etc.) and their nanoparticles, which have broad NIR absorption. Such materials elicit photothermal effects upon NIR stimulation and may also serve as carriers for delivery of therapeutic and contrast agents for combined therapy. Subsequently, the emergence of donor-acceptor based semiconducting polymer nanoparticles with strong absorbance that is tunable across the NIR have been shown to eradicate tumors by either hyperthermia alone or combined with other therapies. The design of multifunctional polymer nanoparticles that absorb near- or mid- infrared light for heat generation, as well as their diagnostic abilities for precise biomedical applications are highlighted.
Collapse
|
38
|
Emerging hyperthermia applications for pediatric oncology. Adv Drug Deliv Rev 2020; 163-164:157-167. [PMID: 33203538 DOI: 10.1016/j.addr.2020.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Local application of hyperthermia has a myriad of effects on the tumor microenvironment as well as the host's immune system. Ablative hyperthermia (typically > 55 °C) has been used both as monotherapy and adjuvant therapy, while mild hyperthermia treatment (39-45 °C) demonstrated efficacy as an adjuvant therapy through enhancement of both chemotherapy and radiation therapy. Clinical integration of hyperthermia has especially great potential in pediatric oncology, where current chemotherapy regimens have reached maximum tolerability and the young age of patients implies significant risks of late effects related to therapy. Furthermore, activation of both local and systemic immune response by hyperthermia suggests that hyperthermia treatments could be used to enhance the anticancer effects of immunotherapy. This review summarizes the state of current applications of hyperthermia in pediatric oncology and discusses the use of hyperthermia in the context of other available treatments and promising pre-clinical research.
Collapse
|
39
|
Mitxelena-Iribarren O, Campisi J, Martínez de Apellániz I, Lizarbe-Sancha S, Arana S, Zhukova V, Mujika M, Zhukov A. Glass-coated ferromagnetic microwire-induced magnetic hyperthermia for in vitro cancer cell treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110261. [DOI: 10.1016/j.msec.2019.110261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
40
|
Wu PH, Opadele AE, Onodera Y, Nam JM. Targeting Integrins in Cancer Nanomedicine: Applications in Cancer Diagnosis and Therapy. Cancers (Basel) 2019; 11:E1783. [PMID: 31766201 PMCID: PMC6895796 DOI: 10.3390/cancers11111783] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Due to advancements in nanotechnology, the application of nanosized materials (nanomaterials) in cancer diagnostics and therapeutics has become a leading area in cancer research. The decoration of nanomaterial surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to cancer cells. These ligands can bind to specific receptors on the cell surface and enable nanomaterials to actively target cancer cells. Integrins are one of the cell surface receptors that regulate the communication between cells and their microenvironment. Several integrins are overexpressed in many types of cancer cells and the tumor microvasculature and function in the mediation of various cellular events. Therefore, the surface modification of nanomaterials with integrin-specific ligands not only increases their binding affinity to cancer cells but also enhances the cellular uptake of nanomaterials through the intracellular trafficking of integrins. Moreover, the integrin-specific ligands themselves interfere with cancer migration and invasion by interacting with integrins, and this finding provides a novel direction for new treatment approaches in cancer nanomedicine. This article reviews the integrin-specific ligands that have been used in cancer nanomedicine and provides an overview of the recent progress in cancer diagnostics and therapeutic strategies involving the use of integrin-targeted nanomaterials.
Collapse
Affiliation(s)
- Ping-Hsiu Wu
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Abayomi Emmanuel Opadele
- Molecular and Cellular Dynamics Research, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan;
| | - Yasuhito Onodera
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Jin-Min Nam
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| |
Collapse
|
41
|
Ma L, Kambe R, Tsuchiya T, Kanegasaki S, Takahashi A. Anti-Metastatic Benefits Produced by Hyperthermia and a CCL3 Derivative. Cancers (Basel) 2019; 11:cancers11111770. [PMID: 31717914 PMCID: PMC6895898 DOI: 10.3390/cancers11111770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Significant numbers of malignant tumor cells that have spread to surrounding tissues and other distant organs are often too small to be picked up in a diagnostic test, and prevention of even such small metastases should improve patient outcomes. Using a mouse model, we show in this article that intravenous administration of a human CCL3 variant carrying a single amino acid substitution after mild local hyperthermia not only induces tumor growth inhibition at the treated site but also inhibits metastasis. Colon26 adenocarcinoma cells (1 × 105 cells/mouse) were grafted subcutaneously into the right hind leg of syngeneic BALB/c mice and after nine days, when tumor size reached ~11 mm in diameter, the local tumor mass was exposed to high-frequency waves, by which intratumoral temperature was maintained at 42 °C for 30 min. Mice received the CCL3 variant named eMIP (2 μg/mouse/day) intravenously for five consecutive days starting one day after heat treatment. We found that tumor growth in eMIP recipients after hyperthermia was inhibited markedly but no effect was seen in animals treated with either hyperthermia or eMIP alone. Furthermore, the number of lung metastases evaluated at 18 days after hyperthermia treatment was dramatically reduced in animals receiving the combination therapy compared with all other controls. These results encourage future clinical application of this combination therapy.
Collapse
Affiliation(s)
- Liqiu Ma
- Gunma University Heavy Ion Medical Center, Gunma 371-8511, Japan; (L.M.); (R.K.)
- China Institute of Atomic Energy, Beijing 102413, China
| | - Ryosuke Kambe
- Gunma University Heavy Ion Medical Center, Gunma 371-8511, Japan; (L.M.); (R.K.)
| | - Tomoko Tsuchiya
- Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (T.T.); (S.K.)
| | - Shiro Kanegasaki
- Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (T.T.); (S.K.)
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Gunma 371-8511, Japan; (L.M.); (R.K.)
- Correspondence: ; Tel.: +81-27-220-7917
| |
Collapse
|
42
|
Son B, Jeon J, Lee S, Kim H, Kang H, Youn H, Jo S, Youn B. Radiotherapy in combination with hyperthermia suppresses lung cancer progression via increased NR4A3 and KLF11 expression. Int J Radiat Biol 2019; 95:1696-1707. [PMID: 31498019 DOI: 10.1080/09553002.2019.1665213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: Hyperthermia (HT), a clinical treatment involving delivery of heat to tumors, has been used in combination with traditional chemotherapy and radiotherapy to enhance their effects. However, the molecular mechanism underlying the high efficacy of combination therapy is not clear. This study was conducted to identify the molecular mechanism underlying the sensitization of lung cancer to radiotherapy by HT.Materials and methods: Nuclear receptor subfamily 4, group A, member 3 (NR4A3) and Krüppel-like factor 11 (KLF11) expression in non-small-cell lung cancer cells was confirmed by performing real-time quantitative reverse transcription-polymerase chain reaction. Tumor cell proliferation and apoptosis were assessed via a colony-forming assay and Annexin V/propidium iodide staining.Results and conclusions: Expression profile analysis revealed elevated levels of NR4A3 and KLF11 in A549 lung cancer cells after treatment with HT combined with radiation. We also confirmed that NR4A3 and KLF11 induced apoptosis and inhibited cell proliferation by elevating intracellular reactive oxygen species levels. Knockdown of NR4A3 or KLF11 using siRNA led to decreased effects of radiohyperthermia. Finally, the effect of these two factors on lung cancer progression was evaluated by in vivo xenograft studies. Taken together, the results suggest that NR4A3 and KLF11 are critical for increasing the efficacy of radiotherapy in combination with HT.
Collapse
Affiliation(s)
- Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea.,Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea.,Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
43
|
Chen Y, Zhao G, Wang S, He Y, Han S, Du C, Li S, Fan Z, Wang C, Wang J. Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomater Sci 2019; 7:3450-3459. [PMID: 31268067 DOI: 10.1039/c9bm00599d] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bismuth-containing nanoparticles (BNPs) are potential enhancers for tumor radiotherapy. Improving the bioavailability and developing synergistic therapeutic regimens benefit the drug transformation of BNPs. In the present study, we prepare a mesoporous silica-coated bismuth nanorod (BMSNR) camouflaged by a platelet membrane (PM). This biomimetic material is termed BMSNR@PM. The PM camouflage enhances the immune escape of the BMSNRs by lowering endocytosis by macrophages in the reticuloendothelial system. Additionally, the PM camouflage strengthens the material tumor-targeting capacity and leads to better radiotherapeutic efficacy compared with bare BMSNRs. Owing to the photothermal effect, BMSNR@PMs alters the cell cycle of 4T1 cancer cells post-treatment with 808 nm near-infrared irradiation (NIR). The proportions of S phase and G2/M phase cells decrease and increase, respectively, which explains the synergistic effect of NIR on BMSNR@PM-based radiotherapy. BMSNR@PMs efficiently eradicates cancer cells by the combined action of photothermal therapy (PTT) and radiotherapy in vivo and markedly improves the survival of 4T1-tumor-bearing mice. The synergistic therapeutic effect is superior to the outcomes of PTT and radiotherapy performed alone. Our study demonstrates a versatile bismuth-containing nanoplatform with tumor-targeting, immune escape, and radiosensitizing functionalities using an autologous cell membrane biomimetic concept that may promote the development of radiotherapy enhancers.
Collapse
Affiliation(s)
- Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yongwu He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China. and College of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Shichao Li
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhengli Fan
- Department of War Wound Rescue Skills Training, Third Military Medical University, Chongqing, 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
44
|
Azodyes as markers for tumor hypoxia imaging and therapy: An up-to-date review. Chem Biol Interact 2019; 307:91-104. [DOI: 10.1016/j.cbi.2019.04.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022]
|
45
|
Lu CH, Chen WT, Hsieh CH, Kuo YY, Chao CY. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLoS One 2019; 14:e0217676. [PMID: 31150487 PMCID: PMC6544372 DOI: 10.1371/journal.pone.0217676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia (HT) has shown feasibility and potency as an anticancer therapy. Administration of HT in the chemotherapy has previously enhanced the cytotoxicity of drugs against pancreatic cancer. However, the drugs used when conducting these studies are substantially conventional chemotherapeutic agents that may cause unwanted side effects. Additionally, the thermal dosage in the treatment of cancer cells could also probably harm the healthy cells. The purpose of this work was to investigate the potential of the two natural polyphenolic compounds, epigallocatechin gallate (EGCG) and chlorogenic acid (CGA), as heat synergizers in the thermal treatment of the PANC-1 cells. Furthermore, we have introduced a unique strategy entitled the thermal cycling-hyperthermia (TC-HT) that is capable of providing a maximum synergy and minimal side effect with the anticancer compounds. Our results demonstrate that the combination of the TC-HT and the CGA or EGCG markedly exerts the anticancer effect against the PANC-1 cells, while none of the single treatment induced such changes. The synergistic activity was attributed to the cell cycle arrest at the G2/M phase and the induction of the ROS-dependent mitochondria-mediated apoptosis. These findings not only represent the first in vitro thermal synergistic study of natural compounds in the treatment of pancreatic cancer, but also highlight the potential of the TC-HT as an alternative strategy in thermal treatment.
Collapse
Affiliation(s)
- Chueh-Hsuan Lu
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Ting Chen
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
46
|
Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1025-1043. [PMID: 30773377 PMCID: PMC6475527 DOI: 10.1016/j.ultrasmedbio.2018.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/08/2023]
Abstract
Hyperthermia therapy (HT) raises tissue temperature to 40-45°C for up to 60 min. Hyperthermia is one of the most potent sensitizers of radiation therapy (RT). Ultrasound-mediated HT for radiosensitization has been used clinically since the 1960s. Recently, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), which has been approved by the United States Food and Drug Administration for thermal ablation therapy, has been adapted for HT. With emerging clinical trials using MRgHIFU HT for radiosensitization, there is a pressing need to review the ultrasound HT technology. The objective of this review is to overview existing HT technology, summarize available ultrasound HT devices, evaluate clinical studies combining ultrasound HT with RT and discuss challenges and future directions.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Michael B Altman
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Andrei Laszlo
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - William Straube
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
47
|
Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold Nanoparticles for Photothermal Cancer Therapy. Front Chem 2019; 7:167. [PMID: 31024882 PMCID: PMC6460051 DOI: 10.3389/fchem.2019.00167] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Gold is a multifunctional material that has been utilized in medicinal applications for centuries because it has been recognized for its bacteriostatic, anticorrosive, and antioxidative properties. Modern medicine makes routine, conventional use of gold and has even developed more advanced applications by taking advantage of its ability to be manufactured at the nanoscale and functionalized because of the presence of thiol and amine groups, allowing for the conjugation of various functional groups such as targeted antibodies or drug products. It has been shown that colloidal gold exhibits localized plasmon surface resonance (LPSR), meaning that gold nanoparticles can absorb light at specific wavelengths, resulting in photoacoustic and photothermal properties, making them potentially useful for hyperthermic cancer treatments and medical imaging applications. Modifying gold nanoparticle shape and size can change their LPSR photochemical activities, thereby also altering their photothermal and photoacoustic properties, allowing for the utilization of different wavelengths of light, such as light in the near-infrared spectrum. By manufacturing gold in a nanoscale format, it is possible to passively distribute the material through the body, where it can localize in tumors (which are characterized by leaky blood vessels) and be safely excreted through the urinary system. In this paper, we give a quick review of the structure, applications, recent advancements, and potential future directions for the utilization of gold nanoparticles in cancer therapeutics.
Collapse
Affiliation(s)
| | - Jee-Hyun Yoon
- Department of Herbology, College of Korean Medicine, Woosuk UniversityJeonju, South Korea
| | - Na-Eun Ryu
- School of Integrative Engineering, Chung-Ang UniversitySeoul, South Korea
| | - Dong-Jin Lim
- Otolaryngology Head and Neck Surgery, University of Alabama at BirminghamBirmingham, AL, United States
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang UniversitySeoul, South Korea
| |
Collapse
|
48
|
Deniz CD, Aktan M, Erel O, Gurbilek M, Koc M. Evaluation of the radioprotective effects of thymoquinone on dynamic thiol-disulphide homeostasis during total-body irradiation in rats. JOURNAL OF RADIATION RESEARCH 2019; 60:23-28. [PMID: 30358876 PMCID: PMC6373685 DOI: 10.1093/jrr/rry083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Ionizing radiation-induced free radicals cause functional and structural harmful effects. Thiol, an important antioxidant, plays a major role in the eradication of reactive oxygen molecules. Thiol/disulphide homeostasis is a marker of oxidative stress. The objective of this study was to assess the potential radioprotective effects of thymoquinone (TQ) on the dynamic thiol/disulphide homeostasis of rats receiving total-body irradiation (IR). Twenty-two rats were divided into three groups to test the radioprotective effectiveness of TQ. The sham control group did not receive TQ or IR. The IR group received only total-body IR. The TQ + IR group received IR plus TQ. Following IR, blood samples were taken. The thiol/disulphide homeostasis parameters were analysed by a newly established method. In the IR group, native thiol and the native thiol/total thiol ratio were significantly decreased (P = 0.003 and P = 0.003, respectively), whereas the disulphide/native thiol and disulphide/total thiol ratios were significantly increased when compared with those of the sham control group (P = 0.003 and P = 0.003, respectively). In the TQ + IR group, the mean disulphide, native thiol and total thiol levels and the disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were not found to be significantly different when compared with those of the sham control group (P > 0.05 for all). Thiol/disulphide homeostasis was found to be disturbed after IR exposure. The results showed that TQ had antioxidant effects and reduced the IR-induced oxidative stress, which was demonstrated through the dynamic thiol/disulphide homeostasis. Thus, the use of TQ before radiation treatment helped protect the rats from oxidant side effects.
Collapse
Affiliation(s)
- Cigdem Damla Deniz
- Department of Medical Biochemistry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Meryem Aktan
- Department of Radiation Oncology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Mehmet Gurbilek
- Department of Medical Biochemistry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Koc
- Department of Radiation Oncology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
49
|
Maity D, Kandasamy G, Sudame A. Superparamagnetic Iron Oxide Nanoparticles for Cancer Theranostic Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans. Int J Hyperthermia 2018; 34:1316-1328. [PMID: 29353516 PMCID: PMC6078833 DOI: 10.1080/02656736.2018.1430867] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Hyperthermia therapy (HT) is the exposure of a region of the body to elevated temperatures to achieve a therapeutic effect. HT anticancer properties and its potential as a cancer treatment have been studied for decades. Techniques used to achieve a localised hyperthermic effect include radiofrequency, ultrasound, microwave, laser and magnetic nanoparticles (MNPs). The use of MNPs for therapeutic hyperthermia generation is known as magnetic hyperthermia therapy (MHT) and was first attempted as a cancer therapy in 1957. However, despite more recent advancements, MHT has still not become part of the standard of care for cancer treatment. Certain challenges, such as accurate thermometry within the tumour mass and precise tumour heating, preclude its widespread application as a treatment modality for cancer. MHT is especially attractive for the treatment of glioblastoma (GBM), the most common and aggressive primary brain cancer in adults, which has no cure. In this review, the application of MHT as a therapeutic modality for GBM will be discussed. Its therapeutic efficacy, technical details, and major experimental and clinical findings will be reviewed and analysed. Finally, current limitations, areas of improvement, and future directions will be discussed in depth.
Collapse
Affiliation(s)
- Keon Mahmoudi
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Dominique Bozec
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Beth Israel, New York, NY, USA
| |
Collapse
|