1
|
Zhou L, Shi H, Xiao M, Liu W, Wang L, Zhou S, Chen S, Wang Y, Liu C. Remimazolam attenuates lipopolysaccharide-induced neuroinflammation and cognitive dysfunction. Behav Brain Res 2025; 476:115268. [PMID: 39322063 DOI: 10.1016/j.bbr.2024.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Remimazolam, a novel benzodiazepine, is widely used as an anesthetic in endoscopic procedures; however, its effects on cognitive function remain unclear, limiting its broader application in general anaesthesia. Neuroinflammation is a well-established key factor in the etiology and progression of cognitive dysfunction, including conditions such as Alzheimer's disease, Parkinson's disease, postoperative delirium, and postoperative cognitive dysfunction. Preclinical studies have demonstrated that remimazolam exerts anti-inflammatory and neuroprotective effects, and clinical reports indicate a reduced incidence of postoperative delirium in patients treated with remimazolam. Nevertheless, whether remimazolam improves cognitive function through its anti-inflammatory properties remains uncertain. This study aimed to investigate the neuroprotective effects of remimazolam and its underlying mechanism in a lipopolysaccharide (LPS)-induced model of neuroinflammation, neuronal injury, and cognitive dysfunction METHODS: C57BL/6 J male mice were administered LPS intraperitoneally to establish a model of neuroinflammation-induced cognitive impairment. A subset of mice received remimazolam via intraperitoneal injection 30 minutes prior to LPS administration. Cognitive performance was evaluated using behavioural tests, including the Morris Water Maze (MWM), Novel Object Recognition (NOR) test, and Open Field Test (OFT). Hippocampal tissues were analyzed by haematoxylin-eosin (HE) staining to assess structural changes. Inflammatory markers, including Interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR. Immunofluorescence was used to detect translocator protein (TSPO) and markers of microglia activation (IBA-1, CD16/32, and CD206). RESULTS (1) Remimazolam reversed LPS-induced cognitive deficits, as evidenced by shorter spatial exploration latency and increased platform crossings in the MWM, and an elevated recognition index in the NOR test. (2) Remimazolam improved hippocampal morphology, reducing LPS-induced neuronal damage. (3) Remimazolam significantly decreased levels of hippocampal inflammatory cytokines, inhibited microglial activation, promoted M2-type microglia polarization, and increased TSPO expression. CONCLUSION Remimazolam demonstrated neuroprotective and anti-neuroinflammatory effects in a mouse model of LPS-induced cognitive impairment. These effects are likely mediated through the regulation of TSPO, which inhibits microglial activation and promotes the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype.
Collapse
Affiliation(s)
- Leguang Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China; University of South China Hengyang Medical School Clinical Anatomy & Reproductive Medicine Application Institute, China
| | - Hongzhao Shi
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Mengzhe Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Lijuan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Shangtao Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Shenghua Chen
- University of South China Hengyang Medical School Clinical Anatomy & Reproductive Medicine Application Institute, China
| | - Yan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China.
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
2
|
Mueller C, Hong H, Sharma AA, Qin H, Benveniste EN, Szaflarski JP. Brain temperature, brain metabolites, and immune system phenotypes in temporal lobe epilepsy. Epilepsia Open 2024. [PMID: 39470707 DOI: 10.1002/epi4.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE Epileptogenesis is linked to neuroinflammation. We hypothesized that local heat production caused by neuroinflammation can be visualized non-invasively in vivo via brain magnetic resonance spectroscopic imaging (MRSI) and MRSI-thermometry (MRSI-t) and that there is a relationship in patients with temporal lobe epilepsy (TLE) between MRSI-t and brain metabolites choline and myo-inositol and between neuroimaging and cellular and serum biomarkers of inflammation. METHODS Thirty-six (36) participants, 18 with temporal lobe epilepsy (13 females) and 18 age-matched healthy controls (nine females), were enrolled prospectively and underwent MRSI/MRSI-t; TLE participants also provided blood samples. Temperature was measured using creatine as a reference metabolite. Analysis of Functional NeuroImages 3dttest++ tool was used to analyze voxel-level group differences in temperature, choline, and myo-inositol. Associations with immune cell subsets, cytokines, and chemokines related to inflammation were quantified using correlation coefficients with significant relationships as noted. RESULTS Patients with TLE showed elevated temperature, choline, and myo-inositol in the temporal lobes. Higher brain temperature was associated with higher levels of cytokines and chemokines, including GM-CSF, TNF, IL-1β, and IL - 12p70, and lower frequency of immune cells including CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, and classical monocytes. Higher choline was associated with higher levels of the cytokines including LT-α, IL-13, and IL-4, and higher myo-inositol was associated with a higher frequency of CD4+ T-cell and CD19+ B-cell subsets and higher levels of cytokines and chemokines including LT-α, IL-13, and CCL3. SIGNIFICANCE This study, for the first time, showed that in temporal lobes of patients with TLE temperature and metabolite changes correlate with cellular and serum biomarkers of inflammation. Our results provide support for further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool. PLAIN LANGUAGE SUMMARY Neuroinflammation is associated with excessive heat production which can be visualized with magnetic resonance spectroscopic imaging and thermometry (MRSI-t). We prospectively investigated the relationship between MRSI-t and cellular and serum measures of peripheral inflammation in patients with temporal lobe epilepsy (TLE); we compared the results of MRSI-t in patients with TLE to healthy controls. We showed a relationship between the temperature elevations in TLE and elevations of various measures of peripheral inflammation. Our results support further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Huixian Hong
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ayushe A Sharma
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jerzy P Szaflarski
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Emvalomenos GM, Kang JWM, Jupp B, Mychasiuk R, Keay KA, Henderson LA. Recent developments and challenges in positron emission tomography imaging of gliosis in chronic neuropathic pain. Pain 2024; 165:2184-2199. [PMID: 38713812 DOI: 10.1097/j.pain.0000000000003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo / in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.
Collapse
Affiliation(s)
- Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Jullian E, Russi M, Turki E, Bouvelot M, Tixier L, Middendorp S, Martin E, Monnier V. Glial overexpression of Tspo extends lifespan and protects against frataxin deficiency in Drosophila. Biochimie 2024; 224:71-79. [PMID: 38750879 DOI: 10.1016/j.biochi.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
The translocator protein TSPO is an evolutionary conserved mitochondrial protein overexpressed in various contexts of neurodegeneration. Friedreich Ataxia (FA) is a neurodegenerative disease due to GAA expansions in the FXN gene leading to decreased expression of frataxin, a mitochondrial protein involved in the biosynthesis of iron-sulfur clusters. We previously reported that Tspo was overexpressed in a Drosophila model of this disease generated by CRISPR/Cas9 insertion of approximately 200 GAA in the intron of fh, the fly frataxin gene. Here, we describe a new Drosophila model of FA with 42 GAA repeats, called fh-GAAs. The smaller expansion size allowed to obtain adults exhibiting hallmarks of the FA disease, including short lifespan, locomotory defects and hypersensitivity to oxidative stress. The reduced lifespan was fully rescued by ubiquitous expression of human FXN, confirming that both frataxins share conserved functions. We observed that Tspo was overexpressed in heads and decreased in intestines of these fh-GAAs flies. Then, we further overexpressed Tspo specifically in glial cells and observed improved survival. Finally, we investigated the effects of Tspo overexpression in healthy flies. Increased longevity was conferred by glial-specific overexpression, with opposite effects in neurons. Overall, this study highlights protective effects of glial TSPO in Drosophila both in a neurodegenerative and a healthy context.
Collapse
Affiliation(s)
- Estelle Jullian
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Maria Russi
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Ema Turki
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Margaux Bouvelot
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Laura Tixier
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Sandrine Middendorp
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Elodie Martin
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Véronique Monnier
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| |
Collapse
|
5
|
Avry F, Rousseau C, Kraeber-Bodéré F, Bourgeois M, Arlicot N. Potential of TSPO radioligands: Bridging brain tumor diagnostics to the peripheries. Biochimie 2024; 224:114-119. [PMID: 38734123 DOI: 10.1016/j.biochi.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Translocator protein (TSPO) is involved in several cellular mechanisms such as steroidogenesis, immunomodulation, cell proliferation and differentiation. Overexpressed in several neurodegenerative diseases and brain cancer, TSPO radioligands have been developed over the last 20 years in positron emission tomography (PET) imaging. Recently, TSPO radioligands have extended beyond their initial application due to their specific binding to activated macrophages, making them a compelling biomarker for deciphering the intricacies of the tumor microenvironment (TME). In this review, we synthesized recent progress from the evaluation of TSPO-specific PET tracers in various peripheral tumor models and highlighted the hurdles and limitations associated with heterogeneous uptake in healthy tissue and tumor regions to achieve the clinical development of such a radiotracer.
Collapse
Affiliation(s)
- F Avry
- CHRU de Tours, Tours, France
| | - C Rousseau
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, F-44000, Nantes, France; ICO, Service de Médecine Nucléaire, F-44800, Saint-Herblain, France
| | - F Kraeber-Bodéré
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, F-44000, Nantes, France
| | - M Bourgeois
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, F-44000, Nantes, France; ARRONAX Cyclotron, F-448800, Saint-Herblain, France
| | - Nicolas Arlicot
- CHRU de Tours, Tours, France; UMR 1253, iBraiN, Université de Tours, INSERM, Tours, France; INSERM CIC 1415, Université de Tours, INSERM, Tours, France.
| |
Collapse
|
6
|
Giladi M, Montgomery AP, Kassiou M, Danon JJ. Structure-based drug design for TSPO: Challenges and opportunities. Biochimie 2024; 224:41-50. [PMID: 38782353 DOI: 10.1016/j.biochi.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The translocator protein 18 kDa (TSPO) is an evolutionarily conserved mitochondrial transmembrane protein implicated in various neuropathologies and inflammatory conditions, making it a longstanding diagnostic and therapeutic target of interest. Despite the development of various classes of TSPO ligand chemotypes, and the elucidation of bacterial and non-human mammalian experimental structures, many unknowns exist surrounding its differential structural and functional features in health and disease. There are several limitations associated with currently used computational methodologies for modelling the native structure and ligand-binding behaviour of this enigmatic protein. In this perspective, we provide a critical analysis of the developments in the uses of these methods, outlining their uses, inherent limitations, and continuing challenges. We offer suggestions of unexplored opportunities that exist in the use of computational methodologies which offer promise for enhancing our understanding of the TSPO.
Collapse
Affiliation(s)
- Mia Giladi
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia
| | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Bonomi R, Hillmer AT, Woodcock E, Bhatt S, Rusowicz A, Angarita GA, Carson RE, Davis MT, Esterlis I, Nabulsi N, Huang Y, Krystal JH, Pietrzak RH, Cosgrove KP. Microglia-mediated neuroimmune suppression in PTSD is associated with anhedonia. Proc Natl Acad Sci U S A 2024; 121:e2406005121. [PMID: 39172786 PMCID: PMC11363315 DOI: 10.1073/pnas.2406005121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
Dynamic brain immune function in individuals with posttraumatic stress disorder is rarely studied, despite evidence of peripheral immune dysfunction. Positron emission tomography brain imaging using the radiotracer [11C]PBR28 was used to measure the 18-kDa translocator protein (TSPO), a microglial marker, at baseline and 3 h after administration of lipopolysaccharide (LPS), a potent immune activator. Data were acquired in 15 individuals with PTSD and 15 age-matched controls. The PTSD group exhibited a significantly lower magnitude LPS-induced increase in TSPO availability in an a priori prefrontal-limbic circuit compared to controls. Greater anhedonic symptoms in the PTSD group were associated with a more suppressed neuroimmune response. In addition, while a reduced granulocyte-macrophage colony-stimulating factor response to LPS was observed in the PTSD group, other measured cytokine responses and self-reported sickness symptoms did not differ between groups; these findings highlight group differences in central-peripheral immune system relationships. The results of this study provide evidence of a suppressed microglia-mediated neuroimmune response to a direct immune system insult in individuals with PTSD that is associated with the severity of symptoms. They also provide further support to an emerging literature challenging traditional concepts of microglial and immune function in psychiatric disease.
Collapse
Affiliation(s)
- Robin Bonomi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
| | - Ansel T. Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - Eric Woodcock
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
| | - Shivani Bhatt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
| | | | | | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - Margaret T. Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Robert H. Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Kelly P. Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| |
Collapse
|
8
|
Firth W, Robb JL, Stewart D, Pye KR, Bamford R, Oguro-Ando A, Beall C, Ellacott KLJ. Regulation of astrocyte metabolism by mitochondrial translocator protein 18 kDa. J Neurochem 2024; 168:1374-1401. [PMID: 38482552 DOI: 10.1111/jnc.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/26/2024]
Abstract
The mitochondrial translocator protein 18 kDa (TSPO) has been linked to functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in Leydig cells and microglia indicate that TSPO function may vary between cells depending on their specialized roles. Astrocytes are critical for providing trophic and metabolic support in the brain. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. Relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed extracellular metabolic flux analyses. We found that TSPO deficiency reduced basal cellular respiration and attenuated the bioenergetic response to glucopenia. Fatty acid oxidation was increased, and lactate production was reduced in TSPO-/- MPAs and U373 cells. Co-immunoprecipitation studies revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a in U373 and MPAs, presenting a mechanism wherein TSPO may regulate FAO in these cells. Compared to TSPO+/+ cells, in TSPO-/- MPAs we observed attenuated tumor necrosis factor release following 3 h lipopolysaccharide (LPS) stimulation, which was enhanced at 24 h post-LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility, TSPO deficiency does not appear to modulate the metabolic response of MPAs to inflammation, at least in response to the model used in this study.
Collapse
Affiliation(s)
- Wyn Firth
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Josephine L Robb
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daisy Stewart
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rosemary Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asami Oguro-Ando
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kate L J Ellacott
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
9
|
Tremolanti C, Angeloni E, Da Pozzo E, Germelli L, Giacomelli C, Scalzi E, Taliani S, Da Settimo F, Mensah-Nyagan AG, Martini C, Costa B. Human oligodendrocyte-like cell differentiation is promoted by TSPO-mediated endogenous steroidogenesis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167174. [PMID: 38631406 DOI: 10.1016/j.bbadis.2024.167174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mature oligodendrocytes (OLs) arise from oligodendrocyte precursor cells that, in case of demyelination, are recruited at the lesion site to remyelinate the axons and therefore restore the transmission of nerve impulses. It has been widely documented that exogenously administered steroid molecules are potent inducers of myelination. However, little is known about how neurosteroids produced de novo by OLs can impact this process. Here, we employed a human OL precursor cell line to investigate the role of de novo neurosteroidogenesis in the regulation of OLs differentiation, paying particular attention to the 18 kDa Translocator Protein (TSPO) which controls the rate-limiting step of the neurosteroidogenic process. Our results showed that, over the time of OL maturation, the availability of cholesterol, which is the neurosteroidogenesis initial substrate, and key members of the neurosteroidogenic machinery, including TSPO, were upregulated. In addition, OLs differentiation was impaired following neurosteroidogenesis inhibition and TSPO silencing. On the contrary, TSPO pharmacological stimulation promoted neurosteroidogenic function and positively impacted differentiation. Collectively, our results suggest that de novo neurosteroidogenesis is actively involved in the autocrine and paracrine regulation of human OL differentiation. Moreover, since TSPO was able to promote OL differentiation through a positive modulation of the neurosteroid biosynthetic process, it could be exploited as a promising target to tackle demyelinating diseases.
Collapse
Affiliation(s)
- Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Eduardo Scalzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Ayikoé-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000 Strasbourg, France.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| |
Collapse
|
10
|
Gouilly D, Vrillon A, Bertrand E, Goubeaud M, Catala H, Germain J, Ainaoui N, Rafiq M, Nogueira L, Mouton-Liger F, Planton M, Salabert AS, Hitzel A, Méligne D, Jasse L, Sarton B, Silva S, Lemesle B, Péran P, Payoux P, Thalamas C, Paquet C, Pariente J. Translocator protein (TSPO) genotype does not change cerebrospinal fluid levels of glial activation, axonal and synaptic damage markers in early Alzheimer's disease. Neuroimage Clin 2024; 43:103626. [PMID: 38850834 PMCID: PMC11201347 DOI: 10.1016/j.nicl.2024.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND PET imaging of the translocator protein (TSPO) is used to assess in vivo brain inflammation. One of the main methodological issues with this method is the allelic dependence of the radiotracer affinity. In Alzheimer's disease (AD), previous studies have shown similar clinical and patho-biological profiles between TSPO genetic subgroups. However, there is no evidence regarding the effect of the TSPO genotype on cerebrospinal-fluid biomarkers of glial activation, and synaptic and axonal damage. METHOD We performed a trans-sectional study in early AD to compare cerebrospinal-fluid levels of GFAP, YKL-40, sTREM2, IL-6, IL-10, NfL and neurogranin between TSPO genetic subgroups. RESULTS We recruited 33 patients with early AD including 16 (48%) high affinity binders, 13 (39%) mixed affinity binders, and 4/33 (12%) low affinity binders. No difference was observed in terms of demographics, and cerebrospinal fluid levels of each biomarker for the different subgroups. CONCLUSION TSPO genotype is not associated with a change in glial activation, synaptic and axonal damage in early AD. Further studies with larger numbers of participants will be needed to confirm that the inclusion of specific TSPO genetic subgroups does not introduce selection bias in studies and trials of AD that combine TSPO imaging with cerebrospinal fluid biomarkers.
Collapse
Affiliation(s)
- Dominique Gouilly
- Department of Cognitive Neurology, Epilepsy, Sleep and Movement Disorders, CHU Toulouse Purpan, Toulouse, France.
| | - Agathe Vrillon
- Université de Paris, Cognitive Neurology Center, GHU Nord, APHP, Hospital Lariboisière Fernand Widal, Paris, France; Université de Paris, Inserm UMRS11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Elsa Bertrand
- Center of Clinical Investigation, CHU Toulouse Purpan (CIC 1436), Toulouse, France
| | - Marie Goubeaud
- Center of Clinical Investigation, CHU Toulouse Purpan (CIC 1436), Toulouse, France
| | - Hélène Catala
- Center of Clinical Investigation, CHU Toulouse Purpan (CIC 1436), Toulouse, France
| | - Johanne Germain
- Center of Clinical Investigation, CHU Toulouse Purpan (CIC 1436), Toulouse, France
| | - Nadéra Ainaoui
- Center of Clinical Investigation, CHU Toulouse Purpan (CIC 1436), Toulouse, France
| | - Marie Rafiq
- Department of Cognitive Neurology, Epilepsy, Sleep and Movement Disorders, CHU Toulouse Purpan, Toulouse, France; Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
| | - Leonor Nogueira
- Laboratory of Cell Biology and Cytology, CHU Toulouse Purpan, Toulouse, France
| | - François Mouton-Liger
- Université de Paris, Inserm UMRS11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Mélanie Planton
- Department of Cognitive Neurology, Epilepsy, Sleep and Movement Disorders, CHU Toulouse Purpan, Toulouse, France; Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
| | - Anne-Sophie Salabert
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, Toulouse, France
| | - Anne Hitzel
- Department of Nuclear Medicine, CHU Toulouse Purpan, Toulouse, France
| | - Déborah Méligne
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
| | - Laurence Jasse
- Department of Cognitive Neurology, Epilepsy, Sleep and Movement Disorders, CHU Toulouse Purpan, Toulouse, France
| | - Benjamine Sarton
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France; Critical Care Unit, CHU Toulouse Purpan, Toulouse, France
| | - Stein Silva
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France; Critical Care Unit, CHU Toulouse Purpan, Toulouse, France
| | - Béatrice Lemesle
- Department of Cognitive Neurology, Epilepsy, Sleep and Movement Disorders, CHU Toulouse Purpan, Toulouse, France
| | - Patrice Péran
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
| | - Pierre Payoux
- Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, Toulouse, France
| | - Claire Thalamas
- Center of Clinical Investigation, CHU Toulouse Purpan (CIC 1436), Toulouse, France
| | - Claire Paquet
- Université de Paris, Cognitive Neurology Center, GHU Nord, APHP, Hospital Lariboisière Fernand Widal, Paris, France; Université de Paris, Inserm UMRS11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Jérémie Pariente
- Department of Cognitive Neurology, Epilepsy, Sleep and Movement Disorders, CHU Toulouse Purpan, Toulouse, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC 1436), Toulouse, France; Toulouse Neuroimaging Center, UMR 1214, Inserm/UPS, Toulouse, France
| |
Collapse
|
11
|
Creed HA, Kannan S, Tate BL, Godefroy D, Banerjee P, Mitchell BM, Brakenhielm E, Chakraborty S, Rutkowski JM. Single-Cell RNA Sequencing Identifies Response of Renal Lymphatic Endothelial Cells to Acute Kidney Injury. J Am Soc Nephrol 2024; 35:549-565. [PMID: 38506705 PMCID: PMC11149045 DOI: 10.1681/asn.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
SIGNIFICANCE STATEMENT The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
Affiliation(s)
- Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Saranya Kannan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brittany L. Tate
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - David Godefroy
- Inserm UMR1239 (Nordic Laboratory), UniRouen, Normandy University, Mont Saint Aignan, France
| | - Priyanka Banerjee
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Ebba Brakenhielm
- INSERM EnVI, UMR1096, University of Rouen Normandy, Rouen, France
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
12
|
Knyzeliene A, MacAskill MG, Alcaide-Corral CJ, Morgan TEF, Henry MC, Lucatelli C, Pimlott SL, Sutherland A, Tavares AAS. [ 18F]LW223 has low non-displaceable binding in murine brain, enabling high sensitivity TSPO PET imaging. J Cereb Blood Flow Metab 2024; 44:397-406. [PMID: 37795635 PMCID: PMC10870961 DOI: 10.1177/0271678x231205661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023]
Abstract
Neuroinflammation is associated with a number of brain diseases, making it a common feature of cerebral pathology. Among the best-known biomarkers for neuroinflammation in Positron Emission Tomography (PET) research is the 18 kDa translocator protein (TSPO). This study aims to investigate the binding kinetics of a novel TSPO PET radiotracer, [18F]LW223, in mice and specifically assess its volume of non-displaceable binding (VND) in brain as well as investigate the use of simplified analysis approaches for quantification of [18F]LW223 PET data. Adult male mice were injected with [18F]LW223 and varying concentrations of LW223 (0.003-0.55 mg/kg) to estimate VND of [18F]LW223. Dynamic PET imaging with arterial input function studies and radiometabolite studies were conducted. Simplified quantification methods, standard uptake values (SUV) and apparent volume of distribution (VTapp), were investigated. [18F]LW223 had low VND in the brain (<10% of total binding) and low radiometabolism (∼15-20%). The 2-tissue compartment model provided the best fit for [18F]LW223 PET data, although its correlation with SUV90-120min or VTapp allowed for [18F]LW223 brain PET data quantification in healthy animals while using simpler experimental and analytical approaches. [18F]LW223 has the required properties to become a successful TSPO PET radiotracer.
Collapse
Affiliation(s)
- Agne Knyzeliene
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Mark G MacAskill
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Carlos J Alcaide-Corral
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Timaeus EF Morgan
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | | | | | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow, UK
| | | | - Adriana AS Tavares
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Zhai DS, Wang XS, Yang L, Jiang YL, Jin YC, Yan YX, Song DK, Zhang K, Han ZK, Liu MY, Wu YM, Ma X, Qi JY, Yang F, Tian F, Li XB, Liu SB. TOM40 mediates the effect of TSPO on postpartum depression partially through regulating calcium homeostasis in microglia. J Affect Disord 2024; 348:283-296. [PMID: 38159656 DOI: 10.1016/j.jad.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
AIMS To assess the effect of the translocator protein 18 kDa (TSPO) on postpartum depression and explore its mechanism. METHODS Postpartum depression (PPD) mouse model was established, and flow cytometry, immunofluorescence, Western blot analysis, real-time quantitative PCR, adeno-associated virus (AAV), co-immunoprecipitation-mass spectrometry and immunofluorescence co-staining were used to detect the effect of TSPO ligand ZBD-2 on PPD mice. RESULTS ZBD-2 inhibits the overactivation of microglia in the hippocampus and amygdala of PPD model mice. ZBD-2 not only inhibited the inflammation but also repressed the burst of reactive oxygen species (ROS) and mitochondrial ROS (mtROS). Meanwhile, ZBD-2 protects mitochondria from LPS-induced damages through inhibiting the influx of calcium. ZBD-2 modulated the calcium influx by increasing the level of translocase of the outer mitochondrial membrane 40 (TOM40) and reducing the interaction of TSPO and TOM40. In addition, the effect of ZBD-2 was partially dependent on anti-oxidative process. Knockdown of TOM40 by adeno-associated virus (AAV) in the hippocampus or amygdala dramatically reduced the effect of ZBD-2 on PPD, indicating that TOM40 mediates the effect of ZBD-2 on PPD. CONCLUSIONS TOM40 is required for the effect of ZBD-2 on treating anxiety and depression in PPD mice. This study reveals the role of microglia TSPO in PPD development and provides the new therapeutic strategy for PPD.
Collapse
Affiliation(s)
- Dong-Sheng Zhai
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Chen Jin
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yu-Xuan Yan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zu-Kang Han
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ming-Ying Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jing-Yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Fan Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Tian
- Teaching Experimental Center, Fourth Military Medical University, Xi'an, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
14
|
Zhou Y, Zhang W, Wang B, Wang P, Li D, Cao T, Zhang D, Han H, Bai M, Wang X, Zhao X, Lu Y. Mitochondria-targeted photodynamic therapy triggers GSDME-mediated pyroptosis and sensitizes anti-PD-1 therapy in colorectal cancer. J Immunother Cancer 2024; 12:e008054. [PMID: 38429070 PMCID: PMC10910688 DOI: 10.1136/jitc-2023-008054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The effectiveness of immune checkpoint inhibitors in colorectal cancer (CRC) is limited due to the low tumor neoantigen load and low immune infiltration in most microsatellite-stable (MSS) tumors. This study aimed to develop a mitochondria-targeted photodynamic therapy (PDT) approach to provoke host antitumor immunity of MSS-CRC and elucidate the underlying molecular mechanisms. METHODS The role and mechanism of mitochondria-targeted PDT in inhibiting CRC progression and inducing pyroptosis were evaluated both in vitro and in vivo. The immune effects of PDT sensitization on PD-1 blockade were also assessed in CT26 and 4T1 tumor-bearing mouse models. RESULTS Here, we report that PDT using IR700DX-6T, a photosensitizer targeting the mitochondrial translocation protein, may trigger an antitumor immune response initiated by pyroptosis in CRC. Mechanistically, IR700DX-6T-PDT produced reactive oxygen species on light irradiation and promoted downstream p38 phosphorylation and active caspase3 (CASP3)-mediated cleavage of gasdermin E (GSDME), subsequently inducing pyroptosis. Furthermore, IR700DX-6T-PDT enhanced the sensitivity of MSS-CRC cells to PD-1 blockade. Decitabine, a demethylation drug used to treat hematologic neoplasms, disrupted the abnormal methylation pattern of GSDME in tumor cells, enhanced the efficacy of IR700DX-6T-PDT, and elicited a potent antitumor immune response in combination with PD-1 blockade and IR700DX-6T-PDT. CONCLUSION Our work provides clear a understanding of immunogenic cell death triggered by mitochondria-targeted PDT, offering a new approach for enhancing the efficacy of PD-1 blockade in CRC.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Wenyao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Boda Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Danxiu Li
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Tianyu Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dawei Zhang
- Department of Pancreatic Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingfeng Bai
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Knyzeliene A, Wimberley C, MacAskill MG, Alcaide-Corral CJ, Morgan TEF, Henry MC, Lucatelli C, Pimlott SL, Sutherland A, Tavares AAS. Sexually dimorphic murine brain uptake of the 18 kDa translocator protein PET radiotracer [ 18F]LW223. Brain Commun 2024; 6:fcae008. [PMID: 38304004 PMCID: PMC10833650 DOI: 10.1093/braincomms/fcae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The 18 kDa translocator protein is a well-known biomarker of neuroinflammation, but also plays a role in homeostasis. PET with 18 kDa translocator protein radiotracers [11C]PBR28 in humans and [18F]GE180 in mice has demonstrated sex-dependent uptake patterns in the healthy brain, suggesting sex-dependent 18 kDa translocator protein expression, although humans and mice had differing results. This study aimed to assess whether the 18 kDa translocator protein PET radiotracer [18F]LW223 exhibited sexually dimorphic uptake in healthy murine brain and peripheral organs. Male and female C57Bl6/J mice (13.6 ± 5.4 weeks, 26.8 ± 5.4 g, mean ± SD) underwent 2 h PET scanning post-administration of [18F]LW223 (6.7 ± 3.6 MBq). Volume of interest and parametric analyses were performed using standard uptake values (90-120 min). Statistical differences were assessed by unpaired t-test or two-way ANOVA with Šidak's test (alpha = 0.05). The uptake of [18F]LW223 was significantly higher across multiple regions of the male mouse brain, with the most pronounced difference detected in hypothalamus (P < 0.0001). Males also exhibited significantly higher [18F]LW223 uptake in the heart when compared to females (P = 0.0107). Data support previous findings on sexually dimorphic 18 kDa translocator protein radiotracer uptake patterns in mice and highlight the need to conduct sex-controlled comparisons in 18 kDa translocator protein PET imaging studies.
Collapse
Affiliation(s)
- Agne Knyzeliene
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Catriona Wimberley
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mark G MacAskill
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carlos J Alcaide-Corral
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Timaeus E F Morgan
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Martyn C Henry
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow G12 0YN, UK
| | | | - Adriana A S Tavares
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
16
|
Shah S, Turner ML, Chen X, Ances BM, Hammoud DA, Tucker EW. The Promise of Molecular Imaging: Focus on Central Nervous System Infections. J Infect Dis 2023; 228:S311-S321. [PMID: 37788502 PMCID: PMC11009511 DOI: 10.1093/infdis/jiad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Central nervous system (CNS) infections can lead to high mortality and severe morbidity. Diagnosis, monitoring, and assessing response to therapy of CNS infections is particularly challenging with traditional tools, such as microbiology, due to the dangers associated with invasive CNS procedures (ie, biopsy or surgical resection) to obtain tissues. Molecular imaging techniques like positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging have long been used to complement anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI), for in vivo evaluation of disease pathophysiology, progression, and treatment response. In this review, we detail the use of molecular imaging to delineate host-pathogen interactions, elucidate antimicrobial pharmacokinetics, and monitor treatment response. We also discuss the utility of pathogen-specific radiotracers to accurately diagnose CNS infections and strategies to develop radiotracers that would cross the blood-brain barrier.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell L Turner
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Xueyi Chen
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Beau M Ances
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Bastos V, Pacheco V, Rodrigues ÉDL, Moraes CNS, Nóbile AL, Fonseca DLM, Souza KBS, do Vale FYN, Filgueiras IS, Schimke LF, Giil LM, Moll G, Cabral-Miranda G, Ochs HD, Vasconcelos PFDC, de Melo GD, Bourhy H, Casseb LMN, Cabral-Marques O. Neuroimmunology of rabies: New insights into an ancient disease. J Med Virol 2023; 95:e29042. [PMID: 37885152 DOI: 10.1002/jmv.29042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Collapse
Affiliation(s)
- Victor Bastos
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Vinicius Pacheco
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Érika D L Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Cássia N S Moraes
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriel L Nóbile
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Kamilla B S Souza
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Fernando Y N do Vale
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Igor S Filgueiras
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | | | - Hans D Ochs
- School of Medicine and Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Pedro F da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
- Department of Pathology, University of the State of Pará, Belem, Brazil
| | - Guilherme D de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Otavio Cabral-Marques
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Hou X, Shi H, Jiang Y, Li X, Chen K, Li Q, Liu R. Transcriptome analysis reveals the neuroactive receptor genes response to Streptococcus agalactiae infection in tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109090. [PMID: 37722443 DOI: 10.1016/j.fsi.2023.109090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
The detailed crosstalk between the neuroendocrine and immune systems in Oreochromis niloticus, an economically important fish, in response to pathogenic infections, remains unclear. This study revealed the head kidney transcriptional profiles of O. niloticus upon infections with Streptococcus agalactiae, a prevalent pathogen known to cause severe meningitis. Twelve cDNA libraries of O. niloticus head kidney, representing four treatment time points (0, 6, 24, and 48 h), were constructed and a total of 2,528 differentially expressed genes were identified based on pairwise comparisons. KEGG pathway analysis revealed a significant enrichment of the 'neuroactive ligand-receptor interaction' pathway (ko04080), with 13 genes exhibiting differential expression during S. agalactiae infection. Among these, six neuroactive receptor genes (lepr, nr3c1, ptger4, thrb, tspo, and β2-ar) were selected, cloned, and characterized. Although these genes are ubiquitously expressed, and in head kidney leukocytes, their expression was mainly observed in T cells, Mo/Mφ, and NCCs, which are characterized by antimicrobial responses. Furthermore, we examined the response patterns of these six neuroactive receptor genes to gram-positive (S. agalactiae) and gram-negative (Aeromonas hydrophila) bacteria in four different tissues. Notably, lepr, ptger4, tspo, and β2-ar were upregulated in all selected tissues in response to S. agalactiae and A. hydrophila infections. However, nr3c1 and thrb were downregulated in response to S. agalactiae infection in the head kidney and spleen, whereas nr3c1 was upregulated, and thrb was unresponsive to A. hydrophila infection. Our findings provide a theoretical foundation for understanding new links between the neuroendocrine and immune systems during bacterial infection in teleost fish.
Collapse
Affiliation(s)
- Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China.
| | - Haokai Shi
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Yan Jiang
- Shandong Freshwater Fisheries Research Institute, Jinan, China
| | - Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China.
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China.
| |
Collapse
|
19
|
Yao X, Zhang C, Zhang Y, Geng J, Bai S, Hao Y, Guan Y. Amphiphysin-IgG autoimmune sciatic neuropathy and facial neuropathy related to primary central nervous system lymphoma: A case report. J Neuroimmunol 2023; 382:578156. [PMID: 37556888 DOI: 10.1016/j.jneuroim.2023.578156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
We reported a 61-year-old man presented with 10-month progressing left sciatic neuropathy and 10-day right facial neuropathy. Serum amphiphysin-IgG was positive. 18F-FDG PET/CT of the whole body showed no signs of malignancy. Treatment with plasma exchange and oral prednisone relieved the symptoms. Nine months later, right hemiparesis and seizure of right limbs developed. 18F-FDG and 18F-PBR06 (18 kDa translocator protein, TSPO) radioligand PET/MRI of the whole body revealed intense uptake in the intracranial lesions. Intracranial lymphoma was diagnosed by stereotactic needle brain biopsy. Mononeuropathies could be paraneoplastic syndromes. TSPO shows high uptake in intracranial lymphoma on 18F-PBR06 PET images.
Collapse
Affiliation(s)
- Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chenpeng Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ying Zhang
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jieli Geng
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shuwei Bai
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yong Hao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
20
|
Rodriguez-Lopez A, Torres-Paniagua AM, Acero G, Díaz G, Gevorkian G. Increased TSPO expression, pyroglutamate-modified amyloid beta (AβN3(pE)) accumulation and transient clustering of microglia in the thalamus of Tg-SwDI mice. J Neuroimmunol 2023; 382:578150. [PMID: 37467699 DOI: 10.1016/j.jneuroim.2023.578150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Epidemiological studies showed that Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) frequently co-occur; however, the precise mechanism is not well understood. A unique animal model (Tg-SwDI mice) was developed to investigate the early-onset and robust accumulation of both parenchymal and vascular Aβ in the brain. Tg-SwDI mice have been extensively used to study the mechanisms of cerebrovascular dysfunction, neuroinflammation, neurodegeneration, and cognitive decline observed in AD/CAA patients and to design biomarkers and therapeutic strategies. In the present study, we documented interesting new features in the thalamus of Tg-SwDI mice: 1) a sharp increase in the expression of ionized calcium-binding adapter molecule 1 (Iba-1) in microglia in 6-month-old animals; 2) microglia clustering at six months that disappeared in old animals; 3) N-truncated/modified AβN3(pE) peptide in 9-month-old female and 12-month-old male mice; 4) an age-dependent increase in translocator protein (TSPO) expression. These findings reinforce the versatility of this model for studying multiple pathological issues involved in AD and CAA.
Collapse
Affiliation(s)
- Adrian Rodriguez-Lopez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Alicia M Torres-Paniagua
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Gonzalo Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Georgina Díaz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico.
| |
Collapse
|
21
|
Prasher P, Mall T, Sharma M. Synthesis and biological profile of benzoxazolone derivatives. Arch Pharm (Weinheim) 2023; 356:e2300245. [PMID: 37379239 DOI: 10.1002/ardp.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
The benzoxazolone nucleus is an ideal scaffold for drug design, owing to its discrete physicochemical profile, bioisosteric preference over pharmacokinetically weaker moieties, weakly acidic behavior, presence of both lipophilic and hydrophilic fragments on a single framework, and a wider choice of chemical modification on the benzene and oxazolone rings. These properties apparently influence the interactions of benzoxazolone-based derivatives with their respective biological targets. Hence, the benzoxazolone ring is implicated in the synthesis and development of pharmaceuticals with a diverse biological profile ranging from anticancer, analgesics, insecticides, anti-inflammatory, and neuroprotective agents. This has further led to the commercialization of several benzoxazolone-based molecules and a few others under clinical trials. Nevertheless, the SAR exploration of benzoxazolone derivatives for the identification of potential "hits" followed by the screening of "leads" provides a plethora of opportunities for further exploration of the pharmacological profile of the benzoxazolone nucleus. In this review, we aim to present the biological profile of different derivatives based on the benzoxazolone framework.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Tanisqa Mall
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
22
|
Gan C, Li W, Xu J, Pang L, Tang L, Yu S, Li A, Ge H, Huang R, Cheng H. Advances in the study of the molecular biological mechanisms of radiation-induced brain injury. Am J Cancer Res 2023; 13:3275-3299. [PMID: 37693137 PMCID: PMC10492106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
Radiation therapy is one of the most commonly used treatments for head and neck cancers, but it often leads to radiation-induced brain injury. Patients with radiation-induced brain injury have a poorer quality of life, and no effective treatments are available. The pathogenesis of this condition is unknown. This review summarizes the molecular biological mechanism of radiation-induced brain injury and provides research directions for future studies. The molecular mechanisms of radiation-induced brain injury are diverse and complex. Radiation-induced chronic neuroinflammation, destruction of the blood-brain barrier, oxidative stress, neuronal damage, and physiopathological responses caused by specific exosome secretion lead to radiation-induced brain injury.
Collapse
Affiliation(s)
- Chen Gan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Shenzhen Hospital of Southern Medical UniversityShenzhen, Guangdong, China
| |
Collapse
|
23
|
Creed HA, Kannan S, Tate BL, Banerjee P, Mitchell BM, Chakraborty S, Rutkowski JM. Single-cell RNA sequencing identifies response of renal lymphatic endothelial cells to acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544380. [PMID: 37333313 PMCID: PMC10274866 DOI: 10.1101/2023.06.09.544380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The inflammatory response to acute kidney injury (AKI) likely dictates future renal health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Due to the relative sparsity of lymphatic endothelial cells (LECs) in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. Here we characterized murine renal LEC subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI. We validated our findings by qPCR in LECs isolated from both cisplatin-injured and ischemia reperfusion injury, by immunofluorescence, and confirmation in in vitro human LECs. We have identified renal LECs and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin injured conditions. Following AKI, renal LECs alter genes involved endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models are also identified with renal LECs further demonstrating changed gene expression between cisplatin and ischemia reperfusion injury models, indicating the renal LEC response is both specific to where they lie in the lymphatic vasculature and the renal injury type. How LECs respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
|
24
|
Vicente-Rodríguez M, Mancuso R, Peris-Yague A, Simmons C, Gómez-Nicola D, Perry VH, Turkheimer F, Lovestone S, Parker CA, Cash D. Pharmacological modulation of TSPO in microglia/macrophages and neurons in a chronic neurodegenerative model of prion disease. J Neuroinflammation 2023; 20:92. [PMID: 37032328 PMCID: PMC10084680 DOI: 10.1186/s12974-023-02769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
Neuroinflammation is an important component of many neurodegenerative diseases, whether as a primary cause or a secondary outcome. For that reason, either as diagnostic tools or to monitor progression and/or pharmacological interventions, there is a need for robust biomarkers of neuroinflammation in the brain. Mitochondrial TSPO (18 kDa Translocator protein) is one of few available biomarkers of neuroinflammation for which there are clinically available PET imaging agents. In this study, we further characterised neuroinflammation in a mouse model of prion-induced chronic neurodegeneration (ME7) including a pharmacological intervention via a CSF1R inhibitor. This was achieved by autoradiographic binding of the second-generation TSPO tracer, [3H]PBR28, along with a more comprehensive examination of the cellular contributors to the TSPO signal changes by immunohistochemistry. We observed regional increases of TSPO in the ME7 mouse brains, particularly in the hippocampus, cortex and thalamus. This increased TSPO signal was detected in the cells of microglia/macrophage lineage as well as in astrocytes, endothelial cells and neurons. Importantly, we show that the selective CSF1R inhibitor, JNJ-40346527 (JNJ527), attenuated the disease-dependent increase in TSPO signal, particularly in the dentate gyrus of the hippocampus, where JNJ527 attenuated the number of Iba1+ microglia and neurons, but not GFAP+ astrocytes or endothelial cells. These findings suggest that [3H]PBR28 quantitative autoradiography in combination with immunohistochemistry are important translational tools for detecting and quantifying neuroinflammation, and its treatments, in neurodegenerative disease. Furthermore, we demonstrate that although TSPO overexpression in the ME7 brains was driven by various cell types, the therapeutic effect of the CSF1R inhibitor was primarily to modulate TSPO expression in microglia and neurons, which identifies an important route of biological action of this particular CSF1R inhibitor and provides an example of a cell-specific effect of this type of therapeutic agent on the neuroinflammatory process.
Collapse
Affiliation(s)
- Marta Vicente-Rodríguez
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Renzo Mancuso
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Alba Peris-Yague
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| | - Diego Gómez-Nicola
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - V Hugh Perry
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Federico Turkheimer
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| | - Simon Lovestone
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Janssen Medical Ltd, High Wycombe, UK
| | - Christine A Parker
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- GlaxoSmithKline, Stevenage, London, UK
| | - Diana Cash
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| |
Collapse
|
25
|
Neurexin-3α-associated autoimmune encephalitis with intracranial diffuse large B lymphoma diagnosed on FDG and TSPO PET/MRI. Eur J Nucl Med Mol Imaging 2023; 50:1270-1272. [PMID: 36471040 DOI: 10.1007/s00259-022-06054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
|
26
|
Rodina AV, Semochkina YP, Vysotskaya OV, Parfenova AA, Moskaleva EY. Radiation-induced neuroinflammation monitoring by the level of peripheral blood monocytes with high expression of translocator protein. Int J Radiat Biol 2023; 99:1364-1377. [PMID: 36821843 DOI: 10.1080/09553002.2023.2177765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Currently there are no effective diagnostic methods for the control of neuroinflammation before manifestation of cognitive impairment after head irradiation. The translocator protein (TSPO) is highly expressed in glial cells upon brain damage, therefore we compared the changes in the number of cells with high TSPO expression in the brain and peripheral blood during radiation-induced neuroinflammation. MATERIALS AND METHODS Hippocampal cytokines mRNA expression and the content of cells with high TSPO expression in the brain and peripheral blood monocytes were analyzed up to eight months after mice head γ-irradiation at a dose of 2 Gy or 8Gy. RESULTS Mice irradiation at a dose of 8 Gy causes neuroinflammation, accompanied by an increase of M1 microglia and TSPOhigh cells in the brain, elevated gene expression of pro-inflammatory and decreased of anti-inflammatory cytokines along with an increased number of microglia and astrocytes in the hippocampus. The content of TSPOhigh cells in the brain correlates with the level TSPOhigh monocytes in three days, one month and two months after exposure. CONCLUSIONS An increase in the level of the monocytes with high expression of TSPO may be considered as a marker for an early diagnostics of post-radiation brain damage leading to cognitive impairment.
Collapse
Affiliation(s)
- Alla V Rodina
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Yulia P Semochkina
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Olga V Vysotskaya
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Anna A Parfenova
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Elizaveta Y Moskaleva
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| |
Collapse
|
27
|
Li H, Wang X, Yang Q, Cheng L, Zeng HL. Identification of iron metabolism-related genes as diagnostic signatures in sepsis by blood transcriptomic analysis. Open Life Sci 2023; 18:20220549. [PMID: 36820206 PMCID: PMC9938542 DOI: 10.1515/biol-2022-0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 02/11/2023] Open
Abstract
Iron metabolism is considered to play the principal role in sepsis, but the key iron metabolism-related genetic signatures are unclear. In this study, we analyzed and identified the genetic signatures related to the iron-metabolism in sepsis by using a bioinformatics analysis of four transcriptomic datasets from the GEO database. A total of 21 differentially expressed iron metabolism-related signatures were identified including 9 transporters, 8 enzymes, and 4 regulatory factors. Among them, lipocalin 2 was found to have the highest diagnostic value as its expression showed significant differences in all the comparisons including sepsis vs healthy controls, sepsis vs non-sepsis diseases, and mild forms vs severe forms of sepsis. Besides, the cytochrome P450 gene CYP1B1 also showed diagnostic values for sepsis from the non-sepsis diseases. The CYP4V2, LTF, and GCLM showed diagnostic values for distinguishing the severe forms from mild forms of sepsis. Our analysis identified 21 sepsis-associated iron metabolism-related genetic signatures, which may represent diagnostic and therapeutic biomarkers of sepsis, and will improve our understanding of the molecular mechanism underlying the occurrence of sepsis.
Collapse
Affiliation(s)
- Huijun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Yang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Singh P, kumari N, Kaul A, Srivastava A, Singh VK, Srivastava K, Tiwari AK. Acetamidobenzoxazolone conjugated DOTA system for assessing 18 kDa translocator protein during pulmonary inflammation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Fogliano C, Carotenuto R, Panzuto R, Spennato V, De Bonis S, Simoniello P, Raggio A, Avallone B, Agnisola C, Motta CM. Behavioral alterations and gills damage in Mytilus galloprovincialis exposed to an environmental concentration of delorazepam. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104030. [PMID: 36455838 DOI: 10.1016/j.etap.2022.104030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Psychoactive compounds, and benzodiazepines (BZPs) in particular, represent an important class of emerging pollutants due to their large (ab)use and high resistance to degradation. Nowadays it is known that sewage treatment does not completely eliminate these substances and, therefore, BZPs and their metabolites reach concern levels in most aquatic environments all over Europe, ranging from µg/L to ng/L. In this study, we investigated the effects of delorazepam on Mytilus galloprovincialis, a model organism in toxicity testing and a key species in coastal marine ecosystems. Given its psychoactive activity, the study primarily addressed discovering the effects on behavior, by conventional valve opening and closure tests. Possible cytotoxic activity was also investigated by analyzing valve abductor muscles, gills histology, and correlated oxygen consumption. Results demonstrate negative effects on mussel behavior, interference with metabolism, and alteration of gill morphology and protein content. In conclusion, delorazepam confirms its toxicity to aquatic environments, highlighting the possibility that BZDs can ultimately affect the structure of the food web and the functions of the coastal ecosystems.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Raffaele Panzuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Valentina Spennato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore De Bonis
- Regional Agency for Environmental Protection of Latium (Arpa Lazio), Via Saredo, 00173 Rome, Italy
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80133 Naples, Italy
| | - Anja Raggio
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
30
|
18F-Radiolabeled Translocator Protein (TSPO) PET Tracers: Recent Development of TSPO Radioligands and Their Application to PET Study. Pharmaceutics 2022; 14:pharmaceutics14112545. [PMID: 36432736 PMCID: PMC9697781 DOI: 10.3390/pharmaceutics14112545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is a transmembrane protein in the mitochondrial membrane, which has been identified as a peripheral benzodiazepine receptor. TSPO is generally present at high concentrations in steroid-producing cells and plays an important role in steroid synthesis, apoptosis, and cell proliferation. In the central nervous system, TSPO expression is relatively modest under normal physiological circumstances. However, some pathological disorders can lead to changes in TSPO expression. Overexpression of TSPO is associated with several diseases, such as neurodegenerative diseases, neuroinflammation, brain injury, and cancers. TSPO has therefore become an effective biomarker of related diseases. Positron emission tomography (PET), a non-invasive molecular imaging technique used for the clinical diagnosis of numerous diseases, can detect diseases related to TSPO expression. Several radiolabeled TSPO ligands have been developed for PET. In this review, we describe recent advances in the development of TSPO ligands, and 18F-radiolabeled TSPO in particular, as PET tracers. This review covers pharmacokinetic studies, preclinical and clinical trials of 18F-labeled TSPO PET ligands, and the synthesis of TSPO ligands.
Collapse
|
31
|
Corsi F, Baglini E, Barresi E, Salerno S, Cerri C, Martini C, Da Settimo Passetti F, Taliani S, Gargini C, Piano I. Targeting TSPO Reduces Inflammation and Apoptosis in an In Vitro Photoreceptor-Like Model of Retinal Degeneration. ACS Chem Neurosci 2022; 13:3188-3197. [PMID: 36300862 PMCID: PMC9673150 DOI: 10.1021/acschemneuro.2c00582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is predominantly located in the mitochondrial outer membrane, playing an important role in steroidogenesis, inflammation, survival, and cell proliferation. Its expression in the CNS, and mainly in glial cells, is upregulated in neuropathologies and brain injury. In this study, the potential of targeting TSPO for the therapeutic treatment of inflammatory-based retinal neurodegeneration was evaluated by means of an in vitro model of lipopolysaccharide (LPS)-induced degeneration in 661 W cells, a photoreceptor-like cell line. After the assessment of the expression of TSPO in 661W cells, which, to the best of our knowledge, was never investigated so far, the anti-inflammatory and cytoprotective effects of a number of known TSPO ligands, belonging to the class of N,N-dialkyl-2-arylindol-3-ylglyoxylamides (PIGAs), were evaluated, using the classic TSPO ligand PK11195 as the reference standard. All tested PIGAs showed the ability to modulate the inflammatory and apoptotic processes in 661 W photoreceptor-like cells and to reduce LPS-driven cellular cytotoxicity. The protective effect of PIGAs was, in all cases, reduced by cotreatment with the pregnenolone synthesis inhibitor SU-10603, suggesting the involvement of neurosteroids in the protective mechanism. As inflammatory processes play a crucial role in the retinal neurodegenerative disease progression toward photoreceptors' death and complete blindness, targeting TSPO might represent a successful strategy to slow down this degenerative process that may lead to the inexorable loss of vision.
Collapse
|
32
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
33
|
Roczkowsky A, Doan MAL, Hlavay BA, Mamik MK, Branton WG, McKenzie BA, Saito LB, Schmitt L, Eitzen G, Di Cara F, Wuest M, Wuest F, Rachubinski R, Power C. Peroxisome Injury in Multiple Sclerosis: Protective Effects of 4-Phenylbutyrate in CNS-Associated Macrophages. J Neurosci 2022; 42:7152-7165. [PMID: 35940876 PMCID: PMC9480879 DOI: 10.1523/jneurosci.0312-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/14/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive and inflammatory demyelinating disease of the CNS. Peroxisomes perform critical functions that contribute to CNS homeostasis. We investigated peroxisome injury and mitigating effects of peroxisome-restorative therapy on inflammatory demyelination in models of MS. Human autopsied CNS tissues (male and female), human cell cultures, and cuprizone-mediated demyelination mice (female) were examined by RT-PCR, Western blotting, and immunolabeling. The therapeutic peroxisome proliferator, 4-phenylbutyrate (4-PBA) was investigated in vitro and in vivo White matter from MS patients showed reduced peroxisomal transcript and protein levels, including PMP70, compared with non-MS controls. Cultured human neural cells revealed that human microglia contained abundant peroxisomal proteins. TNF-α-exposed microglia displayed reduced immunolabeling of peroxisomal proteins, PMP70 and PEX11β, which was prevented with 4-PBA. In human myeloid cells exposed to TNF-α or nigericin, suppression of PEX11β and catalase protein levels were observed to be dependent on NLRP3 expression. Hindbrains from cuprizone-exposed mice showed reduced Abcd1, Cat, and Pex5l transcript levels, with concurrent increased Nlrp3 and Il1b transcript levels, which was abrogated by 4-PBA. In the central corpus callosum, Iba-1 in CNS-associated macrophages and peroxisomal thiolase immunostaining after cuprizone exposure was increased by 4-PBA. 4-PBA prevented decreased myelin basic protein and neurofilament heavy chain immunoreactivity caused by cuprizone exposure. Cuprizone-induced neurobehavioral deficits were improved by 4-PBA treatment. Peroxisome injury in CNS-associated macrophages contributed to neuroinflammation and demyelination that was prevented by 4-PBA treatment. A peroxisome-targeted therapy might be valuable for treating inflammatory demyelination and neurodegeneration in MS.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is a common and disabling disorder of the CNS with no curative therapies for its progressive form. The present studies implicate peroxisome impairment in CNS-associated macrophages (CAMs), which include resident microglia and blood-derived macrophages, as an important contributor to inflammatory demyelination and neuroaxonal injury in MS. We also show that the inflammasome molecule NLRP3 is associated with peroxisome injury in vitro and in vivo, especially in CAMs. Treatment with the peroxisome proliferator 4-phenylbutyrate exerted protective effects with improved molecular, morphologic, and neurobehavioral outcomes that were associated with a neuroprotective CAM phenotype. These findings offer novel insights into the contribution of peroxisome injury in MS together with preclinical testing of a rational therapy for MS.
Collapse
Affiliation(s)
| | - Matthew A L Doan
- The Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | | | | | | | | | | | | | | | - Francesca Di Cara
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | | - Christopher Power
- Departments of Medicine
- Medical Microbiology & Immunology
- The Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
34
|
Fogliano C, Motta CM, Venditti P, Fasciolo G, Napolitano G, Avallone B, Carotenuto R. Environmental concentrations of a delorazepam-based drug impact on embryonic development of non-target Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106244. [PMID: 35878487 DOI: 10.1016/j.aquatox.2022.106244] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Benzodiazepines, psychotropics drugs used for treating sleep disorders, anxiety and epilepsy, represent a major class of emerging water pollutants. As occurs for other pharmaceutical residues, they are not efficiently degraded during sewage treatment and persist in effluent waters. Bioaccumulation is already reported in fish and small crustaceans, but the impact and consequences on other "non-target" aquatic species are still unclear and nowadays of great interest. In this study, we investigated the effects of a pharmaceutical preparation containing the benzodiazepine delorazepam on the embryogenesis of Xenopus laevis, amphibian model species, taxa at high risk of exposure to water contaminants. Environmental (1 μg/L) and two higher (5 and 10 μg/L) concentrations were tested on tadpoles up to stage 45/46. Results demonstrate that delorazepam interferes with embryo development and that the effects are prevalently dose-dependent. Delorazepam reduces vitality by decreasing heart rate and motility, induces marked cephalic and abdominal edema, as well as intestinal and retinal defects. At the molecular level, delorazepam increases ROS production, modifies the expression of some master developmental genes and pro-inflammatory cytokines. The resulting stress condition significantly affects embryos' development and threatens their survival. Similar effects should be expected as well in embryos belonging to other aquatic species that have not been yet considered targets for these pharmaceutical residues.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Paola Venditti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gianluca Fasciolo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Yu M, Wang D, Zhong D, Xie W, Luo J. Adropin Carried by Reactive Oxygen Species-Responsive Nanocapsules Ameliorates Renal Lipid Toxicity in Diabetic Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37330-37344. [PMID: 35951354 DOI: 10.1021/acsami.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetes complication mainly caused by lipid toxicity characterized by oxidative stress. Studies have shown that adropin (Ad) regulates energy metabolism and may be an effective target to improve DKD. This study investigated the effect of exogenous Ad encapsulated in reactive oxygen species (ROS)-responsive nanocapsules (Ad@Gel) on DKD. HK2 cells were induced with high glucose (HG) and intervened with Ad@Gel. A diabetes mouse model was established using HG and high-fat diet combined with streptozotocin and treated with Ad@Gel to observe its effects on renal function, pathological damage, lipid metabolism, and oxidative stress. Results showed that Ad@Gel could protect HK2 from HG stimulation in vitro. It also effectively controls blood glucose and lipid levels, improves renal function, inhibits excessive production of ROS, protects mitochondria from damage, improves lipid deposition in renal tissues, and downregulates the expression of lipogenic proteins SEBP-1 and ADRP in DKD mice. In HG-induced HK2 cells or the kidney of DKD patients, the low expression of neuronatin (Nnat) and high expression of translocator protein (TSPO) were observed. Knockdown Nnat or overexpression of TSPO significantly reversed the effect of Ad@Gel on improving mitochondrial damage. In addition, knockdown Nnat also significantly reversed the effect of Ad@Gel on lipid metabolism. The results suggest that the effect of Ad on DKD may be achieved by activating Nnat to improve lipid metabolism and inhibit TSPO activity, thereby enhancing mitochondrial function.
Collapse
Affiliation(s)
- Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Di Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Da Zhong
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Weichang Xie
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
36
|
Jimenez IA, Stilin AP, Morohaku K, Hussein MH, Koganti PP, Selvaraj V. Mitochondrial translocator protein deficiency exacerbates pathology in acute experimental ulcerative colitis. Front Physiol 2022; 13:896951. [PMID: 36060674 PMCID: PMC9437295 DOI: 10.3389/fphys.2022.896951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In human patients and animal models of ulcerative colitis (UC), upregulation of the mitochondrial translocator protein (TSPO) in the colon is consistent with inflammation. Although the molecular function for TSPO remains unclear, it has been investigated as a therapeutic target for ameliorating UC pathology. In this study, we examined the susceptibility of Tspo gene-deleted (Tspo -/- ) mice to insults as provided by the dextran sodium sulfate (DSS)-induced acute UC model. Our results show that UC clinical signs and pathology were severely exacerbated in Tspo -/- mice compared to control Tspo fl/fl cohorts. Histopathology showed extensive inflammation and epithelial loss in Tspo -/- mice that caused an aggravated disease. Colonic gene expression in UC uncovered an etiology linked to precipitous loss of epithelial integrity and disproportionate mast cell activation assessed by tryptase levels in Tspo -/- colons. Evaluation of baseline homeostatic shifts in Tspo -/- colons revealed gene expression changes noted in elevated epithelial Cdx2, mast cell Cd36 and Mcp6, with general indicators of lower proliferation capacity and elevated mitochondrial fatty acid oxidation. These findings demonstrate that intact physiological TSPO function serves to limit inflammation in acute UC, and provide a systemic basis for investigating TSPO-targeting mechanistic therapeutics.
Collapse
Affiliation(s)
- Isabel A. Jimenez
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allison P. Stilin
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Kanako Morohaku
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,School of Science and Technology, Institute of Agriculture, Shinshu University, Nagano, Japan
| | - Mahmoud H. Hussein
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,*Correspondence: Vimal Selvaraj,
| |
Collapse
|
37
|
Vakhitova YV, Zainullina LF, Sadovskii MS, Mokrov GV, Seredenin SB. Analysis of the Mechanisms of Action of a TSPO Ligand (GML-3 Compound) in a Model of Lipopolysaccharide-Induced Cell Damage. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
39
|
Intervention of neuroinflammation in the traumatic brain injury trajectory: In vivo and clinical approaches. Int Immunopharmacol 2022; 108:108902. [DOI: 10.1016/j.intimp.2022.108902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022]
|
40
|
Ming T, Dong M, Song X, Li X, Kong Q, Fang Q, Wang J, Wu X, Xia Z. Integrated Analysis of Gene Co-Expression Network and Prediction Model Indicates Immune-Related Roles of the Identified Biomarkers in Sepsis and Sepsis-Induced Acute Respiratory Distress Syndrome. Front Immunol 2022; 13:897390. [PMID: 35844622 PMCID: PMC9281548 DOI: 10.3389/fimmu.2022.897390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a series of clinical syndromes caused by immunological response to severe infection. As the most important and common complication of sepsis, acute respiratory distress syndrome (ARDS) is associated with poor outcomes and high medical expenses. However, well-described studies of analysis-based researches, especially related bioinformatics analysis on revealing specific targets and underlying molecular mechanisms of sepsis and sepsis-induced ARDS (sepsis/se-ARDS), still remain limited and delayed despite the era of data-driven medicine. In this report, weight gene co-expression network based on data from a public database was constructed to identify the key modules and screen the hub genes. Functional annotation by enrichment analysis of the modular genes also demonstrated the key biological processes and signaling pathway; among which, extensive immune-involved enrichment was remarkably associated with sepsis/se-ARDS. Based on the differential expression analysis, least absolute shrink and selection operator, and multivariable logistic regression analysis of the screened hub genes, SIGLEC9, TSPO, CKS1B and PTTG3P were identified as the candidate biomarkers for the further analysis. Accordingly, a four-gene-based model for diagnostic prediction assessment was established and then developed by sepsis/se-ARDS risk nomogram, whose efficiency was verified by calibration curves and decision curve analyses. In addition, various machine learning algorithms were also applied to develop extra models based on the four genes. Receiver operating characteristic curve analysis proved the great diagnostic and predictive performance of these models, and the multivariable logistic regression of the model was still found to be the best as further verified again by the internal test, training, and external validation cohorts. During the development of sepsis/se-ARDS, the expressions of the identified biomarkers including SIGLEC9, TSPO, CKS1B and PTTG3P were all regulated remarkably and generally exhibited notable correlations with the stages of sepsis/se-ARDS. Moreover, the expression levels of these four genes were substantially correlated during sepsis/se-ARDS. Analysis of immune infiltration showed that multiple immune cells, neutrophils and monocytes in particular, might be closely involved in the process of sepsis/se-ARDS. Besides, SIGLEC9, TSPO, CKS1B and PTTG3P were considerably correlated with the infiltration of various immune cells including neutrophils and monocytes during sepsis/se-ARDS. The discovery of relevant gene co-expression network and immune signatures might provide novel insights into the pathophysiology of sepsis/se-ARDS.
Collapse
Affiliation(s)
- Tingqian Ming
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Mingyou Dong
- College of Medical Laboratory Science, Youjiang Medical College for Nationalities, Baise, China
| | - Xuemin Song
- Department of Anesthesiology and Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xingqiao Li
- School of Computer, Wuhan University, Wuhan, China
| | - Qian Kong
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Qing Fang
- Department of Anesthesiology and Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, China
- *Correspondence: Zhongyuan Xia, ; Xiaojing Wu,
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, China
- *Correspondence: Zhongyuan Xia, ; Xiaojing Wu,
| |
Collapse
|
41
|
Drljača J, Popović A, Bulajić D, Stilinović N, Vidičević Novaković S, Sekulić S, Milenković I, Ninković S, Ljubković M, Čapo I. Diazepam diminishes temozolomide efficacy in the treatment of U87 glioblastoma cell line. CNS Neurosci Ther 2022; 28:1447-1457. [PMID: 35703405 PMCID: PMC9344091 DOI: 10.1111/cns.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
AIMS Many patients with glioblastoma (GBM) suffer from comorbid neurological/psychiatric disorders and, therefore, are treated with psychopharmacological agents. Diazepam (DIA) is widely adopted to treat status epilepticus, alleviate anxiety, and inhibit chemotherapy-associated delayed emesis in GBM patients. Even though temozolomide (TMZ) and DIA could be found as possible combination therapy in clinical practice, there are no reports of their combined effects in GBM. Hence, it may be of interest to investigate whether DIA enhances the antitumor efficacy of TMZ in GBM cells. METHODS U87 human GBM was used to examine the effects of combined TMZ and DIA on cell viability, and the oxygen consumption within the cells, in order to evaluate mitochondrial bioenergetic response upon the treatment. RESULTS The cooperative index showed the presence of antagonism between TMZ and DIA, which was confirmed on long-term observation. Moreover, the level of apoptosis after the TMZ treatment was significantly decreased when administered with DIA (p < 0.001). Concomitant use of TMZ and DIA increased the basal cell respiration rate, the oxidative phosphorylation rate, and maximal capacity of mitochondrial electron transport chain, as well as the activities of complexes I and II, vs. TMZ alone (p < 0.001). CONCLUSION Comparing our results with data reported that DIA elicits cell cycle arrest in the G0/G1 phase and favors senescence reveals that DIA diminishes TMZ efficacy in concomitant use in the treatment of GBM. However, due to its great potency to hinder GBM proliferation and metabolism, it could be considered using DIA as maintenance therapy after TMZ cycles.
Collapse
Affiliation(s)
- Jovana Drljača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra Popović
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Department of Physiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Dragica Bulajić
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Sašenka Vidičević Novaković
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Sekulić
- Department of Neurology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Milenković
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Srđan Ninković
- Department of Surgery, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Marko Ljubković
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Ivan Čapo
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
42
|
Qu Y, Cao J, Wang D, Wang S, Li Y, Zhu Y. 14,15-Epoxyeicosatrienoic Acid Protect Against Glucose Deprivation and Reperfusion-Induced Cerebral Microvascular Endothelial Cells Injury by Modulating Mitochondrial Autophagy via SIRT1/FOXO3a Signaling Pathway and TSPO Protein. Front Cell Neurosci 2022; 16:888836. [PMID: 35558879 PMCID: PMC9086968 DOI: 10.3389/fncel.2022.888836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular system plays a vital role in controlling the blood flow into brain parenchymal tissues. Additionally, it also facilitates the metabolism in neuronal biological activities. Cerebral microvascular endothelial cells (MECs) are involved in mediating progression of the diseases related to cerebral vessels, including stroke. Arachidonic acid can be transformed into epoxyeicosatrienoic acids (EETs) under the catalysis by cytochrome P450 epoxygenase. We have reported that EETs could protect neuronal function. In our research, the further role of 14,15-EET in the protective effects of cerebral MECs and the potential mechanisms involved in oxygen glucose deprivation and reperfusion (OGD/R) were elucidated. In our study, we intervened the SIRT1/FOXO3a pathway and established a TSPO knock down model by using RNA interference technique to explore the cytoprotective role of 14,15-EET in OGD/R injury. Cerebral MECs viability was remarkably reduced after OGD/R treatment, however, 14,15-EET could reverse this effect. To further confirm whether 14,15-EET was mediated by SIRT1/FOXO3a signaling pathway and translocator protein (TSPO) protein, we also detected autophagy-related proteins, mitochondrial membrane potential, apoptosis indicators, oxygen free radicals, etc. It was found that 14,15-EET could regulate the mitophagy induced by OGD/R. SIRT1/FOXO3a signaling pathway and TSPO regulation were related to the protective role of 14,15-EET in cerebral MECs. Moreover, we also explored the potential relationship between SIRT1/FOXO3a signaling pathway and TSPO protein. Our study revealed the protective role and the potential mechanisms of 14,15-EET in cerebral MECs under OGD/R condition.
Collapse
Affiliation(s)
- Youyang Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinlu Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
Hines RM, Aquino EA, Khumnark MI, Dávila MP, Hines DJ. Comparative Assessment of TSPO Modulators on Electroencephalogram Activity and Exploratory Behavior. Front Pharmacol 2022; 13:750554. [PMID: 35444539 PMCID: PMC9015213 DOI: 10.3389/fphar.2022.750554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Network communication in the CNS relies upon multiple neuronal and glial signaling pathways. In addition to synaptic transmission, other organelles such as mitochondria play roles in cellular signaling. One highly conserved mitochondrial signaling mechanism involves the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane. Originally, TSPO was identified as a binding site for benzodiazepines in the periphery. It was later discovered that TSPO is found in mitochondria, including in CNS cells. TSPO is implicated in multiple cellular processes, including the translocation of cholesterol and steroidogenesis, porphyrin transport, cellular responses to stress, inflammation, and tumor progression. Yet the impacts of modulating TSPO signaling on network activity and behavioral performance have not been characterized. In the present study, we assessed the effects of TSPO modulators PK11195, Ro5-4864, and XBD-173 via electroencephalography (EEG) and the open field test (OFT) at low to moderate doses. Cortical EEG recordings revealed increased power in the δ and θ frequency bands after administration of each of the three modulators, as well as compound- and dose-specific changes in α and γ. Behaviorally, these compounds reduced locomotor activity in the OFT in a dose-dependent manner, with XBD-173 having the subtlest behavioral effects while still strongly modulating the EEG. These findings indicate that TSPO modulators, despite their diversity, exert similar effects on the EEG while displaying a range of sedative/hypnotic effects at moderate to high doses. These findings bring us one step closer to understanding the functions of TSPO in the brain and as a target in CNS disease.
Collapse
Affiliation(s)
| | | | | | | | - Dustin J. Hines
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
44
|
Zhao JF, Ren T, Li XY, Guo TL, Liu CH, Wang X. Research Progress on the Role of Microglia Membrane Proteins or Receptors in Neuroinflammation and Degeneration. Front Cell Neurosci 2022; 16:831977. [PMID: 35281298 PMCID: PMC8913711 DOI: 10.3389/fncel.2022.831977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Microglia are intrinsic immune cells of the central nervous system and play a dual role (pro-inflammatory and anti-inflammatory) in the homeostasis of the nervous system. Neuroinflammation mediated by microglia serves as an important stage of ischemic hypoxic brain injury, cerebral hemorrhage disease, neurodegeneration and neurotumor of the nervous system and is present through the whole course of these diseases. Microglial membrane protein or receptor is the basis of mediating microglia to play the inflammatory role and they have been found to be upregulated by recognizing associated ligands or sensing changes in the nervous system microenvironment. They can then allosterically activate the downstream signal transduction and produce a series of complex cascade reactions that can activate microglia, promote microglia chemotactic migration and stimulate the release of proinflammatory factor such as TNF-α, IL-β to effectively damage the nervous system and cause apoptosis of neurons. In this paper, several representative membrane proteins or receptors present on the surface of microglia are systematically reviewed and information about their structures, functions and specific roles in one or more neurological diseases. And on this basis, some prospects for the treatment of novel coronavirus neurological complications are presented.
Collapse
Affiliation(s)
- Jun-Feng Zhao
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Tong Ren
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Xiang-Yu Li
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Tian-Lin Guo
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Chun-Hui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
- Chun-Hui Liu,
| | - Xun Wang
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Xun Wang,
| |
Collapse
|
45
|
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, Arlicot N, Pariente J, Payoux P. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update. Eur J Neurosci 2022; 55:1322-1343. [PMID: 35083791 DOI: 10.1111/ejn.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD and how it can be impacted by a disease-modifying treatment.
Collapse
Affiliation(s)
- Dominique Gouilly
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria-Joao Ribeiro
- Department of Nuclear Medicine, CHU, Tours, France.,UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU, Toulouse, France.,Center of Clinical Investigations (CIC1436), CHU, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| |
Collapse
|
46
|
Translocator Protein Ligand PIGA1138 Reduces Disease Symptoms and Severity in Experimental Autoimmune Encephalomyelitis Model of Primary Progressive Multiple Sclerosis. Mol Neurobiol 2022; 59:1744-1765. [PMID: 35018577 DOI: 10.1007/s12035-022-02737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system (CNS) caused by CNS infiltration of peripheral immune cells, immune-mediated attack of the myelin sheath, neuroinflammation, and/or axonal/neuronal dysfunctions. Some drugs are available to cope with relapsing-remitting MS (RRMS) but there is no therapy for the primary progressive MS (PPMS). Because growing evidence supports a regulatory role of the translocator protein (TSPO) in neuroinflammatory, demyelinating, and neurodegenerative processes, we investigated the therapeutic potential of phenylindolyilglyoxylamydes (PIGAs) TSPO ligands in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice mimicking the human PPMS. MOG-EAE C57Bl/6-mice were treated by TSPO ligands PIGA839, PIGA1138, or the vehicle. Several methods were combined to evaluate PIGAs-TSPO ligand effects on MOG-EAE symptoms, CNS infiltration by immune cells, demyelination, and axonal damages. PIGA1138 (15 mg/kg) drastically reduced MOG-EAE mice clinical scores, ameliorated motor dysfunctions assessed with the Catwalk device, and counteracted MOG-EAE-induced demyelination by preserving Myelin basic protein (MBP) expression in the CNS. Furthermore, PIGA1138-treatment prevented EAE-evoked decreased neurofilament-200 expression in spinal and cerebellar axons. Moreover, PIGA1138 inhibited peripheral immune-CD45 + cell infiltration in the CNS, suggesting that it may control inflammatory mechanisms involved in PPMS. Concordantly, PIGA1138 enhanced anti-inflammatory interleukin-10 serum level in MOG-EAE mice. PIGA1138-treatment, which increased neurosteroid allopregnanolone production, ameliorated all pathological biomarkers, while PIGA839, unable to activate neurosteroidogenesis in vivo, exerted only moderate/partial effects in MOG-EAE mice. Altogether, our results suggest that PIGA1138-based treatment may represent an interesting possibility to be explored for the innovation of effective therapies against PPMS.
Collapse
|
47
|
Delage C, Vignal N, Guerin C, Taib T, Barboteau C, Mamma C, Khacef K, Margaill I, Sarda-Mantel L, Rizzo-Padoin N, Hontonnou F, Marchand-Leroux C, Lerouet D, Hosten B, Besson V. From positron emission tomography to cell analysis of the 18-kDa Translocator Protein in mild traumatic brain injury. Sci Rep 2021; 11:24009. [PMID: 34907268 PMCID: PMC8671393 DOI: 10.1038/s41598-021-03416-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Traumatic brain injury (TBI) leads to a deleterious neuroinflammation, originating from microglial activation. Monitoring microglial activation is an indispensable step to develop therapeutic strategies for TBI. In this study, we evaluated the use of the 18-kDa translocator protein (TSPO) in positron emission tomography (PET) and cellular analysis to monitor microglial activation in a mild TBI mouse model. TBI was induced on male Swiss mice. PET imaging analysis with [18F]FEPPA, a TSPO radiotracer, was performed at 1, 3 and 7 days post-TBI and flow cytometry analysis on brain at 1 and 3 days post-TBI. PET analysis showed no difference in TSPO expression between non-operated, sham-operated and TBI mice. Flow cytometry analysis demonstrated an increase in TSPO expression in ipsilateral brain 3 days post-TBI, especially in microglia, macrophages, lymphocytes and neutrophils. Moreover, microglia represent only 58.3% of TSPO+ cells in the brain. Our results raise the question of the use of TSPO radiotracer to monitor microglial activation after TBI. More broadly, flow cytometry results point the lack of specificity of TSPO for microglia and imply that microglia contribute to the overall increase in TSPO in the brain after TBI, but is not its only contributor.
Collapse
Affiliation(s)
- Clément Delage
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France.
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France.
| | - Nicolas Vignal
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
| | - Coralie Guerin
- Université de Paris, Innovative Therapies in Haemostasis, Inserm, 75006, Paris, France
- Institut Curie, Cytometry Core, 75005, Paris, France
- Université de Paris, Inserm UMS 3612 CNRS - US25 Inserm -Faculté de Pharmacie de Paris, Paris, France
| | - Toufik Taib
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
| | - Clément Barboteau
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Célia Mamma
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
| | - Kahina Khacef
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
| | - Isabelle Margaill
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1140, Paris, France
| | - Laure Sarda-Mantel
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
| | - Nathalie Rizzo-Padoin
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
- CHU de Martinique, Service Pharmacie, Hôpital Pierre Zobda-Quitman, Fort-de-France, France
| | - Fortune Hontonnou
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
- Université de Paris, Inserm UMR-S 942, Hôpital Lariboisière, Paris, France
| | - Catherine Marchand-Leroux
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Dominique Lerouet
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Benoit Hosten
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service Pharmacie, Hôpital Saint-Louis, Paris, France
| | - Valérie Besson
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
| |
Collapse
|
48
|
Basirun C, Ferlazzo ML, Howell NR, Liu GJ, Middleton RJ, Martinac B, Narayanan SA, Poole K, Gentile C, Chou J. Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Front Cell Dev Biol 2021; 9:750775. [PMID: 34778261 PMCID: PMC8586646 DOI: 10.3389/fcell.2021.750775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases.
Collapse
Affiliation(s)
- Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Melanie L. Ferlazzo
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon Bérard, Lyon, France
| | - Nicholas R. Howell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - S. Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
49
|
Benz R. Historical Perspective of Pore-Forming Activity Studies of Voltage-Dependent Anion Channel (Eukaryotic or Mitochondrial Porin) Since Its Discovery in the 70th of the Last Century. Front Physiol 2021; 12:734226. [PMID: 35547863 PMCID: PMC9083909 DOI: 10.3389/fphys.2021.734226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic porin, also known as Voltage-Dependent Anion Channel (VDAC), is the most frequent protein in the outer membrane of mitochondria that are responsible for cellular respiration. Mitochondria are most likely descendants of strictly aerobic Gram-negative bacteria from the α-proteobacterial lineage. In accordance with the presumed ancestor, mitochondria are surrounded by two membranes. The mitochondrial outer membrane contains besides the eukaryotic porins responsible for its major permeability properties a variety of other not fully identified channels. It encloses also the TOM apparatus together with the sorting mechanism SAM, responsible for the uptake and assembly of many mitochondrial proteins that are encoded in the nucleus and synthesized in the cytoplasm at free ribosomes. The recognition and the study of electrophysiological properties of eukaryotic porin or VDAC started in the late seventies of the last century by a study of Schein et al., who reconstituted the pore from crude extracts of Paramecium mitochondria into planar lipid bilayer membranes. Whereas the literature about structure and function of eukaryotic porins was comparatively rare during the first 10years after the first study, the number of publications started to explode with the first sequencing of human Porin 31HL and the recognition of the important function of eukaryotic porins in mitochondrial metabolism. Many genomes contain more than one gene coding for homologs of eukaryotic porins. More than 100 sequences of eukaryotic porins are known to date. Although the sequence identity between them is relatively low, the polypeptide length and in particular, the electrophysiological characteristics are highly preserved. This means that all eukaryotic porins studied to date are anion selective in the open state. They are voltage-dependent and switch into cation-selective substates at voltages in the physiological relevant range. A major breakthrough was also the elucidation of the 3D structure of the eukaryotic pore, which is formed by 19 β-strands similar to those of bacterial porin channels. The function of the presumed gate an α-helical stretch of 20 amino acids allowed further studies with respect to voltage dependence and function, but its exact role in channel gating is still not fully understood.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
50
|
Betlazar C, Middleton RJ, Howell N, Storer B, Davis E, Davies J, Banati R, Liu GJ. Mitochondrial Translocator Protein (TSPO) Expression in the Brain After Whole Body Gamma Irradiation. Front Cell Dev Biol 2021; 9:715444. [PMID: 34760884 PMCID: PMC8573390 DOI: 10.3389/fcell.2021.715444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
The brain's early response to low dose ionizing radiation, as may be encountered during diagnostic procedures and space exploration, is not yet fully characterized. In the brain parenchyma, the mitochondrial translocator protein (TSPO) is constitutively expressed at low levels by endothelial cells, and can therefore be used to assess the integrity of the brain's vasculature. At the same time, the inducible expression of TSPO in activated microglia, the brain's intrinsic immune cells, is a regularly observed early indicator of subtle or incipient brain pathology. Here, we explored the use of TSPO as a biomarker of brain tissue injury following whole body irradiation. Post-radiation responses were measured in C57BL/6 wild type (Tspo +/+) and TSPO knockout (Tspo -/-) mice 48 h after single whole body gamma irradiations with low doses 0, 0.01, and 0.1 Gy and a high dose of 2 Gy. Additionally, post-radiation responses of primary microglial cell cultures were measured at 1, 4, 24, and 48 h at an irradiation dose range of 0 Gy-2 Gy. TSPO mRNA and protein expression in the brain showed a decreased trend after 0.01 Gy relative to sham-irradiated controls, but remained unchanged after higher doses. Immunohistochemistry confirmed subtle decreases in TSPO expression after 0.01 Gy in vascular endothelial cells of the hippocampal region and in ependymal cells, with no detectable changes following higher doses. Cytokine concentrations in plasma after whole body irradiation showed differential changes in IL-6 and IL-10 with some variations between Tspo-/- and Tspo +/+ animals. The in vitro measurements of TSPO in primary microglial cell cultures showed a significant reduction 1 h after low dose irradiation (0.01 Gy). In summary, acute low and high doses of gamma irradiation up to 2 Gy reduced TSPO expression in the brain's vascular compartment without de novo induction of TSPO expression in parenchymal microglia, while TSPO expression in directly irradiated, isolated, and thus highly activated microglia, too, was reduced after low dose irradiation. The potential link between TSPO, its role in mitochondrial energy metabolism and the selective radiation sensitivity, notably of cells with constitutive TSPO expression such as vascular endothelial cells, merits further exploration.
Collapse
Affiliation(s)
- Calina Betlazar
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Nicholas Howell
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Ben Storer
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Emma Davis
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|