1
|
Bernstein HG, Nussbaumer M, Vasilevska V, Dobrowolny H, Nickl-Jockschat T, Guest PC, Steiner J. Glial cell deficits are a key feature of schizophrenia: implications for neuronal circuit maintenance and histological differentiation from classical neurodegeneration. Mol Psychiatry 2024:10.1038/s41380-024-02861-6. [PMID: 39639174 DOI: 10.1038/s41380-024-02861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Dysfunctional glial cells play a pre-eminent role in schizophrenia pathophysiology. Post-mortem studies have provided evidence for significantly decreased glial cell numbers in different brain regions of individuals with schizophrenia. Reduced glial cell numbers are most pronounced in oligodendroglia, but reduced astrocyte cell densities have also been reported. This review highlights that oligo- and astroglial deficits are a key histopathological feature in schizophrenia, distinct from typical changes seen in neurodegenerative disorders. Significant deficits of oligodendrocytes in schizophrenia may arise in two ways: (i) demise of mature functionally compromised oligodendrocytes; and (ii) lack of mature oligodendrocytes due to failed maturation of progenitor cells. We also analyse in detail the controversy regarding deficits of astrocytes. Regardless of their origin, glial cell deficits have several pathophysiological consequences. Among these, myelination deficits due to a reduced number of oligodendrocytes may be the most important factor, resulting in the disconnectivity between neurons and different brain regions observed in schizophrenia. When glial cells die, it appears to be through degeneration, a process which is basically reversible. Thus, therapeutic interventions that (i) help rescue glial cells (ii) or improve their maturation might be a viable option. Since antipsychotic treatment alone does not seem to prevent glial cell loss or maturation deficits, there is intense search for new therapeutic options. Current proposals range from the application of antidepressants and other chemical agents as well as physical exercise to engrafting healthy glial cells into brains of schizophrenia patients.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Madeleine Nussbaumer
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Radiotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
2
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
3
|
Yao G, Luo J, Li J, Feng K, Liu P, Xu Y. Functional gradient dysfunction in drug-naïve first-episode schizophrenia and its correlation with specific transcriptional patterns and treatment predictions. Psychol Med 2024:1-13. [PMID: 39552400 DOI: 10.1017/s0033291724001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND First-episode schizophrenia (FES) is a progressive psychiatric disorder influenced by genetics, environmental factors, and brain function. The functional gradient deficits of drug-naïve FES and its relationship to gene expression profiles and treatment outcomes are unknown. METHODS In this study, we engaged a cohort of 116 FES and 100 healthy controls (HC), aged 7 to 30 years, including 15 FES over an 8-week antipsychotic medication regimen. Our examination focused on primary-to-transmodal alterations in voxel-based connection gradients in FES. Then, we employed network topology, Neurosynth, postmortem gene expression, and support vector regression to evaluate integration and segregation functions, meta-analytic cognitive terms, transcriptional patterns, and treatment predictions. RESULTS FES displayed diminished global connectome gradients (Cohen's d = 0.32-0.57) correlated with compensatory integration and segregation functions (Cohen's d = 0.31-0.36). Predominant alterations were observed in the default (67.6%) and sensorimotor (21.9%) network, related to high-order cognitive functions. Furthermore, we identified notable overlaps between partial least squares (PLS1) weighted genes and dysregulated genes in other psychiatric conditions. Genes linked with gradient alterations were enriched in synaptic signaling, neurodevelopment process, specific astrocytes, cortical layers (layer II and IV), and developmental phases from late/mid fetal to young adulthood. Additionally, the onset age influenced the severity of FES, with discernible differences in connection gradients between minor- and adult-FES. Moreover, the connectivity gradients of FES at baseline significantly predicted treatment outcomes. CONCLUSIONS These results offer significant theoretical foundations for elucidating the intricate interplay between macroscopic functional connection gradient changes and microscopic transcriptional patterns during the onset and progression of FES.
Collapse
Affiliation(s)
- Guanqun Yao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- College of Humanities and Social Science, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun Feng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, 100040, China
| | - Pozi Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, 100040, China
| | - Yong Xu
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518031, China
| |
Collapse
|
4
|
Yap CX, Vo DD, Heffel MG, Bhattacharya A, Wen C, Yang Y, Kemper KE, Zeng J, Zheng Z, Zhu Z, Hannon E, Vellame DS, Franklin A, Caggiano C, Wamsley B, Geschwind DH, Zaitlen N, Gusev A, Pasaniuc B, Mill J, Luo C, Gandal MJ. Brain cell-type shifts in Alzheimer's disease, autism, and schizophrenia interrogated using methylomics and genetics. SCIENCE ADVANCES 2024; 10:eadn7655. [PMID: 38781333 PMCID: PMC11114225 DOI: 10.1126/sciadv.adn7655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 05/25/2024]
Abstract
Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism. We observe and replicate cell-type compositional shifts for Alzheimer's disease (endothelial cell loss), autism (increased microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers of evidence indicate that endothelial cell loss contributes to Alzheimer's disease, with comparable effect size to APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type composition, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chloe X. Yap
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel D. Vo
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Lifespan Brain Institute at Penn Medicine and The Children’s Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew G. Heffel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cindy Wen
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuanhao Yang
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Kathryn E. Kemper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Zhihong Zhu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- The National Centre for Register-based Research, Aarhus University, Denmark
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Dorothea Seiler Vellame
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alice Franklin
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Christa Caggiano
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Brie Wamsley
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Zaitlen
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham & Women’s Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Chongyuan Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael J. Gandal
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Lifespan Brain Institute at Penn Medicine and The Children’s Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Rivera AD, Normanton JR, Butt AM, Azim K. The Genomic Intersection of Oligodendrocyte Dynamics in Schizophrenia and Aging Unravels Novel Pathological Mechanisms and Therapeutic Potentials. Int J Mol Sci 2024; 25:4452. [PMID: 38674040 PMCID: PMC11050044 DOI: 10.3390/ijms25084452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.
Collapse
Affiliation(s)
- Andrea D. Rivera
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Via A. Gabelli 65, 35127 Padua, Italy;
| | - John R. Normanton
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
| | - Arthur M. Butt
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- School of Pharmacy and Biomedical Science, University of Portsmouth, Hampshire PO1 2UP, UK
| | - Kasum Azim
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- Independent Data Lab UG, Frauenmantelanger 31, 80937 Munich, Germany
| |
Collapse
|
6
|
Yu K, Zhou H, Chen Z, Lei Y, Wu J, Yuan Q, He J. Mechanism of cognitive impairment and white matter damage in the MK-801 mice model of schizophrenia treated with quetiapine. Behav Brain Res 2024; 461:114838. [PMID: 38157989 DOI: 10.1016/j.bbr.2023.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Schizophrenia has been linked to cognitive impairment and white matter damage in a growing number of studies this year. In this study, we used the MK-801-induced schizophrenia-like mice model to investigate the effects of quetiapine on behavioral changes and myelin loss in the model mice. The subjects selected for this study were C57B6/J male mice, MK-801 (1 mg/kg/d intraperitoneal injection) modeling for 1 week and quetiapine (10 mg/kg/d intraperitoneal injection) treatment for 2 weeks. Behavioral tests were then performed using the three-chamber paradigm test and the Y maze test. Moreover, western blot, immunohistochemistry, and immunofluorescence were conducted to investigate the changes in oligodendrocyte spectrum markers. In addition, we performed some mechanism-related proteins by western blot. Quetiapine ameliorated cognitive impairment and cerebral white matter damage in MK-801 model mice, and the mechanism may be related to the PI3K/AKT pathways. The present study suggests that quetiapine has a possible mechanism for treating cognitive impairment and white matter damage caused by schizophrenia.
Collapse
Affiliation(s)
- Kai Yu
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Han Zhou
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo Chen
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuying Lei
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junnan Wu
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianfa Yuan
- Xiamen Xian Yue Hospital, Xiamen, Fujian, China
| | - Jue He
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
7
|
Boiko DI, Chopra H, Bilal M, Kydon PV, Herasymenko LO, Rud VO, Bodnar LA, Vasylyeva GY, Isakov RI, Zhyvotovska LV, Mehta A, Skrypnikov AM. Schizophrenia and disruption of circadian rhythms: An overview of genetic, metabolic and clinical signs. Schizophr Res 2024; 264:58-70. [PMID: 38101179 DOI: 10.1016/j.schres.2023.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
A molecular clock in the suprachiasmatic nucleus of the anterior hypothalamus, which is entrained by the dark-light cycle and controls the sleep-wake cycle, regulates circadian rhythms. The risk of developing mental disorders, such as schizophrenia, has long been linked to sleep abnormalities. Additionally, a common aspect of mental disorders is sleep disturbance, which has a direct impact on the intensity of the symptoms and the quality of life of the patient. This relationship can be explained by gene alterations such as CLOCK in schizophrenia which are also important components of the physiological circadian rhythm. The function of dopamine and adenosine in circadian rhythm should also be noted, as these hypotheses are considered to be the most popular theories explaining schizophrenia pathogenesis. Therefore, determining the presence of a causal link between the two can be key to identifying new potential targets in schizophrenia therapy, which can open new avenues for clinical research as well as psychiatric care. We review circadian disruption in schizophrenia at the genetic, metabolic, and clinical levels. We summarize data about clock and clock-controlled genes' alterations, neurotransmitter systems' impairments, and association with chronotype in schizophrenia patients. Our findings demonstrate that in schizophrenia either homeostatic or circadian processes of sleep regulation are disturbed. Also, we found an insufficient number of studies aimed at studying the relationship between known biological phenomena of circadian disorders and clinical signs of schizophrenia.
Collapse
Affiliation(s)
- Dmytro I Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, Tamil Nadu, India
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Pavlo V Kydon
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Larysa O Herasymenko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Vadym O Rud
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Lesia A Bodnar
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Ganna Yu Vasylyeva
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Rustam I Isakov
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Liliia V Zhyvotovska
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Aashna Mehta
- University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Andrii M Skrypnikov
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
8
|
Shim G, Romero-Morales AI, Sripathy SR, Maher BJ. Utilizing hiPSC-derived oligodendrocytes to study myelin pathophysiology in neuropsychiatric and neurodegenerative disorders. Front Cell Neurosci 2024; 17:1322813. [PMID: 38273973 PMCID: PMC10808804 DOI: 10.3389/fncel.2023.1322813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Oligodendrocytes play a crucial role in our central nervous system (CNS) by myelinating axons for faster action potential conduction, protecting axons from degeneration, structuring the position of ion channels, and providing nutrients to neurons. Oligodendrocyte dysfunction and/or dysmyelination can contribute to a range of neurodegenerative diseases and neuropsychiatric disorders such as Multiple Sclerosis (MS), Leukodystrophy (LD), Schizophrenia (SCZ), and Autism Spectrum Disorder (ASD). Common characteristics identified across these disorders were either an inability of oligodendrocytes to remyelinate after degeneration or defects in oligodendrocyte development and maturation. Unfortunately, the causal mechanisms of oligodendrocyte dysfunction are still uncertain, and therapeutic targets remain elusive. Many studies rely on the use of animal models to identify the molecular and cellular mechanisms behind these disorders, however, such studies face species-specific challenges and therefore lack translatability. The use of human induced pluripotent stem cells (hiPSCs) to model neurological diseases is becoming a powerful new tool, improving our understanding of pathophysiology and capacity to explore therapeutic targets. Here, we focus on the application of hiPSC-derived oligodendrocyte model systems to model disorders caused by oligodendrocyte dysregulation.
Collapse
Affiliation(s)
- Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Alejandra I. Romero-Morales
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Srinidhi R. Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Brady J. Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Falkai P, Rossner MJ, Raabe FJ, Wagner E, Keeser D, Maurus I, Roell L, Chang E, Seitz-Holland J, Schulze TG, Schmitt A. Disturbed Oligodendroglial Maturation Causes Cognitive Dysfunction in Schizophrenia: A New Hypothesis. Schizophr Bull 2023; 49:1614-1624. [PMID: 37163675 PMCID: PMC10686333 DOI: 10.1093/schbul/sbad065] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairment is a hallmark of schizophrenia, but no effective treatment is available to date. The underlying pathophysiology includes disconnectivity between hippocampal and prefrontal brain regions. Supporting evidence comes from diffusion-weighted imaging studies that suggest abnormal organization of frontotemporal white matter pathways in schizophrenia. STUDY DESIGN Here, we hypothesize that in schizophrenia, deficient maturation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes substantially contributes to abnormal frontotemporal macro- and micro-connectivity and subsequent cognitive deficits. STUDY RESULTS Our postmortem studies indicate a reduced oligodendrocyte number in the cornu ammonis 4 (CA4) subregion of the hippocampus, and others have reported the same histopathological finding in the dorsolateral prefrontal cortex. Our series of studies on aerobic exercise training showed a volume increase in the hippocampus, specifically in the CA4 region, and improved cognition in individuals with schizophrenia. The cognitive effects were subsequently confirmed by meta-analyses. Cell-specific schizophrenia polygenic risk scores showed that exercise-induced CA4 volume increase significantly correlates with OPCs. From animal models, it is evident that early life stress and oligodendrocyte-related gene variants lead to schizophrenia-related behavior, cognitive deficits, impaired oligodendrocyte maturation, and reduced myelin thickness. CONCLUSIONS Based on these findings, we propose that pro-myelinating drugs (e.g., the histamine blocker clemastine) combined with aerobic exercise training may foster the regeneration of myelin plasticity as a basis for restoring frontotemporal connectivity and cognition in schizophrenia.
Collapse
Affiliation(s)
- Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
- Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Florian J Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Lukas Roell
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Emily Chang
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas G Schulze
- Institute for Psychiatric Phenomic and Genomic (IPPG), Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo (USP), São Paulo-SP, Brazil
| |
Collapse
|
10
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Sun W, Xie G, Jiang X, Khaitovich P, Han D, Liu X. Epigenetic regulation of human-specific gene expression in the prefrontal cortex. BMC Biol 2023; 21:123. [PMID: 37226244 DOI: 10.1186/s12915-023-01612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Changes in gene expression levels during brain development are thought to have played an important role in the evolution of human cognition. With the advent of high-throughput sequencing technologies, changes in brain developmental expression patterns, as well as human-specific brain gene expression, have been characterized. However, interpreting the origin of evolutionarily advanced cognition in human brains requires a deeper understanding of the regulation of gene expression, including the epigenomic context, along the primate genome. Here, we used chromatin immunoprecipitation sequencing (ChIP-seq) to measure the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac), both of which are associated with transcriptional activation in the prefrontal cortex of humans, chimpanzees, and rhesus macaques. RESULTS We found a discrete functional association, in which H3K4me3HP gain was significantly associated with myelination assembly and signaling transmission, while H3K4me3HP loss played a vital role in synaptic activity. Moreover, H3K27acHP gain was enriched in interneuron and oligodendrocyte markers, and H3K27acHP loss was enriched in CA1 pyramidal neuron markers. Using strand-specific RNA sequencing (ssRNA-seq), we first demonstrated that approximately 7 and 2% of human-specific expressed genes were epigenetically marked by H3K4me3HP and H3K27acHP, respectively, providing robust support for causal involvement of histones in gene expression. We also revealed the co-activation role of epigenetic modification and transcription factors in human-specific transcriptome evolution. Mechanistically, histone-modifying enzymes at least partially contribute to an epigenetic disturbance among primates, especially for the H3K27ac epigenomic marker. In line with this, peaks enriched in the macaque lineage were found to be driven by upregulated acetyl enzymes. CONCLUSIONS Our results comprehensively elucidated a causal species-specific gene-histone-enzyme landscape in the prefrontal cortex and highlighted the regulatory interaction that drove transcriptional activation.
Collapse
Affiliation(s)
- Weifen Sun
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, Shanghai, 200031, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Gangcai Xie
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, Shanghai, 200031, China
| | - Xi Jiang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, Shanghai, 200031, China
| | - Philipp Khaitovich
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, Shanghai, 200031, China.
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Dingding Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, Shanghai, 200031, China.
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China.
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, Shanghai, 200031, China.
| |
Collapse
|
12
|
Krčmář L, Jäger I, Boudriot E, Hanken K, Gabriel V, Melcher J, Klimas N, Dengl F, Schmoelz S, Pingen P, Campana M, Moussiopoulou J, Yakimov V, Ioannou G, Wichert S, DeJonge S, Zill P, Papazov B, de Almeida V, Galinski S, Gabellini N, Hasanaj G, Mortazavi M, Karali T, Hisch A, Kallweit MS, Meisinger VJ, Löhrs L, Neumeier K, Behrens S, Karch S, Schworm B, Kern C, Priglinger S, Malchow B, Steiner J, Hasan A, Padberg F, Pogarell O, Falkai P, Schmitt A, Wagner E, Keeser D, Raabe FJ. The multimodal Munich Clinical Deep Phenotyping study to bridge the translational gap in severe mental illness treatment research. Front Psychiatry 2023; 14:1179811. [PMID: 37215661 PMCID: PMC10196006 DOI: 10.3389/fpsyt.2023.1179811] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Treatment of severe mental illness (SMI) symptoms, especially negative symptoms and cognitive dysfunction in schizophrenia, remains a major unmet need. There is good evidence that SMIs have a strong genetic background and are characterized by multiple biological alterations, including disturbed brain circuits and connectivity, dysregulated neuronal excitation-inhibition, disturbed dopaminergic and glutamatergic pathways, and partially dysregulated inflammatory processes. The ways in which the dysregulated signaling pathways are interconnected remains largely unknown, in part because well-characterized clinical studies on comprehensive biomaterial are lacking. Furthermore, the development of drugs to treat SMIs such as schizophrenia is limited by the use of operationalized symptom-based clusters for diagnosis. Methods In line with the Research Domain Criteria initiative, the Clinical Deep Phenotyping (CDP) study is using a multimodal approach to reveal the neurobiological underpinnings of clinically relevant schizophrenia subgroups by performing broad transdiagnostic clinical characterization with standardized neurocognitive assessments, multimodal neuroimaging, electrophysiological assessments, retinal investigations, and omics-based analyzes of blood and cerebrospinal fluid. Moreover, to bridge the translational gap in biological psychiatry the study includes in vitro investigations on human-induced pluripotent stem cells, which are available from a subset of participants. Results Here, we report on the feasibility of this multimodal approach, which has been successfully initiated in the first participants in the CDP cohort; to date, the cohort comprises over 194 individuals with SMI and 187 age and gender matched healthy controls. In addition, we describe the applied research modalities and study objectives. Discussion The identification of cross-diagnostic and diagnosis-specific biotype-informed subgroups of patients and the translational dissection of those subgroups may help to pave the way toward precision medicine with artificial intelligence-supported tailored interventions and treatment. This aim is particularly important in psychiatry, a field where innovation is urgently needed because specific symptom domains, such as negative symptoms and cognitive dysfunction, and treatment-resistant symptoms in general are still difficult to treat.
Collapse
Affiliation(s)
- Lenka Krčmář
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Iris Jäger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Emanuel Boudriot
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Hanken
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Vanessa Gabriel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Julian Melcher
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nicole Klimas
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Fanny Dengl
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Schmoelz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Pauline Pingen
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Mattia Campana
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Georgios Ioannou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sven Wichert
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Silvia DeJonge
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Valéria de Almeida
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Galinski
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nadja Gabellini
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Genc Hasanaj
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Matin Mortazavi
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Temmuz Karali
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Hisch
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Marcel S Kallweit
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Verena J. Meisinger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lisa Löhrs
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Karin Neumeier
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Behrens
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Karch
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Benedikt Schworm
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Kern
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | | | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Center for Health and Medical Prevention, Magdeburg, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich, University Hospital, LMU Munich, Munich, Germany
- Munich Center for Neurosciences, LMU Munich, Munich, Germany
| | - Florian J. Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
13
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526463. [PMID: 36778360 PMCID: PMC9915570 DOI: 10.1101/2023.01.31.526463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over chronic implantation. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period. Abstract Figure
Collapse
|
14
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
15
|
Nuclear Inhibitor of Protein Phosphatase 1 (NIPP1) Regulates CNS Tau Phosphorylation and Myelination During Development. Mol Neurobiol 2022; 59:7486-7494. [PMID: 36198882 PMCID: PMC9724999 DOI: 10.1007/s12035-022-03040-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/16/2022] [Indexed: 10/10/2022]
Abstract
Nuclear inhibitor of protein phosphatase 1 (NIPP1) is a known regulator of gene expression and plays roles in many physiological or pathological processes such as stem cell proliferation and skin inflammation. While NIPP1 has many regulatory roles in proliferating cells, its function in the central nervous system (CNS) has not been directly investigated. In the present study, we examined NIPP1 CNS function using a conditional knockout (cKO) mouse model in which the Nipp1 gene is excised from neural precursor cells. These mice exhibited severe developmental impairments that led to premature lethality. To delineate the neurological changes occurring in these animals, we first assessed microtubule-associated protein tau, a known target of NIPP1 activity. We found that phosphorylation of tau is significantly enhanced in NIPP1 cKO mice. Consistent with this, we found altered AKT and PP1 activity in NIPP1 cKO mice, suggesting that increased tau phosphorylation likely results from a shift in kinase/phosphatase activity. Secondly, we observed tremors in the NIPP1 cKO mice which prompted us to explore the integrity of the myelin sheath, an integral structure for CNS function. We demonstrated that in NIPP1 cKO mice, there is a significant decrease in MBP protein expression in the cortex, along with deficits in both the conduction of compound action potentials (CAP) and the percentage of myelinated axons in the optic nerve. Our study suggests that NIPP1 in neural precursor cells regulates phosphorylation of tau and CNS myelination and may represent a novel therapeutic target for neurodegenerative diseases.
Collapse
|
16
|
Molina-Gonzalez I, Miron VE, Antel JP. Chronic oligodendrocyte injury in central nervous system pathologies. Commun Biol 2022; 5:1274. [PMID: 36402839 PMCID: PMC9675815 DOI: 10.1038/s42003-022-04248-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Myelin, the membrane surrounding neuronal axons, is critical for central nervous system (CNS) function. Injury to myelin-forming oligodendrocytes (OL) in chronic neurological diseases (e.g. multiple sclerosis) ranges from sublethal to lethal, leading to OL dysfunction and myelin pathology, and consequent deleterious impacts on axonal health that drive clinical impairments. This is regulated by intrinsic factors such as heterogeneity and age, and extrinsic cellular and molecular interactions. Here, we discuss the responses of OLs to injury, and perspectives for therapeutic targeting. We put forward that targeting mature OL health in neurological disease is a promising therapeutic strategy to support CNS function.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK
| | - Veronique E. Miron
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK ,grid.415502.7Barlo Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, Canada
| | - Jack P. Antel
- grid.14709.3b0000 0004 1936 8649Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| |
Collapse
|
17
|
Spironolactone alleviates schizophrenia-related reversal learning in Tcf4 transgenic mice subjected to social defeat. SCHIZOPHRENIA 2022; 8:77. [PMID: 36171421 PMCID: PMC9519974 DOI: 10.1038/s41537-022-00290-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/17/2022] [Indexed: 11/08/2022]
Abstract
AbstractCognitive deficits are a hallmark of schizophrenia, for which no convincing pharmacological treatment option is currently available. Here, we tested spironolactone as a repurposed compound in Tcf4 transgenic mice subjected to psychosocial stress. In this ‘2-hit’ gene by environment mouse (GxE) model, the animals showed schizophrenia-related cognitive deficits. We had previously shown that spironolactone ameliorates working memory deficits and hyperactivity in a mouse model of cortical excitatory/inhibitory (E/I) dysbalance caused by an overactive NRG1-ERBB4 signaling pathway. In an add-on clinical study design, we used spironolactone as adjuvant medication to the standard antipsychotic drug aripiprazole. We characterized the compound effects using our previously established Platform for Systematic Semi-Automated Behavioral and Cognitive Profiling (PsyCoP). PsyCoP is a widely applicable analysis pipeline based on the Research Domain Criteria (RDoC) framework aiming at facilitating translation into the clinic. In addition, we use dimensional reduction to analyze and visualize overall treatment effect profiles. We found that spironolactone and aripiprazole improve deficits of several cognitive domains in Tcf4tg x SD mice but partially interfere with each other’s effect in the combination therapy. A similar interaction was detected for the modulation of novelty-induced activity. In addition to its strong activity-dampening effects, we found an increase in negative valence measures as a side effect of aripiprazole treatment in mice. We suggest that repurposed drug candidates should first be tested in an adequate preclinical setting before initiating clinical trials. In addition, a more specific and effective NRG1-ERBB4 pathway inhibitor or more potent E/I balancing drug might enhance the ameliorating effect on cognition even further.
Collapse
|
18
|
Dopamine, Psychosis, and Symptom Fluctuation: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10091713. [PMID: 36141325 PMCID: PMC9498563 DOI: 10.3390/healthcare10091713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
It has been hypothesized since the 1960s that the etiology of schizophrenia is linked to dopamine. In the intervening 60 years, sophisticated brain imaging techniques, genetic/epigenetic advances, and new experimental animal models of schizophrenia have transformed schizophrenia research. The disease is now conceptualized as a heterogeneous neurodevelopmental disorder expressed phenotypically in four symptom domains: positive, negative, cognitive, and affective. The aim of this paper is threefold: (a) to review recent research into schizophrenia etiology, (b) to review papers that elicited subjective evidence from patients as to triggers and repressors of symptoms such as auditory hallucinations or paranoid thoughts, and (c) to address the potential role of dopamine in schizophrenia in general and, in particular, in the fluctuations in schizophrenia symptoms. The review also includes new discoveries in schizophrenia research, pointing to the involvement of both striatal neurons and glia, signaling pathway convergence, and the role of stress. It also addresses potential therapeutic implications. We conclude with the hope that this paper opens up novel avenues of research and new possibilities for treatment.
Collapse
|
19
|
Wu Y, Zhong Y, Liao X, Miao X, Yu J, Lai X, Zhang Y, Ma C, Pan H, Wang S. Transmembrane protein 108 inhibits the proliferation and myelination of oligodendrocyte lineage cells in the corpus callosum. Mol Brain 2022; 15:33. [PMID: 35410424 PMCID: PMC8996597 DOI: 10.1186/s13041-022-00918-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Abnormal white matter is a common neurobiological change in bipolar disorder, and dysregulation of myelination in oligodendrocytes (OLs) is the cause. Transmembrane protein 108 (Tmem108), as a susceptible gene of bipolar disorder, is expressed higher in OL lineage cells than any other lineage cells in the central nervous system. Moreover, Tmem108 mutant mice exhibit mania-like behaviors, belonging to one of the signs of bipolar disorder. However, it is unknown whether Tmem108 regulates the myelination of the OLs. Results Tmem108 expression in the corpus callosum decreased with the development, and OL progenitor cell proliferation and OL myelination were enhanced in the mutant mice. Moreover, the mutant mice exhibited mania-like behavior after acute restraint stress and were susceptible to drug-induced epilepsy. Conclusions Tmem108 inhibited OL progenitor cell proliferation and mitigated OL maturation in the corpus callosum, which may also provide a new role of Tmem108 involving bipolar disorder pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13041-022-00918-7.
Collapse
|
20
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
21
|
Mangiameli E, Freschi M, Luciani M, Gritti A. Generation of neuronal/glial mixed cultures from human induced pluripotent stem cells (hiPSCs). Methods Cell Biol 2022; 171:229-245. [DOI: 10.1016/bs.mcb.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Chen K, Stieger KC, Kozai TD. Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. Curr Opin Biotechnol 2021; 72:112-120. [PMID: 34773740 PMCID: PMC8671375 DOI: 10.1016/j.copbio.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Recent neuroscience studies have highlighted the critical role of glial cells in information processing. This has increased the demand for technologies that selectively modulate glial cells that regulate the excitation-inhibition balance of neural network function. Engineered technologies that modulate glial activity may be necessary for precise tuning of neural network activity in higher-order brain function. This perspective summarizes how glial cells regulate excitation and inhibition of neural circuits, highlights available technologies for glial modulation, and discusses current challenges and potential opportunities for glial engineering technologies.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Stauffer EM, Bethlehem RAI, Warrier V, Murray GK, Romero-Garcia R, Seidlitz J, Bullmore ET. Grey and white matter microstructure is associated with polygenic risk for schizophrenia. Mol Psychiatry 2021; 26:7709-7718. [PMID: 34462574 PMCID: PMC8872982 DOI: 10.1038/s41380-021-01260-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Recent discovery of approximately 270 common genetic variants associated with schizophrenia has enabled polygenic risk scores (PRS) to be measured in the population. We hypothesized that normal variation in PRS would be associated with magnetic resonance imaging (MRI) phenotypes of brain morphometry and tissue composition. We used the largest extant genome-wide association dataset (N = 69,369 cases and N = 236,642 healthy controls) to measure PRS for schizophrenia in a large sample of adults from the UK Biobank (Nmax = 29,878) who had multiple micro- and macrostructural MRI metrics measured at each of 180 cortical areas, seven subcortical structures, and 15 major white matter tracts. Linear mixed-effect models were used to investigate associations between PRS and brain structure at global and regional scales, controlled for multiple comparisons. Polygenic risk was significantly associated with reduced neurite density index (NDI) at global brain scale, at 149 cortical regions, five subcortical structures, and 14 white matter tracts. Other microstructural parameters, e.g., fractional anisotropy, that were correlated with NDI were also significantly associated with PRS. Genetic effects on multiple MRI phenotypes were co-located in temporal, cingulate, and prefrontal cortical areas, insula, and hippocampus. Post-hoc bidirectional Mendelian randomization analyses provided preliminary evidence in support of a causal relationship between (reduced) thalamic NDI and (increased) risk of schizophrenia. Risk-related reduction in NDI is plausibly indicative of reduced density of myelinated axons and dendritic arborization in large-scale cortico-subcortical networks. Cortical, subcortical, and white matter microstructure may be linked to the genetic mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Eva-Maria Stauffer
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Richard A I Bethlehem
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Varun Warrier
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Graham K Murray
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Rafael Romero-Garcia
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward T Bullmore
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
| |
Collapse
|
24
|
Scheuer T, dem Brinke EA, Grosser S, Wolf SA, Mattei D, Sharkovska Y, Barthel PC, Endesfelder S, Friedrich V, Bührer C, Vida I, Schmitz T. Reduction of cortical parvalbumin-expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition. Development 2021; 148:272278. [PMID: 34557899 DOI: 10.1242/dev.198390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
The inhibitory GABAergic system in the brain is involved in the etiology of various psychiatric problems, including autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD) and others. These disorders are influenced not only by genetic but also by environmental factors, such as preterm birth, although the underlying mechanisms are not known. In a translational hyperoxia model, exposing mice pups at P5 to 80% oxygen for 48 h to mimic a steep rise of oxygen exposure caused by preterm birth from in utero into room air, we documented a persistent reduction of cortical mature parvalbumin-expressing interneurons until adulthood. Developmental delay of cortical myelin was observed, together with decreased expression of oligodendroglial glial cell-derived neurotrophic factor (GDNF), a factor involved in interneuronal development. Electrophysiological and morphological properties of remaining interneurons were unaffected. Behavioral deficits were observed for social interaction, learning and attention. These results demonstrate that neonatal oxidative stress can lead to decreased interneuron density and to psychiatric symptoms. The obtained cortical myelin deficit and decreased oligodendroglial GDNF expression indicate that an impaired oligodendroglial-interneuronal interplay contributes to interneuronal damage.
Collapse
Affiliation(s)
- Till Scheuer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Elena Auf dem Brinke
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Susanne A Wolf
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Department of Experimental Ophthalmology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Daniele Mattei
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich CH-8057, Switzerland
| | - Yuliya Sharkovska
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany.,Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Paula C Barthel
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Vivien Friedrich
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| |
Collapse
|
25
|
Abashkin DA, Kurishev AO, Karpov DS, Golimbet VE. Cellular Models in Schizophrenia Research. Int J Mol Sci 2021; 22:ijms22168518. [PMID: 34445221 PMCID: PMC8395162 DOI: 10.3390/ijms22168518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a prevalent functional psychosis characterized by clinical behavioural symptoms and underlying abnormalities in brain function. Genome-wide association studies (GWAS) of schizophrenia have revealed many loci that do not directly identify processes disturbed in the disease. For this reason, the development of cellular models containing SZ-associated variations has become a focus in the post-GWAS research era. The application of revolutionary clustered regularly interspaced palindromic repeats CRISPR/Cas9 gene-editing tools, along with recently developed technologies for cultivating brain organoids in vitro, have opened new perspectives for the construction of these models. In general, cellular models are intended to unravel particular biological phenomena. They can provide the missing link between schizophrenia-related phenotypic features (such as transcriptional dysregulation, oxidative stress and synaptic dysregulation) and data from pathomorphological, electrophysiological and behavioural studies. The objectives of this review are the systematization and classification of cellular models of schizophrenia, based on their complexity and validity for understanding schizophrenia-related phenotypes.
Collapse
Affiliation(s)
- Dmitrii A. Abashkin
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Artemii O. Kurishev
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Dmitry S. Karpov
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Correspondence:
| |
Collapse
|
26
|
Unterholzner J, Millischer V, Wotawa C, Sawa A, Lanzenberger R. Making Sense of Patient-Derived iPSCs, Transdifferentiated Neurons, Olfactory Neuronal Cells, and Cerebral Organoids as Models for Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:759-775. [PMID: 34216465 PMCID: PMC8538891 DOI: 10.1093/ijnp/pyab037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/30/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
The improvement of experimental models for disorders requires a constant approximation towards the dysregulated tissue. In psychiatry, where an impairment of neuronal structure and function is assumed to play a major role in disease mechanisms and symptom development, this approximation is an ongoing process implicating various fields. These include genetic, animal, and post-mortem studies. To test hypotheses generated through these studies, in vitro models using non-neuronal cells such as fibroblasts and lymphocytes have been developed. For brain network disorders, cells with neuronal signatures would, however, represent a more adequate tissue. Considering the limited accessibility of brain tissue, research has thus turned towards neurons generated from induced pluripotent stem cells as well as directly induced neurons, cerebral organoids, and olfactory neuroepithelium. Regarding the increasing importance and amount of research using these neuronal cells, this review aims to provide an overview of all these models to make sense of the current literature. The development of each model system and its use as a model for the various psychiatric disorder categories will be laid out. Also, advantages and limitations of each model will be discussed, including a reflection on implications and future perspectives.
Collapse
Affiliation(s)
- Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Vincent Millischer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria,Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Wotawa
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Akira Sawa
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA,Departments of Psychiatry, Neuroscience, Biomedical Engineering and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria,Correspondence: Prof. Rupert Lanzenberger, MD, PD, NEUROIMAGING LABS (NIL) - PET, MRI, EEG, TMS & Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria ()
| |
Collapse
|
27
|
Global hypomyelination of the brain white and gray matter in schizophrenia: quantitative imaging using macromolecular proton fraction. Transl Psychiatry 2021; 11:365. [PMID: 34226491 PMCID: PMC8257619 DOI: 10.1038/s41398-021-01475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Myelin deficiency is commonly recognized as an important pathological feature of brain tissues in schizophrenia (SZ). In this pilot study, global myelin content abnormalities in white matter (WM) and gray matter (GM) of SZ patients were non-invasively investigated using a novel clinically-targeted quantitative myelin imaging technique, fast macromolecular proton fraction (MPF) mapping. MPF maps were obtained from 23 healthy subjects and 31 SZ patients using a clinical 1.5T magnetic resonance imaging (MRI) scanner. Mean MPF in WM and GM was compared between the healthy control subjects and SZ patients with positive and negative leading symptoms using the multivariate analysis of covariance. The SZ patients had significantly reduced MPF in GM (p < 0.001) and WM (p = 0.02) with the corresponding relative decrease of 5% and 3%, respectively. The effect sizes for the myelin content loss in SZ relative to the control group were 1.0 and 1.5 for WM and GM, respectively. The SZ patients with leading negative symptoms had significantly lower MPF in GM (p < 0.001) and WM (p = 0.003) as compared to the controls and showed a significant MPF decrease in WM (p = 0.03) relative to the patients with leading positive symptoms. MPF in WM significantly negatively correlated with the disease duration in SZ patients (Pearson's r = -0.51; p = 0.004). This study demonstrates that chronic SZ is characterized by global microscopic brain hypomyelination of both WM and GM, which is associated with the disease duration and negative symptoms. Myelin deficiency in SZ can be detected and quantified by the fast MPF mapping method.
Collapse
|
28
|
Suster I, Feng Y. Multifaceted Regulation of MicroRNA Biogenesis: Essential Roles and Functional Integration in Neuronal and Glial Development. Int J Mol Sci 2021; 22:ijms22136765. [PMID: 34201807 PMCID: PMC8269442 DOI: 10.3390/ijms22136765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that function as endogenous gene silencers. Soon after the discovery of miRNAs, a subset of brain-enriched and brain-specific miRNAs were identified and significant advancements were made in delineating miRNA function in brain development. However, understanding the molecular mechanisms that regulate miRNA biogenesis in normal and diseased brains has become a prevailing challenge. Besides transcriptional regulation of miRNA host genes, miRNA processing intermediates are subjected to multifaceted regulation by canonical miRNA processing enzymes, RNA binding proteins (RBPs) and epitranscriptomic modifications. Further still, miRNA activity can be regulated by the sponging activity of other non-coding RNA classes, namely circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs). Differential abundance of these factors in neuronal and glial lineages partly underlies the spatiotemporal expression and function of lineage-specific miRNAs. Here, we review the continuously evolving understanding of the regulation of neuronal and glial miRNA biogenesis at the transcriptional and posttranscriptional levels and the cooperativity of miRNA species in targeting key mRNAs to drive lineage-specific development. In addition, we review dysregulation of neuronal and glial miRNAs and the detrimental impacts which contribute to developmental brain disorders.
Collapse
Affiliation(s)
| | - Yue Feng
- Correspondence: ; Tel.: +1-404-727-0351
| |
Collapse
|
29
|
Oligodendrocyte progenitor cell fate and function in development and disease. Curr Opin Cell Biol 2021; 73:35-40. [PMID: 34153742 DOI: 10.1016/j.ceb.2021.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Differentiation of oligodendrocyte progenitor cells (OPCs) into myelination-capable mature oligodendrocytes is essential for proper function of the central nervous system. OPCs are tissue-resident stem cells that populate all regions of the central nervous system and exist beyond development into adulthood. Disorders that lead to disruption of this critical cell state change cause devastating myelin diseases that are often associated with shortened life span. Recent findings have also provided support for a newly appreciated contribution of perturbed OPC differentiation to neurodegenerative and psychiatric diseases. These findings emphasize the need for a more complete understanding of OPC differentiation in health and disease. Here, we review recent molecular and functional findings revealing new roles of OPCs. It is our hope that this review provides readers with an enticing snapshot of current OPC research and highlights the potential of controlling OPC fate and function to treat diseases of the brain.
Collapse
|
30
|
Trifu SC, Vlăduţi A, Trifu AI. Genetic aspects in schizophrenia. Receptoral theories. Metabolic theories. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:25-32. [PMID: 32747892 PMCID: PMC7728101 DOI: 10.47162/rjme.61.1.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ties between schizophrenia (SCZ) and genetics are undeniably significant issue prone to be discussed in the nowadays psychology. Recent research on this domain focuses more on specific genes and heredity (specifically monozygotic pairs of twins) for diagnosing SCZ, than on environmental influences. SCZ is considered a multifactorial disease, thought to convert from a merger of risk and biological genes and environmental factors that could alter and reshape the trajectory of brain development. On this regard, this review sums up recent and innovative methods of distinguishing schizophrenic features from other mental illnesses in patients, based on chromosomal and genes changes. The term “reverse genetics” is no longer up to date, being replaced with “genome scanning” and “positional cloning”. For many researchers, genome scanning is continuing the reverse of the sensible strategy for detecting various important biological disorders, which may start from the discovery of a protein or any other molecule involved in a biological process, being followed by its gene cloning. Genes being discovered in this manner could become candidate genes for the disease. However, genome scanning occurs through testing each chromosomal segment (or mitochondrial genome) for the counter transmission of the disease.
Collapse
Affiliation(s)
- Simona Corina Trifu
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | | | | |
Collapse
|
31
|
Pantazopoulos H, Katsel P, Haroutunian V, Chelini G, Klengel T, Berretta S. Molecular signature of extracellular matrix pathology in schizophrenia. Eur J Neurosci 2021; 53:3960-3987. [PMID: 33070392 PMCID: PMC8359380 DOI: 10.1111/ejn.15009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Growing evidence points to a critical involvement of the extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Decreases of perineuronal nets (PNNs) and altered expression of chondroitin sulphate proteoglycans (CSPGs) in glial cells have been identified in several brain regions. GWAS data have identified several SZ vulnerability variants of genes encoding for ECM molecules. Given the potential relevance of ECM functions to the pathophysiology of this disorder, it is necessary to understand the extent of ECM changes across brain regions, their region- and sex-specificity and which ECM components contribute to these changes. We tested the hypothesis that the expression of genes encoding for ECM molecules may be broadly disrupted in SZ across several cortical and subcortical brain regions and include key ECM components as well as factors such as ECM posttranslational modifications and regulator factors. Gene expression profiling of 14 neocortical brain regions, caudate, putamen and hippocampus from control subjects (n = 14/region) and subjects with SZ (n = 16/region) was conducted using Affymetrix microarray analysis. Analysis across brain regions revealed widespread dysregulation of ECM gene expression in cortical and subcortical brain regions in SZ, impacting several ECM functional key components. SRGN, CD44, ADAMTS1, ADAM10, BCAN, NCAN and SEMA4G showed some of the most robust changes. Region-, sex- and age-specific gene expression patterns and correlation with cognitive scores were also detected. Taken together, these findings contribute to emerging evidence for large-scale ECM dysregulation in SZ and point to molecular pathways involved in PNN decreases, glial cell dysfunction and cognitive impairment in SZ.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Neurobiology and Anatomical SciencesUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Pavel Katsel
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Vahram Haroutunian
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Gabriele Chelini
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
| | - Torsten Klengel
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Translational Molecular Genomics LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryUniversity Medical Center GöttingenGöttingenGermany
| | - Sabina Berretta
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Program in NeuroscienceHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
32
|
Wang D, Zhuo K, Sun Y, Xiang Q, Guo X, Wang J, Xu Y, Liu D, Li Y. Middle temporal corpus callosum impairment as a predictor of eight-week treatment outcome of drug-naïve first-episode psychosis patients: A pilot longitudinal study. Schizophr Res 2021; 232:95-97. [PMID: 34029947 DOI: 10.1016/j.schres.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Danni Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kaiming Zhuo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Zhejiang 310052, China; Department of Radiology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang 310052, China
| | - Qiong Xiang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaoyun Guo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yifeng Xu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Mental Health, Fudan University, Shanghai 200030, China
| | - Dengtang Liu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Mental Health, Fudan University, Shanghai 200030, China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
33
|
Jin T, Rehani P, Ying M, Huang J, Liu S, Roussos P, Wang D. scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks. Genome Med 2021; 13:95. [PMID: 34044854 PMCID: PMC8161957 DOI: 10.1186/s13073-021-00908-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer's disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom .
Collapse
Affiliation(s)
- Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Peter Rehani
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Present address: Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Mufang Ying
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Present address: Department of Statistics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jiawei Huang
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Panagiotis Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA.
- Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| |
Collapse
|
34
|
Nishiyama A, Serwanski DR, Pfeiffer F. Many roles for oligodendrocyte precursor cells in physiology and pathology. Neuropathology 2021; 41:161-173. [PMID: 33913208 DOI: 10.1111/neup.12732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) are a fourth resident glial cell population in the mammalian central nervous system. They are evenly distributed throughout the gray and white matter and continue to proliferate and generate new oligodendrocytes (OLs) throughout life. They were understudied until a few decades ago when immunolabeling for NG2 and platelet-derived growth factor receptor alpha revealed cells that are distinct from mature OLs, astrocytes, neurons, and microglia. In this review, we provide a summary of the known properties of OPCs with some historical background, followed by highlights from recent studies that suggest new roles for OPCs in certain pathological conditions.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.,The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - David R Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Martins-de-Souza D, Guest PC, Reis-de-Oliveira G, Schmitt A, Falkai P, Turck CW. An overview of the human brain myelin proteome and differences associated with schizophrenia. World J Biol Psychiatry 2021; 22:271-287. [PMID: 32602824 DOI: 10.1080/15622975.2020.1789217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Disturbances in the myelin sheath drive disruptions in neural transmission and brain connectivity as seen in schizophrenia. Here, the myelin proteome was characterised in schizophrenia patients and healthy controls to visualise differences in proteomic profiles. METHODS A liquid chromatography tandem mass spectrometry-based shotgun proteomic analysis was performed of a myelin-enriched fraction of postmortem brain samples from schizophrenia patients (n = 12) and mentally healthy controls (n = 8). In silico pathway analyses were performed on the resulting data. RESULTS The present characterisation of the human myelinome led to the identification of 480 non-redundant proteins, of which 102 proteins are newly annotated to be associated with the myelinome. Levels of 172 of these proteins were altered between schizophrenia patients and controls. These proteins were mainly associated with glial cell differentiation, metabolism/energy, synaptic vesicle function and neurodegeneration. The hub proteins with the highest degree of connectivity in the network included multiple kinases and synaptic vesicle transport proteins. CONCLUSIONS Together these findings suggest disruptive effects on synaptic activity and therefore neural transmission and connectivity, consistent with the dysconnectivity hypothesis of schizophrenia. Further studies on these proteins may lead to the identification of potential drug targets related to the synaptic dysconnectivity in schizophrenia and other psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
36
|
Chowen JA, Garcia-Segura LM. Role of glial cells in the generation of sex differences in neurodegenerative diseases and brain aging. Mech Ageing Dev 2021; 196:111473. [PMID: 33766745 DOI: 10.1016/j.mad.2021.111473] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Diseases and aging-associated alterations of the nervous system often show sex-specific characteristics. Glial cells play a major role in the endogenous homeostatic response of neural tissue, and sex differences in the glial transcriptome and function have been described. Therefore, the possible role of these cells in the generation of sex differences in pathological alterations of the nervous system is reviewed here. Studies have shown that glia react to pathological insults with sex-specific neuroprotective and regenerative effects. At least three factors determine this sex-specific response of glia: sex chromosome genes, gonadal hormones and neuroactive steroid hormone metabolites. The sex chromosome complement determines differences in the transcriptional responses in glia after brain injury, while gonadal hormones and their metabolites activate sex-specific neuroprotective mechanisms in these cells. Since the sex-specific neuroprotective and regenerative activity of glial cells causes sex differences in the pathological alterations of the nervous system, glia may represent a relevant target for sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, and IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain.
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
37
|
Bøstrand SMK, Williams A. Oligodendroglial Heterogeneity in Neuropsychiatric Disease. Life (Basel) 2021; 11:life11020125. [PMID: 33562031 PMCID: PMC7914430 DOI: 10.3390/life11020125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Oligodendroglia interact with neurons to support their health and maintain the normal functioning of the central nervous system (CNS). Human oligodendroglia are a highly heterogeneous population characterised by distinct developmental origins and regional differences, as well as variation in cellular states, as evidenced by recent analysis at single-nuclei resolution. Increasingly, there is evidence to suggest that the highly heterogeneous nature of oligodendroglia might underpin their role in a range of CNS disorders, including those with neuropsychiatric symptoms. Understanding the role of oligodendroglial heterogeneity in this group of disorders might pave the way for novel approaches to identify biomarkers and develop treatments.
Collapse
|
38
|
Krzyżanowska M, Rębała K, Steiner J, Kaliszan M, Pieśniak D, Karnecki K, Wiergowski M, Brisch R, Braun K, Jankowski Z, Kosmowska M, Chociej J, Gos T. Reduced ribosomal DNA transcription in the prefrontal cortex of suicide victims: consistence of new molecular RT-qPCR findings with previous morphometric data from AgNOR-stained pyramidal neurons. Eur Arch Psychiatry Clin Neurosci 2021; 271:567-576. [PMID: 33501518 PMCID: PMC7981327 DOI: 10.1007/s00406-021-01232-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Prefrontal cortical regions play a key role in behavioural regulation, which is profoundly disturbed in suicide. The study was carried out on frozen cortical samples from the anterior cingulate cortex (dorsal and ventral parts, ACd and ACv), the orbitofrontal cortex (OFC), and the dorsolateral cortex (DLC) obtained from 20 suicide completers (predominantly violent) with unknown psychiatric diagnosis and 21 non-suicidal controls. The relative level of ribosomal RNA (rRNA) as a marker of the transcriptional activity of ribosomal DNA (rDNA) was evaluated bilaterally in prefrontal regions mentioned above (i.e. in eight regions of interest, ROIs) by reverse transcription and quantitative polymerase chain reaction (RT-qPCR). The overall statistical analysis revealed a decrease in rDNA activity in suicide victims versus controls, particularly in male subjects. Further ROI-specific post hoc analyses revealed a significant decrease in this activity in suicides compared to non-suicides in five ROIs. This effect was accentuated in the ACv, where it was observed bilaterally. Our findings suggest that decreased rDNA transcription in the prefrontal cortex plays an important role in suicide pathogenesis and corresponds with our previous morphometric analyses of AgNOR-stained neurons.
Collapse
Affiliation(s)
- Marta Krzyżanowska
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Krzysztof Rębała
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Johann Steiner
- grid.5807.a0000 0001 1018 4307Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany
| | - Michał Kaliszan
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Dorota Pieśniak
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Karol Karnecki
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Marek Wiergowski
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Ralf Brisch
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Katharina Braun
- grid.5807.a0000 0001 1018 4307Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University, Magdeburg, Germany
| | - Zbigniew Jankowski
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Monika Kosmowska
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Joanna Chociej
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204, Gdańsk, Poland. .,Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany. .,Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
39
|
Tsai SH, Tsao CY, Lee LJ. Altered White Matter and Layer VIb Neurons in Heterozygous Disc1 Mutant, a Mouse Model of Schizophrenia. Front Neuroanat 2020; 14:605029. [PMID: 33384588 PMCID: PMC7769951 DOI: 10.3389/fnana.2020.605029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Increased white matter neuron density has been associated with neuropsychiatric disorders including schizophrenia. However, the pathogenic features of these neurons are still largely unknown. Subplate neurons, the earliest generated neurons in the developing cortex have also been associated with schizophrenia and autism. The link between these neurons and mental disorders is also not well established. Since cortical layer VIb neurons are believed to be the remnant of subplate neurons in the adult rodent brain, in this study, we aimed to examine the cytoarchitecture of neurons in cortical layer VIb and the underlying white matter in heterozygous Disc1 mutant (Het) mice, a mouse model of schizophrenia. In the white matter, the number of NeuN-positive neurons was quite low in the external capsule; however, the density of these cells was found increased (54%) in Het mice compared with wildtype (WT) littermates. The density of PV-positive neurons was unchanged in the mutants. In the cortical layer VIb, the density of CTGF-positive neurons increased (21.5%) in Het mice, whereas the number of Cplx3-positive cells reduced (16.1%) in these mutants, compared with WT mice. Layer VIb neurons can be classified by their morphological characters. The morphology of Type I pyramidal neurons was comparable between genotypes while the dendritic length and complexity of Type II multipolar neurons were significantly reduced in Het mice. White matter neurons and layer VIb neurons receive synaptic inputs and modulate the process of sensory information and sleep/arousal pattern. Aberrances of these neurons in Disc1 mutants implies altered brain functions in these mice.
Collapse
Affiliation(s)
- Shin-Hwa Tsai
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Li-Jen Lee
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
- Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Imamura A, Morimoto Y, Ono S, Kurotaki N, Kanegae S, Yamamoto N, Kinoshita H, Tsujita T, Okazaki Y, Ozawa H. Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. J Neural Transm (Vienna) 2020; 127:1501-1515. [PMID: 32285255 PMCID: PMC7578126 DOI: 10.1007/s00702-020-02188-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
Abstract
Twin studies of psychiatric disorders such as schizophrenia and autism spectrum disorder have employed epidemiological approaches that determine heritability by comparing the concordance rate between monozygotic twins (MZs) and dizygotic twins. The basis for these studies is that MZs share 100% of their genetic information. Recently, biological studies based on molecular methods are now being increasingly applied to examine the differences between MZs discordance for psychiatric disorders to unravel their possible causes. Although recent advances in next-generation sequencing have increased the accuracy of this line of research, there has been greater emphasis placed on epigenetic changes versus DNA sequence changes as the probable cause of discordant psychiatric disorders in MZs. Since the epigenetic status differs in each tissue type, in addition to the DNA from the peripheral blood, studies using DNA from nerve cells induced from postmortem brains or induced pluripotent stem cells are being carried out. Although it was originally thought that epigenetic changes occurred as a result of environmental factors, and thus were not transmittable, it is now known that such changes might possibly be transmitted between generations. Therefore, the potential possible effects of intestinal flora inside the body are currently being investigated as a cause of discordance in MZs. As a result, twin studies of psychiatric disorders are greatly contributing to the elucidation of genetic and environmental factors in the etiology of psychiatric conditions.
Collapse
Affiliation(s)
- Akira Imamura
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan.
| | - Yoshiro Morimoto
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Ono
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naohiro Kurotaki
- Department of Clinical Psychiatry, Graduate School of Medicine, Kagawa University, Kita-gun, Japan
| | - Shinji Kanegae
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Naoki Yamamoto
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hirohisa Kinoshita
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Yuji Okazaki
- Koseikai Michinoo Hospital, Nagasaki, Japan
- Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Hiroki Ozawa
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
41
|
Numerical density of oligodendrocytes and oligodendrocyte clusters in the anterior putamen in major psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2020; 270:841-850. [PMID: 32060609 DOI: 10.1007/s00406-020-01108-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
There is increasing evidence to support the notion that oligodendrocyte and myelin abnormalities may contribute to the functional dysconnectivity found in the major psychiatric disorders. The putamen, which is an important hub in the cortico-striato-thalamo-cortical loop, has been implicated in a broad spectrum of psychiatric illnesses and is a central target of their treatments. Previously we reported a reduction in the numerical density of oligodendrocytes and oligodendrocyte clusters in the prefrontal and parietal cortex in schizophrenia. Oligodendrocyte clusters contain oligodendrocyte progenitors and are involved in functionally dependent myelination. We measured the numerical density (Nv) of oligodendrocytes and oligodendrocyte clusters in the putamen in schizophrenia, bipolar disorder (BPD) and major depressive disorder (MDD) as compared to healthy controls (15 cases per group). Optical disector was used to estimate the Nv of oligodendrocytes and oligodendrocyte clusters. A significant reduction in both the Nv of oligodendrocytes (- 34%; p < 0.01) and the Nv of oligodendrocyte clusters (- 41%; p < 0.05) was found in the schizophrenia group as compared to the control group. Sexual dimorphism for both measurements was found only within the control group. The Nv of oligodendrocytes was significantly lower in male schizophrenia cases as compared to the male control cases. However, the Nv of oligodendrocyte clusters was significantly lower in all male clinical cases as compared to the male control group. The data suggest that lowered density of oligodendrocytes and oligodendrocyte clusters may contribute to the altered functional connectivity in the putamen in subjects with schizophrenia.
Collapse
|
42
|
Oligodendrocyte Physiology and Pathology Function. Cells 2020; 9:cells9092078. [PMID: 32932835 PMCID: PMC7563511 DOI: 10.3390/cells9092078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
|
43
|
Seabra G, de Almeida V, Reis-de-Oliveira G, Crunfli F, Antunes ASLM, Martins-de-Souza D. Ubiquitin-proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia. Sci Rep 2020; 10:12655. [PMID: 32724114 PMCID: PMC7387551 DOI: 10.1038/s41598-020-69543-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a chronic, severe and disabling psychiatric disorder, whose treatment is based on psychosocial interventions and the use of antipsychotic drugs. While the effects of these drugs are well elucidated in neuronal cells, they are still not so clear in oligodendrocytes, which play a vital role in schizophrenia. Thus, we aimed to characterize biochemical profiles by proteomic analyses of human oligodendrocytes (MO3.13) which were matured using a protocol we developed and treated with either haloperidol (a typical antipsychotic), clozapine (an atypical antipsychotic) or a clozapine + D-serine co-treatment, which has emerged lately as an alternative type of treatment. This was accomplished by employing shotgun proteomics, using nanoESI-LC-MS/MS label-free quantitation. Proteomic analysis revealed biochemical pathways commonly affected by all tested antipsychotics were mainly associated to ubiquitination, proteasome degradation, lipid metabolism and DNA damage repair. Clozapine and haloperidol treatments also affected proteins involved with the actin cytoskeleton and with EIF2 signaling. In turn, metabolic processes, especially the metabolism of nitrogenous compounds, were a predominant target of modulation of clozapine + D-serine treatment. In this context, we seek to contribute to the understanding of the biochemical and molecular mechanisms involved in the action of antipsychotics on oligodendrocytes, along with their possible implications in schizophrenia.
Collapse
Affiliation(s)
- Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
44
|
PARP-1 regulates mouse embryonic neural stem cell proliferation by regulating PDGFRα expression. Biochem Biophys Res Commun 2020; 526:986-992. [DOI: 10.1016/j.bbrc.2020.03.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 11/18/2022]
|
45
|
Inhibitors of Myelination and Remyelination, Bone Morphogenetic Proteins, are Upregulated in Human Neurological Disease. Neurochem Res 2020; 45:656-662. [PMID: 32030597 DOI: 10.1007/s11064-020-02980-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
During demyelinating disease such as multiple sclerosis and stroke, myelin is destroyed and along with it, the oligodendrocytes that synthesize the myelin. Thus, recovery is limited due to both interruptions in neuronal transmission as well as lack of support for neurons. Although oligodendrocyte progenitor cells remain abundant in the central nervous system, they rarely mature and form new functional myelin in the diseased CNS. In cell culture and in experimental models of demyelinating disease, inhibitory signaling factors decrease myelination and remyelination. One of the most potent of these are the bone morphogenetic proteins (BMPs), a family of proteins that strongly inhibits oligodendrocyte progenitor differentiation and myelination in culture. BMPs are highly expressed in the dorsal CNS during pre-natal development and serve to regulate dorsal ventral patterning. Their expression decreases after birth but is significantly increased in rodent demyelination models such as experimental autoimmune encephalomyelitis, cuprizone ingestion and spinal cord injury. However, until recently, evidence for BMP upregulation in human disease has been scarce. This review discusses new human studies showing that in multiple sclerosis and other demyelinating diseases, BMPs are expressed by immune cells invading the CNS as well as resident CNS cell types, mostly astrocytes and microglia. Expression of endogenous BMP antagonists is also regulated. Identification of BMPs in the CNS is correlated with areas of demyelination and inflammation. These studies further support BMP as a potential therapeutic target.
Collapse
|
46
|
Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. Dystrophy of Oligodendrocytes and Adjacent Microglia in Prefrontal Gray Matter in Schizophrenia. Front Psychiatry 2020; 11:204. [PMID: 32292358 PMCID: PMC7135882 DOI: 10.3389/fpsyt.2020.00204] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Some evidence support the notion that microglia activation in acute state of schizophrenia might contribute to damage of oligodendrocytes and myelinated fibers. Previously we found dystrophic changes of oligodendrocytes in prefrontal white matter in schizophrenia subjects displaying predominantly positive symptoms as compared to controls. The aim of the study was to verify whether microglial activation might contribute to dystrophic changes of oligodendrocytes in prefrontal gray matter in this clinical subgroup. METHODS Transmission electron microscopy and morphometry of microglia and adjacent oligodendrocytes were performed in layer 5 of the prefrontal cortex (BA10) in the schizophrenia subjects displaying predominantly positive symptoms (SPPS, n = 12), predominantly negative symptoms (SPNS, n = 9) and healthy controls (n = 20). RESULTS Qualitative study showed microglial activation and dystrophic alterations of microglia and oligodendrocytes adjacent to each other in both subgroups as compared to controls. A significant reduction in volume density (Vv) and the number (N) of mitochondria and an increase in N of lipofuscin granules were found in oligodendrocytes and adjacent microglia in both subgroups. Vv of lipofuscin granules, Vv and N of vacuoles of endoplasmic reticulum in microglia were increased significantly in the SPPS subgroup as compared to controls. In the SPPS subgroup Vv and N of mitochondria in microglia were correlated with N of vacuoles in microglia (r = -0.61, p < 0.05) and with Vv (r = 0.79, p < 0.01) and N (r = 0.59, p < 0.05) of mitochondria in oligodendrocytes. Vv of mitochondria in microglia was also correlated with Vv and N of vacuoles in oligodendrocytes in the SPPS subgroup (r = 0.76, p < 0.01). Area of nucleus of microglial cells was correlated negatively with age (r = -0.76, p < 0.01) and age at illness onset (r = -0.65, p < 0.05) in the SPPS subgroup. In the SPNS subgroup N of mitochondria in microglia was correlated with Vv of lipofuscin granules in oligodendrocytes (r = -0.9, p < 0.01). There were no significant correlations between these parameters in the control group. DISCUSSION Microglial dystrophy might contribute to oligodendrocyte dystrophy in the schizophrenia subjects with predominantly positive symptoms during relapse. Mitochondria in microglia and oligodendrocytes may be a target for treatment strategy of schizophrenia.
Collapse
Affiliation(s)
- Natalya A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | - Olga V Vikhreva
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | | | - Diana D Orlovskaya
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| |
Collapse
|