1
|
Sokouri EA, Ahouty B, Abé IA, Yao FG, Konan TK, Nyangiri OA, MacLeod A, Matovu E, Noyes H, Koffi M. Evaluation of the epidemiological situation of intestinal schistosomiasis using the POC-CCA parasite antigen test and the Kato-Katz egg count test in school-age children in endemic villages in western Côte d'Ivoire. Parasite 2024; 31:66. [PMID: 39470326 PMCID: PMC11520599 DOI: 10.1051/parasite/2024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/23/2024] [Indexed: 10/30/2024] Open
Abstract
Schistosomiasis is an endemic disease in Côte d'Ivoire. We compared the conventional Kato Katz (KK) test and a more sensitive but rarely used method, the point-of-care circulating cathodic antigen (POC-CCA), in order to contribute to the development of a more appropriate strategy for the control and elimination of intestinal schistosomiasis in western Côte d'Ivoire. A cross-sectional epidemiological survey was conducted in eight elementary schools in the Guémon and Cavally regions from February to December 2020. Selected schoolchildren provided stool and urine samples to detect the presence of Schistosoma mansoni eggs and parasite antigen using the KK and POC-CCA tests, respectively. A total of 554 schoolchildren were included in the study. The overall prevalence of intestinal schistosomiasis was 10% and 67% for KK and POC-CCA, respectively. The POC-CCA detected an infection rate of 100%, while the KK yielded a rate of 42%. In schools, prevalence ranged from 27 to 100% with POC-CCA and from 0 to 42% with KK. Swimming, fishing, washing clothes, and dishwashing were significantly associated with the onset of infection and high intensities. The epidemiological risk factors for intestinal schistosomiasis updated here using KK and POC-CCA diagnostic methods showed that prevalence was much higher than previously estimated using the KK. The POC-CCA is more sensitive and ways should be considered to improve its specificity in order to improve the diagnosis.
Collapse
Affiliation(s)
- Edwige A. Sokouri
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé Daloa Côte d’Ivoire
| | - Bernardin Ahouty
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé Daloa Côte d’Ivoire
| | - Innocent A. Abé
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé Daloa Côte d’Ivoire
| | - Flora G.D. Yao
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé Daloa Côte d’Ivoire
| | - Thomas K. Konan
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé Daloa Côte d’Ivoire
| | - Oscar A. Nyangiri
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University Kampala Uganda
| | - Annette MacLeod
- College of Medical, Veterinary and Life Sciences Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow Glasgow UK
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University Kampala Uganda
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool Liverpool UK
| | - Mathurin Koffi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé Daloa Côte d’Ivoire
| |
Collapse
|
2
|
Anikeeva O, Hansen A, Varghese B, Borg M, Zhang Y, Xiang J, Bi P. The impact of increasing temperatures due to climate change on infectious diseases. BMJ 2024; 387:e079343. [PMID: 39366706 DOI: 10.1136/bmj-2024-079343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Global temperatures will continue to rise due to climate change, with high temperature periods expected to increase in intensity, frequency, and duration. Infectious diseases, including vector-borne diseases such as dengue fever and malaria, waterborne diseases such as cholera, and foodborne diseases such as salmonellosis are influenced by temperature and other climatic variables, thus contributing to higher disease burden and associated healthcare costs, particularly in socioeconomically disadvantaged regions. Targeted efforts and investments are therefore needed to support low and middle income countries to prepare for and respond to the increasing infectious disease threats posed by rising temperatures. This can be facilitated by the development and refinement of robust disease and entomological surveillance and early warning systems with integration of climatic information that promote enhanced understanding of the geographic distribution of disease risk. To enhance healthcare workforce capacity and capability to respond to these public health threats, medical curricula and continuing professional education programmes for healthcare providers must include evidence based components on the impacts of climate change on infectious diseases.
Collapse
Affiliation(s)
- Olga Anikeeva
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Alana Hansen
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Blesson Varghese
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Matthew Borg
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Ying Zhang
- University of Sydney, Sydney, New South Wales, Australia
| | | | - Peng Bi
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| |
Collapse
|
3
|
Aslan IH, Pourtois JD, Chamberlin AJ, Mitchell KR, Mari L, Lwiza KM, Wood CL, Mordecai EA, Yu A, Tuan R, Palasio RGS, Monteiro AMV, Kirk D, Athni TS, Sokolow SH, N’Goran EK, Diakite NR, Ouattara M, Gatto M, Casagrandi R, Little DC, Ozretich RW, Norman R, Allan F, Brierley AS, Liu P, Pereira TA, De Leo GA. Re-assessing thermal response of schistosomiasis transmission risk: Evidence for a higher thermal optimum than previously predicted. PLoS Negl Trop Dis 2024; 18:e0011836. [PMID: 38857289 PMCID: PMC11207148 DOI: 10.1371/journal.pntd.0011836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/26/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3°C and 23.6-27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.
Collapse
Affiliation(s)
- Ibrahim Halil Aslan
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Julie D. Pourtois
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Andrew J. Chamberlin
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Kaitlyn R. Mitchell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Lorenzo Mari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kamazima M. Lwiza
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, New York, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | - Ao Yu
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Roseli Tuan
- Pasteur Institute, São Paulo Health Public Office, São Paulo, Brazil
| | | | | | - Devin Kirk
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tejas S. Athni
- Department of Biology, Stanford University, Stanford, California, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susanne H. Sokolow
- Department of Biology, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | | | | | | | - Marino Gatto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Renato Casagrandi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - David C. Little
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Reed W. Ozretich
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Rachel Norman
- Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Andrew S. Brierley
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Ping Liu
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, New York, United States of America
| | - Thiago A. Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Giulio A. De Leo
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| |
Collapse
|
4
|
Aslan IH, Pourtois JD, Chamberlin AJ, Mitchell KR, Mari L, Lwiza KM, Wood CL, Mordecai EA, Yu A, Tuan R, Palasio RGS, Monteiro AM, Kirk D, Athni TS, Sokolow SH, N’Goran EK, Diakite NR, Ouattara M, Gatto M, Casagrandi R, Little DC, Ozretich RW, Norman R, Allan F, Brierley AS, Liu P, Pereira TA, De Leo GA. Re-assessing thermal response of schistosomiasis transmission risk: evidence for a higher thermal optimum than previously predicted. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.04.24300851. [PMID: 38826336 PMCID: PMC11142288 DOI: 10.1101/2024.01.04.24300851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3 °C and 23.6-27.9 °C (95 % CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.
Collapse
Affiliation(s)
- Ibrahim Halil Aslan
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Julie D. Pourtois
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | | | - Kaitlyn R. Mitchell
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Lorenzo Mari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kamazima M. Lwiza
- School of Marine and Atmospheric Sciences Stony Brook University, New York, NY, USA
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Ao Yu
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Roseli Tuan
- Pasteur Institute, São Paulo Health Public Office, São Paulo, SP, Brazil
| | | | | | - Devin Kirk
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Tejas S. Athni
- Department of Biology, Stanford University, Stanford, CA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susanne H. Sokolow
- Department of Biology, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | | | - Nana R. Diakite
- Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d’Ivoire
| | - Mamadou Ouattara
- Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d’Ivoire
| | - Marino Gatto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Renato Casagrandi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - David C. Little
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | | | - Rachel Norman
- Computing Science and Mathematics, University of Stirling, Stirling, UK
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, UK
| | - Andrew S. Brierley
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Ping Liu
- School of Marine and Atmospheric Sciences Stony Brook University, New York, NY, USA
| | - Thiago A. Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Giulio A. De Leo
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
5
|
Cichy A, Stanicka A, Żbikowska E. Each coin has 2 sides: a positive role of alien Potamopyrgus antipodarum (Grey, 1843) snails in reducing the infection of native lymnaeids with trematodes. Curr Zool 2024; 70:262-269. [PMID: 38726247 PMCID: PMC11078042 DOI: 10.1093/cz/zoac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 05/12/2024] Open
Abstract
The change in the distribution of organisms in freshwater ecosystems due to natural or manmade processes raises the question of the impact of alien species on local communities. Although most studies indicate a negative effect, the positive one is more difficult to discern, especially in multispecies systems, including hosts and parasites. The purpose of the study was to check whether the presence of an alien host, Potamopyrgus antipodarum, reduces the intensity of Echinoparyphium aconiatum metacercariae in a native host, Radix spp. We additionally tested the impact of water temperature and the biomass of the alien host on the dilution effect. We experimentally studied (1) the lifespan of echinostome cercariae in different temperatures, (2) the infectivity of cercariae toward the alien host and native host, and (3) the impact of different biomass of the alien host on the intensity of metacercariae in the native host. We found that cercarial survival and infectivity were temperature dependent. However, cercarial survival decreased with increasing temperature, contrary to cercarial infectivity. Echinostome cercariae entered the renal cavity of both the native host and alien host, and successfully transformed into metacercariae. The number of metacercariae in the native host decreased with the increasing biomass of the alien host. Our results indicate that lymnaeids may benefit from the co-occurrence with P. antipodarum, as the presence of additional hosts of different origins may reduce the prevalence of parasites in native communities. However, the scale of the dilution effect depends not only on the increased spectrum of susceptible hosts but also on the other variables of the environment, including water temperature and host density.
Collapse
Affiliation(s)
- Anna Cichy
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Anna Stanicka
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Elżbieta Żbikowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
6
|
Tabo Z, Kalinda C, Breuer L, Albrecht C. Exploring the interplay between climate change and schistosomiasis transmission dynamics. Infect Dis Model 2024; 9:158-176. [PMID: 38268699 PMCID: PMC10805680 DOI: 10.1016/j.idm.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/07/2023] [Accepted: 12/16/2023] [Indexed: 01/26/2024] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic worms, poses a major public health challenge in economically disadvantaged regions, especially in Sub-Saharan Africa. Climate factors, such as temperature and rainfall patterns, play a crucial role in the transmission dynamics of the disease. This study presents a deterministic model that aims to evaluate the temporal and seasonal transmission dynamics of schistosomiasis by examining the influence of temperature and rainfall over time. Equilibrium states are examined to ascertain their existence and stability employing the center manifold theory, while the basic reproduction number is calculated using the next-generation technique. To validate the model's applicability, demographic and climatological data from Uganda, Kenya, and Tanzania, which are endemic East African countries situated in the tropical region, are utilized as a case study region. The findings of this study provide evidence that the transmission of schistosomiasis in human populations is significantly influenced by seasonal and monthly variations, with incidence rates varying across countries depending on the frequency of temperature and rainfall. Consequently, the region is marked by both schistosomiasis emergencies and re-emergences. Specifically, it is observed that monthly mean temperatures within the range of 22-27 °C create favorable conditions for the development of schistosomiasis and have a positive impact on the reproduction numbers. On the other hand, monthly maximum temperatures ranging from 27 to 33 °C have an adverse effect on transmission. Furthermore, through sensitivity analysis, it is projected that by the year 2050, factors such as the recruitment rate of snails, the presence of parasite egg-containing stools, and the rate of miracidia shedding per parasite egg will contribute significantly to the occurrence and control of schistosomiasis infections. This study highlights the significant influence of seasonal and monthly variations, driven by temperature and rainfall patterns, on the transmission dynamics of schistosomiasis. These findings underscore the importance of considering climate factors in the control and prevention strategies of schistosomiasis. Additionally, the projected impact of various factors on schistosomiasis infections by 2050 emphasizes the need for proactive measures to mitigate the disease's impact on vulnerable populations. Overall, this research provides valuable insights to anticipate future challenges and devise adaptive measures to address schistosomiasis transmission patterns.
Collapse
Affiliation(s)
- Zadoki Tabo
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany
- Department of Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany
| | - Chester Kalinda
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany
- Bill and Joyce Cummings Institute of Global Health, University of Global Health Equity | Kigali Heights, Plot 772 KG 7 Ave. PO Box 6955, Kigali, Rwanda
| | - Lutz Breuer
- Department of Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany
- Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Senckenbergstrasse 3, 35390 Giessen, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany
| |
Collapse
|
7
|
Tabo Z, Breuer L, Fabia C, Samuel G, Albrecht C. A machine learning approach for modeling the occurrence of the major intermediate hosts for schistosomiasis in East Africa. Sci Rep 2024; 14:4274. [PMID: 38383705 PMCID: PMC10881506 DOI: 10.1038/s41598-024-54699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Schistosomiasis, a prevalent water-borne disease second only to malaria, significantly impacts impoverished rural communities, primarily in Sub-Saharan Africa where over 90% of the severely affected population resides. The disease, majorly caused by Schistosoma mansoni and S. haematobium parasites, relies on freshwater snails, specifically Biomphalaria and Bulinus species, as crucial intermediate host (IH) snails. Targeted snail control is advisable, however, there is still limited knowledge about the community structure of the two genera especially in East Africa. Utilizing a machine learning approach, we employed random forest to identify key features influencing the distribution of both IH snails in this region. Our results reveal geography and climate as primary factors for Biomphalaria, while Bulinus occurrence is additionally influenced by soil clay content and nitrogen concentration. Favorable climate conditions indicate a high prevalence of IHs in East Africa, while the intricate connection with geography might signify either dispersal limitations or environmental filtering. Predicted probabilities demonstrate non-linear patterns, with Bulinus being more likely to occur than Biomphalaria in the region. This study provides foundational framework insights for targeted schistosomiasis prevention and control strategies in the region, assisting health workers and policymakers in their efforts.
Collapse
Affiliation(s)
- Zadoki Tabo
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany.
- Institute for Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany.
| | - Lutz Breuer
- Institute for Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany
- Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Codalli Fabia
- Institute for Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany
| | - Gorata Samuel
- Institute for Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany
- Department of Environmental Science, Faculty of Science, University of Botswana, P/Bag UB00704, Gaborone, Botswana
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany
| |
Collapse
|
8
|
Bischofsberger M, Reinholdt C, Dannenhaus TA, Aleith J, Bergmann-Ewert W, Müller-Hilke B, Löbermann M, Reisinger EC, Sombetzki M. Individually or as a Team-The Immunological Milieu in the Lung Caused by Migrating Single-Sex or Mixed-Sex Larvae of Schistosoma mansoni. Pathogens 2023; 12:1432. [PMID: 38133315 PMCID: PMC10746046 DOI: 10.3390/pathogens12121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
While the lung is considered an efficient site for stopping the larvae of the acute Schistosoma spp. infection phase from migrating through extensive inflammatory responses in the surrounding tissues, little is known about these processes. To date, the highest resistance to infection has been achieved in experimental studies with radiation-attenuated cercariae immunization, which elicits a strong Th1/Th2 response in the lung and results in up to 80% protection. Based on our own studies demonstrating a systemic, unpolarized Th1/Th2 response resulting from infection with male or female Schistosoma mansoni, we hypothesize that this atypical immune response is already detectable during the pulmonary passage of parasite larvae. Therefore, we examined the immune milieu in the lungs of mice caused by migrating schistosome larvae, either male or female (single-sex groups) or male + female (bisexual control), 4 and 16 days after infection in bronchoalveolar lavage and lung tissue by flow cytometry, qPCR, and multiplex analyzes. Our results show only minor differences in the inflammatory profile between the single-sex groups but significant differences compared with the bisexual control group. Both single-sex infected groups have increased expression of inflammatory markers in lung tissue, higher numbers of cytotoxic T cells (day 4 post-infection) and more T helper cells (day 16 post-infection), compared with the bisexual control group. A single-sex infection, regardless of whether it is an infection with male or female cercariae, causes an immune milieu in the lung that is clearly different from an infection with both sexes. In terms of identifying therapeutic targets to achieve resistance to re-infection, it is of great scientific interest to identify the differences in the inflammatory potential of male or female and male + female parasites.
Collapse
Affiliation(s)
- Miriam Bischofsberger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Tim Alexander Dannenhaus
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| |
Collapse
|
9
|
Dube A, Kalinda C, Manyangadze T, Mindu T, Chimbari MJ. Effects of temperature on the life history traits of intermediate host snails of fascioliasis: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011812. [PMID: 38048345 PMCID: PMC10721167 DOI: 10.1371/journal.pntd.0011812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/14/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The impact of climate change has led to variations in various biological processes, leading to altered transmission dynamics of infectious diseases, including snail-borne diseases (SBDs). Fascioliasis is one of the neglected zoonotic tropical snail-borne diseases caused by the trematode of the genus Fasciola. This review focused on laboratory experimental and model studies that evaluate the potential effect of temperature change on the ecology and biology of the intermediate host snails (IHS) of Fasciola. METHODS A literature search was conducted on Google Scholar, EBSCOhost, and PubMed databases using predefined medical subject heading terms, Boolean operators, and truncation symbols in combination with direct keywords: Fasciolosis AND Temperature, Lymnaea OR Austropeplea OR Radix OR Galba OR Fossaria OR Pseudosuccinea AND growth, fecundity, AND survival at the global scale. Other search terms used were (Fascioliasis AND Temperature), (Lymnaea AND Temperature), (Austropeplea AND Temperature), (Fossaria AND Temperature), (Galba AND Temperature), (Pseudosuccinea AND Temperature), and (Radix AND Temperature). RESULTS The final synthesis included thirty-five published articles. The studies reviewed indicated that temperature rise may alter the distribution, and optimal conditions for breeding, growth, and survival of IHS, ultimately resulting in changing the transmission dynamics of fascioliasis. The literature also confirmed that the life history traits of IHS and their interaction with the liver fluke parasites are driven by temperature, and hence climate change may have profound outcomes on the population size of snails, parasite density, and disease epidemiology. CONCLUSION We concluded that understanding the impact of temperature on the growth, fecundity, and survival of IHS may broaden our knowledge of the possible effects of climate change and hence inform fascioliasis control programs.
Collapse
Affiliation(s)
- Agrippa Dube
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Chester Kalinda
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
- University of Global Health Equity (UGHE), Bill and Joyce Cummings Institute of Global Health, Kigali Heights, Kigali, Rwanda
| | - Tawanda Manyangadze
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
- Geosciences Department, School Geosciences, Disaster and Sustainable Development, Faculty of Science and Engineering, Bindura University of Science and Technology, Bindura, Zimbabwe
| | - Tafadzwa Mindu
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Moses John Chimbari
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
- Office of the Pro-Vice Chancellor: Academic Affairs, Research and Innovation, Great Zimbabwe University, Masvingo, Zimbabwe
| |
Collapse
|
10
|
Gong Y, Tong Y, Jiang H, Xu N, Yin J, Wang J, Huang J, Chen Y, Jiang Q, Li S, Zhou Y. Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial-temporal model and 5-year longitudinal study. Parasit Vectors 2023; 16:232. [PMID: 37452398 PMCID: PMC10349508 DOI: 10.1186/s13071-023-05846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial-temporal effects of these changes. METHODS A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial-temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial-temporal effects of the change. RESULTS Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted "U" curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. CONCLUSIONS This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations.
Collapse
Affiliation(s)
- Yanfeng Gong
- Fudan University School of Public Health, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Fudan University Center for Tropical Disease Research, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
| | - Yixin Tong
- Fudan University School of Public Health, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Fudan University Center for Tropical Disease Research, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
| | - Honglin Jiang
- Fudan University School of Public Health, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Fudan University Center for Tropical Disease Research, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
| | - Ning Xu
- Fudan University School of Public Health, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Fudan University Center for Tropical Disease Research, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
| | - Jiangfan Yin
- Fudan University School of Public Health, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Fudan University Center for Tropical Disease Research, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
| | - Jiamin Wang
- Fudan University School of Public Health, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Fudan University Center for Tropical Disease Research, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
| | - Junhui Huang
- Fudan University School of Public Health, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Fudan University Center for Tropical Disease Research, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Crescent, Ottawa, ON K1G 5Z3 Canada
| | - Qingwu Jiang
- Fudan University School of Public Health, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Fudan University Center for Tropical Disease Research, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
| | - Shizhu Li
- Chinese Center for Disease Control and Prevention, NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Tropical Diseases Research, Shanghai, 200025 China
| | - Yibiao Zhou
- Fudan University School of Public Health, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
- Fudan University Center for Tropical Disease Research, Building 8, 130 Dong’an Road, Xuhui District, Shanghai, 200032 China
| |
Collapse
|
11
|
Wolmuth‐Gordon HS, Brown MJF. Transmission of a bumblebee parasite is robust despite parasite exposure to extreme temperatures. Ecol Evol 2023; 13:e10379. [PMID: 37502302 PMCID: PMC10368942 DOI: 10.1002/ece3.10379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
All organisms are exposed to fluctuating environmental conditions, such as temperature. How individuals respond to temperature affects their interactions with one another. Changes to the interaction between parasites and their hosts can have a large effect on disease dynamics. The gut parasite, Crithidia bombi, can be highly prevalent in the bumblebee, Bombus terrestris, and is an established epidemiological model. The parasite is transmitted between bumblebees via flowers, exposing it to a range of environmental temperatures prior to infection. We investigated whether incubation duration and temperature exposure, prior to infection, affects parasite infectivity. Prior to inoculation in B. terrestris, C. bombi was incubated at 10, 20, 30, 40 or 50°C for either 10 or 60 min. These times were chosen to reflect the length of time that the parasite remains infective when outside the host and the rate of floral visitation in bumblebees. Prevalence and infection intensity were measured in bees 1 week later. Incubation duration and the interaction between incubation temperature and duration affected the prevalence of C. bombi at 50°C, resulting in no infections after 60 min. Below 50°C, C. bombi prevalence was not affected by incubation temperature or duration. Extreme temperatures induced morphological changes in C. bombi cells; however, infection intensity was not affected by incubation duration or temperature. These results highlight that this parasite is robust to a wide range of temperatures. The parasite was not infective after being exposed to 50°C for 60 min, such temperatures likely exceed the flight abilities of bumblebees, and thus the potential for transmission. This study shows the importance of understanding the effects of environmental conditions on both hosts and parasites, which is needed to predict transmission under different environmental conditions.
Collapse
Affiliation(s)
| | - Mark J. F. Brown
- School of Life Sciences and the EnvironmentRoyal Holloway University of LondonEghamUK
| |
Collapse
|
12
|
Ellwanger JH, Fearnside PM, Ziliotto M, Valverde-Villegas JM, Veiga ABGDA, Vieira GF, Bach E, Cardoso JC, Müller NFD, Lopes G, Caesar L, Kulmann-Leal B, Kaminski VL, Silveira ES, Spilki FR, Weber MN, Almeida SEDEM, Hora VPDA, Chies JAB. Synthesizing the connections between environmental disturbances and zoonotic spillover. AN ACAD BRAS CIENC 2022; 94:e20211530. [PMID: 36169531 DOI: 10.1590/0001-3765202220211530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Zoonotic spillover is a phenomenon characterized by the transfer of pathogens between different animal species. Most human emerging infectious diseases originate from non-human animals, and human-related environmental disturbances are the driving forces of the emergence of new human pathogens. Synthesizing the sequence of basic events involved in the emergence of new human pathogens is important for guiding the understanding, identification, and description of key aspects of human activities that can be changed to prevent new outbreaks, epidemics, and pandemics. This review synthesizes the connections between environmental disturbances and increased risk of spillover events based on the One Health perspective. Anthropogenic disturbances in the environment (e.g., deforestation, habitat fragmentation, biodiversity loss, wildlife exploitation) lead to changes in ecological niches, reduction of the dilution effect, increased contact between humans and other animals, changes in the incidence and load of pathogens in animal populations, and alterations in the abiotic factors of landscapes. These phenomena can increase the risk of spillover events and, potentially, facilitate new infectious disease outbreaks. Using Brazil as a study model, this review brings a discussion concerning anthropogenic activities in the Amazon region and their potential impacts on spillover risk and spread of emerging diseases in this region.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Philip Martin Fearnside
- Instituto Nacional de Pesquisas da Amazônia/INPA, Avenida André Araújo, 2936, Aleixo, 69067-375 Manaus, AM, Brazil
| | - Marina Ziliotto
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jacqueline María Valverde-Villegas
- Institut de Génétique Moléculaire de Montpellier/IGMM, Centre National de la Recherche Scientifique/CNRS, Laboratoire coopératif IGMM/ABIVAX, 1919, route de Mende, 34090 Montpellier, Montpellier, France
| | - Ana Beatriz G DA Veiga
- Universidade Federal de Ciências da Saúde de Porto Alegre/UFCSPA, Departamento de Ciências Básicas de Saúde, Rua Sarmento Leite, 245, Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Gustavo F Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Laboratório de Saúde Humana in silico, Avenida Victor Barreto, 2288, Centro, 92010-000 Canoas, RS, Brazil
| | - Evelise Bach
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jáder C Cardoso
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Nícolas Felipe D Müller
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Gabriel Lopes
- Fundação Oswaldo Cruz/FIOCRUZ, Casa de Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lílian Caesar
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Indiana University/IU, Department of Biology, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Bruna Kulmann-Leal
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Valéria L Kaminski
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São Paulo/UNIFESP, Instituto de Ciência e Tecnologia/ICT, Laboratório de Imunologia Aplicada, Rua Talim, 330, Vila Nair, 12231-280 São José dos Campos, SP, Brazil
| | - Etiele S Silveira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Fernando R Spilki
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Matheus N Weber
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Sabrina E DE Matos Almeida
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Vanusa P DA Hora
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande/FURG, Faculdade de Medicina, Rua Visconde de Paranaguá, 102, Centro, 96203-900, Rio Grande, RS, Brazil
| | - José Artur B Chies
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Caixeta MB, Araújo PS, Pereira AC, Tallarico LDF, Rocha TL. Biomphalaria embryotoxicity test (BET): 60 years of research crossing boundaries for developing standard protocols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155211. [PMID: 35421466 DOI: 10.1016/j.scitotenv.2022.155211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Snail's embryotoxicity test is a suitable approach for toxicity assay of traditional and emerging pollutants, environmental risk assessment, as well as screening and development of new molluscicides. Among the snail species, Biomphalaria spp. has been indicated as a promising model system for developing standardized test protocols for assessing the chemical toxicity using early developmental stages. Thus, the current study aimed to review the data available in the scientific literature concerning the experimental approach, type of chemicals and the response of multiple biomarkers (survival, hatching rate, development delays, morphological and behavior changes) in snail embryos applied in toxicity tests. Revised data showed that the use of Biomphalaria embryos to assess chemical toxicity began in 1962. Snail's embryotoxicity test was applied mainly for analyzing the toxicity and development of new molluscicides, while its use in ecotoxicological studies is emerging. Biomphalaria glabrata was the main species analyzed. Embryos exposed to chemicals showed bioaccumulation, mortality, hatching inhibition, development delays, and morphological malformations, which were classified into four categories (hydropic, shell, cephalic and unspecified malformations). Besides, research gaps and recommendations for future research are indicated. Overall, the results showed that the Biomphalaria embryotoxicity test (BET) is a suitable tool for toxicity and health risk assessment.
Collapse
Affiliation(s)
- Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Aryelle Canedo Pereira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
14
|
Nandy G, Aditya G. Temperature dependent variations of life history traits of the land snail Allopeas gracile (Hutton, 1834) (Gastropoda: Subulinidae). J Therm Biol 2022; 108:103297. [DOI: 10.1016/j.jtherbio.2022.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|
15
|
Deka MA. Predictive Risk Mapping of Schistosomiasis in Madagascar Using Ecological Niche Modeling and Precision Mapping. Trop Med Infect Dis 2022; 7:15. [PMID: 35202211 PMCID: PMC8876685 DOI: 10.3390/tropicalmed7020015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) found throughout tropical and subtropical Africa. In Madagascar, the condition is widespread and endemic in 74% of all administrative districts in the country. Despite the significant burden of the disease, high-resolution risk maps have yet to be produced to guide national control programs. This study used an ecological niche modeling (ENM) and precision mapping approach to estimate environmental suitability and disease transmission risk. The results show that suitability for schistosomiasis is widespread and covers 264,781 km2 (102,232 sq miles). Covariates of significance to the model were the accessibility to cities, distance to water, enhanced vegetation index (EVI), annual mean temperature, land surface temperature (LST), clay content, and annual precipitation. Disease transmission risk is greatest in the central highlands, tropical east coast, arid-southwest, and northwest. An estimated 14.9 million people could be at risk of schistosomiasis; 11.4 million reside in rural areas, while 3.5 million are in urban areas. This study provides valuable insight into the geography of schistosomiasis in Madagascar and its potential risk to human populations. Because of the focal nature of the disease, these maps can inform national surveillance programs while improving understanding of areas in need of medical interventions.
Collapse
Affiliation(s)
- Mark A Deka
- Centers for Disease Control and Prevention (CDC), 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| |
Collapse
|
16
|
Jones IJ, Sokolow SH, Chamberlin AJ, Lund AJ, Jouanard N, Bandagny L, Ndione R, Senghor S, Schacht AM, Riveau G, Hopkins SR, Rohr JR, Remais JV, Lafferty KD, Kuris AM, Wood CL, De Leo G. Schistosome infection in Senegal is associated with different spatial extents of risk and ecological drivers for Schistosoma haematobium and S. mansoni. PLoS Negl Trop Dis 2021; 15:e0009712. [PMID: 34570777 PMCID: PMC8476036 DOI: 10.1371/journal.pntd.0009712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Schistosome parasites infect more than 200 million people annually, mostly in sub-Saharan Africa, where people may be co-infected with more than one species of the parasite. Infection risk for any single species is determined, in part, by the distribution of its obligate intermediate host snail. As the World Health Organization reprioritizes snail control to reduce the global burden of schistosomiasis, there is renewed importance in knowing when and where to target those efforts, which could vary by schistosome species. This study estimates factors associated with schistosomiasis risk in 16 villages located in the Senegal River Basin, a region hyperendemic for Schistosoma haematobium and S. mansoni. We first analyzed the spatial distributions of the two schistosomes’ intermediate host snails (Bulinus spp. and Biomphalaria pfeifferi, respectively) at village water access sites. Then, we separately evaluated the relationships between human S. haematobium and S. mansoni infections and (i) the area of remotely-sensed snail habitat across spatial extents ranging from 1 to 120 m from shorelines, and (ii) water access site size and shape characteristics. We compared the influence of snail habitat across spatial extents because, while snail sampling is traditionally done near shorelines, we hypothesized that snails further from shore also contribute to infection risk. We found that, controlling for demographic variables, human risk for S. haematobium infection was positively correlated with snail habitat when snail habitat was measured over a much greater radius from shore (45 m to 120 m) than usual. S. haematobium risk was also associated with large, open water access sites. However, S. mansoni infection risk was associated with small, sheltered water access sites, and was not positively correlated with snail habitat at any spatial sampling radius. Our findings highlight the need to consider different ecological and environmental factors driving the transmission of each schistosome species in co-endemic landscapes. Schistosome parasites infect more than 200 million people worldwide, mainly in sub-Saharan Africa, where many people are at-risk for infection by multiple schistosome species simultaneously. To reduce the global burden of schistosomiasis, control of the parasites’ intermediate host–specific species of freshwater snails–has been elevated in priority to complement mass drug administration campaigns in endemic areas. To maximize the efficacy and efficiency of snail control efforts, a better understanding of where to target intermediate host snails is badly needed. This includes a better understanding of the spatial scale at which snails in the environment contribute to human infection risk, and, in co-endemic settings, how ecological determinants of infection risk vary by schistosome species. We used quantitative snail sampling and remotely-sensed data at 16 villages in the Senegal River Basin to compare and contrast ecological correlates and spatial scales of infection risk from freshwater snails that transmit Schistosoma haematobium versus S. mansoni. We found that infection risk for S. haematobium was associated with snail habitat at a larger spatial radius than is typically considered for schistosomiasis monitoring and control, whereas infection risk for S. mansoni was not positively correlated with snail habitat at any spatial sampling radius, but was associated with small water access sites enclosed by emergent vegetation. Our findings highlight the need to consider the different ecological and environmental factors driving the transmission of each schistosome species in co-endemic landscapes.
Collapse
Affiliation(s)
- Isabel J Jones
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Susanne H Sokolow
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America.,Stanford Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | - Andrew J Chamberlin
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Andrea J Lund
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California, United States of America
| | - Nicolas Jouanard
- Biomedical Research Center EPLS, Saint-Louis, Senegal.,Station d'Innovation Aquacole, Saint-Louis, Senegal
| | | | | | - Simon Senghor
- Biomedical Research Center EPLS, Saint-Louis, Senegal
| | - Anne-Marie Schacht
- Biomedical Research Center EPLS, Saint-Louis, Senegal.,Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Gilles Riveau
- Biomedical Research Center EPLS, Saint-Louis, Senegal.,Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Skylar R Hopkins
- National Center for Ecological Analysis and Synthesis, Santa Barbara, California, United States of America.,Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jason R Rohr
- Department of Biological Science, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Kevin D Lafferty
- Western Ecological Research Center, United States Geological Survey at Marine Science Institute, University of California, Santa Barbara, California, United States of America
| | - Armand M Kuris
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giulio De Leo
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America.,Stanford Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| |
Collapse
|
17
|
Qokoyi NK, Masamba P, Kappo AP. Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines (Basel) 2021; 9:762. [PMID: 34358178 PMCID: PMC8310332 DOI: 10.3390/vaccines9070762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to disrupt disease-relevant protein-protein interactions (PPIs) holds great promise for the development of new drugs. Schistosome invasion of the human host involves a variety of cross-species protein interactions. The pathogen expresses specific proteins that not only facilitate the breach of physical and biochemical barriers present in skin, but also evade the immune system and digestion of human hemoglobin, allowing for survival in the host for years. However, only a small number of specific protein interactions between the host and parasite have been functionally characterized; thus, in-depth understanding of the molecular mechanisms of these interactions is a key component in the development of new treatment methods. Efforts are now focused on developing a schistosomiasis vaccine, as a proposed better strategy used either alone or in combination with Praziquantel to control and eliminate this disease. This review will highlight protein interactions in schistosomes that can be targeted by specific PPI inhibitors for the design of an alternative treatment to Praziquantel.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa; (N.K.Q.); (P.M.)
| |
Collapse
|
18
|
Xue JB, Wang XY, Zhang LJ, Hao YW, Chen Z, Lin DD, Xu J, Xia S, Li SZ. Potential impact of flooding on schistosomiasis in Poyang Lake regions based on multi-source remote sensing images. Parasit Vectors 2021; 14:116. [PMID: 33618761 PMCID: PMC7898754 DOI: 10.1186/s13071-021-04576-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Flooding is considered to be one of the most important factors contributing to the rebound of Oncomelania hupensis, a small tropical freshwater snail and the only intermediate host of Schistosoma japonicum, in endemic foci. The aim of this study was to assess the risk of intestinal schistosomiasis transmission impacted by flooding in the region around Poyang Lake using multi-source remote sensing images. Methods Normalized Difference Vegetation Index (NDVI) data collected by the Landsat 8 satellite were used as an ecological and geographical suitability indicator of O. hupensis habitats in the Poyang Lake region. The expansion of the water body due to flooding was estimated using dual-polarized threshold calculations based on dual-polarized synthetic aperture radar (SAR). The image data were captured from the Sentinel-1B satellite in May 2020 before the flood and in July 2020 during the flood. A spatial database of the distribution of snail habitats was created using the 2016 snail survey in Jiangxi Province. The potential spread of O. hupensis snails after the flood was predicted by an overlay analysis of the NDVI maps in the flood-affected areas around Poyang Lake. The risk of schistosomiasis transmission was classified based on O. hupensis snail density data and the related NDVI. Results The surface area of Poyang Lake was approximately 2207 km2 in May 2020 before the flood and 4403 km2 in July 2020 during the period of peak flooding; this was estimated to be a 99.5% expansion of the water body due to flooding. After the flood, potential snail habitats were predicted to be concentrated in areas neighboring existing habitats in the marshlands of Poyang Lake. The areas with high risk of schistosomiasis transmission were predicted to be mainly distributed in Yongxiu, Xinjian, Yugan and Poyang (District) along the shores of Poyang Lake. By comparing the predictive results and actual snail distribution, we estimated the predictive accuracy of the model to be 87%, which meant the 87% of actual snail distribution was correctly identified as snail habitats in the model predictions. Conclusions Data on water body expansion due to flooding and environmental factors pertaining to snail breeding may be rapidly extracted from Landsat 8 and Sentinel-1B remote sensing images. Applying multi-source remote sensing data for the timely and effective assessment of potential schistosomiasis transmission risk caused by snail spread during flooding is feasible and will be of great significance for more precision control of schistosomiasis. ![]()
Collapse
Affiliation(s)
- Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xin-Yi Wang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Li-Juan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yu-Wan Hao
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhe Chen
- Jiangxi Institute of Parasitic Diseases, Nanchang, 330046, Jiangxi, People's Republic of China.,Jiangxi Key Laboratory of Schistosomiasis Prevention and Control, Nanchang, 330046, Jiangxi, People's Republic of China
| | - Dan-Dan Lin
- Jiangxi Institute of Parasitic Diseases, Nanchang, 330046, Jiangxi, People's Republic of China.,Jiangxi Key Laboratory of Schistosomiasis Prevention and Control, Nanchang, 330046, Jiangxi, People's Republic of China
| | - Jing Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China. .,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China. .,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China. .,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China. .,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
19
|
Comprehensive Risk Assessment of Schistosomiasis Epidemic Based on Precise Identification of Oncomelania hupensis Breeding Grounds-A Case Study of Dongting Lake Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041950. [PMID: 33671375 PMCID: PMC7923101 DOI: 10.3390/ijerph18041950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022]
Abstract
Spatio-temporal epidemic simulation, assessment, and risk monitoring serve as the core to establishing and improving the national public health emergency management system. In this study, we investigated Oncomelania hupensis breeding grounds and analyzed the locational and environmental preferences of snail breeding in Dongting Lake (DTL), Hunan, China. Using geographic information systems and remote sensing technology, we identified schistosomiasis risk areas and explored the factors affecting the occurrence and transmission of the disease. Several key conclusions were drawn. (1) From 2006 to 2016, the spatial change of potential O. hupensis breeding risk showed a diminishing trend from the eastern and northern regions to southwest DTL. Environmental changes in the eastern DTL region resulted in the lakeside and hydrophilic agglomerations of the O. hupensis populations. The shift in snail breeding grounds from a fragmented to centralized distribution indicates the weakening mobility of the O. hupensis population, the increasing independence of solitary groups, and the growing dependence of the snail population to the local environment. (2) The spatial risk distribution showed a descending gradient from west Dongting area to the east and an overall pattern of high in the periphery of large lakes and low in other areas. The cold-spot areas had their cores in Huarong County and Anxiang County and were scattered throughout the peripheral areas. The hot-spot areas had their center at Jinshi City, Nanxian County, and the southern part of Huarong County. The areas with increased comprehensive risks changed from centralized and large-scale development to fragmented shrinkage with increased partialization in the core area. The risk distribution's center shifted to the northwest. The spatial risk distribution exhibited enhanced concentricity along the major axis and increased dispersion along the minor axis.
Collapse
|
20
|
Habib MR, Lv S, Rollinson D, Zhou XN. Invasion and Dispersal of Biomphalaria Species: Increased Vigilance Needed to Prevent the Introduction and Spread of Schistosomiasis. Front Med (Lausanne) 2021; 8:614797. [PMID: 33644096 PMCID: PMC7902764 DOI: 10.3389/fmed.2021.614797] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Biological invasion is a matter of great concern from both public health and biodiversity perspectives. Some invasive snail species may trigger disease emergence by acting as intermediate hosts. The geographic distribution of Schistosoma mansoni depends on the presence of susceptible species of Biomphalaria freshwater snails that support the parasite's transformation into infective stages. Biomphalaria spp. have shown strong local and global dispersal capacities that may increase due to the global warming phenomenon and increases in the development of agricultural and water projects. Should intermediate hosts become established in new areas then this will create potential transmission foci. Examples of snail invasions that have had an impact on schistosomiasis transmission include the introduction of Biomphalaria tenagophila to Congo and B. glabrata to Egypt. The current spread of B. straminea in China is causing concern and needs to be monitored closely. An understanding of the mode of invasion and distribution of these snails as well as their experimental susceptibility to S. mansoni will predict the potential spread of schistosomiasis. Here we review the invasion patterns of Biomphalaria snails and factors that control their distribution and the impact that invasion may have on intestinal schistosomiasis transmission. In addition, we propose some possible surveillance responses for optimum control strategies and interventions. Whenever possible, swift action should be taken to contain any new occurrence of these intermediate snail hosts.
Collapse
Affiliation(s)
- Mohamed R. Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Shan Lv
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- WHO Collaborating Center on Tropical Diseases, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- WHO Collaborating Center on Tropical Diseases, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Braun L, Sylivester YD, Zerefa MD, Maru M, Allan F, Zewge F, Emery AM, Kinung’hi S, Templeton MR. Chlorination of Schistosoma mansoni cercariae. PLoS Negl Trop Dis 2020; 14:e0008665. [PMID: 32822356 PMCID: PMC7467251 DOI: 10.1371/journal.pntd.0008665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/02/2020] [Accepted: 08/01/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Schistosomiasis is a water-based disease acquired through contact with cercaria-infested water. Communities living in endemic regions often rely on parasite-contaminated freshwater bodies for their daily water contact activities, resulting in recurring schistosomiasis infection. In such instances, water treatment can provide safe water on a household or community scale. However, to-date there are no water treatment guidelines that provide information on how to treat water containing schistosome cercariae. Here, we rigorously test the effectiveness of chlorine against Schistosoma mansoni cercariae. METHOD S. mansoni cercariae were chlorinated using sodium hypochlorite under lab and field condition. The water pH was controlled at 6.5, 7.0 or 7.5, the water temperature at 20°C or 27°C, and the chlorine dose at 1, 2 or 3 mg/l. Experiments were conducted up to contact times of 45 minutes. 100 cercariae were used per experiment, thereby achieving up to 2-log10 inactivations of cercariae. Experiments were replicated under field conditions at Lake Victoria, Tanzania. CONCLUSION A CT (residual chlorine concentration x chlorine contact time) value of 26±4 mg·min/l is required to achieve a 2-log10 inactivation of S. mansoni cercariae under the most conservative condition tested (pH 7.5, 20°C). Field and lab-cultivated cercariae show similar chlorine sensitivities. A CT value of 30 mg·min/l is therefore recommended to disinfect cercaria-infested water, though safety factors may be required, depending on water quality and operating conditions. This CT value can be achieved with a chlorine residual of 1 mg/l after a contact time of 30 minutes, for example. This recommendation can be used to provide safe water for household and recreational water activities in communities that lack safe alternative water sources.
Collapse
Affiliation(s)
- Laura Braun
- Department of Civil and Environmental Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Meseret Dessalegne Zerefa
- College of Natural and Computational Sciences, Addis Ababa University, Arat Kilo, Addis Ababa, Ethiopia
| | - Muluwork Maru
- College of Natural and Computational Sciences, Addis Ababa University, Arat Kilo, Addis Ababa, Ethiopia
| | - Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Departssment of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Feleke Zewge
- College of Natural and Computational Sciences, Addis Ababa University, Arat Kilo, Addis Ababa, Ethiopia
| | - Aidan M. Emery
- Wolfson Wellcome Biomedical Laboratories, Departssment of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Safari Kinung’hi
- National Institute for Medical Research, Mwanza Center, Isamilo Street, Ilemela, Mwanza, Tanzania
| | - Michael R. Templeton
- Department of Civil and Environmental Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
22
|
Wu E, Wang Y, Yahuza L, He M, Sun D, Huang Y, Liu Y, Yang L, Zhu W, Zhan J. Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature. Evol Appl 2020; 13:768-780. [PMID: 32211066 PMCID: PMC7086108 DOI: 10.1111/eva.12899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/19/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
Temperature plays a multidimensional role in host-pathogen interactions. As an important element of climate change, elevated world temperature resulting from global warming presents new challenges to sustainable disease management. Knowledge of pathogen adaptation to global warming is needed to predict future disease epidemiology and formulate mitigating strategies. In this study, 21 Phytophthora infestans isolates originating from seven thermal environments were acclimated for 200 days under stepwise increase or decrease of experimental temperatures and evolutionary responses of the isolates to the thermal changes were evaluated. We found temperature acclimation significantly increased the fitness and genetic adaptation of P. infestans isolates at both low and high temperatures. Low-temperature acclimation enforced the countergradient adaptation of the pathogen to its past selection and enhanced the positive association between the pathogen's intrinsic growth rate and aggressiveness. At high temperatures, we found that pathogen growth collapsed near the maximum temperature for growth, suggesting a thermal niche boundary may exist in the evolutionary adaptation of P. infestans. These results indicate that pathogens can quickly adapt to temperature shifts in global warming. If this is associated with environmental conditions favoring pathogen spread, it will threaten future food security and human health and require the establishment of mitigating actions.
Collapse
Affiliation(s)
- E‐Jiao Wu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementInstitute of PomologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yan‐Ping Wang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lurwanu Yahuza
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Meng‐Han He
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Dan‐Li Sun
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yan‐Mei Huang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yu‐Chan Liu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Na Yang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wen Zhu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
23
|
Heat shock protein 70 (Hsp70) in Schistosoma mansoni and its role in decreased adult worm sensitivity to praziquantel. Parasitology 2020; 147:634-642. [PMID: 32127065 DOI: 10.1017/s0031182020000347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schistosoma mansoni is the most common species causing schistosomiasis. It has a complex life cycle involving a vertebrate definitive host and a snail intermediate host of the genus Biomphalaria. Each stage encounters a plethora of environmental stresses specially heat stress. Another sort of stress arises from repeated exposure of the parasite to praziquantel (PZQ), the only drug used for treatment, which leads to the development of resistance in the fields and the labs. Heat shock protein 70 (Hsp70) is found in different developmental stages of S. mansoni. It is immunogenic and regulate cercarial invasion besides its chaperone function. In the Biomphalaria/S. mansoni interaction, epigenetic modulations of the Hsp70 gene underscore the susceptibility phenotype of the snail. Hsp70 is up-regulated in adult S. mansoni with decreased sensitivity to PZQ. This could be due to the induction of oxidative and endoplasmic reticulum stress, induction of apoptosis, exposure to the stressful drug pressure and increase influx of calcium ions. Up-regulation of Hsp70 might help the worm to survive the schistosomicidal effect of the drug mainly by dealing with misfolded proteins, inhibition of apoptosis, induction of autophagy, up-regulation of the P-glycoprotein transporter and attenuation of the signalling from G protein coupled receptors.
Collapse
|
24
|
Coates SJ, Enbiale W, Davis MDP, Andersen LK. The effects of climate change on human health in Africa, a dermatologic perspective: a report from the International Society of Dermatology Climate Change Committee. Int J Dermatol 2020; 59:265-278. [PMID: 31970754 DOI: 10.1111/ijd.14759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Throughout much of the African continent, healthcare systems are already strained in their efforts to meet the needs of a growing population using limited resources. Climate change threatens to undermine many of the public health gains that have been made in this region in the last several decades via multiple mechanisms, including malnutrition secondary to drought-induced food insecurity, mass human displacement from newly uninhabitable areas, exacerbation of environmentally sensitive chronic diseases, and enhanced viability of pathogenic microbes and their vectors. We reviewed the literature describing the various direct and indirect effects of climate change on diseases with cutaneous manifestations in Africa. We included non-communicable diseases such as malignancies (non-melanoma skin cancers), inflammatory dermatoses (i.e. photosensitive dermatoses, atopic dermatitis), and trauma (skin injury), as well as communicable diseases and neglected tropical diseases. Physicians should be aware of the ways in which climate change threatens human health in low- and middle-income countries in general, and particularly in countries throughout Africa, the world's lowest-income and second most populous continent.
Collapse
Affiliation(s)
- Sarah J Coates
- Department of Dermatology, The University of California San Francisco, San Francisco, CA, USA
| | | | - Mark D P Davis
- Division of Clinical Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Louise K Andersen
- Department of Dermato-Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
25
|
Maier T, Wheeler NJ, Namigai EKO, Tycko J, Grewelle RE, Woldeamanuel Y, Klohe K, Perez-Saez J, Sokolow SH, De Leo GA, Yoshino TP, Zamanian M, Reinhard-Rupp J. Gene drives for schistosomiasis transmission control. PLoS Negl Trop Dis 2019; 13:e0007833. [PMID: 31856157 PMCID: PMC6922350 DOI: 10.1371/journal.pntd.0007833] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Schistosomiasis is one of the most important and widespread neglected tropical diseases (NTD), with over 200 million people infected in more than 70 countries; the disease has nearly 800 million people at risk in endemic areas. Although mass drug administration is a cost-effective approach to reduce occurrence, extent, and severity of the disease, it does not provide protection to subsequent reinfection. Interventions that target the parasites’ intermediate snail hosts are a crucial part of the integrated strategy required to move toward disease elimination. The recent revolution in gene drive technology naturally leads to questions about whether gene drives could be used to efficiently spread schistosome resistance traits in a population of snails and whether gene drives have the potential to contribute to reduced disease transmission in the long run. Responsible implementation of gene drives will require solutions to complex challenges spanning multiple disciplines, from biology to policy. This Review Article presents collected perspectives from practitioners of global health, genome engineering, epidemiology, and snail/schistosome biology and outlines strategies for responsible gene drive technology development, impact measurements of gene drives for schistosomiasis control, and gene drive governance. Success in this arena is a function of many factors, including gene-editing specificity and efficiency, the level of resistance conferred by the gene drive, how fast gene drives may spread in a metapopulation over a complex landscape, ecological sustainability, social equity, and, ultimately, the reduction of infection prevalence in humans. With combined efforts from across the broad global health community, gene drives for schistosomiasis control could fortify our defenses against this devastating disease in the future.
Collapse
Affiliation(s)
- Theresa Maier
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Nicolas James Wheeler
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Global Health Institute of Merck (KGaA), Eysins, Switzerland
| | | | - Josh Tycko
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard Ernest Grewelle
- Hopkins Marine Station, School of Humanities and Sciences, Stanford University, Pacific Grove, California, United States of America
| | - Yimtubezinash Woldeamanuel
- Department of Microbiology, Immunology & Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Javier Perez-Saez
- Laboratory of Ecohydrology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Susanne H. Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
- Marine Science Institute, University of California, Santa Barbara, California, United States of America
| | - Giulio A. De Leo
- Hopkins Marine Station, School of Humanities and Sciences, Stanford University, Pacific Grove, California, United States of America
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | |
Collapse
|
26
|
The cost of being a killer's accomplice: Trypanosoma cruzi impairs the fitness of kissing bugs. Parasitol Res 2019; 118:2523-2529. [PMID: 31385028 DOI: 10.1007/s00436-019-06413-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Relatively little is known about the fitness effects and life history trade-offs in medically important parasites and their insect vectors. One such case is the triatomine bugs and the parasite Trypanosoma cruzi, the key actors in Chagas disease. Previous studies have revealed some costs but have not simultaneously examined traits related to development, reproduction, and survival or their possible trade-offs. In addition, these studies have not compared the effects of genetically different T. cruzi strains that differ in their weakening effects in their vertebrate hosts. We compared the body size of the bugs after infection, the number of eggs laid, hatching/non-hatching rate, hatching success, survival, and the resulting number of parasites in Meccus (Triatoma) pallidipennis bugs that were experimentally infected with two strains of T. cruzi (Chilpancingo [CH], the most debilitating in vertebrates; and Morelos [MO], the least debilitating) (both belonging to TcI group). Our results showed that infection affects size (MO < CH; MO and CH = control), number of eggs laid (MO and CH < control) hatching/non-hatching rate (MO < control < CH), hatching success (control < MO, CH = control = MO), and survival (Chilpancingo < Morelos < control). In addition, the CH strain produced more parasites than the MO strain. These results suggest that (a) infection costs depend on the parasite's origin, (b) the more debilitating effects of the CH strain are due to its increased proliferation in the host, and (c) differences in pathogenicity among T. cruzi strains can be maintained through their different effects on hosts' life history traits. Probably, the vectorial capacity mediated by a more aggressive strain could be reduced due to its costs on the triatomine, leading to a lower risk of vertebrate and invertebrate infection in natural populations.
Collapse
|
27
|
Mulero S, Rey O, Arancibia N, Mas-Coma S, Boissier J. Persistent establishment of a tropical disease in Europe: the preadaptation of schistosomes to overwinter. Parasit Vectors 2019; 12:379. [PMID: 31358021 PMCID: PMC6664521 DOI: 10.1186/s13071-019-3635-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background Global changes promote the spread of infectious diseases worldwide. In this context, tropical urogenital schistosomiasis is now permanently established in Corsica since its first emergence in 2013. The local persistence of the tropical pathogens (schistosomes) responsible for urogenital schistosomiasis at such latitudes might be explained by (i) the presence of its intermediate host, the snail Bulinus truncatus, (ii) the recurrent local reseeding of schistosomes by their vertebrate hosts (either human or animal) every summer, and/or (iii) the maintenance and survival of schistosomes within their snail hosts over winter. Methods In this study we conducted an ecological experiment to assess the ability of temperate and tropical schistosome strains to survive in classical winter temperatures in Corsican rivers when infecting temperate (local) snail strains. We also quantified the ability of the schistosomes to complete their life-cycle post-overwintering when returned to classical summer water temperatures. Results Our results show that Mediterranean molluscs are locally adapted to winter conditions compared to tropical molluscs. Moreover, temperate and tropical schistosome strains equally survived the cold and produced viable offspring when returned to optimal temperatures. These results indicate that schistosomes can overwinter under temperate climates when infecting locally adapted snails and might partly explain the establishment and maintenance of schistosomes in Corsica from year to year. Conclusions The observed broader thermal range of schistosomes compared to that of their snail hosts was unexpected and clearly indicates that the spread and establishment of schistosomiasis in temperate countries relies primarily on the presence of the locally adapted snail host lineages, currently known to be present in France, Italy, Portugal, Spain and Greece.
Collapse
Affiliation(s)
- Stephen Mulero
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Olivier Rey
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Nathalie Arancibia
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Jérôme Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France.
| |
Collapse
|
28
|
Augusto RDC, Duval D, Grunau C. Effects of the Environment on Developmental Plasticity and Infection Success of Schistosoma Parasites - An Epigenetic Perspective. Front Microbiol 2019; 10:1475. [PMID: 31354641 PMCID: PMC6632547 DOI: 10.3389/fmicb.2019.01475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
Evidence of how environmental cues affect the phenotypes of, and compatibility between Schistosoma mansoni and their hosts come from studies in environmental parasitology and research on host diet and chemotherapeutic treatment. Schistosomes deal with a multitude of signals from the water environment as well as cues that come from their hosts, particularly in response to molecules that serve to recognize and destroy them, i.e., those molecules that arise from their hosts' immune systems. These interactions shape, not only the parasite's morphology, metabolism and behavior in the short-term, but also their infection success and development into different stage-specific phenotypes later in their life cycle, through the modification of the parasite's inheritance system. Developmental phenotypic plasticity of S. mansoni is based on epigenetic mechanisms which are also sensitive to environmental cues, but are poorly understood. Here, we argue that specific cues from the environment could lead to changes in parasite development and infectivity, and consequently, environmental signals that come from environmental control measures could be used to influence S. mansoni dynamics and transmission. This approach poses a challenge since epigenetic modification can lead to unexpected and undesired outcomes. However, we suggest that a better understanding of how environmental cues are interpreted by epigenome during schistosome development and host interactions could potentially be applied to control parasite's virulence. We review evidence about the role of environmental cues on the phenotype of S. mansoni and the compatibility between this parasite and its intermediate and definitive hosts.
Collapse
|
29
|
Niu Y, Li R, Qiu J, Xu X, Huang D, Shao Q, Cui Y. Identifying and Predicting the Geographical Distribution Patterns of Oncomelania hupensis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122206. [PMID: 31234446 PMCID: PMC6616429 DOI: 10.3390/ijerph16122206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
Schistosomiasis is a snail-borne parasitic disease endemic to the tropics and subtropics, whose distribution depends on snail prevalence as determined by climatic and environmental factors. Here, dynamic spatial and temporal patterns of Oncomelania hupensis distributions were quantified using general statistics, global Moran’s I, and standard deviation ellipses, with Maxent modeling used to predict the distribution of habitat areas suitable for this snail in Gong’an County, a severely affected region of Jianghan Plain, China, based on annual average temperature, humidity of the climate, soil type, normalized difference vegetation index, land use, ditch density, land surface temperature, and digital elevation model variables; each variable’s contribution was tested using the jackknife method. Several key results emerged. First, coverage area of O. hupensis had changed little from 2007 to 2012, with some cities, counties, and districts alternately increasing and decreasing, with ditch and bottomland being the main habitat types. Second, although it showed a weak spatial autocorrelation, changing negligibly, there was a significant east–west gradient in the O. hupensis habitat area. Third, 21.9% of Gong’an County’s area was at high risk of snail presence; and ditch density, temperature, elevation, and wetting index contributed most to their occurrence. Our findings and methods provide valuable and timely insight for the control, monitoring, and management of schistosomiasis in China.
Collapse
Affiliation(s)
- Yingnan Niu
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rendong Li
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.
| | - Juan Qiu
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.
| | - Xingjian Xu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| | - Duan Huang
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qihui Shao
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Cui
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Chersich MF, Wright CY. Climate change adaptation in South Africa: a case study on the role of the health sector. Global Health 2019; 15:22. [PMID: 30890178 PMCID: PMC6423888 DOI: 10.1186/s12992-019-0466-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Globally, the response to climate change is gradually gaining momentum as the impacts of climate change unfold. In South Africa, it is increasingly apparent that delays in responding to climate change over the past decades have jeopardized human life and livelihoods. While slow progress with mitigation, especially in the energy sector, has garnered much attention, focus is now shifting to developing plans and systems to adapt to the impacts of climate change. METHODS We applied systematic review methods to assess progress with climate change adaptation in the health sector in South Africa. This case study provides useful lessons which could be applied in other countries in the African region, or globally. We reviewed the literature indexed in PubMed and Web of Science, together with relevant grey literature. We included articles describing adaptation interventions to reduce the impact of climate change on health in South Africa. All study designs were eligible. Data from included articles and grey literature were summed thematically. RESULTS Of the 820 publications screened, 21 were included, together with an additional xx papers. Very few studies presented findings of an intervention or used high-quality research designs. Several policy frameworks for climate change have been developed at national and local government levels. These, however, pay little attention to health concerns and the specific needs of vulnerable groups. Systems for forecasting extreme weather, and tracking malaria and other infections appear well established. Yet, there is little evidence about the country's preparedness for extreme weather events, or the ability of the already strained health system to respond to these events. Seemingly, few adaptation measures have taken place in occupational and other settings. To date, little attention has been given to climate change in training curricula for health workers. CONCLUSIONS Overall, the volume and quality of research is disappointing, and disproportionate to the threat posed by climate change in South Africa. This is surprising given that the requisite expertise for policy advocacy, identifying effective interventions and implementing systems-based approaches rests within the health sector. More effective use of data, a traditional strength of health professionals, could support adaptation and promote accountability of the state. With increased health-sector leadership, climate change could be reframed as predominately a health issue, one necessitating an urgent, adequately-resourced response. Such a shift in South Africa, but also beyond the country, may play a key role in accelerating climate change adaptation and mitigation.
Collapse
Affiliation(s)
- Matthew F Chersich
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Caradee Y Wright
- Environment and Health Research Unit, South African Medical Research Council and Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
31
|
Stensgaard AS, Vounatsou P, Sengupta ME, Utzinger J. Schistosomes, snails and climate change: Current trends and future expectations. Acta Trop 2019; 190:257-268. [PMID: 30261186 DOI: 10.1016/j.actatropica.2018.09.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
The exact impact of climate change on schistosomiasis, a disease caused by a blood fluke that affects more than 250 million people mainly in tropical and subtropical countries, is currently unknown, but likely to vary with the snail-parasite species' specific ecologies and the spatio-temporal scale of investigation. Here, by means of a systematic review to identify studies reporting on impacts of climate change on the agents of schistosomiasis, we provide an updated synthesis of the current knowledge about the climate change-schistosomiasis relation. We found that, despite a recent increase in scientific studies that discuss the potential impact of climate change on schistosomiasis, only a handful of reports have applied modelling and predictive forecasting that provide a quantitative estimate of potential outcomes. The volume and type of evidence associated with climate change responses were found to be variable across geographical regions and snail-parasite taxonomic groups. Indeed, the strongest evidence stems from the People's Republic of China pertaining to Schistosoma japonicum. Some evidence is also available from eastern Africa, mainly for Schistosoma mansoni. While studies focused on the northern and southern range margins for schistosomiasis indicate an increase in transmission range as the most likely outcome, there was less agreement about the direction of outcomes from the central and eastern parts of Africa. The current lack of consensus suggests that climate change is more likely to shift than to expand the geographic ranges of schistosomiasis. A comparison between the current geographical distributions and the thermo-physiological limitations of the two main African schistosome species (Schistosoma haematobium and S. mansoni) offered additional insights, and showed that both species already exist near their thermo-physiological niche boundaries. The African species both stand to move considerably out of their "thermal comfort zone" in a future, warmer Africa, but S. haematobium in particular is likely to experience less favourable climatic temperatures. The consequences for schistosomiasis transmission will, to a large extent, depend on the parasites and snails ability to adapt or move. Based on the identified geographical trends and knowledge gaps about the climate change-schistosomiasis relation, we propose to align efforts to close the current knowledge gaps and focus on areas considered to be the most vulnerable to climate change.
Collapse
|
32
|
Chersich MF, Wright CY, Venter F, Rees H, Scorgie F, Erasmus B. Impacts of Climate Change on Health and Wellbeing in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1884. [PMID: 30200277 PMCID: PMC6164733 DOI: 10.3390/ijerph15091884] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022]
Abstract
Given its associated burden of disease, climate change in South Africa could be reframed as predominately a health issue, one necessitating an urgent health-sector response. The growing impact of climate change has major implications for South Africa, especially for the numerous vulnerable groups in the country. We systematically reviewed the literature by searching PubMed and Web of Science. Of the 820 papers screened, 34 were identified that assessed the impacts of climate change on health in the country. Most papers covered effects of heat on health or on infectious diseases (20/34; 59%). We found that extreme weather events are the most noticeable effects to date, especially droughts in the Western Cape, but rises in vector-borne diseases are gaining prominence. Climate aberration is also linked in myriad ways with outbreaks of food and waterborne diseases, and possibly with the recent Listeria epidemic. The potential impacts of climate change on mental health may compound the multiple social stressors that already beset the populace. Climate change heightens the pre-existing vulnerabilities of women, fishing communities, rural subsistence farmers and those living in informal settlements. Further gender disparities, eco-migration and social disruptions may undermine the prevention-but also treatment-of HIV. Our findings suggest that focused research and effective use of surveillance data are required to monitor climate change's impacts; traditional strengths of the country's health sector. The health sector, hitherto a fringe player, should assume a greater leadership role in promoting policies that protect the public's health, address inequities and advance the country's commitments to climate change accords.
Collapse
Affiliation(s)
- Matthew F Chersich
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa.
| | - Caradee Y Wright
- Environment and Health Research Unit, South African Medical Research Council and Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, Hatfield, Private Bag X200028, South Africa.
| | - Francois Venter
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa.
| | - Helen Rees
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa.
| | - Fiona Scorgie
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa.
| | - Barend Erasmus
- Global Change Institute, University of the Witwatersrand, Johannesburg 2000, South Africa.
| |
Collapse
|
33
|
Kalinda C, Chimbari MJ, Grant WE, Wang HH, Odhiambo JN, Mukaratirwa S. Simulation of population dynamics of Bulinus globosus: Effects of environmental temperature on production of Schistosoma haematobium cercariae. PLoS Negl Trop Dis 2018; 12:e0006651. [PMID: 30070986 PMCID: PMC6071958 DOI: 10.1371/journal.pntd.0006651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022] Open
Abstract
Background Temperature is an important factor that influences the biology and ecology of intermediate host (IH) snails and the schistosome parasites they transmit. Although temperature shifts due to climate change has been predicted to affect the life history traits of IH snails and parasite production, the mechanisms of how this may affect parasite abundance and disease risks are still not clear. Materials and methods Using data from laboratory and field experiments, we developed a deterministic compartmental simulation model based on difference equations using a weekly time step that represented the life cycle of Bulinus globosus. We simulated snail population dynamics and the associated production of cercariae assuming current environmental temperatures as well as projected temperature increases of 1 °C and 2 °C. Results The model generated snail fecundity and survival rates similar to those observed in the laboratory and also produced reasonable snail population dynamics under seasonally varying temperatures representative of generally favorable environmental conditions. Simulated relative abundances of both snails and cercariae decreased with increasing environmental temperatures, with maximum snail abundances decreased by 14% and 27%, and maximum cercariae productions decreased by 8% and 17%, when temperatures were increased by 1 °C and 2 °C, respectively. Conclusion The results indicate that future rise in temperature due to climate change may alter the abundance of B. globosus and impact on the prevalence of schistosomiasis. Furthermore, increased temperatures may not linearly influence the abundance of S. haematobium. These results may have important implications for schistosomiasis control programmes in view of temperature driven changes in the life history traits of B. globosus and S. haematobium. Our study recommends that the use of deterministic models incorporating the effects of temperature on the life history traits of IH snails would be vital in understanding the potential impact of climate change on schistosomiasis incidences and prevalence. The implementation of schistosomiasis control/elimination strategies depend on accurate estimations and predictions of the changes in the snail and parasite population. This is essential especially in the allocation of limited resources. The simulation model and the results presented here provide useful information on Bulinus globosus, the main intermediate host snail of Schistosoma haematobium in southern Africa. The predicted changes in the abundance of B. globosus and S. haematobium due to changes in temperature may be vital in the fight against schistosomiasis. The model predicts the current and future abundance of intermediate hosts snails by considering the future predicted temperature increases. These results may be useful in evaluating the snail-trematode interactions within the natural systems in which changes in the environmental conditions such a temperature may affect the population size of Bulinus globosus and disease incidences. These effects of temperature on B. globosus may play an important role in the implementation of snail control programmes.
Collapse
Affiliation(s)
- Chester Kalinda
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
- * E-mail: ,
| | - Moses J. Chimbari
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - William E. Grant
- Ecological Systems Laboratory, Department of Wildlife and Fisheries Sciences, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Hsiao-Hsuan Wang
- Ecological Systems Laboratory, Department of Wildlife and Fisheries Sciences, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Julius N. Odhiambo
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
34
|
Zhan J, Ericson L, Burdon JJ. Climate change accelerates local disease extinction rates in a long-term wild host-pathogen association. GLOBAL CHANGE BIOLOGY 2018; 24:3526-3536. [PMID: 29485725 DOI: 10.1111/gcb.14111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/07/2018] [Indexed: 05/20/2023]
Abstract
Pathogens are a significant component of all plant communities. In recent years, the potential for existing and emerging pathogens of agricultural crops to cause increased yield losses as a consequence of changing climatic patterns has raised considerable concern. In contrast, the response of naturally occurring, endemic pathogens to a warming climate has received little attention. Here, we report on the impact of a signature variable of global climate change - increasing temperature - on the long-term epidemiology of a natural host-pathogen association involving the rust pathogen Triphragmium ulmariae and its host plant Filipendula ulmaria. In a host-pathogen metapopulation involving approximately 230 host populations growing on an archipelago of islands in the Gulf of Bothnia we assessed changes in host population size and pathogen epidemiological measures over a 25-year period. We show how the incidence of disease and its severity declines over that period and most importantly demonstrate a positive association between a long-term trend of increasing extinction rates in individual pathogen populations of the metapopulation and increasing temperature. Our results are highly suggestive that changing climatic patterns, particularly mean monthly growing season (April-November) temperature, are markedly influencing the epidemiology of plant disease in this host-pathogen association. Given the important role plant pathogens have in shaping the structure of communities, changes in the epidemiology of pathogens have potentially far-reaching impacts on ecological and evolutionary processes. For these reasons, it is essential to increase understanding of pathogen epidemiology, its response to warming, and to invoke these responses in forecasts for the future.
Collapse
Affiliation(s)
- Jiasui Zhan
- State Key Laboratory for Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lars Ericson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Jeremy J Burdon
- State Key Laboratory for Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- CSIRO Agriculture & Food, Canberra, ACT, Australia
| |
Collapse
|
35
|
Abstract
Climate change is expected to impact across every domain of society, including health. The majority of the world's population is susceptible to pathological, infectious disease whose life cycles are sensitive to environmental factors across different physical phases including air, water and soil. Nearly all so-called neglected tropical diseases (NTDs) fall into this category, meaning that future geographic patterns of transmission of dozens of infections are likely to be affected by climate change over the short (seasonal), medium (annual) and long (decadal) term. This review offers an introduction into the terms and processes deployed in modelling climate change and reviews the state of the art in terms of research into how climate change may affect future transmission of NTDs. The 34 infections included in this chapter are drawn from the WHO NTD list and the WHO blueprint list of priority diseases. For the majority of infections, some evidence is available of which environmental factors contribute to the population biology of parasites, vectors and zoonotic hosts. There is a general paucity of published research on the potential effects of decadal climate change, with some exceptions, mainly in vector-borne diseases.
Collapse
Affiliation(s)
- Mark Booth
- Newcastle University, Institute of Health and Society, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
36
|
Ramirez B. Support for research towards understanding the population health vulnerabilities to vector-borne diseases: increasing resilience under climate change conditions in Africa. Infect Dis Poverty 2017; 6:164. [PMID: 29228976 PMCID: PMC5725740 DOI: 10.1186/s40249-017-0378-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Diseases transmitted to humans by vectors account for 17% of all infectious diseases and remain significant public health problems. Through the years, great strides have been taken towards combatting vector-borne diseases (VBDs), most notably through large scale and coordinated control programmes, which have contributed to the decline of the global mortality attributed to VBDs. However, with environmental changes, including climate change, the impact on VBDs is anticipated to be significant, in terms of VBD-related hazards, vulnerabilities and exposure. While there is growing awareness on the vulnerability of the African continent to VBDs in the context of climate change, there is still a paucity of research being undertaken in this area, and impeding the formulation of evidence-based health policy change. Main body One way in which the gap in knowledge and evidence can be filled is for donor institutions to support research in this area. The collaboration between the WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the International Centre for Research and Development (IDRC) builds on more than 10 years of partnership in research capacity-building in the field of tropical diseases. From this partnership was born yet another research initiative on VBDs and the impact of climate change in the Sahel and sub-Saharan Africa. This paper lists the projects supported under this research initiative and provides a brief on some of the policy and good practice recommendations emerging from the ongoing implementation of the research projects. Conclusion Data generated from the research initiative are expected to be uptaken by stakeholders (including communities, policy makers, public health practitioners and other relevant partners) to contribute to a better understanding of the impacts of social, environmental and climate change on VBDs(i.e. the nature of the hazard, vulnerabilities, exposure), and improve the ability of African countries to adapt to and reduce the effects of these changes in ways that benefit their most vulnerable populations. Electronic supplementary material The online version of this article (10.1186/s40249-017-0378-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bernadette Ramirez
- Vectors, Environment and Society Unit, Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization (WHO), Geneva, Switzerland.
| | | |
Collapse
|