1
|
Yan H, Hua Y, Ni J, Wu X, Xu J, Zhang Z, Dong J, Xiong Z, Yang L, Yuan H. Acupuncture ameliorates inflammation by regulating gut microbiota in acute ischemic stroke. IBRO Neurosci Rep 2025; 18:443-452. [PMID: 40144797 PMCID: PMC11938260 DOI: 10.1016/j.ibneur.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
Background Acute ischemic stroke(AIS) is a major life-threatening disease.Some studies have found that AIS may be related to gut flora and immune responses. Acupuncture is used widely in the treatment of AIS. However its relevant mechanism is unclear enough. Therefore, in this study, we wanted to confirm that acupuncture was treating AIS through gut flora and immune response. Methods We randomly divided 18 rats into equal three groups, including Sham, Middle Cerebral Artery Occlusion (MCAO) and Acupuncture.Rats in the Acupuncture group for a continuous period of three days after surgery. Neurological deficits were assessed using Longa's method, and detection of intestinal flora by 16s rRNA gene sequencing, determination of SCFAs by gas chromatography-mass spectrometry, detection of HDAC and inflammatory cytokines by elisa assay, detection of Th17 and Treg cells by flow cytometry and, observation of pathological and morphological changes in brain and colon tissues by HE staining. Results Acupuncture improved the degree of impaired neurological function in MCAO rats and regulated the type and abundance of intestinal bacteria, increased SCFAs of MCAO rats, decreased HDAC1 and HDAC2, modulated the Th17/Treg imbalance, reduced the level of inflammatory factors in the peripheral blood and altered the pathology of the intestine and brain. Conclusion Acupuncture repaired neurologic deficits after AIS and may be associated with an immune-inflammatory response mediated by gut microbiota.
Collapse
Affiliation(s)
- Haoyue Yan
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Yini Hua
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Jinxia Ni
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Xiaona Wu
- Department of Rehabilitation, Beijing Fengtai Hospital, China
| | - Jingni Xu
- Dongcheng District Dongzhimen Community Healthcare Center, China
| | - Ziniu Zhang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Juwei Dong
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Zhihao Xiong
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Lei Yang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Hongwei Yuan
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| |
Collapse
|
2
|
Wang FX, Dai SY, Mu G, Yu ZH, Chen Y, Zhou J. Beyond organ isolation: The bidirectional crosstalk between cerebral and intestinal ischemia-reperfusion injury via microbiota-gut-brain axis. Biochem Biophys Res Commun 2025; 763:151804. [PMID: 40239544 DOI: 10.1016/j.bbrc.2025.151804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Ischemia-reperfusion injury (IRI) represents a pathophysiological phenomenon of profound clinical relevance that poses considerable threats to patient safety. IRI may manifest in a variety of clinical contexts including, but not limited to, sepsis, organ transplantation, shock, myocardial infarction, cerebral ischemia, and stroke. Critically, IRI exhibits complex interactions across different organs, with effects that surpass mere localized tissue damage. These impacts can amplify damage to both adjacent and remote organs through pathways such as the gut-brain axis and the gut-lung axis, facilitated by intricate signaling mechanisms. Noteworthy is the interaction between gut IRI and brain IRI, which involves sophisticated neuroendocrine, systemic, and immune mechanisms coordinated through the microbiome-gut-brain axis. This review seeks to delve into the intricate interactions between gut and brain IRI, viewed through the lens of the microbiota-gut-brain axis. It aims to assess its translational potential in clinical settings, provide a theoretical foundation for developing relevant therapeutic strategies, and pinpoint novel directions for research.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shi-Yu Dai
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People's Hospital, Zigong, Sichuan, 643200, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
Birg A, Lin HC. The Role of Bacteria-Derived Hydrogen Sulfide in Multiple Axes of Disease. Int J Mol Sci 2025; 26:3340. [PMID: 40244174 DOI: 10.3390/ijms26073340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
In this review article, we discuss and explore the role of bacteria-derived hydrogen sulfide. Hydrogen sulfide is a signaling molecule produced endogenously that plays an important role in health and disease. It is also produced by the gut microbiome. In the setting of microbial disturbances leading to disruption of intestinal homeostasis (dysbiosis), the concentration of available hydrogen sulfide can also vary leading to pathologic sequelae. The brain-gut axis is the original studied paradigm of gut microbiome and host interaction. In recent years, our understanding of microbial and host interaction has expanded greatly to include specific pathways that have branched into their own axes. These axes share a principal concept of microbiota changes, intestinal permeability, and an inflammatory response, some of which are modulated by hydrogen sulfide (H2S). In this review, we will discuss multiple axes including the gut-immune, gut-heart, and gut-endocrine axes. We will evaluate the role of H2S in modulation of intestinal barrier, mucosal healing in intestinal inflammation and tumor genesis. We will also explore the role of H2S in alpha-synuclein aggregation and ischemic injury. Finally, we will discuss H2S in the setting of metabolic syndrome as int pertains to hypertension, atherosclerosis and glucose-like peptide-1 activity. Majority of studies that evaluate hydrogen sulfide focus on endogenous production; the role of this review is to examine the lesser-known bacteria-derived source of hydrogen sulfide in the progression of diseases as it relates to these axes.
Collapse
Affiliation(s)
- Aleksandr Birg
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87106, USA
| | - Henry C Lin
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
4
|
Chen L, Wu LL, Yu CY, Xu ZC, Huang H. Bibliometric analysis of the intestinal microbiota and demyelinating diseases, particularly multiple sclerosis, since 2014. Front Neurosci 2025; 19:1506566. [PMID: 40109663 PMCID: PMC11919904 DOI: 10.3389/fnins.2025.1506566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Background The gut-brain axis (GBA) represents a complex, bidirectional communication network that connects the central nervous system (CNS) and the gastrointestinal system. Our study aimed to explore the correlation between the intestinal microbiota and demyelinating diseases from a bibliometric perspective, focusing on research since 2014. Methods A comprehensive search was carried out on the Web of Science Core Collection (WoSCC) to locate studies on the intestinal microbiota and demyelinating diseases, with a focus on publications from 1 January 2014 to 29 March 2024. We visualized and analyzed the data using VOSviewer, CiteSpace, and Charticulator. Results We gathered 429 scholarly articles on the intestinal microbiota and demyelinating disorders published in the past 10 years. Research concerning the intestinal microbiota and demyelinating diseases has demonstrated a consistent increase in frequency over time. The USA has the highest number of publications, while Canada has the highest average number of citations, reaching as high as 3,429, which is greater than that of the USA. Moreover, the journal with the highest number of publications was Frontiers in Immunology, with 33 publications and 1,494 citations. The majority of the scholars focused on "multiple sclerosis" and "gut microbiota," which are the primary keywords in the field of the intestinal microbiota and demyelinating diseases. Conclusion This study conducted a comprehensive analysis of existing research investigating the correlation between the intestinal microbiota and demyelinating diseases. Using advanced bibliometric tools such as VOSviewer and CiteSpace, this study analyzed the intricate relationship between the intestinal microbiota and the pathogenesis of demyelinating conditions. In addition, the study used literature statistical analysis to identify research hotspots and future directions in the field.
Collapse
Affiliation(s)
- Ling Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Le-Le Wu
- Department of Neurology, Xinqiao Hospital and the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zu-Cai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Wang M, Liu Y, Zhong L, Wu F, Wang J. Advancements in the investigation of gut microbiota-based strategies for stroke prevention and treatment. Front Immunol 2025; 16:1533343. [PMID: 40103814 PMCID: PMC11914130 DOI: 10.3389/fimmu.2025.1533343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Stroke represents a predominant cause of mortality and disability on a global scale, impacting millions annually and exerting a considerable strain on healthcare systems. The incidence of stroke exhibits regional variability, with ischemic stroke accounting for the majority of occurrences. Post-stroke complications, such as cognitive impairment, motor dysfunction, and recurrent stroke, profoundly affect patients' quality of life. Recent advancements have elucidated the microbiota-gut-brain axis (MGBA), underscoring the complex interplay between gut health and brain function. Dysbiosis, characterized by an imbalance in gut microbiota, is significantly linked to an elevated risk of stroke and unfavorable outcomes. The MGBA plays a crucial role in modulating immune function, neurotransmitter levels, and metabolic byproducts, which may intensify neuroinflammation and impair cerebral health. This review elucidates the role of MGBA in stroke pathophysiology and explores potential gut-targeted therapeutic strategies to reduce stroke risk and promote recovery, including probiotics, prebiotics, pharmacological interventions, and dietary modifications. However, the current prevention and treatment strategies based on intestinal flora still face many problems, such as the large difference of individual intestinal flora, the stability of efficacy, and the long-term safety need to be considered. Further research needs to be strengthened to promote its better application in clinical practice.
Collapse
Affiliation(s)
- Min Wang
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Yan Liu
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Li Zhong
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Fang Wu
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Jinjin Wang
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Chen Y, Ouyang L, Yang X, Wu B, Meng L, Gu J, Wang Y, Li J, Zhang J, Jing X, Lu S, Liu L, Fu S. Electroacupuncture Promotes the Generation of Intestinal Treg Cells After Ischemic Stroke by Foxp3 Acetylation Regulation. Mol Neurobiol 2025; 62:3697-3711. [PMID: 39322831 DOI: 10.1007/s12035-024-04500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Electroacupuncture (EA) has been shown to ameliorate brain injury and protect against intestinal injury after ischemic stroke. These protective effects are closely associated with the enhancement of regulatory T (Treg) cell numbers and function in the intestine, as well as the inhibition of intestinal γδ T cell production and their migration to the brain. This study aimed to elucidate the potential mechanism by which EA regulates intestinal Treg cell differentiation after stroke. Sprague-Dawley rats were divided into three groups: the sham group, the middle cerebral artery occlusion (MCAO) group, and the MCAO plus EA (MEA) group. The MCAO model was generated by occluding the middle cerebral artery. EA was applied to Baihui (GV20) acupoint once daily. Samples were collected 3 days after reperfusion. Our results showed that EA reduced the inflammatory response in the brain and intestine after ischemic stroke. EA treatment increased the percentage of Treg cells in the small intestine of rats. EA increased the levels of SCFAs, while also inhibiting histone deacetylase activity (HDAC). Additionally, acetylated Foxp3 protein in the small intestine was increased after EA treatment. These results suggest that EA at GV20 alleviates brain and intestinal inflammatory injury in stroke rats, potentially through the enhancement of SCFA-mediated Foxp3 acetylation in Treg cells.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Ling Ouyang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyi Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bufan Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jialin Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lanying Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Reddi Sree R, Kalyan M, Anand N, Mani S, Gorantla VR, Sakharkar MK, Song BJ, Chidambaram SB. Newer Therapeutic Approaches in Treating Alzheimer's Disease: A Comprehensive Review. ACS OMEGA 2025; 10:5148-5171. [PMID: 39989768 PMCID: PMC11840625 DOI: 10.1021/acsomega.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an aging-related irreversible neurodegenerative disease affecting mostly the elderly population. The main pathological features of AD are the extracellular Aβ plaques generated by APP cleavage through the amyloidogenic pathway, the intracellular neurofibrillary tangles (NFT) resulting from the hyperphosphorylated tau proteins, and cholinergic neurodegeneration. However, the actual causes of AD are unknown, but several studies suggest hereditary mutations in PSEN1 and -2, APOE4, APP, and the TAU genes are the major perpetrators. In order to understand the etiology and pathogenesis of AD, various hypotheses are proposed. These include the following hypotheses: amyloid accumulation, tauopathy, inflammation, oxidative stress, mitochondrial dysfunction, glutamate/excitotoxicity, cholinergic deficiency, and gut dysbiosis. Currently approved therapeutic interventions are donepezil, galantamine, and rivastigmine, which are cholinesterase inhibitors (ChEIs), and memantine, which is an N-methyl-d-aspartate (NMDA) antagonist. These treatment strategies focus on only symptomatic management of AD by attenuating symptoms but not regeneration of neurons or clearance of Aβ plaques and hyperphosphorylated Tau. This review focuses on the pathophysiology, novel therapeutic targets, and disease-altering treatments such as α-secretase modulators, active immunotherapy, passive immunotherapy, natural antioxidant products, nanomaterials, antiamyloid therapy, tau aggregation inhibitors, transplantation of fecal microbiota or stem cells, and microtubule stabilizers that are in clinical trials or still under investigation.
Collapse
Affiliation(s)
- Radhakrishna Reddi Sree
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Manjunath Kalyan
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department
of Pharmacology, American University of
Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, Antigua, Barbuda
| | - Sangeetha Mani
- Department
of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and
Research, Porur, Chennai 600116, India
| | - Vasavi Rakesh Gorantla
- Department
of Anatomical Sciences, St. George’s University School of Medicine, St. George’s University, Saint George, Grenada
| | - Meena Kishore Sakharkar
- College
of
Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Byoung-Joon Song
- Section
of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry
and Biophysics, National Institute on Alcohol
Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
8
|
Yoshimura Y, Wakabayashi H, Nagano F, Matsumoto A, Shimazu S, Shiraishi A, Kido Y, Bise T, Hamada T, Yoneda K, Maeda K. Systemic inflammation is associated with gut microbiota diversity in post-stroke patients. Eur Geriatr Med 2025:10.1007/s41999-025-01159-2. [PMID: 39934474 DOI: 10.1007/s41999-025-01159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND There is growing interest in gut microbiota and health outcomes. However, the relationship between systemic inflammation and gut microbiota diversity in hospitalized patients remains unclear. This study aimed to investigate the association in post-stroke rehabilitation patients. METHODS A cross-sectional study was conducted on post-stroke patients admitted to a rehabilitation hospital. Systemic inflammation was assessed using the modified Glasgow Prognostic Score (mGPS). Gut microbiota diversity was evaluated using three indices: Shannon index, Operational Taxonomic Unit (OTU) richness, and Faith's Phylogenetic Diversity (PD). Multiple linear regression analyses were performed to examine the relationship between mGPS and gut microbiota diversity indices, adjusting for potential confounders. RESULTS A total of 156 patients (mean age 78.4 years; 55.7% men) were analyzed. The median mGPS was 0 (interquartile range: 0-1), with GPS distribution: 61.8% scored 0, 25.7% scored 1, and 12.5% scored 2. After adjusting for confounders, mGPS was significantly and negatively associated with the Shannon index (B = -0.143, 95% CI -0.288 to -0.002, β = -0.177) and OTU richness (B = -17.832, 95% CI -24.349 to -3.951, β = -0.208). However, no significant association was observed between mGPS and Faith's PD (B = -1.155, 95% CI -2.464 to 0.189, β = -0.155). CONCLUSION This study demonstrates a significant negative association between systemic inflammation and both quantitative and qualitative gut microbiota diversity in post-stroke patients.
Collapse
Affiliation(s)
- Yoshihiro Yoshimura
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan.
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University Hospital, Shinjuku, Tokyo, Japan
| | - Fumihiko Nagano
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Ayaka Matsumoto
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Sayuri Shimazu
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Ai Shiraishi
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Yoshifumi Kido
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Takahiro Bise
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Takenori Hamada
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Kouki Yoneda
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Keisuke Maeda
- Nutrition Therapy Support Center, Aichi Medical University Hospital, Nagakute, Aichi, Japan
- Department of Geriatric Medicine, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
9
|
Talkington GM, Kolluru P, Gressett TE, Ismael S, Meenakshi U, Acquarone M, Solch-Ottaiano RJ, White A, Ouvrier B, Paré K, Parker N, Watters A, Siddeeque N, Sullivan B, Ganguli N, Calero-Hernandez V, Hall G, Longo M, Bix GJ. Neurological sequelae of long COVID: a comprehensive review of diagnostic imaging, underlying mechanisms, and potential therapeutics. Front Neurol 2025; 15:1465787. [PMID: 40046430 PMCID: PMC11881597 DOI: 10.3389/fneur.2024.1465787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/18/2024] [Indexed: 03/09/2025] Open
Abstract
One lingering effect of the COVID-19 pandemic created by SARS-CoV-2 is the emergence of Long COVID (LC), characterized by enduring neurological sequelae affecting a significant portion of survivors. This review provides a thorough analysis of these neurological disruptions with respect to cognitive dysfunction, which broadly manifest as chronic insomnia, fatigue, mood dysregulation, and cognitive impairments with respect to cognitive dysfunction. Furthermore, we characterize how diagnostic tools such as PET, MRI, EEG, and ultrasonography provide critical insight into subtle neurological anomalies that may mechanistically explain the Long COVID disease phenotype. In this review, we explore the mechanistic hypotheses of these neurological changes, which describe CNS invasion, neuroinflammation, blood-brain barrier disruption, and gut-brain axis dysregulation, along with the novel vascular disruption hypothesis that highlights endothelial dysfunction and hypoperfusion as a core underlying mechanism. We lastly evaluate the clinical treatment landscape, scrutinizing the efficacy of various therapeutic strategies ranging from antivirals to anti-inflammatory agents in mitigating the multifaceted symptoms of LC.
Collapse
Affiliation(s)
- Grant McGee Talkington
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Paresh Kolluru
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Timothy E. Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Saifudeen Ismael
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Umar Meenakshi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mariana Acquarone
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | - Amanda White
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Blake Ouvrier
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Kristina Paré
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nicholas Parker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Amanda Watters
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nabeela Siddeeque
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Brooke Sullivan
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nilesh Ganguli
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | | | - Gregory Hall
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Michele Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
10
|
Yu W, Sun S, Yan Y, Zhou H, Liu Z, Fu Q. The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation. Front Immunol 2025; 16:1519925. [PMID: 39991152 PMCID: PMC11842938 DOI: 10.3389/fimmu.2025.1519925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Metabolic syndrome (Mets) is an important contributor to morbidity and mortality in cardiovascular, liver, neurological, and reproductive diseases. Short-chain fatty acid (SCFA), an organismal energy donor, has recently been demonstrated in an increasing number of studies to be an important molecule in ameliorating immuno-inflammation, an important causative factor of Mets, and to improve lipid distribution, blood glucose, and body weight levels in animal models of Mets. This study reviews recent research advances on SCFA in Mets from an immune-inflammatory perspective, including complications dominated by chronic inflammation, as well as the fact that these findings also contribute to the understanding of the specific mechanisms by which gut flora metabolites contribute to metabolic processes in humans. This review proposes an emerging role for SCFA in the inflammatory Mets, followed by the identification of major ambiguities to further understand the anti-inflammatory potential of this substance in Mets. In addition, this study proposes novel strategies to modulate SCFA for the treatment of Mets that may help to mitigate the prognosis of Mets and its complications.
Collapse
Affiliation(s)
- Wenqian Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Sun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yutong Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Ribeiro MGC, Kravchychyn ACP, Bressan J, Hermsdorff HHM. Adiposity and inflammation markers explain mostly part of the plasma zonulin variation in Brazilian adults with overweight/obesity: A cross-sectional analysis from Brazilian nuts study. Clin Nutr 2025; 45:22-30. [PMID: 39731881 DOI: 10.1016/j.clnu.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
OBJECTIVE This study evaluated intestinal permeability according to plasma zonulin and its association with adiposity, inflammation, cardiometabolic risk, liver function, and intestinal health markers in adults with overweight/obesity. METHODOLOGY This study is a cross-sectional analysis using baseline data from the Brazilian Nut Study, which involved 123 participants (93 women, age 33.2 ± 8.58 years, BMI 33.9 ± 4.30kg/m2). Subjects were divided into quartiles according to plasma zonulin, assessed by Elisa. Cytokines were assessed by flow cytometry; anthropometric measurements were collected by standard procedure and body composition was assessed by DXA. SCFA analysis was performed by high-performance liquid chromatography, and fecal pH, by a pH meter. Linear regression models were performed (α<5 %). RESULTS Participants included in the last quartile of plasma zonulin had higher values of body fat (%), pro-inflammatory cytokines (CRP, IL-1). According to the multivariate regression model, each one-unit increased in body fat, CRP, IL-12p70, IL-6 and IL-8 resulted correspondingly in an increment of 0.42, 0.14, 0.192, 0.250 and 0.312 ng/ml in plasma zonulin, respectively. Conversely, a one-unit decreased in IL-10 led to an increase of 0.40 ng/ml in plasma zonulin. CONCLUSION Intestinal permeability assessed by plasma zonulin is associated with adiposity, subclinical inflammation and reduced serum HDL levels adults with overweight/obesity, while adiposity and inflammation markers are independent factors for plasma zonulin variation.
Collapse
Affiliation(s)
- Madalena Geralda Cupertino Ribeiro
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Ana Claudia Pelissari Kravchychyn
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Josefina Bressan
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
12
|
Zharikova AA, Andrianova NV, Silachev DN, Nebogatikov VO, Pevzner IB, Makievskaya CI, Zorova LD, Maleev GV, Baydakova GV, Chistyakov DV, Goriainov SV, Sergeeva MG, Burakova IY, Gureev AP, Popkov VA, Ustyugov AA, Plotnikov EY. Analysis of the brain transcriptome, microbiome and metabolome in ketogenic diet and experimental stroke. Brain Behav Immun 2025; 123:571-585. [PMID: 39378970 DOI: 10.1016/j.bbi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
The ketogenic diet (KD) has been shown to be effective in treating various brain pathologies. In this study, we conducted detailed transcriptomic and metabolomic profiling of rat brains after KD and ischemic stroke in order to investigate the effects of KD and its underlying mechanisms. We evaluated the effect of a two-month KD on gene expression in intact brain tissue and after middle cerebral artery occlusion (MCAO). We analyzed the effects of KD on gut microbiome composition and blood metabolic profile as well as investigated the correlation between severity of neurological deficits and KD-induced changes. We found transcriptional reprogramming in the brain after stroke and KD treatment. The KD altered the expression of genes involved in the regulation of glucose and fatty acid metabolism, mitochondrial function, the immune response, Wnt-associated signaling, stem cell development, and neurotransmission, both in intact rats and after MCAO. The KD led to a significant change in the composition of gut microbiome and the levels of amino acids, acylcarnitines, polyunsaturated fatty acids, and oxylipins in the blood. However, the KD slightly worsened the neurological functions after MCAO, so that the therapeutic effect of the diet remained unproven.
Collapse
Affiliation(s)
- Anastasia A Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Nadezda V Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir O Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ciara I Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ljubava D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Grigoriy V Maleev
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | | | - Dmitry V Chistyakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Marina G Sergeeva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Inna Y Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Artem P Gureev
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
13
|
Comi L, Giglione C, Klinaku FT, Pialorsi F, Tollemeto V, Zurlo M, Seneci A, Magni P. Valorizing Agro‐Food Waste for Nutraceutical Development: Sustainable Approaches for Managing Metabolic Dysfunction‐Associated Steatotic Liver Disease and Related Co‐Morbidities. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
ABSTRACTThis comprehensive investigation delves into the interconnectedness of different features of cardiometabolic syndrome, such as metabolic dysfunction‐associated steatotic liver disease (MASLD), atherosclerotic cardiovascular disease (ASCVD), and gut dysbiosis, highlighting the crucial role of nutraceuticals in their management and prevention. Given the significant overlap in the pathophysiology of these conditions, the treatment with nutraceuticals, especially those derived from agro‐food waste, offers a promising, sustainable, and innovative approach to healthcare. The 2030 Agenda for Sustainable Development and the One Health concept are key frameworks for selecting the most interesting supply chain for the production of nutraceuticals from agro‐food waste, ensuring environmental sustainability, and innovative agricultural practices. In this review, the therapeutic potential of kiwifruit and apples has been explored, detailing how their bioactive compounds, like polyphenols, fiber, pectin, kaempferol, phloretin, and phlorizin, may contribute to the management of MASLD, ASCVD, and gut dysbiosis. Various extraction methods for active ingredients, including chemical, water, and enzyme extractions, are analyzed for their respective benefits and drawbacks. By integrating scientific research, sustainable agricultural practices, and innovative extraction methods, we can develop effective strategies to combat these pervasive health issues. This holistic approach not only enhances individual health outcomes but also supports broader environmental and societal goals, promoting a healthier future for all.
Collapse
Affiliation(s)
- Laura Comi
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Claudia Giglione
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Fationa Tolaj Klinaku
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | | | | | | | | | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
- IRCCS MultiMedica, Sesto San Giovanni Milan Italy
| |
Collapse
|
14
|
Granados-Martinez C, Alfageme-Lopez N, Navarro-Oviedo M, Nieto-Vaquero C, Cuartero MI, Diaz-Benito B, Moro MA, Lizasoain I, Hernandez-Jimenez M, Pradillo JM. Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions. Biomedicines 2024; 12:2781. [PMID: 39767686 PMCID: PMC11673227 DOI: 10.3390/biomedicines12122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Stroke is one of the most devastating pathologies in terms of mortality, cause of dementia, major adult disability, and socioeconomic burden worldwide. Despite its severity, treatment options remain limited, with no pharmacological therapies available for hemorrhagic stroke (HS) and only fibrinolytic therapy or mechanical thrombectomy for ischemic stroke (IS). In the pathophysiology of stroke, after the acute phase, many patients develop systemic immunosuppression, which, combined with neurological dysfunction and hospital management, leads to the onset of stroke-associated infections (SAIs). These infections worsen prognosis and increase mortality. Recent evidence, particularly from experimental studies, has highlighted alterations in the microbiota-gut-brain axis (MGBA) following stroke, which ultimately disrupts the gut flora and increases intestinal permeability. These changes can result in bacterial translocation (BT) from the gut to sterile organs, further contributing to the development of SAIs. Given the novelty and significance of these processes, especially the role of BT in the development of SAIs, this review summarizes the latest advances in understanding these phenomena and discusses potential therapeutic strategies to mitigate them, ultimately reducing post-stroke complications and improving treatment outcomes.
Collapse
Affiliation(s)
- Cristina Granados-Martinez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Nuria Alfageme-Lopez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
| | - Manuel Navarro-Oviedo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Carmen Nieto-Vaquero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Isabel Cuartero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Blanca Diaz-Benito
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Maria Angeles Moro
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ignacio Lizasoain
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Macarena Hernandez-Jimenez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- AptaTargets S.L. Avda. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Jesus Miguel Pradillo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| |
Collapse
|
15
|
Pasupalak JK, Rajput P, Gupta GL. Gut microbiota and Alzheimer's disease: Exploring natural product intervention and the Gut-Brain axis for therapeutic strategies. Eur J Pharmacol 2024; 984:177022. [PMID: 39362390 DOI: 10.1016/j.ejphar.2024.177022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Numerous studies conducted over the last ten years have shown a strong correlation between the gut microbiota and the onset and progression of Alzheimer's disease (AD). However, the exact underlying mechanism is still unknown. An ongoing communication mechanism linking the gut and the brain is highlighted by the term "microbiota-gut-brain axis," which was originally coined the "gut-brain axis." Key metabolic, endocrine, neurological, and immunological mechanisms are involved in the microbiota‒gut‒brain axis and are essential for preserving brain homeostasis. Thus, the main emphasis of this review is how the gut microbiota contributes to the development of AD and how various natural products intervene in this disease. The first part of the review provides an outline of various pathways and relationships between the brain and gut microbiota, and the second part provides various mechanisms involved in the gut microbiota and AD. Finally, this review provides knowledge about natural products and their effectiveness in treating gut microbiota-induced AD. AD may be treated in the future by altering the gut microbiota with a customized diet, probiotics/prebiotics, plant products, and natural products. This entails altering the microbiological partners and products (such as amyloid protein) that these partners generate.
Collapse
Affiliation(s)
- Jajati K Pasupalak
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Prabha Rajput
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
16
|
Zeng M, Peng M, Liang J, Sun H. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Mol Neurobiol 2024; 61:9735-9755. [PMID: 37498481 DOI: 10.1007/s12035-023-03512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.
Collapse
Affiliation(s)
- Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Xu H, Zhou Q, Xu Z, Long S, Luo G, Chen J, Wei W, Li Z, Li X. Multiple omics reveal link between the microbiota-gut-brain axis and intracranial aneurysm rupture. iScience 2024; 27:111184. [PMID: 39524364 PMCID: PMC11550638 DOI: 10.1016/j.isci.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Intracranial aneurysms (IAs) are benign cerebrovascular maladies characterized by wall dilatation in the intracranial arteries. Nevertheless, spontaneous aneurysmal rupture can cause a life-threatening spontaneous subarachnoid hemorrhage (SAH). Emerging evidence indicates potential associations between gut dysbiosis and IAs pathogenesis, though the relationship with IA rupture remains unclear. This research analyzed 124 fecal samples for microbiomics and 160 for metabolomics, with the discovery and validation sets established for cross-validation. We identified differential gut microbiota and metabolites associated with ruptured intracranial aneurysms (RIAs) and developed a superior risk assessment model. Subsequent integrative analyses and validation revealed a significant link between disrupted unsaturated fatty acid and essential amino acid metabolic pathways and IA rupture, driven by alterations in gut microbiota. This study underscores the potential association between the gut-brain axis and IA rupture, while also highlighting gut microbiota dysbiosis as a potential risk factor for IA rupture and providing biomarkers for assessment.
Collapse
Affiliation(s)
- Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qiangqiang Zhou
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Shengrong Long
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Gaomeng Luo
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cerebrovascular Severe Disease, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cerebrovascular Severe Disease, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Medical Research Institute, Wuhan University, Wuhan 430072, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Xi M, Ruan Q, Zhong S, Li J, Qi W, Xie C, Wang X, Abuduxiku N, Ni J. Periodontal bacteria influence systemic diseases through the gut microbiota. Front Cell Infect Microbiol 2024; 14:1478362. [PMID: 39619660 PMCID: PMC11604649 DOI: 10.3389/fcimb.2024.1478362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Many systemic diseases, including Alzheimer disease (AD), diabetes mellitus (DM) and cardiovascular disease, are associated with microbiota dysbiosis. The oral and intestinal microbiota are directly connected anatomically, and communicate with each other through the oral-gut microbiome axis to establish and maintain host microbial homeostasis. In addition to directly, periodontal bacteria may also be indirectly involved in the regulation of systemic health and disease through the disturbed gut. This paper provides evidence for the role of periodontal bacteria in systemic diseases via the oral-gut axis and the far-reaching implications of maintaining periodontal health in reducing the risk of many intestinal and parenteral diseases. This may provide insight into the underlying pathogenesis of many systemic diseases and the search for new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qijun Ruan
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Congman Xie
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Nuerbiya Abuduxiku
- Department of Stomatology, The First People’s Hospital of Kashi, Kashi, China
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Zhang G, Zhong X, Chen J, Yang C, Liu Y, Li R, Xu B, Yuan H. The gut microbiome and serum metabolome are altered and interrelated in patients with intracranial atherosclerotic stenosis. J Stroke Cerebrovasc Dis 2024; 33:107887. [PMID: 39208915 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To evaluate the relationship among the gut microbiome, serum metabolites and the Intracranial atherosclerosis stenosis. MATERIALS AND METHODS Integrated analysis of 16S rDNA sequencing of fecal samples and untargeted serum metabolomics was applied to identify alterations in the gut microbiome and serum metabolome in 29 Intracranial atherosclerosis stenosis patients and 29 healthy control individuals. RESULTS Compared to healthy control individuals, the abundances of forty-five genera and one hundred seventy-seven metabolites were significantly altered in Intracranial atherosclerosis stenosis patients. At the species level, the Intracranial atherosclerosis stenosis group exhibited higher abundances of Bacteroidetes and lower abundances of Megaphaera and Muribacoccaceae. Microbial functional prediction analysis revealed enhanced activity of bacterial chemotaxis and oxidative phosphorylation within the Intracranial atherosclerosis stenosis group. In terms of metabolomic findings, the levels of dulcitol were significantly increased in the Intracranial atherosclerosis stenosis group. The levels of specific metabolites within the phosphatidylcholine and lysophosphatidylcholine families, such as PC (14:0e/24:4) and LPC 20:5, were increased, while the levels of certain other specific metabolites were decreased. Dysregulation of certain pathways, such as unsaturated fatty acid metabolism, arginine and proline metabolism may be involved in the development of Intracranial atherosclerosis stenosis. Correlation analysis of the gut microbiome and metabolites revealed a positive correlation between Bacteroides and multiple metabolites, such as Acar 12:3 and PC (8:0/22:6). CONCLUSIONS Our analysis revealed that Bacteroides is a key bacterial genus in gut dysbiosis and may be related to the development of Intracranial atherosclerosis stenosis.
Collapse
Affiliation(s)
- Guangyu Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Xiaoling Zhong
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)
| | - Jing Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group).
| | - Chenli Yang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)
| | - Yingbei Liu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)
| | - Ran Li
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)
| | - Bo Xu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group).
| | - Haicheng Yuan
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group).
| |
Collapse
|
20
|
Ding L, Wang J, Qiu S, Ren Z, Li Y, An P. Bioinformatics Approach to Identify the Pathogenetic Link of Gut Microbiota-Derived Short-Chain Fatty Acids and Ischemic Stroke. Mol Neurobiol 2024; 61:9478-9490. [PMID: 38649659 PMCID: PMC11496340 DOI: 10.1007/s12035-024-04176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Stroke is a life-threatening condition that impairs the arteries and causes neurological impairment. The incidence of stroke is increasing year by year with the arrival of the aging population. Thus, there is an urgent need for early stroke diagnosis. Short-chain fatty acids (SCFAs) can modulate the central nervous system and directly and indirectly impact behavioral and cognitive functions. This study aimed to investigate the connection between SCFA metabolism and stroke development via bioinformatic analysis. Initially, the Gene Set Enrichment Analysis (GSEA) and immune cell infiltration analysis were performed based on RNA data from stroke patients to comprehend the mechanisms governing stroke pathogenesis. The functional analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI), was performed based on the Differentially Expressed Gene (DEG) selected by the limma package. 1220 SCFA metabolism-related genes screened from Genecards databases were intersected with 242 genes in main modules determined by Weighted Gene Co-Expression Network Analysis (WGCNA), and the final 10 SCFA key genes were obtained. GO analysis revealed that these genes were involved in immune response processes. Through lasso regression analyses, we established a stroke early diagnosis model and selected 6 genes with diagnostic value. The genes were validated by the area under curve (AUC) values and had a relatively good diagnostic performance. Finally, 4 potential therapeutic drugs targeting these genes were predicted using the Drug Signatures Database (DSigDB) via Enrichr. In conclusion, this paper analyzes the involvement of SCFAs in the complex gut-brain axis mechanism, which contributes to developing new targets for treating central nervous system diseases and provides new ideas for early ischemic stroke diagnosis.
Collapse
Affiliation(s)
- Liang Ding
- Department of Traditional Chinese Medicine, Qingdao Third People's Hospital, Qingdao City, Shandong Province, China
| | - Jianing Wang
- Neurology Department, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao City, Shandong Province, China
| | - Sha Qiu
- Department of Traditional Chinese Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao City, Shandong Province, China
| | - Zhizhen Ren
- Department of Traditional Chinese Medicine, Community Health Service Center of Shi'nan District in Qingdao, Qingdao City, Shandong Province, China
| | - Yuantao Li
- Acupuncture and Moxibustion Department, Qingdao Third People's Hospital, Qingdao City, Shandong Province, China
| | - Pengpeng An
- Emergency Internal Medicine Department, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao City, Shandong Province, China.
| |
Collapse
|
21
|
Błaż M, Natorska J, Bembenek JP, Członkowska A, Ząbczyk M, Polak M, Undas A. Elevated lipopolysaccharide level is largely driven by time since symptom onset in acute ischemic stroke: the impact on clinical outcomes. J Thromb Haemost 2024; 22:3161-3171. [PMID: 39122194 DOI: 10.1016/j.jtha.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gut dysbiosis leading to increased intestinal barrier permeability and translocation of lipopolysaccharide (LPS) in the circulation has been demonstrated in patients with acute myocardial infarction and pulmonary embolism. OBJECTIVES We investigated changes in circulating LPS concentrations in acute ischemic stroke (AIS) and their consequences, including prognosis. METHODS We studied 98 AIS patients, aged 74 ± 12 years, including 74 (75.5%) thrombolysed individuals. We determined serum LPS and zonulin, a marker of gut permeability, along with protein carbonyl (PC), fibrin clot properties, and thrombin generation on admission, at 24 hours and 3 months. Stroke severity was assessed using the National Institutes of Health Stroke Scale. Stroke functional outcome using modified Rankin scale and stroke-related mortality were evaluated at 3 months. RESULTS Serum LPS and zonulin levels on admission were associated with time since symptom onset (r = 0.57; P < .0001; and r = 0.40; P < .0001). Baseline LPS levels correlated with PC (r = 0.51; P < .0001) but not with coagulation and fibrinolysis markers. LPS levels increased at 24 hours in thrombolysed patients (P < .001) and correlated with the National Institutes of Health Stroke Scale score (r = 0.31; P = .002) and PC (r = 0.32; P = .0057). Both LPS and zonulin levels measured at 24 hours increased the odds of having unfavorable modified Rankin scale scores (odds ratio [OR], 1.22; 95% CI, 1.04-1.42; and OR, 2.36; 95% CI, 1.24-4.49 per unit). Elevated LPS level, but not zonulin, was associated with stroke-related mortality (OR, 1.26; 95% CI, 1.02-1.55 per unit). CONCLUSION In AIS patients intestinal permeability is mainly driven by increasing time since the symptom onset. Our findings suggest that LPS, with a trend toward its further rise following thrombolysis, adversely affects neurologic functional outcomes and 3-month mortality.
Collapse
Affiliation(s)
- Michał Błaż
- Department of Neurology, St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, Krakow, Poland; Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jan P Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Michał Ząbczyk
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, Krakow, Poland; Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Institute of Public Health, Jagiellonian University Medical College, Krakow, Poland
| | - Anetta Undas
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, Krakow, Poland; Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
22
|
Ciancarelli I, Morone G, Iosa M, Cerasa A, Calabrò RS, Tozzi Ciancarelli MG. Neuronutrition and Its Impact on Post-Stroke Neurorehabilitation: Modulating Plasticity Through Diet. Nutrients 2024; 16:3705. [PMID: 39519537 PMCID: PMC11547614 DOI: 10.3390/nu16213705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The recovery of neurological deficits after ischemic stroke largely depends on the brain's ability to reorganize its undamaged neuronal circuits and neuronal plasticity phenomena. The consolidated evidence highlights the involvement of the patient's impaired nutritional conditions in post-stroke recovery and unsatisfying rehabilitative outcomes. Standardized nutritional protocols usually applied in hospitalized patients in a rehabilitation setting aim mainly to improve the general health conditions of patients, do not consider the high inter-individual variability in neurorehabilitation outcomes, and are not sufficiently modifiable to provide neuroprotective and restorative dietary patterns that could promote neuronal plasticity and functional recovery during neurorehabilitation. Neuronutrition, an emergent scientific field of neuroscience, represents a valid model of a personalized nutritional approach, assuring, for each patient, nutrients having antioxidant and anti-inflammatory properties, ensuring a balanced microbiota composition, and providing adequate neurotrophic support, essential for improving neuronal plasticity, brain functional recovery, and rehabilitative outcomes. In the present narrative review, we provide an overview of the current knowledge on neuronutrition as an adjuvant strategy of a personalized nutritional approach potentially effective in improving post-stroke neuroplasticity and neurorehabilitation by counteracting or at least limiting post-stroke oxidative/nitrosative stress, neuroinflammation, and gut-brain axis disturbance.
Collapse
Affiliation(s)
- Irene Ciancarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.C.); (M.G.T.C.)
- ASL 1 Abruzzo (Avezzano-Sulmona-L’Aquila), 67100 L’Aquila, Italy
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.C.); (M.G.T.C.)
- San Raffaele Institute of Sulmona, 67039 Sulmona, Italy
| | - Marco Iosa
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Antonio Cerasa
- Institute of BioImaging and Complex Biological Systems (IBSBC-CNR), Via T. Campanella, 88100 Catanzaro, Italy;
- S. Anna Institute, 88900 Crotone, Italy
| | | | | |
Collapse
|
23
|
Liao W, Wei J, Liu C, Luo H, Ruan Y, Mai Y, Yu Q, Cao Z, Xu J, Zheng D, Sheng Z, Zhou X, Liu J. Magnesium-L-threonate treats Alzheimer's disease by modulating the microbiota-gut-brain axis. Neural Regen Res 2024; 19:2281-2289. [PMID: 38488562 PMCID: PMC11034594 DOI: 10.4103/1673-5374.391310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00029/figure1/v/2024-02-06T055622Z/r/image-tiff Disturbances in the microbiota-gut-brain axis may contribute to the development of Alzheimer's disease. Magnesium-L-threonate has recently been found to have protective effects on learning and memory in aged and Alzheimer's disease model mice. However, the effects of magnesium-L-threonate on the gut microbiota in Alzheimer's disease remain unknown. Previously, we reported that magnesium-L-threonate treatment improved cognition and reduced oxidative stress and inflammation in a double-transgenic line of Alzheimer's disease model mice expressing the amyloid-β precursor protein and mutant human presenilin 1 (APP/PS1). Here, we performed 16S rRNA amplicon sequencing and liquid chromatography-mass spectrometry to analyze changes in the microbiome and serum metabolome following magnesium-L-threonate exposure in a similar mouse model. Magnesium-L-threonate modulated the abundance of three genera in the gut microbiota, decreasing Allobaculum and increasing Bifidobacterium and Turicibacter. We also found that differential metabolites in the magnesium-L-threonate-regulated serum were enriched in various pathways associated with neurodegenerative diseases. The western blotting detection on intestinal tight junction proteins (zona occludens 1, occludin, and claudin-5) showed that magnesium-L-threonate repaired the intestinal barrier dysfunction of APP/PS1 mice. These findings suggest that magnesium-L-threonate may reduce the clinical manifestations of Alzheimer's disease through the microbiota-gut-brain axis in model mice, providing an experimental basis for the clinical treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Wang Liao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jiana Wei
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangdong Province, China
| | - Chongxu Liu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Haoyu Luo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yuting Ruan
- Department of Rehabilitation, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yingren Mai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qun Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhiyu Cao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiaxin Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zonghai Sheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xianju Zhou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangdong Province, China
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
24
|
Neufeld PM, Nettersheim RA, Matschke V, Vorgerd M, Stahlke S, Theiss C. Unraveling the gut-brain axis: the impact of steroid hormones and nutrition on Parkinson's disease. Neural Regen Res 2024; 19:2219-2228. [PMID: 38488556 PMCID: PMC11034592 DOI: 10.4103/1673-5374.391304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
This comprehensive review explores the intricate relationship between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the context of the gut-brain axis. The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease, encompassing diverse components such as the gut microbiota, immune system, metabolism, and neural pathways. The gut microbiome, profoundly influenced by dietary factors, emerges as a key player. Nutrition during the first 1000 days of life shapes the gut microbiota composition, influencing immune responses and impacting both child development and adult health. High-fat, high-sugar diets can disrupt this delicate balance, contributing to inflammation and immune dysfunction. Exploring nutritional strategies, the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk. Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders. Beyond nutrition, emerging research uncovers potential interactions between steroid hormones, nutrition, and Parkinson's disease. Progesterone, with its anti-inflammatory properties and presence in the nervous system, offers a novel option for Parkinson's disease therapy. Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects. The review addresses the hypothesis that α-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve. Gastrointestinal symptoms preceding motor symptoms support this hypothesis. Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances, emphasizing the potential of microbiota-based interventions. In summary, this review uncovers the complex web of interactions between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the gut-brain axis framework. Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Paula Maria Neufeld
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Ralf A. Nettersheim
- Department of Visceral Surgery, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Mathias K, Machado RS, Stork S, Martins CD, Dos Santos D, Lippert FW, Prophiro JS, Petronilho F. Short-chain fatty acid on blood-brain barrier and glial function in ischemic stroke. Life Sci 2024; 354:122979. [PMID: 39147315 DOI: 10.1016/j.lfs.2024.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/01/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Stroke is the second most common cause of death and one of the most common causes of disability worldwide. The intestine is home to several microorganisms that fulfill essential functions for the natural and physiological functioning of the human body. There is an interaction between the central nervous system (CNS) and the gastrointestinal system that enables bidirectional communication between them, the so-called gut-brain axis. Based on the gut-brain axis, there is evidence of a link between the gut microbiota and the regulation of microglial functions through glial activation. This interaction is partly due to the immunological properties of the microbiota and its connection with the CNS, such that metabolites produced by the microbiota can cross the gut barrier, enter the bloodstream and reach the CNS and significantly affect microglia, astrocytes and other cells of the immune system. Studies addressing the effects of short-chain fatty acids (SCFAs) on glial function and the BBB in ischemic stroke are still scarce. Therefore, this review aims to stimulate the investigation of these associations, as well as to generate new studies on this topic that can clarify the role of SCFAs after stroke in a more robust manner.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabrício Weinheimer Lippert
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
26
|
Liu Y, Zhao P, Cai Z, He P, Wang J, He H, Zhu Z, Guo X, Ma K, Peng K, Zhao J. Buqi-Huoxue-Tongnao decoction drives gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Chin Med 2024; 19:126. [PMID: 39278929 PMCID: PMC11403783 DOI: 10.1186/s13020-024-00991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Ischemic stroke belongs to "apoplexy" and its pathogenesis is characterized by qi deficiency and blood stasis combining with phlegm-damp clouding orifices. Buqi-Huoxue-Tongnao decoction (BHTD) is a traditional Chinese medicine formula for qi deficiency, blood stasis and phlegm obstruction syndrome. However, its efficacy and potential mechanism on ischemic stroke are still unclear. This study aims to investigate the protective effect and potential mechanism of BHTD against ischemic stroke. MATERIALS AND METHODS Middle cerebral artery occlusion (MCAO) surgery was carried out to establish an ischemic stroke model in rats. Subsequently, the rats were gavaged with different doses of BHTD (2.59, 5.175, 10.35 g/kg) for 14 days. The protective effects of BHTD on the brain and gut were evaluated by neurological function scores, cerebral infarction area, levels of brain injury markers (S-100B, NGB), indicators of gut permeability (FD-4) and bacterial translocation (DAO, LPS, D-lactate), and tight junction proteins (Occludin, Claudin-1, ZO-1) in brain and colon. 16S rRNA gene sequencing and metabolomic analysis were utilized to analyze the effects on gut microecology and screen for marker metabolites to explore potential mechanisms of BHTD protection against ischemic stroke. RESULTS BHTD could effectively mitigate brain impairment, including reducing neurological damage, decreasing cerebral infarction and repairing the blood-brain barrier, and BHTD showed the best effect at the dose of 10.35 g/kg. Moreover, BHTD reversed gut injury induced by ischemic stroke, as evidenced by decreased intestinal permeability, reduced intestinal bacterial translocation, and enhanced intestinal barrier integrity. In addition, BHTD rescued gut microbiota dysbiosis by increasing the abundance of beneficial bacteria, including Turicibacter and Faecalibaculum. Transplantation of the gut microbiota remodeled by BHTD into ischemic stroke rats recapitulated the protective effects of BHTD. Especially, BHTD upregulated tryptophan metabolism, which promoted gut microbiota to produce more indole lactic acid (ILA). Notably, supplementation with ILA by gavage could alleviate stroke injury, which suggested that driving the production of ILA in the gut might be a novel treatment for ischemic stroke. CONCLUSION BHTD could increase gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Our current finding provides evidence that traditional Chinese medicine can ameliorate central diseases through regulating the gut microbiology.
Collapse
Affiliation(s)
- Yarui Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Peng Zhao
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Zheng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Peishi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiahan Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haoqing He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhibo Zhu
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Xiaowen Guo
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Ke Ma
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Kang Peng
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
27
|
Wang R, Huang G, Li S, Huang H, Zhu G, Wang L, Yang J, Yang S, Jiang Z, Zhang W. Blueberry extract for the treatment of ischaemic stroke through regulating the gut microbiota and kynurenine metabolism. Phytother Res 2024; 38:4792-4814. [PMID: 39140343 DOI: 10.1002/ptr.8300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/04/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Although the gut microbiota and kynurenine (KYN) metabolism have significant protective effects against ischaemic stroke (IS), the exact mechanism has yet to be fully elucidated. Combined serum metabolomics and 16S rRNA gene sequencing were used to reveal the differences between the gut microbiota and metabolites in rats treated with or without blueberry extract. Faecal microbiota transplantation (FMT) was employed to validate the protective role of the gut microbiota in IS. Furthermore, the interaction between Prevotella and IS was also confirmed in patients. Rats with IS experienced neurological impairments accompanied by an impaired intestinal barrier and disturbed intestinal flora, which further contributed to heightened inflammatory responses. Furthermore, Prevotella played a critical role in IS pathophysiology, and a positive correlation between Prevotella and KYN was detected. The role of KYN metabolism in IS was further demonstrated by the finding that IDO was significantly upregulated and that the use of the IDO inhibitor, attenuated KYN metabolic pathway activity and ameliorated neurological damage in rats with IS. Prevotella intervention also significantly improved stroke symptoms and decreasing KYN levels in rats with IS. FMT showed that the beneficial effects of blueberry extract on IS involve gut bacteria, especially Prevotella, which were confirmed by microbiological analyses conducted on IS patients. Moreover, blueberry extract led to significant changes in kynurenic acid levels and tryptophan and IDO levels through interactions with Prevotella. Our study demonstrates for the first time that blueberry extract could modulate "intestinal microecology-KYN metabolism" to improve IS.
Collapse
Affiliation(s)
- Raoqiong Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Shuangyang Li
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hanlin Huang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jinrui Yang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
28
|
Devason AS, Thaiss CA, de la Fuente-Nunez C. Neuromicrobiology Comes of Age: The Multifaceted Interactions between the Microbiome and the Nervous System. ACS Chem Neurosci 2024; 15:2957-2965. [PMID: 39102500 DOI: 10.1021/acschemneuro.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
The past decade has seen an explosion in our knowledge about the interactions between gut microbiota, the central nervous system, and the immune system. The gut-brain axis has recently gained much attention due to its role in regulating host physiology. This review explores recent findings concerning potential pathways linking the gut-brain axis to the initiation, pathophysiology, and development of neurological disorders. Our objective of this work is to uncover causative factors and pinpoint particular pathways and therapeutic targets that may facilitate the translation of experimental animal research into practical applications for human patients. We highlight three distinct yet interrelated mechanisms: (1) disruptions of both the intestinal and blood-brain barriers, (2) persistent neuroinflammation, and (3) the role of the vagus nerve.
Collapse
Affiliation(s)
- Ashwarya S Devason
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, Pennsylvania United States
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, Pennsylvania United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Rahman Z, Bhale NA, Dikundwar AG, Dandekar MP. Multistrain Probiotics with Fructooligosaccharides Improve Middle Cerebral Artery Occlusion-Driven Neurological Deficits by Revamping Microbiota-Gut-Brain Axis. Probiotics Antimicrob Proteins 2024; 16:1251-1269. [PMID: 37365420 DOI: 10.1007/s12602-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Recent burgeoning literature unveils the importance of gut microbiota in the neuropathology of post-stroke brain injury and recovery. Indeed, ingestion of prebiotics/probiotics imparts positive effects on post-stroke brain injury, neuroinflammation, gut dysbiosis, and intestinal integrity. However, information on the disease-specific preference of selective prebiotics/probiotics/synbiotics and their underlying mechanism is yet elusive. Herein, we examined the effect of a new synbiotic formulation containing multistrain probiotics (Lactobacillus reuteri UBLRu-87, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Lactobacillus salivarius UBLS-22, and Bifidobacterium breve UBBr-01), and prebiotic fructooligosaccharides using a middle cerebral artery occlusion (MCAO) model of cerebral ischemia in female and male rats. Three weeks pre-MCAO administration of synbiotic rescinded the MCAO-induced sensorimotor and motor deficits on day 3 post-stroke in rotarod, foot-fault, adhesive removal, and paw whisker test. We also observed a decrease in infarct volume and neuronal death in the ipsilateral hemisphere of synbiotic-treated MCAO rats. The synbiotic treatment also reversed the elevated levels/mRNA expression of the glial fibrillary acidic protein (GFAP), NeuN, IL-1β, TNF-α, IL-6, matrix metalloproteinase-9, and caspase-3 and decreased levels of occludin and zonula occludens-1 in MCAO rats. 16S rRNA gene-sequencing data of intestinal contents indicated an increase in genus/species of Prevotella (Prevotella copri), Lactobacillus (Lactobacillus reuteri), Roseburia, Allobaculum, and Faecalibacterium prausnitzii, and decreased abundance of Helicobacter, Desulfovibrio, and Akkermansia (Akkermansia muciniphila) in synbiotic-treated rats compared to the MCAO surgery group. These findings confer the potential benefits of our novel synbiotic preparation for MCAO-induced neurological dysfunctions by reshaping the gut-brain-axis mediators in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
30
|
Cha Z, Qiao Y, Lu Q, Wang Q, Lu X, Zhou H, Li T. Research progress and challenges of stem cell therapy for ischemic stroke. Front Cell Dev Biol 2024; 12:1410732. [PMID: 39040041 PMCID: PMC11260720 DOI: 10.3389/fcell.2024.1410732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Ischemic stroke is a significant global cause of death and disability. Currently, treatment options for acute ischemic stroke are limited to intravenous thrombolysis and mechanical recanalization. Therefore, novel neuroprotective strategies are imperative. Stem cell transplantation possesses the capabilities of differentiation, proliferation, neuronal replacement, nerve pathway reconstruction, secretion of nerve growth factors, and enhancement of the microenvironment; thus, it is a potential therapeutic approach for ischemic stroke. In addition, the immunomodulatory function of stem cells and the combined treatment of stem cells and exosomes exhibit a favorable protective effect on brain injury and neurological dysfunction following stroke. Meanwhile, the theory of microbiota-gut-brain axis provides us with a novel perspective for comprehending and managing neurological diseases. Lastly, stem cell transplantation has demonstrated promising outcomes not only in treating ischemic stroke but also in dealing with other neurological disorders, such as brain tumors. Furthermore, challenges related to the tissue source, delivery method, immune response, and timing of transplantation still need to be addressed to optimize the treatment.
Collapse
Affiliation(s)
- Zaihong Cha
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yisheng Qiao
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qixiong Lu
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiyang Wang
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoyang Lu
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hu Zhou
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tao Li
- Research Center for Clinical Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Neurosurgery and Neuroscience, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
31
|
Yang Y, Xu Z, Guo J, Xiong Z, Hu B. Exploring the gut microbiome-Postoperative Cognitive Dysfunction connection: Mechanisms, clinical implications, and future directions. Brain Behav Immun Health 2024; 38:100763. [PMID: 38682010 PMCID: PMC11052898 DOI: 10.1016/j.bbih.2024.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Postoperative Cognitive Dysfunction (POCD) is a common yet poorly understood complication of surgery that can lead to long-term cognitive decline. The gut-brain axis, a bidirectional communication system between the central nervous system and the gut microbiota, plays a significant role in maintaining cognitive health. The potential for anesthetic agents and perioperative medications to modulate the gut microbiota and influence the trajectory of POCD suggests the need for a more integrated approach in perioperative care. Perioperative medications, including opioids and antibiotics, further compound these disruptions, leading to dysbiosis and consequent systemic and neuroinflammation implicated in cognitive impairment. Understanding how surgical interventions and associated treatments affect this relationship is crucial for developing strategies to reduce the incidence of POCD. Strategies to preserve and promote a healthy gut microbiome may mitigate the risk and severity of POCD. Future research should aim to clarify the mechanisms linking gut flora alterations to cognitive outcomes and explore targeted interventions, such as probiotic supplementation and microbiota-friendly prescription practices, to safeguard cognitive function postoperatively.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Xuzhou Renci Hospital, Xuzhou, 221000, Jiangsu Province, China
| | - Zhipeng Xu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Jianrong Guo
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
32
|
Dulam V, Katta S, Nakka VP. Stroke and Distal Organ Damage: Exploring Brain-Kidney Crosstalk. Neurochem Res 2024; 49:1617-1627. [PMID: 38376748 DOI: 10.1007/s11064-024-04126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Stroke and kidney dysfunction represent significant public health challenges, yet the precise mechanisms connecting these conditions and their severe consequences remain unclear. Individuals experiencing chronic kidney disease (CKD) and acute kidney injury (AKI) are at heightened susceptibility to experiencing repeated strokes. Similarly, a reduced glomerular filtration rate is associated with an elevated risk of suffering a stroke. Prior strokes independently contribute to mortality, end-stage kidney disease, and cardiovascular complications, underscoring the pathological connection between the brain and the kidneys. In cases of AKI, various mechanisms, such as cytokine signaling, leukocyte infiltration, and oxidative stress, establish communication between the brain and the kidneys. The bidirectional relationship between stroke and kidney pathologies involves key factors such as uremic toxins, proteinuria, inflammatory responses, decreased glomerular filtration, impairment of the blood-brain barrier (BBB), oxidative stress, and metabolites produced by the gut microbiota. This review examines potential mechanisms of brain-kidney crosstalk underlying stroke and kidney diseases. It holds significance for comprehending multi-organ dysfunction associated with stroke and for formulating therapeutic strategies to address stroke-induced kidney dysfunction and the bidirectional pathological connection between the kidney and stroke.
Collapse
Affiliation(s)
- Vandana Dulam
- Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh, 522510, India
| | - Sireesha Katta
- Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh, 522510, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh, 522510, India.
| |
Collapse
|
33
|
Li X, Chen D, Chen X, Jiang C, Guo Y, Hang J, Tao L, Li Y, Yu H. Study on the correlation between serum indole-3-propionic acid levels and the progression and prognosis of acute ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107680. [PMID: 38508478 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE This study aimed to explore the correlation between the serum level of indole-3-propionic acid (IPA) and the progression and prognosis of acute cerebral infarction (ACI). METHODS This study enrolled 197 patients with ACI, and 53 participants from a community-based stroke screening program during the same period were included as the control group. The patients with ACI were divided into quartiles of serum IPA. A logistic regression model was used for comparison. Receiver operating characteristic (ROC) curves were drawn to evaluate the predictive value of the IPA. RESULTS Compared with the healthy control group, the ACI group had lower serum IPA (P < 0.05). The serum IPA was an independent factor for acute ischemic stroke (OR=0.992, 95% CI: 0.984-0.999, P=0.035). The serum IPA was lower in patients with progressive stroke or poor prognosis than in patients with stable stroke or good prognosis (P < 0.05). Patients with ACI with low serum IPA are prone to progression and poor prognosis. The best cutoff value for predicting progression was 193.62 pg/mL (sensitivity, 67.5%; specificity 83.7%), and that for poor prognosis was 193.77 pg/mL (sensitivity, 71.1%; specificity, 72.5%). CONCLUSION The serum level of IPA was an independent predictor of ACI and had certain clinical value for predicting stroke progression and prognosis in patients with ACI.
Collapse
Affiliation(s)
- Xiaobo Li
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Danni Chen
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xin Chen
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Department of Neuro Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Chao Jiang
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yiming Guo
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Jing Hang
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Department of Neuro Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Luhang Tao
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Department of Neuro Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yuping Li
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neuro Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Hailong Yu
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Department of Neuro Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
34
|
Xian M, Ma Z, Zhan S, Shen L, Li T, Lin H, Huang M, Cai J, Hu T, Liang J, Liang S, Wang S. Network analysis of microbiome and metabolome to explore the mechanism of raw rhubarb in the protection against ischemic stroke via microbiota-gut-brain axis. Fitoterapia 2024; 175:105969. [PMID: 38643860 DOI: 10.1016/j.fitote.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Ischemic stroke (IS) has attracted worldwide attention due to the high mortality and disability rate. Raw rhubarb (RR) is a traditional medicinal plant and whole-food that has been used in China for its various pharmacological activities, such as antioxidant and anti-inflammatory properties. Recent pharmacological research has shown the role of RR against IS, but its mechanism of action remains unclear, particularly in the context of the brain-gut axis. To address this gap in knowledge, the present study was conducted in the middle cerebral artery occlusion/reperfusion (MCAO/R) model with the aim of investigating the effects of RR on regulating the intestinal microbiota barrier and metabolism and thereby reducing inflammatory response so as to improve the IS. The results showed that pre-treatment of RR attenuated cerebral infarct area and inflammation response in MCAO rats. Furthermore, RR also improved intestinal barrier function, including the integrity and permeability of the intestinal barrier. Additionally, RR intervention significantly attenuated gut microbiota dysbiosis caused by ischemic stroke, especially the increased Firmicutes. Notably, the pseudo-germ-free (PGF) rats further demonstrated that the anti-stroke effect of RR might rely on intestinal microbiota. In addition, the UPLC/Q-Orbitrap-MS-Based metabolomics revealed the disrupted metabolic profiles caused by MCAO/R, and a total of 11 differential metabolites were modulated by RR administration, especially bile acids. Further correlation analysis and network pharmacology analysis also demonstrated a strong association between specific bacteria, such as Firmicutes and bile acids. In conclusion, our work demonstrated that RR could effectively ameliorate ischemic stroke by modulating the microbiota and metabolic disorders.
Collapse
Affiliation(s)
- Minghua Xian
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Traditional Chinese Medicine Resource Germplasm Bank Management Center, Yunfu 527322, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zuqing Ma
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sikai Zhan
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Shen
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ting Li
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingmin Huang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiale Cai
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tao Hu
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiaying Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shengwang Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Traditional Chinese Medicine Resource Germplasm Bank Management Center, Yunfu 527322, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Zhang S, Chen Q, Jin M, Ren J, Sun X, Zhang Z, Luo Y, Sun X. Notoginsenoside R1 alleviates cerebral ischemia/reperfusion injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway through microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155530. [PMID: 38493723 DOI: 10.1016/j.phymed.2024.155530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/10/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Ischemic stroke (IS) ranks as the second common cause of death worldwide. However, a narrow thrombolysis timeframe and ischemia-reperfusion (I/R) injury limits patient recovery. Moreover, anticoagulation and antithrombotic drugs do not meet the clinical requirements. Studies have demonstrated close communication between the brain and gut microbiota in IS. Notoginsenoside R1 (NG-R1), a significant component of the total saponins from Panax notoginseng, has been demonstrated to be effective against cerebral I/R injury. Total saponins have been used to treat IS in Chinese pharmacopoeia. Furthermore, previous research has indicated that the absorption of NG-R1 was controlled by gut microbiota. STUDY DESIGN This study aimed to access the impact of NG-R1 treatment on neuroinflammation and investigate the microbiota-related mechanisms. RESULTS NG-R1 significantly reduced neuronal death and neuroinflammation in middle cerebral artery occlusion/reperfusion (MCAO/R) models. 16S rRNA sequencing revealed that NG-R1 treatment displayed the reversal of microbiota related with MCAO/R models. Additionally, NG-R1 administration attenuated intestinal inflammation, gut barrier destruction, and systemic inflammation. Furthermore, microbiota transplantation from NG-R1 exhibited a similar effect in the MCAO/R models. CONCLUSION In summary, NG-R1 treatment resulted in the restoration of the structure of the blood-brain barrier (BBB) and reduction in neuroinflammation via suppressing the stimulation of astrocytes and microglia in the cerebral ischemic area. Mechanistic research demonstrated that NG-R1 treatment suppressed the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in both the ischemic brain and colon. NG-R1 treatment enhanced microbiota dysbiosis by inhibiting the TLR4 signaling pathway to protect MCAO/R models. These findings elucidate the mechanisms by which NG-R1 improve stroke outcomes and provide some basis for Panax notoginseng saponins in clinical treatment.
Collapse
Affiliation(s)
- Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qiuyan Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Meiqi Jin
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Jiahui Ren
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Zhixiu Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
36
|
Deyang T, Baig MAI, Dolkar P, Hediyal TA, Rathipriya AG, Bhaskaran M, PandiPerumal SR, Monaghan TM, Mahalakshmi AM, Chidambaram SB. Sleep apnoea, gut dysbiosis and cognitive dysfunction. FEBS J 2024; 291:2519-2544. [PMID: 37712936 DOI: 10.1111/febs.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Sleep disorders are becoming increasingly common, and their distinct effects on physical and mental health require elaborate investigation. Gut dysbiosis (GD) has been reported in sleep-related disorders, but sleep apnoea is of particular significance because of its higher prevalence and chronicity. Cumulative evidence has suggested a link between sleep apnoea and GD. This review highlights the gut-brain communication axis that is mediated via commensal microbes and various microbiota-derived metabolites (e.g. short-chain fatty acids, lipopolysaccharide and trimethyl amine N-oxide), neurotransmitters (e.g. γ-aminobutyric acid, serotonin, glutamate and dopamine), immune cells and inflammatory mediators, as well as the vagus nerve and hypothalamic-pituitary-adrenal axis. This review also discusses the pathological role underpinning GD and altered gut bacterial populations in sleep apnoea and its related comorbid conditions, particularly cognitive dysfunction. In addition, the review examines the preclinical and clinical evidence, which suggests that prebiotics and probiotics may potentially be beneficial in sleep apnoea and its comorbidities through restoration of eubiosis or gut microbial homeostasis that regulates neural, metabolic and immune responses, as well as physiological barrier integrity via the gut-brain axis.
Collapse
Affiliation(s)
- Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Md Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Center, University of Toledo Health Science Campus, OH, USA
| | - Seithikuruppu R PandiPerumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, UK
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| |
Collapse
|
37
|
Costa CFFA, Ferreira-Gomes J, Barbosa F, Sampaio-Maia B, Burnet PWJ. Importance of good hosting: reviewing the bi-directionality of the microbiome-gut-brain-axis. Front Neurosci 2024; 18:1386866. [PMID: 38812976 PMCID: PMC11133738 DOI: 10.3389/fnins.2024.1386866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Gut microorganisms have been shown to significantly impact on central function and studies that have associated brain disorders with specific bacterial genera have advocated an anomalous gut microbiome as the pathophysiological basis of several psychiatric and neurological conditions. Thus, our knowledge of brain-to-gut-to microbiome communication in this bidirectional axis seems to have been overlooked. This review examines the known mechanisms of the microbiome-to-gut-to-brain axis, highlighting how brain-to-gut-to-microbiome signaling may be key to understanding the cause of disrupted gut microbial communities. We show that brain disorders can alter the function of the brain-to-gut-to-microbiome axis, which will in turn contribute to disease progression, while the microbiome-to gut-to brain direction presents as a more versatile therapeutic axis, since current psychotropic/neurosurgical interventions may have unwanted side effects that further cause disruption to the gut microbiome. A consideration of the brain-to-gut-to-microbiome axis is imperative to better understand how the microbiome-gut-brain axis overall is involved in brain illnesses, and how it may be utilized as a preventive and therapeutic tool.
Collapse
Affiliation(s)
- Carolina F. F. A. Costa
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- NanoBiomaterials for Targeted Therapies, INEB-Institute of Biomedical Engineering, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Ferreira-Gomes
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Benedita Sampaio-Maia
- NanoBiomaterials for Targeted Therapies, INEB-Institute of Biomedical Engineering, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
38
|
Qin W, Li J, Gao N, Kong X, Guo L, Chen Y, Huang L, Chen X, Qi F. Multiomics-based molecular subtyping based on the commensal microbiome predicts molecular characteristics and the therapeutic response in breast cancer. Mol Cancer 2024; 23:99. [PMID: 38730464 PMCID: PMC11083817 DOI: 10.1186/s12943-024-02017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
The gut microbiota has been demonstrated to be correlated with the clinical phenotypes of diseases, including cancers. However, there are few studies on clinical subtyping based on the gut microbiota, especially in breast cancer (BC) patients. Here, using machine learning methods, we analysed the gut microbiota of BC, colorectal cancer (CRC), and gastric cancer (GC) patients to identify their shared metabolic pathways and the importance of these pathways in cancer development. Based on the gut microbiota-related metabolic pathways, human gene expression profile and patient prognosis, we established a novel BC subtyping system and identified a subtype called "challenging BC". Tumours with this subtype have more genetic mutations and a more complex immune environment than those of other subtypes. A score index was proposed for in-depth analysis and showed a significant negative correlation with patient prognosis. Notably, activation of the TPK1-FOXP3-mediated Hedgehog signalling pathway and TPK1-ITGAE-mediated mTOR signalling pathway was linked to poor prognosis in "challenging BC" patients with high scores, as validated in a patient-derived xenograft (PDX) model. Furthermore, our subtyping system and score index are effective predictors of the response to current neoadjuvant therapy regimens, with the score index significantly negatively correlated with both treatment efficacy and the number of immune cells. Therefore, our findings provide valuable insights into predicting molecular characteristics and treatment responses in "challenging BC" patients.
Collapse
Affiliation(s)
- Wenxing Qin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| | - Jia Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Xiuyan Kong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yang Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Liang Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
- Department of Breast Surgery, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China.
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Zhengzhou, 450008, PR China.
| | - Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
39
|
Leskelä J, Putaala J, Martinez-Majander N, Tulkki L, Manzoor M, Zaric S, Ylikotila P, Lautamäki R, Saraste A, Suihko S, Könönen E, Sinisalo J, Pussinen P, Paju S. Periodontitis, Dental Procedures, and Young-Onset Cryptogenic Stroke. J Dent Res 2024; 103:494-501. [PMID: 38623924 PMCID: PMC11047014 DOI: 10.1177/00220345241232406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Periodontitis is associated with an increased risk of ischemic stroke, and the risk may be particularly high among young people with unexplained stroke etiology. Thus, we investigated in a case-control study whether periodontitis or recent invasive dental treatments are associated with young-onset cryptogenic ischemic stroke (CIS). We enrolled participants from a multicenter case-control SECRETO study including adults aged 18 to 49 y presenting with an imaging-positive first-ever CIS and stroke-free age- and sex-matched controls. Thorough clinical and radiographic oral examination was performed. Furthermore, we measured serum lipopolysaccharide (LPS) and lipotechoic acid (LTA) levels. Multivariate conditional regression models were adjusted for stroke risk factors, regular dentist visits, and patent foramen ovale (PFO) status. We enrolled 146 case-control pairs (median age 41.9 y; 58.2% males). Periodontitis was diagnosed in 27.5% of CIS patients and 20.1% of controls (P < 0.001). In the fully adjusted models, CIS was associated with high periodontal inflammation burden (odds ratio [OR], 95% confidence interval) with an OR of 10.48 (3.18-34.5) and severe periodontitis with an OR of 7.48 (1.24-44.9). Stroke severity increased with the severity of periodontitis, having an OR of 6.43 (1.87-23.0) in stage III to IV, grade C. Invasive dental treatments performed within 3 mo prestroke were associated with CIS, with an OR of 2.54 (1.01-6.39). Association between CIS and invasive dental treatments was especially strong among those with PFO showing an OR of 6.26 (1.72-40.2). LPS/LTA did not differ between CIS patients and controls but displayed an increasing trend with periodontitis severity. Periodontitis and recent invasive dental procedures were associated with CIS after controlling for multiple confounders. However, the role of bacteremia as a mediator of this risk was not confirmed.
Collapse
Affiliation(s)
- J. Leskelä
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - J. Putaala
- Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - N. Martinez-Majander
- Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - L. Tulkki
- Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - M. Manzoor
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - S. Zaric
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - P. Ylikotila
- Neurocenter, Turku University Hospital, University of Turku, Turku, Finland
| | - R. Lautamäki
- Heart Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - A. Saraste
- Heart Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - S. Suihko
- Department of Medicine, Division of Cardiology, Helsinki University Central Hospital, Helsinki, Finland
| | - E. Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - J. Sinisalo
- Department of Medicine, Division of Cardiology, Helsinki University Central Hospital, Helsinki, Finland
| | - P.J. Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- School of Medicine, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - S. Paju
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Park D, Kim HS, Kim JH. Effect of Pre-Antibiotic Use Before First Stroke Incidence on Recurrence and Mortality: A Longitudinal Study Using the Korean National Health Insurance Service Database. Int J Gen Med 2024; 17:1625-1633. [PMID: 38706744 PMCID: PMC11068048 DOI: 10.2147/ijgm.s456925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose Clinical studies on dysbiosis and stroke outcomes has been insufficient to establish clear evidence. This study aimed to investigate the effects of pre-antibiotic use before a stroke event on secondary outcomes using a longitudinal population-level database. Patients and Methods This retrospective cohort study included adults aged 55 years or older diagnosed with acute ischemic stroke (AIS) and acute hemorrhagic stroke (AHS) between 2004 and 2007. Patients were followed-up until the end of 2019, and the target outcomes were secondary AIS, AHS, and all-cause mortality. Multivariable Cox regression analyses were applied, and we adjusted covariates such as age, sex, socioeconomic status, hypertension, diabetes, and dyslipidemia. Pre-antibiotic use was identified from 7 days to 1 year before the acute stroke event. Results We included 159,181 patients with AIS (AIS group) and 49,077 patients with AHS (AHS group). Pre-antibiotic use significantly increased the risk of secondary AIS in the AIS group (adjusted hazard ratio [aHR], 1.03; 95% confidence interval [CI], 1.01-1.05; p = 0.009) and secondary AHS in the AHS group (aHR, 1.08; 95% CI, 1.03-1.12; p <0.001). Furthermore, pre-antibiotic use in the AIS group was associated with a lower risk of mortality (aHR, 0.95; 95% CI, 0.94-0.96; p <0.001). Conclusion Our population-based longitudinal study revealed that pre-antibiotic use was associated with a higher risk of secondary stroke and a lower risk of mortality in the AIS and AHS groups. Further studies are needed to understand the relationship between dysbiosis and stroke outcomes.
Collapse
Affiliation(s)
- Dougho Park
- Medical Research Institute, Pohang Stroke and Spine Hospital, Pohang, Republic of Korea
- Department of Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyoung Seop Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jong Hun Kim
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
41
|
Xia M, Xia Y, Sun Y, Wang J, Lu J, Wang X, Xia D, Xu X, Sun B. Gut microbiome is associated with personality traits of free-ranging Tibetan macaques ( Macaca thibetana). Front Microbiol 2024; 15:1381372. [PMID: 38711972 PMCID: PMC11070476 DOI: 10.3389/fmicb.2024.1381372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
Recent studies have emphasized that there is a strong link between the gut microbiome and the brain that affects social behavior and personality in animals. However, the interface between personality and the gut microbiome in wild primates remains poorly understood. Here, we used high-throughput sequencing and ethological methods in primate behavioral ecology to investigate the relationship between gut microbiome and personality in Tibetan macaques (Macaca thibetana). The behavioral assessment results indicated three personality dimensions including socialization, shyness, and anxiety. There was significant variation in alpha diversity only for shyness, with a significantly lower alpha diversity indices (including Shannon, Chao1, and PD) for bold individuals than for shy individuals. Using regression models to control for possible confounding factors, we found that the relative abundance of three genera, Akkermansia, Dialister, and Asteroleplasma, was significantly and positively correlated with the sociability scores in the macaques. In addition, Oscillospiraceae exhibited a positive correlation with scores for Shy Dimension. Furthermore, we found that the predicted functional genes for propionate and pyruvate, porphyrin and chlorophyll metabolic pathways related to animal behavior, were significant enriched in shyness group. We propose that the gut microbiome may play an important role in the formation of personality of Tibetan macaques.
Collapse
Affiliation(s)
- Mengyi Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yingna Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yu Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jingjing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jiakai Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Xi Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Dongpo Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiaojuan Xu
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Binghua Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| |
Collapse
|
42
|
Liu X, Wang Y, Tian Y, Hu J, Liu Z, Ma Y, Xu W, Wang W, Gao J, Wang T. The Water Extract of Rhubarb Prevents Ischemic Stroke by Regulating Gut Bacteria and Metabolic Pathways. Metabolites 2024; 14:216. [PMID: 38668344 PMCID: PMC11052393 DOI: 10.3390/metabo14040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Rhubarb (RR), Chinese name Dahuang, is commonly used in the treatment of ischemic stroke (IS). However, its potential mechanism is not fully elucidated. This study intended to verify the effect of RR on IS and investigate the possible mechanism of RR in preventing IS. IS in male rats was induced by embolic middle cerebral artery occlusion (MCAO) surgery, and drug administration was applied half an hour before surgery. RR dramatically decreased the neurological deficit scores, the cerebral infarct volume, and the cerebral edema rate, and improved the regional cerebral blood flow (rCBF) and histopathological changes in the brain of MCAO rats. The 16S rRNA analysis showed the harmful microbes such as Fournierella and Bilophila were decreased, and the beneficial microbes such as Enterorhabdus, Defluviitaleaceae, Christensenellaceae, and Lachnospira were significantly increased, after RR pretreatment. 1H-nuclear magnetic resonance (1H-NMR) was used to detect serum metabolomics, and RR treatment significantly changed the levels of metabolites such as isoleucine, valine, N6-acetyllysine, methionine, 3-aminoisobutyric acid, N, N-dimethylglycine, propylene glycol, trimethylamine N-oxide, myo-inositol, choline, betaine, lactate, glucose, and lipid, and the enrichment analysis of differential metabolites showed that RR may participate in the regulation of amino acid metabolism and energy metabolism. RR exerts the role of anti-IS via regulating gut bacteria and metabolic pathways.
Collapse
Affiliation(s)
- Xiaoyao Liu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (X.L.); (J.H.)
| | - Yuxi Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.W.); (Y.M.)
| | - Yuan Tian
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
| | - Jiahui Hu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (X.L.); (J.H.)
| | - Zhen Liu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
| | - Yuncheng Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.W.); (Y.M.)
| | - Wenhui Xu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weiling Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Gao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
43
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Role of the gut microbiota in complications after ischemic stroke. Front Cell Infect Microbiol 2024; 14:1334581. [PMID: 38644963 PMCID: PMC11026644 DOI: 10.3389/fcimb.2024.1334581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
44
|
Xin H, Zhang X, Li P, Li H, Feng G, Wang G. Bifidobacterium bifidum supplementation improves ischemic stroke outcomes in elderly patients: A retrospective study. Medicine (Baltimore) 2024; 103:e37682. [PMID: 38579074 PMCID: PMC10994462 DOI: 10.1097/md.0000000000037682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
This retrospective study aimed to explore the therapeutic potential of Bifidobacterium bifidum supplementation on elderly ischemic stroke patients. We retrospectively analyzed electronic medical records from 153 elderly ischemic stroke patients. Patients were stratified into 2 groups: those receiving B bifidum supplementation (Intervention group, n = 73) and those receiving standard treatment without any additional supplementation (Control group, n = 80). Outcomes were assessed using the National Institutes of Health Stroke Scale (NIHSS), Montreal Cognitive Assessment (MoCA), Self-Rating Depression Scale (SDS), and Self-Rating Anxiety Scale (SAS). Inflammatory markers, immunological indicators, neurotrophic factor, and gut-brain axis (GBA)-related markers were also evaluated at baseline and during 4-week follow-up. Compared to the control group, the intervention group exhibited significant improvements in the NIHSS, MoCA, SDS and SAS scores (P < .001). Enhanced levels of brain-derived neurotrophic factor (BDNF) and reduced levels of NPY were observed in the intervention group. Additionally, inflammatory markers, including IL-6, IL-8, IL-1β, and TNF-α, were significantly reduced in the intervention group, as well as significant increases in immunoglobulin levels (Ig A, Ig G, and Ig M) (P < .001). Besides, lower incidences of diarrhea and constipation were observed in the intervention group (P < .001), while the incidence of abdominal pain was no significant changed. B bifidum supplementation offers promising therapeutic benefits in improving neurological, cognitive, and psychological outcomes in elderly ischemic stroke patients, which may be achieved by regulating the GBA, reducing inflammation and promoting immune function. These findings highlight the importance of integrating gut health strategies in stroke management.
Collapse
Affiliation(s)
- Hui Xin
- Department of Rehabilitation Medicine, Xingtai Central Hospital, Xingtai, China
| | - Xinjie Zhang
- Department of Rehabilitation Medicine, Xingtai Central Hospital, Xingtai, China
| | - Peng Li
- Department of Rehabilitation Medicine, Xingtai Central Hospital, Xingtai, China
| | - Hui Li
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| | - Gang Feng
- Department of Rehabilitation Medicine, Xingtai Central Hospital, Xingtai, China
| | - Guiling Wang
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| |
Collapse
|
45
|
Zhang X, Zhang H, Li S, Fang F, Yin Y, Wang Q. Recent progresses in gut microbiome mediates obstructive sleep apnea-induced cardiovascular diseases. FASEB Bioadv 2024; 6:118-130. [PMID: 38585431 PMCID: PMC10995711 DOI: 10.1096/fba.2023-00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a multifactorial sleep disorder with a high prevalence in the general population. OSA is associated with an increased risk of developing cardiovascular diseases (CVDs), particularly hypertension, and is linked to worse outcomes. Although the correlation between OSA and CVDs is firmly established, the mechanisms are poorly understood. Continuous positive airway pressure is primary treatment for OSA reducing cardiovascular risk effectively, while is limited by inadequate compliance. Moreover, alternative treatments for cardiovascular complications in OSA are currently not available. Recently, there has been considerable attention on the significant correlation between gut microbiome and pathophysiological changes in OSA. Furthermore, gut microbiome has a significant impact on the cardiovascular complications that arise from OSA. Nevertheless, a detailed understanding of this association is lacking. This review examines recent advancements to clarify the link between the gut microbiome, OSA, and OSA-related CVDs, with a specific focus on hypertension, and also explores potential health advantages of adjuvant therapy that targets the gut microbiome in OSA.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Haifen Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Shuai Li
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Fan Fang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Yanran Yin
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Qiang Wang
- Department of Infectious Disease, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
46
|
Pluta R, Czuczwar SJ. Trans- and Cis-Phosphorylated Tau Protein: New Pieces of the Puzzle in the Development of Neurofibrillary Tangles in Post-Ischemic Brain Neurodegeneration of the Alzheimer's Disease-like Type. Int J Mol Sci 2024; 25:3091. [PMID: 38542064 PMCID: PMC10970557 DOI: 10.3390/ijms25063091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
Recent evidence indicates that experimental brain ischemia leads to dementia with an Alzheimer's disease-like type phenotype and genotype. Based on the above evidence, it was hypothesized that brain ischemia may contribute to the development of Alzheimer's disease. Brain ischemia and Alzheimer's disease are two diseases characterized by similar changes in the hippocampus that are closely related to memory impairment. Following brain ischemia in animals and humans, the presence of amyloid plaques in the extracellular space and intracellular neurofibrillary tangles was revealed. The phenomenon of tau protein hyperphosphorylation is a similar pathological feature of both post-ischemic brain injury and Alzheimer's disease. In Alzheimer's disease, the phosphorylated Thr231 motif in tau protein has two distinct trans and cis conformations and is the primary site of tau protein phosphorylation in the pre-entanglement cascade and acts as an early precursor of tau protein neuropathology in the form of neurofibrillary tangles. Based on the latest publication, we present a similar mechanism of the formation of neurofibrillary tangles after brain ischemia as in Alzheimer's disease, established on trans- and cis-phosphorylation of tau protein, which ultimately influences the development of tauopathy.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | | |
Collapse
|
47
|
Dolkar P, Deyang T, Anand N, Rathipriya AG, Hediyal TA, Chandrasekaran V, Krishnamoorthy NK, Gorantla VR, Bishir M, Rashan L, Chang SL, Sakharkar MK, Yang J, Chidambaram SB. Trimethylamine-N-oxide and cerebral stroke risk: A review. Neurobiol Dis 2024; 192:106423. [PMID: 38286388 DOI: 10.1016/j.nbd.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced by the action of gut microbiota and the hepatic enzyme Flavin Mono‑oxygenase 3 (FMO3). TMAO level has a positive correlation with the risk of cardiovascular events, including stroke, and their level is influenced mainly by dietary choice and the action of liver enzyme FMO3. TMAO plays a role in the development of atherosclerosis plaque, which is one of the causative factors of the stroke event. Preclinical and clinical investigations on the TMAO and associated stroke risk, severity, and outcomes are summarised in this review. In addition, mechanisms of TMAO-driven vascular dysfunction are also discussed, such as inflammation, oxidative stress, thrombus and foam cell formation, altered cholesterol and bile acid metabolism, etc. Post-stroke inflammatory cascades involving activation of immune cells, i.e., microglia and astrocytes, result in Blood-brain-barrier (BBB) disruption, allowing TMAO to infiltrate the brain and further aggravate inflammation. This event occurs as a result of the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway through the release of inflammatory cytokines and chemokines that further aggravate the BBB and initiate further recruitment of immune cells in the brain. Thus, it's likely that maintaining TMAO levels and associated gut microbiota could be a promising approach for treating and improving stroke complications.
Collapse
Affiliation(s)
- Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John's, Po Box W-1451, Antigua and Barbuda
| | | | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Naveen Kumar Krishnamoorthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Biomedical sciences, Research Faculty, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| | - Muhammed Bishir
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079, USA
| | - Luay Rashan
- Biodiversity Research Centre, Dohfar University, Salalah, Sultanate of Oman
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079, USA
| | - Meena Kishore Sakharkar
- Drug discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jian Yang
- Drug discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
48
|
Zhang H, Jiang X, Li A, Wang X. Causal Associations Between Gut Microbiota and Cerebrovascular Diseases. World Neurosurg 2024; 183:e587-e597. [PMID: 38191059 DOI: 10.1016/j.wneu.2023.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Numerous studies suggest that the gut microbiota closely linked to cerebrovascular diseases, such as Intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (aSAH). Nevertheless, the confirmation of a definitive causal connection between gut microbiota, IA, and aSAH is still pending. The aim of our research is to explore the potential bidirectional causality among them. METHODS This bidirectional Mendelian Randomization (MR) study used single nucleotide polymorphisms linked to gut microbiota, IA, and aSAH from Genome-Wide Association Studies. The Inverse Variance Weighted (IVW) method was used to explore causality. To assess the robustness of the result, sensitivity analyses were further performed, including weighted-median method, MR-Egger regression, Maximum-likelihood method, MR pleiotropy residual sum and outlier test and leave-one-out analysis. RESULTS In the IVW method, the family Porphyromonadaceae (odds ratio [OR] 0.63; 95% CI 0.47-0.85; P: 0.002) and genus Bilophila (OR 0.66; 95% CI 0.50-0.86; P: 0.002) showed a significant negative association with the risk of IA. Similarly, the genus Bilophila (OR: 0.68; 95% CI: 0.50-0.93; P: 0.017) and genus Ruminococcus1 (OR: 0.48; 95% CI: 0.30-0.78; P: 0.003) were linked to reduced risk of aSAH. The sensitivity analysis yielded similar outcomes in the IVW approach. Through the adoption of reverse MR analysis, a potential correlation between IA and decreased abundance of genus Ruminococcus1 was identified (OR 0.94; 95% CI 0.90-0.99; P 0.024). CONCLUSIONS This MR analysis investigated the causal associations between gut microbiota, IA, and aSAH risks. The findings expanded current knowledge of the microbiota-gut-brain axis and offered novel perspectives on preventing and managing these conditions.
Collapse
Affiliation(s)
- Hongyu Zhang
- Harbin Medical University, Harbin, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Aozhou Li
- Harbin Medical University, Harbin, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Wang
- Harbin Medical University, Harbin, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
49
|
Hediyal TA, Vichitra C, Anand N, Bhaskaran M, Essa SM, Kumar P, Qoronfleh MW, Akbar M, Kaul-Ghanekar R, Mahalakshmi AM, Yang J, Song BJ, Monaghan TM, Sakharkar MK, Chidambaram SB. Protective effects of fecal microbiota transplantation against ischemic stroke and other neurological disorders: an update. Front Immunol 2024; 15:1324018. [PMID: 38449863 PMCID: PMC10915229 DOI: 10.3389/fimmu.2024.1324018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The bidirectional communication between the gut and brain or gut-brain axis is regulated by several gut microbes and microbial derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides. The Gut microbiota (GM) produce neuroactives, specifically neurotransmitters that modulates local and central neuronal brain functions. An imbalance between intestinal commensals and pathobionts leads to a disruption in the gut microbiota or dysbiosis, which affects intestinal barrier integrity and gut-immune and neuroimmune systems. Currently, fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection. FMT elicits its action by ameliorating inflammatory responses through the restoration of microbial composition and functionality. Thus, FMT may be a potential therapeutic option in suppressing neuroinflammation in post-stroke conditions and other neurological disorders involving the neuroimmune axis. Specifically, FMT protects against ischemic injury by decreasing IL-17, IFN-γ, Bax, and increasing Bcl-2 expression. Interestingly, FMT improves cognitive function by lowering amyloid-β accumulation and upregulating synaptic marker (PSD-95, synapsin-1) expression in Alzheimer's disease. In Parkinson's disease, FMT was shown to inhibit the expression of TLR4 and NF-κB. In this review article, we have summarized the potential sources and methods of administration of FMT and its impact on neuroimmune and cognitive functions. We also provide a comprehensive update on the beneficial effects of FMT in various neurological disorders by undertaking a detailed interrogation of the preclinical and clinical published literature.
Collapse
Affiliation(s)
- Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - C. Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John’s, Antigua and Barbuda
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Centre University of Toledo, Health Science, Toledo, OH, United States
| | - Saeefh M. Essa
- Department of Computer Science, Northwest High School, Bethesda, MD, United States
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ruchika Kaul-Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International University (SIU), Pune, Maharashtra, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Bio-physics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| |
Collapse
|
50
|
Krishnamoorthy N, Kalyan M, Hediyal TA, Anand N, Kendaganna PH, Pendyala G, Yelamanchili SV, Yang J, Chidambaram SB, Sakharkar MK, Mahalakshmi AM. Role of the Gut Bacteria-Derived Metabolite Phenylacetylglutamine in Health and Diseases. ACS OMEGA 2024; 9:3164-3172. [PMID: 38284070 PMCID: PMC10809373 DOI: 10.1021/acsomega.3c08184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Over the past few decades, it has been well established that gut microbiota-derived metabolites can disrupt gut function, thus resulting in an array of diseases. Notably, phenylacetylglutamine (PAGln), a bacterial derived metabolite, has recently gained attention due to its role in the initiation and progression of cardiovascular and cerebrovascular diseases. This meta-organismal metabolite PAGln is a byproduct of amino acid acetylation of its precursor phenylacetic acid (PAA) from a range of dietary sources like egg, meat, dairy products, etc. The microbiota-dependent metabolism of phenylalanine produces PAA, which is a crucial intermediate that is catalyzed by diverse microbial catalytic pathways. PAA conjugates with glutamine and glycine in the liver and kidney to predominantly form phenylacetylglutamine in humans and phenylacetylglycine in rodents. PAGln is associated with thrombosis as it enhances platelet activation mediated through the GPCRs receptors α2A, α2B, and β2 ADRs, thereby aggravating the pathological conditions. Clinical evidence suggests that elevated levels of PAGln are associated with pathology of cardiovascular, cerebrovascular, and neurological diseases. This Review further consolidates the microbial/biochemical synthesis of PAGln and discusses its role in the above pathophysiologies.
Collapse
Affiliation(s)
- Naveen
Kumar Krishnamoorthy
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Manjunath Kalyan
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Tousif Ahmed Hediyal
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Nikhilesh Anand
- Department
of Pharmacology, College of Medicine, American
University of Antigua, P. O. Box W-1451, Saint John’s, Antigua and Barbuda
| | - Pavan Heggadadevanakote Kendaganna
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Gurudutt Pendyala
- Department
of Anesthesiology, University of Nebraska
Medical Center (UNMC), Omaha, Nebraska 68198, United States
- Department
of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, Nebraska 68198, United States
- Child Health
Research Institute, UNMC, Omaha, Nebraska 68198, United States
- National
Strategic Research Institute, UNMC, Omaha, Nebraska 68198, United States
| | - Sowmya V. Yelamanchili
- Department
of Anesthesiology, University of Nebraska
Medical Center (UNMC), Omaha, Nebraska 68198, United States
- Department
of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, Nebraska 68198, United States
- National
Strategic Research Institute, UNMC, Omaha, Nebraska 68198, United States
| | - Jian Yang
- Drug
Discovery and Development Research Group, College of Pharmacy and
Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Meena Kishore Sakharkar
- Drug
Discovery and Development Research Group, College of Pharmacy and
Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Arehally M. Mahalakshmi
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Centre
for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|