1
|
Abdel-Badeea WIE, Abdel-Wahab A, Mahmoud AA, Abdel-Razik ARH, Attia EZ, Abdelmohsen UR, Hassanin KMA. Syzygium cumini Fruit Extract and Quercetin Ameliorate Cadmium-Induced Ovarian Apoptosis in Rats Via miRNA- 204 - 5p-Mediated Bcl- 2 Upregulation and Bax/Caspase 9/Caspase 3 Downregulation. Biol Trace Elem Res 2025:10.1007/s12011-025-04632-y. [PMID: 40360878 DOI: 10.1007/s12011-025-04632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
The correlation between exposure to environmental pollutants and adverse impacts on fertility has been documented. Cadmium (Cd) is one of the most toxic elements that impairs female reproductive capacity. Syzygium cumini is a plant that contains polyphenols with strong antioxidant properties. Our study aimed to investigate the possible protective effects of Syzygium cumini fruit extract (SCFE) and quercetin (QU) against Cd-induced ovarian toxicity and apoptosis in rats assisted by measuring oxidative stress markers, hormonal profile, intrinsic apoptotic pathway, miRNA-204-5p, and histopathology. For that, 45 adult female rats were divided randomly into five groups; control, cadmium chloride (CdCl2), CdCl2 + QU, CdCl2 + SCFE200, and CdCl2 + SCFE400, and the experiment lasted 35 days. Cadmium exposure induced irregular estrus cycle, and oxidative challenges, as evidenced by increased malondialdehyde and decreased antioxidant indicators that include superoxide dismutase, catalase and reduced glutathione, and hormonal imbalances, including reduced follicle-stimulating hormone, luteinizing hormone, anti-mullarian hormone, estrogen, and progesterone levels. Additionally, Cd triggered ovarian apoptosis through upregulating miRNA- 204 - 5p expression that in turn downregulated Bcl- 2 and upregulated the members of intrinsic mitochondrial apoptotic pathway including Bax and caspases 3, 9. The histopathological findings, morphometric and lesion scoring in ovarian, and uterine tissues confirmed the negative impacts of Cd. Interestingly, treatment with QU or SCFE, especially at the higher dose (400 mg/kg), significantly ameliorated these Cd-induced adverse effects, suggesting their potential as protective agents against ovarian toxicity.
Collapse
Affiliation(s)
- Walaa I E Abdel-Badeea
- Biochemistry Department, Faculty of Veterinary Medicine, Minia University, 61519, Minia, Egypt.
| | - Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, 61519, Minia, Egypt
| | - Ahmed A Mahmoud
- Chemistry Department, Faculty of Sciences, Minia University, 61519, Minia, Egypt
| | | | - Eman Z Attia
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, National Minia University, 61111, New Minia, Egypt
| | - Usama R Abdelmohsen
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Deraya University, 61111, New Minia, Egypt
| | - Kamel M A Hassanin
- Biochemistry Department, Faculty of Veterinary Medicine, Minia University, 61519, Minia, Egypt
| |
Collapse
|
2
|
Li S, Li S, Semde R, Teng H, Shi M, Huang L, Lou X, Jia B, Zhu H, Zhao Y. Protocatechuic Acid Improves Alzheimer's Disease by Regulating the Cholinergic Synaptic Signaling Pathway. Chem Biodivers 2025; 22:e202402771. [PMID: 39776239 DOI: 10.1002/cbdv.202402771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by memory decline and cognitive impairments. The clinical treatments for AD have numerous adverse effects; hence, the exploration of natural products for AD therapy is of significant importance. Protocatechuic acid (PA), a natural phenolic acid, has been shown to possess various pharmacological activities, including anti-inflammatory, antioxidant, and antitumor effects. However, the mechanisms underlying its therapeutic potential for AD remain elusive. This study utilized a β-amyloid (Aβ) injection into the hippocampus of mice as an AD model and L-glu-induced HT-22 cell neurotoxicity and lipopolysaccharides (LPS)-induced cellular neuroinflammation models to assess reactive oxygen species (ROS), JC-1, and relevant biochemical markers. This study examined behavioral, pathological, and inflammatory factors and investigated the molecular mechanisms through transcriptomics, western blot, and molecular docking studies. This study's findings reveal that high-dose PA (50 mg/kg) improves symptoms in AD mice through the cholinergic synaptic signaling pathway. This study indicates that PA is a potential candidate for AD treatment targeting the cholinergic synaptic signaling pathway, providing a lead compound for AD therapy.
Collapse
Affiliation(s)
- Siwen Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Songtao Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rasmané Semde
- Synthèse des médicaments, CEA-CFOREM, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Mengqi Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Liang Huang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Xinru Lou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Beining Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| |
Collapse
|
3
|
Liu X, Wu J, Peng Y, Liu G, Jin K, Niu Y, Song J, Han W, Chen G, Li B, Zuo Q. Functional Equivalence of Insulin and IGF-1 in the In Vitro Culture of Chicken Primordial Germ Cells. Genes (Basel) 2025; 16:481. [PMID: 40428303 PMCID: PMC12110881 DOI: 10.3390/genes16050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Chicken Primordial Germ Cells (PGCs) are one of the few germ cells that can be cultured for a long time in vitro, but challenges remain such as low culture efficiency and unclear roles of nutrient factors and signaling pathways. METHOD In this study, protein kinase B (AKT) pathway activator insulin-like growth factor 1 (IGF-1) was screened for its ability to promote cell proliferation by transcriptome results using various inhibitors of pathway activation. The effects of IGF-1 on PGCs were evaluated through EdU assays, qRT-PCR, flow cytometry, and migration experiments. RESULTS This study systematically examined the effects of insulin and IGF-1 on the proliferation, cell cycle, ferroptosis, migration capacity, and establishment efficiency of PGCs. The findings demonstrated that IGF-1 exhibited comparable effects to insulin and could effectively replace insulin in PGC culture systems. CONCLUSIONS The research results are expected to provide a solid theoretical basis for optimizing the chicken PGC cultivation system and promoting its practical application.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jun Wu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yixiu Peng
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guangzheng Liu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences Poultry Institute of Jiangsu, Yangzhou 225003, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qisheng Zuo
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Luo M, Jin T, Fang Y, Chen F, Zhu L, Bai J, Ding J. Signaling Pathways Involved in Acute Pancreatitis. J Inflamm Res 2025; 18:2287-2303. [PMID: 40230438 PMCID: PMC11995411 DOI: 10.2147/jir.s485804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/25/2025] [Indexed: 04/16/2025] Open
Abstract
Acute pancreatitis (AP) is a common digestive emergency with high morbidity and mortality. Over the past decade, significant progress has been made in understanding the mechanisms of AP, including oxidative stress, disruptions in calcium homeostasis, endoplasmic reticulum stress, inflammatory responses, and various forms of cell death. This review provides an overview of the typical signaling pathways involved and proposes the latest clinical translation prospects. These strategies are important for the early management of AP, preventing multi-organ injury, and improving the overall prognosis of the disease.
Collapse
Affiliation(s)
- Mengchen Luo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Feng Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
5
|
Pal R, Mukherjee S, Khan A, Nathani M, Maji S, Tandey R, Das S, Patra A, Mandal V. A critical appraisal on the involvement of plant-based extracts as neuroprotective agents (2012-2022): an effort to ease out decision-making process for researchers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9367-9415. [PMID: 38985312 DOI: 10.1007/s00210-024-03266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The purpose of this review study is to provide a condensed compilation of 164 medicinal plants that have been investigated for their neuroprotective aspects by researchers between the years 2012 and 2022 which also includes a recent update of 2023-2024. After using certain keywords to retrieve the data from SCOPUS, it was manually sorted to eliminate any instances of duplication. The article is streamlined into three major segments. The first segment takes a dig into the current global trend and attempts to decrypt vital information related to plant names, families, plant parts used, and neurological disorders investigated. The second segment of the article makes an attempt to present a comprehensive insight into the various mechanistic pathways through which phytochemicals can intervene to exert neuroprotection. The final segment of the manuscript is a bibliometric appraisal of all researches conducted. The study is based on 256 handpicked articles based on decided inclusion criteria. Illustrative compilation of various pathways citing their activation and deactivation channels are also presented with possible hitting points of various phytochemicals. The present study employed Microsoft Excel 2019 and VOS viewer as data visualisation tools.
Collapse
Affiliation(s)
- Riya Pal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Souvik Mukherjee
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Altamash Khan
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Mansi Nathani
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Sayani Maji
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Roshni Tandey
- Department of B. Pharm Ayurveda, Delhi Pharmaceutical Sciences and Research University, Sector-3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Sinchan Das
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Arjun Patra
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Vivekananda Mandal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India.
| |
Collapse
|
6
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
7
|
Helen H, Gunawan MC, Halim P, Dinata MR, Ahmed A, Dalimunthe A, Marianne M, Ribeiro RIMDA, Hasibuan PAZ, Nurkolis F, Hey-Hawkins E, Park MN, Harahap U, Kim SH, Kim B, Syahputra RA. Flavonoids as modulators of miRNA expression in pancreatic cancer: Pathways, Mechanisms, And Therapeutic Potential. Biomed Pharmacother 2024; 179:117347. [PMID: 39241569 DOI: 10.1016/j.biopha.2024.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Pancreatic cancer (PC) is a complex malignancy, distinguished by its aggressive characteristics and unfavorable prognosis. Recent developments in understanding the molecular foundations of this disease have brought attention to the noteworthy involvement of microRNAs (miRNAs) in disease development, advancement, and treatment resistance. The anticancer capabilities of flavonoids, which are a wide range of phytochemicals present in fruits and vegetables, have attracted considerable interest because of their ability to regulate miRNA expression. This review provides the effects of flavonoids on miRNA expression in PC, explains the underlying processes, and explores the possible therapeutic benefits of flavonoid-based therapies. Flavonoids inhibit PC cell proliferation, induce apoptosis, and enhance chemosensitivity via the modulation of miRNAs involved in carcinogenesis. Additionally, this review emphasizes the significance of certain miRNAs as targets of flavonoid action. These miRNAs have a role in regulating important signaling pathways such as the phosphoinositide-3-kinase-protein kinase B/Protein kinase B (Akt), mitogen activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK/STAT), and Wnt/β-catenin pathways. This review aims to consolidate current knowledge on the interaction between flavonoids and miRNAs in PC, providing a comprehensive analysis of how flavonoid-mediated modulation of miRNA expression could influence cancer progression and therapy. It highlights the use of flavonoid nanoformulations to enhance stability, increase absorption, and maximize anti-PC activity, improving patient outcomes. The review calls for further research to optimize the use of flavonoid nanoformulations in clinical trials, leading to innovative treatment strategies and more effective approaches for PC.
Collapse
Affiliation(s)
- Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Marianne Marianne
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Rosy Iara Maciel De Azambuja Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | | | - Fahrul Nurkolis
- Biological Sciences, Faculty of Sciences and Technology, UIN Sunan Kalijaga, Yogyakarta, Indonesia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Sung-Hoon Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia.
| |
Collapse
|
8
|
Su Y, Li T, He X, Sun H, Li J. PI3K/AKT pathway modulation and cold acclimation alleviation concerning apoptosis and necroptosis in broiler thymus. Poult Sci 2024; 103:103634. [PMID: 38537409 PMCID: PMC10987937 DOI: 10.1016/j.psj.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Moderate cold stimulation regulates the thymus's growth and function and facilitates cold acclimatization in broilers. However, the underlying mechanism remains unknown. To explore the possible mechanism of the thymus in cold-acclimated broilers against cold stress, 240 one-day-old Arbor Acres (AA) broilers were assigned to 2 groups randomly. The control group (C) was housed at conventional temperatures. The temperature during the first week was 33°C to 34°C. Between the ages of 8 and 32 d, the temperature was lowered by 1°C every 2 d, i.e., gradually from 32°C to 20°C, and then maintained at 20°C until 42 d of age. The cold-acclimated group (C-3) was housed at the same temperature as C from 1 to 7 d after birth. Between 8 and 42 d, the temperature of C-3 was 3°C colder than C. After 24 h exposure to acute cold stress (ACS) at 42 d, C and C-3 were named as S and S-3. The results showed that ACS was able to induce oxidation stress, modulate PI3K/AKT signal, and cause necroptosis and apoptosis in broiler thymus. By contrast, cold acclimation could alleviate apoptosis and necroptosis induced by cold stress via alleviating oxidative stress, efficiently activating the PI3K/AKT signal, as well as decreasing apoptotic and necrotic genes' levels. This study offers a novel theoretical basis for cold acclimation to improve the body's cold tolerance.
Collapse
Affiliation(s)
- Yingying Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyue He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hanqing Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
9
|
Huang TL, Jiang WJ, Zhou Z, Shi TF, Yu M, Yu M, Si JQ, Wang YP, Li L. Quercetin attenuates cisplatin-induced mitochondrial apoptosis via PI3K/Akt mediated inhibition of oxidative stress in pericytes and improves the blood labyrinth barrier permeability. Chem Biol Interact 2024; 393:110939. [PMID: 38490643 DOI: 10.1016/j.cbi.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Cisplatin (CDDP) is broadly employed to treat different cancers, whereas there are no drugs approved by the Food and Drug Administration (FDA) for preventing its side effects, including ototoxicity. Quercetin (QU) is a widely available natural flavonoid compound with anti-tumor and antioxidant properties. The research was designed to explore the protective effects of QU on CDDP-induced ototoxicity and its underlying mechanisms in male C57BL/6 J mice and primary cultured pericytes (PCs). Hearing changes, morphological changes of stria vascularis, blood labyrinth barrier (BLB) permeability and expression of apoptotic proteins were observed in vivo by using the auditory brainstem response (ABR) test, HE staining, Evans blue staining, immunohistochemistry, western blotting, etc. Oxidative stress levels, mitochondrial function and endothelial barrier changes were observed in vitro by using DCFH-DA probe detection, flow cytometry, JC-1 probe, immunofluorescence and the establishment in vitro BLB models, etc. QU pretreatment activates the PI3K/AKT signaling pathway, inhibits CDDP-induced oxidative stress, protects mitochondrial function, and reduces mitochondrial apoptosis in PCs. However, PI3K/AKT specific inhibitor (LY294002) partially reverses the protective effects of QU. In addition, in vitro BLB models were established by coculturing PCs and endothelial cells (ECs), which suggests that QU both reduces the CDDP-induced apoptosis in PCs and improves the endothelial barrier permeability. On the whole, the research findings suggest that QU can be used as a novel treatment to reduce CDDP-induced ototoxicity.
Collapse
Affiliation(s)
- Tian-Lan Huang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Wen-Jun Jiang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, China; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Zan Zhou
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Tian-Feng Shi
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Miao Yu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Meng Yu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, China; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan-Ping Wang
- Department of Nursing, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| |
Collapse
|
10
|
Danjolli-Hashani D, Selen Isbilir S. Effects of natural waste on in vitro oxidative DNA damage. Nat Prod Res 2024:1-10. [PMID: 38608249 DOI: 10.1080/14786419.2024.2340044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
In this study, the effects of natural waste products such as extracts from C. coggygria leaves and Punica granatum L. peels were investigated against oxidative DNA damage induced by Fenton reaction. 8-OH-2'dG as a general marker of DNA damage on thymus DNA, and the bioactive compounds of extracts were measured by LC-MS/MS. Our results had shown that ethanol extracts of C. coggygria leaf and Punica granatum L. peel had a protective effect on oxidative damaged DNA. It was determined that the bioactive compounds of C. coggygria leaves (gallic acid, protocatechuic acid, myricetin, syringic acid and ethyl gallate as a major compounds) and Punica granatum L. peel (ellagic acid, abscisic acid, ethyl gallate, phlorizin, gallic acid, myricetin as major compounds) may have an important role in the protective effect against oxidative DNA damage. Therefore, Cotinus coggygria leaves and Punica granatum L. peel may have potential use in medicine or cosmetic fields.
Collapse
Affiliation(s)
- Dua Danjolli-Hashani
- Department of Chemistry, Institute of Natural and Applied Sciences, Trakya University, Edirne, Türkiye
| | | |
Collapse
|
11
|
Nandi S, Kumar B S, Gupta PSP, Mondal S, Kumar VG. Influence of phenolic flavonols (Kaempferol, Querectin and Myricetin) on the survival and growth of ovine preantral follicles and granulosa cells cultured in vitro. Theriogenology 2024; 214:266-272. [PMID: 37948816 DOI: 10.1016/j.theriogenology.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Study was carried out to examine the influence of plant bioactive compounds [Kaempferol (KAE), Querectin (QUE) and Myricetin (MYR)] on the survival and growth parameters of cultured ovine preantral follicles (PFs) granulosa cells (GCs) and expression of some key developmental genes. Ovine PFs were isolated from slaughterhouse derived ovaries and KAE, QUE and MYR were supplemented to the standard culture medium of GCs and PFs at concentrations of 0, 5, 10, 25, 50 and 100 μM and cultured for 5 and 7 days respectively. PFs morphological and functional parameters [follicle and enclosed oocyte growth rate, viability of follicles, antrum formation rate, oocyte maturation rate, estradiol concentration, reactive oxygen species (ROS) production] and GC growth parameters (metabolic activity, viability rate, cell number increment, ROS production) were measured after culture. Significantly higher PF growth, viability rate and estradiol concentration was observed at 10 μM, 25 μM and 10 μM concentration of KAE, MYR and QUE respectively compared to the control. ROS production was significantly decreased in the PF culture media treated with 10 μM KAE or MYR 25 μM or 10 μM QUE compared to those observed in the control group. Likewise, metabolic activity of GCs, viability rate and cell number increment cultured with KAE, MYR and QUE was significantly higher at 10, 25 and 10 μM concentrations respectively compared to those observed in control group. ROS production was significantly lower in the GC cultured with KAE, MYR and QUE at 10, 25 and 10 μM concentrations respectively compared to the control. Based on the results of the growth parameters, gene expression of PFs and GCs were studied by qPCR at selected concentrations (KAE, MYR and QUE at 10, 25 and 10 μM concentrations respectively) in the cultured PFs and GCs. Gene expression of GDF9, FGF2, CYP19A1 was significantly higher and Bax, Bcl2 expression was significantly lower in the PFs and GCs cultured with the KAE or QUE at 10 μM concentration. KAE, MYR and QUE have dose dependant responses on PFs and GCs morphological and functional parameters; however, KAE is more potent amongst the three in augmenting the ovarian functions.
Collapse
Affiliation(s)
- S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India.
| | - Sampath Kumar B
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India; Veterinary College, Bangalore Campus, Hebbal, Bangalore, India
| | - P S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - V Girish Kumar
- Veterinary College, Bangalore Campus, Hebbal, Bangalore, India
| |
Collapse
|
12
|
Banu Bal N, Güney C, Gökhan Yıldırım O, Akar F, Demirel-Yılmaz E. Myricetin May Improve Cardiac Dysfunction Possibly Through Regulating Blood Pressure and Cellular Stress Molecules in High-Fructose-Fed Rats. Anatol J Cardiol 2024; 28:55-64. [PMID: 38167793 PMCID: PMC10796237 DOI: 10.14744/anatoljcardiol.2023.3866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The aim of this study was to examine the effect of myricetin on cardiac dysfunction caused by high fructose intake. METHODS Fructose was given to the rats as a 20% solution in drinking water for 15 weeks. Myricetin was administered by oral gavage for the last 6 weeks. Systolic blood pressure was measured by tail-cuff method. The effects of isoprenaline, phenylephrine, and acetylcholine on cardiac contractility and rhythmicity were recorded in the isolated right atrium and left ventricular papillary muscles. In addition to biochemical measurements, the cardiac expressions of cellular stress-related proteins were determined by western blotting. RESULTS Myricetin improved systolic blood pressure but did not affect body weight, plasma glucose, and triglyceride levels in fructose-fed rats. The impairment of isoprenaline- and phenylephrine-mediated increases in atrial contraction and sinus rate in fructose-fed rats was restored by myricetin treatment. Isoprenaline, phenylephrine, and acetylcholine-mediated papillary muscle contractions were not changed by fructose or myricetin administration. The expression of the mitochondrial fission marker dynamin-related protein 1 and the mitophagic marker PTEN-induced kinase 1 (PINK1) was enhanced in the fructose-fed rat, and myricetin treatment markedly attenuated PINK1 expression. High-fructose intake augmented phosphorylation of the proinflammatory molecule Nuclear factor kappa B (NF-κB) and the stress-regulated kinase JNK1, but myricetin only reduced NF-κB expression. Moreover, myricetin diminished the elevation in the expression of the pro-apoptotic Bax. CONCLUSION Our results imply that myricetin has a protective role in cardiac irregularities induced by a high-fructose diet through reducing systolic blood pressure, improving cardiac adrenergic responses, suppressing PINK1, NF-κB, and Bax expression, and thus reflecting a potential therapeutic value.
Collapse
Affiliation(s)
- Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Ceren Güney
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Onur Gökhan Yıldırım
- Department of Pharmacology, Faculty of Pharmacy, Düzce University, Düzce, Türkiye
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Emine Demirel-Yılmaz
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Çoruh University, Artvin, Türkiye
| |
Collapse
|
13
|
Shu P, Li M, Zhao N, Wang Y, Zhang L, Du Z. Efficacy and mechanism of retinyl palmitate against UVB-induced skin photoaging. Front Pharmacol 2023; 14:1278838. [PMID: 37927602 PMCID: PMC10622759 DOI: 10.3389/fphar.2023.1278838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 11/07/2023] Open
Abstract
Retinyl palmitate (RP) is a vitamin A derivative that has been widely used in anti-aging and skin treatment. The aim of this study is to investigate the effect of RP on UVB (Ultraviolet radiation B) induced photoaging and its potential mechanism. Immunofluorescence assay demonstrates that RP can reduce collagen degradation in skin cells by UVB radiation and reduce apoptosis of skin cells. Cell migration assay reveals that RP can increase cell migration rate, helping to repair skin damage and restore cell viability. Immunohistochemical assays indicate that RP can significantly reduce the expression of IL-6, IL-1β, TNF-α induced by UVB radiation. Moreover, metabolomics and transcriptomics results suggest that RP regulates several metabolic pathways and gene expression, particularly in inflammatory signaling pathways, collagen synthesis and apoptosis, exhibiting significant regulatory effects. Furthermore, network pharmacological analysis predicts that RP may affect UVB-induced photoaging by regulating multiple key proteins and signaling pathways. Overall, this study demonstrates that RP has significant anti-photoaging ability, acting through several pathways including inhibition of inflammatory response, promotion of collagen synthesis and inhibition of apoptosis. These results provide a scientific basis for the application of RP in skin anti-photoaging and therapy, enabling the potential usage of RP to skin care products.
Collapse
Affiliation(s)
- Peng Shu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Menggeng Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Nan Zhao
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Tang X, Liu L, Li Y, Hao S, Zhao Y, Wu X, Li M, Chen Y, Deng S, Gou S, Cai D, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Zhang Z, Yao L, Shen J, Xiao Z, Du F. Chemical profiling and investigation of molecular mechanisms underlying anti-hepatocellular carcinoma activity of extracts from Polygonum perfoliatum L. Biomed Pharmacother 2023; 166:115315. [PMID: 37579693 DOI: 10.1016/j.biopha.2023.115315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
Polygonum perfoliatum L. is an herbal medicine that has been extensively used in traditional Chinese medicine to treat various health conditions ranging from ancient internal to surgical and gynecological diseases. Numerous studies suggest that P. perfoliatum extract elicits significant anti-tumor, anti-inflammatory, anti-bacterial, and anti-viral effects. Nevertheless, the underlying mechanisms of its anti-liver cancer effects remain poorly understood. Our study suggests that P. perfoliatum stem extract (PPLA) has a favorable safety profile and exhibits a significant anti-liver cancer effect both in vitro and in vivo. We identified that PPLA activates the cGMP-PKG signaling pathway, and key regulatory genes including ADRA1B, PLCB2, PRKG2, CALML4, and GLO1 involved in this activation. Moreover, PPLA modulates the expression of genes responsible for the cell cycle. Additionally, we identified four constituents of PPLA, namely taxifolin, myricetin, eriodictyol, and pinocembrin, that plausibly act via the cGMP-PKG signaling pathway. Both in vitro and in vivo experiments confirmed that PPLA, along with its constituting compounds taxifolin, myricetin, and eriodictyol, exhibit potent anti-cancer activities and hold the promise of being developed into therapeutic agents.
Collapse
Affiliation(s)
- Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China; The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Science (2019RU026), Sichuan Academy of Medical Sciences, Chengdu 610072, China
| | - Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Siyu Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Lei Yao
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Science (2019RU026), Sichuan Academy of Medical Sciences, Chengdu 610072, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China; Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646600, Sichuan, China.
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China.
| |
Collapse
|
15
|
Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules 2023; 13:1388. [PMID: 37759788 PMCID: PMC10526757 DOI: 10.3390/biom13091388] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Felix-Mircea Brehar
- Neurosurgery Department, Emergency Clinical Hospital Bagdasar-Arseni, 041915 Bucharest, Romania
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
16
|
Harithpriya K, Jayasuriya R, Adhikari T, Rai A, Ramkumar KM. Modulation of transcription factors by small molecules in β-cell development and differentiation. Eur J Pharmacol 2023; 946:175606. [PMID: 36809813 DOI: 10.1016/j.ejphar.2023.175606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Transcription factors regulate gene expression and play crucial roles in development and differentiation of pancreatic β-cell. The expression and/or activities of these transcription factors are reduced when β-cells are chronically exposed to hyperglycemia, which results in loss of β-cell function. Optimal expression of such transcription factors is required to maintain normal pancreatic development and β-cell function. Over many other methods of regenerating β-cells, using small molecules to activate transcription factors has gained insights, resulting in β-cells regeneration and survival. In this review, we discuss the broad spectrum of transcription factors regulating pancreatic β-cell development, differentiation and regulation of these factors in normal and pathological states. Also, we have presented set of potential pharmacological effects of natural and synthetic compounds on activities of transcription factor involved in pancreatic β-cell regeneration and survival. Exploring these compounds and their action on transcription factors responsible for pancreatic β-cell function and survival could be useful in providing new insights for development of small molecule modulators.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Trishla Adhikari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Awantika Rai
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
17
|
Liu P, Zhou Y, Shi J, Wang F, Yang X, Zheng X, Wang Y, He Y, Xie X, Pang X. Myricetin improves pathological changes in 3×Tg-AD mice by regulating the mitochondria-NLRP3 inflammasome-microglia channel by targeting P38 MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154801. [PMID: 37086707 DOI: 10.1016/j.phymed.2023.154801] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/09/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) represents the common neurodegenerative disease featured by the manifestations of cognitive impairment and memory loss. AD could be alleviated with medication and improving quality of life. Clinical treatment of AD is mainly aimed at improving the cognitive function of patients. Donepezil, memantine and galantamine are commonly used drug. But they could only relieve AD, not cure it. Therefore, new treatment strategies focusing on AD pathogenesis are of great significance and value. Myricetin (Myr) is a natural flavonoid extracted from Myrica rubra. And it shows different bioactivities, such as anti-inflammation, antioxidation as well as central nervous system (CNS) activities. Nonetheless, its associated mechanism in treating AD remains unknown. PURPOSE Here we focused on investigating Myr's effect on treating AD and exploring if its protection on the nervous system activity was associated with specifically inhibiting P38 MAPK signaling pathway while regulating mitochondria-NLRP3 inflammasome-microglia. STUDY DESIGN AND METHODS This work utilized triple transgenic mice (3 × Tg-AD) as AD models and Aβ25-35 was used to induce BV2 cells to build an in vitro AD model. Behavioristics, pathology and related inflammatory factors were examined. Molecular mechanisms are investigated by western-blot, immunofluorescence staining, CETSA, molecular docking, network pharmacology. RESULTS According to our findings, Myr could remarkably improve memory loss, spatial learning ability, Aβ plaque deposition, neuronal and synaptic damage in 3 × Tg-AD mice through specifically inhibiting P38 MAPK pathway activation while restraining microglial hyperactivation. Furthermore, Myr promoted the transformation of microglial phenotype, restored the mitochondrial fission-fusion balance, facilitated mitochondrial biogenesis, and restrained NLRP3 inflammasome activation and neuroinflammation. For the in-vitro experiments, P38 agonist dehydrocorydaline (DHC) was utilized to confirm the key regulatory role of P38 MAPK signaling pathway on the mitochondria-NLRP3 inflammasome-microglia channel. CONCLUSIONS Our results revealed the therapeutic efficacy of Myr in experimental AD, and implied that the associated mechanism is possibly associated with inhibiting tmitochondrial dysfunction, activating NLRP3 inflammasome, and neuroinflammation which was mediated by P38 MAPK pathway. Myr is the drug candidate in AD therapy via targeting P38 MAPK pathway.
Collapse
Affiliation(s)
- Pengfei Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yunfeng Zhou
- School of Pharmacy, Henan University, Kaifeng 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Junzhuo Shi
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Feng Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xiaojia Yang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xuhui Zheng
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yanran Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yangyang He
- School of Pharmacy, Henan University, Kaifeng 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China.
| | - Xinmei Xie
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China.
| |
Collapse
|
18
|
Role of PI3K-AKT Pathway in Ultraviolet Ray and Hydrogen Peroxide-Induced Oxidative Damage and Its Repair by Grain Ferments. Foods 2023; 12:foods12040806. [PMID: 36832881 PMCID: PMC9957031 DOI: 10.3390/foods12040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
UV and external environmental stimuli can cause oxidative damage to skin cells. However, the molecular mechanisms involved in cell damage have not been systematically and clearly elucidated. In our study, an RNA-seq technique was used to determine the differentially expressed genes (DEGs) of the UVA/H2O2-induced model. Gene Oncology (GO) clustering and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis were performed to determine the core DEGs and key signaling pathway. The PI3K-AKT signaling pathway was selected as playing a part in the oxidative process and was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We selected three kinds of Schizophyllum commune fermented actives to evaluate whether the PI3K-AKT signaling pathway also plays a role in the resistance of active substances to oxidative damage. Results indicated that DEGs were mainly enriched in five categories: external stimulus response, oxidative stress, immunity, inflammation, and skin barrier regulation. S. commune-grain ferments can effectively reduce cellular oxidative damage through the PI3K-AKT pathway at both the cellular and molecular levels. Some typical mRNAs (COL1A1, COL1A2, COL4A5, FN1, IGF2, NR4A1, and PIK3R1) were detected, and the results obtained were consistent with those of RNA-seq. These results may give us a common set of standards or criteria for the screen of anti-oxidative actives in the future.
Collapse
|
19
|
Sur B, Lee B. Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:415-425. [PMID: 36302617 PMCID: PMC9614391 DOI: 10.4196/kjpp.2022.26.6.415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Memory formation in the hippocampus is formed and maintained by circadian clock genes during sleep. Sleep deprivation (SD) can lead to memory impairment and neuroinflammation, and there remains no effective pharmacological treatment for these effects. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. In this study, we investigated the effects of MYR on memory impairment, neuroinflammation, and neurotrophic factors in sleep-deprived rats. We analyzed SD-induced cognitive and spatial memory, as well as pro-inflammatory cytokine levels during SD. SD model rats were intraperitoneally injected with 10 and 20 mg/kg/day MYR for 14 days. MYR administration significantly ameliorated SD-induced cognitive and spatial memory deficits; it also attenuated the SD-induced inflammatory response associated with nuclear factor kappa B activation in the hippocampus. In addition, MYR enhanced the mRNA expression of brain-derived neurotropic factor (BDNF) in the hippocampus. Our results showed that MYR improved memory impairment by means of anti-inflammatory activity and appropriate regulation of BDNF expression. Our findings suggest that MYR is a potential functional ingredient that protects cognitive function from SD.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea,Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea,Correspondence Bombi Lee, E-mail:
| |
Collapse
|
20
|
Hu H, Hu Z, Zhang Y, Wan H, Yin Z, Li L, Liang X, Zhao X, Yin L, Ye G, Zou YF, Tang H, Jia R, Chen Y, Zhou H, Song X. Myricetin inhibits pseudorabies virus infection through direct inactivation and activating host antiviral defense. Front Microbiol 2022; 13:985108. [PMID: 36187970 PMCID: PMC9520584 DOI: 10.3389/fmicb.2022.985108] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Myricetin, a polyhydroxyflavone compound, is one of the main ingredients of various human foods and therefore also known as dietary flavonoids. Due to the continuous emergence of resistant strains of herpesviruses, novel control measures are required. In the present study, myricetin exhibited potent antiviral activity against pseudorabies virus (PRV), a model organism of herpesvirus. The suppression rate could reach up to 96.4% at a concentration of 500 μM in cells, and the 50% inhibitory concentration (IC50) was 42.69 μM. Moreover, the inhibitory activity was not attenuated by the increased amount of infective dose, and a significant reduction of intracellular PRV virions was observed by indirect immunofluorescence. A mode of action study indicated that myricetin could directly inactivate the virus in vitro, leading to inhibition of viral adsorption, penetration and replication in cells. In addition to direct killing effect, myricetin could also activate host antiviral defense through regulation of apoptosis-related gene expressions (Bcl-2, Bcl-xl, Bax), NF-κB and MAPK signaling pathways and cytokine gene expressions (IL-1α, IL-1β, IL-6, c-Jun, STAT1, c-Fos, and c-Myc). In PRV-infected mouse model, myricetin could enhance the survival rate by 40% at 5 days post infection, and viral loads in kidney, liver, lung, spleen, and brain were significantly decreased. The pathological changes caused by PRV infection were improved by myricetin treatment. The gene expressions of inflammatory factors (MCP-1, G-CSF, IL-1α, IL-1β, and IL-6) and apoptotic factors (Bcl-xl, Bcl-2, and Bax) were regulated by myricetin in PRV-infected mice. The present findings suggest that myricetin can effectively inhibit PRV infection and become a candidate for development of new anti-herpesvirus drugs.
Collapse
Affiliation(s)
- Huaiyue Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Hu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., Dezhou, China
| | - Yingying Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongping Wan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, United States
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
El-Banna AA, Darwish RS, Ghareeb DA, Yassin AM, Abdulmalek SA, Dawood HM. Metabolic profiling of Lantana camara L. using UPLC-MS/MS and revealing its inflammation-related targets using network pharmacology-based and molecular docking analyses. Sci Rep 2022; 12:14828. [PMID: 36050423 PMCID: PMC9436993 DOI: 10.1038/s41598-022-19137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Lantana camara L. is widely used in folk medicine for alleviation of inflammatory disorders, but studies that proved this folk use and that revealed the molecular mechanism of action in inflammation mitigation are not enough. Therefore, this study aimed to identify L. camara phytoconstituents using UPLC-MS/MS and explain their multi-level mechanism of action in inflammation alleviation using network pharmacology analysis together with molecular docking and in vitro testing. Fifty-seven phytoconstituents were identified in L. camara extract, from which the top hit compounds related to inflammation were ferulic acid, catechin gallate, myricetin and iso-ferulic acid. Whereas the most enriched inflammation related genes were PRKCA, RELA, IL2, MAPK 14 and FOS. Furthermore, the most enriched inflammation-related pathways were PI3K-Akt and MAPK signaling pathways. Molecular docking revealed that catechin gallate possessed the lowest binding energy against PRKCA, RELA and IL2, while myricetin had the most stabilized interaction against MAPK14 and FOS. In vitro cytotoxicity and anti-inflammatory testing indicated that L. camara extract is safer than piroxicam and has a strong anti-inflammatory activity comparable to it. This study is a first step in proving the folk uses of L. camara in palliating inflammatory ailments and institutes the groundwork for future clinical studies.
Collapse
Affiliation(s)
- Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt.,Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdelrahman M Yassin
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt.,Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
22
|
Hesperidin Protects Human HaCaT Keratinocytes from Particulate Matter 2.5-Induced Apoptosis via the Inhibition of Oxidative Stress and Autophagy. Antioxidants (Basel) 2022; 11:antiox11071363. [PMID: 35883854 PMCID: PMC9312010 DOI: 10.3390/antiox11071363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous epidemiological studies have reported that particulate matter 2.5 (PM2.5) causes skin aging and skin inflammation and impairs skin homeostasis. Hesperidin, a bioflavonoid that is abundant in citrus species, reportedly has anti-inflammatory properties. In this study, we evaluated the cytoprotective effect of hesperidin against PM2.5-mediated damage in a human skin cell line (HaCaT). Hesperidin reduced PM2.5-induced intracellular reactive oxygen species (ROS) generation and oxidative cellular/organelle damage. PM2.5 increased the proportion of acridine orange-positive cells, levels of autophagy-related proteins, beclin-1 and microtubule-associated protein light chain 3, and apoptosis-related proteins, B-cell lymphoma-2-associated X protein, cleaved caspase-3, and cleaved caspase-9. However, hesperidin ameliorated PM2.5-induced autophagy and apoptosis. PM2.5 promoted cellular apoptosis via mitogen-activated protein kinase (MAPK) activation by promoting the phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. The MAPK inhibitors U0126, SP600125, and SB203580 along with hesperidin exerted a protective effect against PM2.5-induced cellular apoptosis. Furthermore, hesperidin restored PM2.5-mediated reduction in cell viability via Akt activation; this was also confirmed using LY294002 (a phosphoinositide 3-kinase inhibitor). Overall, hesperidin shows therapeutic potential against PM2.5-induced skin damage by mitigating excessive ROS accumulation, autophagy, and apoptosis.
Collapse
|
23
|
Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8320256. [PMID: 35722162 PMCID: PMC9200513 DOI: 10.1155/2022/8320256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a stress-related psychiatric or mental disorder characterized by experiencing a traumatic stress. The cause of such PTSD is dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and imbalance of monoamines. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. We investigated the effects of MYR on fear, depression, and anxiety following monoamine imbalance and hyperactivation of HPA axis in rats exposed to a single prolonged stress (SPS). Male rats were dosed with MYR (10 and 20 mg/kg, i.p.) once daily for 14 days after exposure to SPS. Administration of MYR reduced freezing responses to extinction recall, depression, and anxiety-like behaviors and decreased increase of plasma corticosterone and adrenocorticotropic hormone levels. Also, administration of MYR restored decreased serotonin and increased norepinephrine in the fear circuit regions, medial prefrontal cortex, and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B mRNA expression and the ratio of p-ERK/extracellular signal-regulated kinase (ERK) in the hippocampus. Thus, MYR exerted antidepressant and anxiolytic effects by regulation of HPA axis and activation of the BDNF-ERK signaling pathway. Finally, we suggest that MYR could be a useful therapeutic agent to prevent traumatic stress such as PTSD.
Collapse
|
24
|
Flavonoids Enhance Lipofection Efficiency and Ameliorate Cytotoxicity in Colon26 and HepG2 Cells via Oxidative Stress Regulation. Pharmaceutics 2022; 14:pharmaceutics14061203. [PMID: 35745776 PMCID: PMC9231055 DOI: 10.3390/pharmaceutics14061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/10/2022] Open
Abstract
The generation of reactive oxygen species (ROS) can affect cationic liposome-mediated transfection. In this study, we focused on a specific class of antioxidants, flavonoids, to investigate the transfection efficiency using cationic liposome/plasmid DNA complexes (lipoplexes) in 2D and 3D cultures of Colon26 and HepG2 cells, respectively. All tested flavonoids enhanced the transfection efficiency in 2D Colon26 and HepG2 cells. Among the tested flavonoids, 25 µM quercetin showed the highest promotion effect of 8.4- and 7.6-folds in 2D Colon26 and HepG2 cells, respectively. Transfection was also performed in 3D cultures of Colon26 and HepG2 cells using lipoplexes with quercetin. Quercetin (12.5 µM) showed the highest transfection efficiency at all transfection timings in 3D Colon26 and HepG2 cells with increased cell viability. Flow cytometry revealed that quercetin treatment reduced the population of gene expression-negative cells with high ROS levels and increased the number of gene expression-positive cells with low ROS levels in HepG2 cells. Information from this study can be valuable to develop strategies to promote transfection efficiency and attenuate cytotoxicity using lipoplexes.
Collapse
|
25
|
Mo F, Zhang P, Li Q, Yang X, Ma J, Zhang J. Development and Evaluation of a Film Forming System Containing Myricetin and Miconazole Nitrate for Preventing Candida albicans Catheter-Related Infection. Microb Drug Resist 2022; 28:468-483. [PMID: 35451882 DOI: 10.1089/mdr.2021.0242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Candida albicans catheter-related infection (CRI) is a great challenge in clinic now, mainly due to the difficulty in eradicating the biofilms. Purpose: In this study, the mechanism of the antibiofilm effect of myricetin (MY) on C. albicans was illustrated. A film forming system (FFS) containing MY and miconazole nitrate (MN) was developed, optimized, and evaluated. The anti-infection effect of MY+MN@FFS against C. albicans CRI was investigated in vivo. Study Design and Methods: To clarify the mechanism of the action of MY, the influence of MY on each key process of the formation of C. albicans biofilms was evaluated. To deliver MY and MN into the skin and form a drug reservoir on the surface of the skin, the FFS was used as a carrier and MY+MN@FFS was developed, optimized, and evaluated. After preliminary confirmation of drug safety, a percutaneously inserted C. albicans CRI mouse model was established to investigate the in vivo anti-infection effect of MY+MN@FFS by fluorescence microscopy and scanning electron microscopy on the outer surface of the catheters, hematoxylin/eosin staining, and periodic acid-Schiff staining of the mice skin tissues. Results: MY was found to inhibit the morphological transition of C. albicans and the secretion of exopolysaccharides, resulting in a reduction in biofilms. MY+MN@FFS exhibited excellent properties and no irritation to mice skin. In an in vivo anti-infection study, MY+MN@FFS exhibited an excellent preventive effect against percutaneously inserted C. albicans CRI. Conclusion: MY+MN@FFS might be a potential approach for effectively preventing percutaneously inserted C. albicans CRI in clinic.
Collapse
Affiliation(s)
- Fei Mo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Peipei Zhang
- Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xianwei Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
26
|
Arafah A, Rehman MU, Ahmad A, AlKharfy KM, Alqahtani S, Jan BL, Almatroudi NM. Myricetin (3,3',4',5,5',7-Hexahydroxyflavone) Prevents 5-Fluorouracil-Induced Cardiotoxicity. ACS OMEGA 2022; 7:4514-4524. [PMID: 35155943 PMCID: PMC8829927 DOI: 10.1021/acsomega.1c06475] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/12/2022] [Indexed: 05/05/2023]
Abstract
5-Fluorouracil (5-FU) is a strong anti-cancer drug used to manage numerous cancers. Cardiotoxicity, renal toxicity, and liver toxicity are some of the adverse effects which confine its clinical use to some extent. 5-FU-induced organ injuries are associated with redox imbalance, inflammation, and damage to heart functioning, particularly in the present study. Myricetin is an abundant flavonoid, commonly extracted from berries and herbs having anti-oxidative and anti-cancer activities. We planned the current work to explore the beneficial effects of myricetin against 5-FU-induced cardiac injury in Wistar rats through a biochemical and histological approach. Prophylactic myricetin treatment at two doses (25 and 50 mg/kg) was given to rats orally for 21 days against cardiac injury induced by a single injection of 5-FU (150 mg/kg b.wt.) given on the 20th day intraperitoneally. The 5-FU injection induced oxidative stress, inflammation, and extensive cardiac damage. Nevertheless, myricetin alleviated markers of inflammation, apoptosis, cardiac toxicity, oxidative stress, and upregulated anti-oxidative machinery. The histology of heart further supports our biochemical findings mitigated by the prophylactic treatment of myricetin. Henceforth, myricetin mitigates 5-FU-induced cardiac damage by modulating oxidative stress, inflammation, and cardiac-specific markers, as found in the present study.
Collapse
Affiliation(s)
- Azher Arafah
- Department
of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muneeb U. Rehman
- Department
of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- ,
| | - Ajaz Ahmad
- Department
of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. AlKharfy
- Department
of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saeed Alqahtani
- Department
of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basit L. Jan
- Department
of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nada M. Almatroudi
- Department
of Clinical Pharmacy, College of Pharmacy (Girls Campus), King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Sarkar C, Chaudhary P, Jamaddar S, Janmeda P, Mondal M, Mubarak MS, Islam MT. Redox Activity of Flavonoids: Impact on Human Health, Therapeutics, and Chemical Safety. Chem Res Toxicol 2022; 35:140-162. [PMID: 35045245 DOI: 10.1021/acs.chemrestox.1c00348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cost-effectiveness of presently used therapies is a problem in overall redox-based management, which is posing a significant financial burden on communities across the world. As a result, sophisticated treatment models that provide notions of predictive diagnoses followed by targeted preventive therapies adapted to individual patient profiles are gaining global acclaim as being beneficial to patients, the healthcare sector, and society as a whole. In this context, natural flavonoids were considered due to their multifaceted antioxidant, anti-inflammatory, and anticancer effects as well as their low toxicity and ease of availability. The aim of this review is to focus on the capacity of flavonoids to modulate the responsiveness of various diseases and ailments associated with redox toxicity. The review will also focus on the flavonoids' pathway-based redox activity and the advancement of redox-based therapies as well as flavonoids' antioxidant characteristics and their influence on human health, therapeutics, and chemical safety. Research findings indicated that flavonoids significantly exhibit various redox-based therapeutic responses against several diseases such as inflammatory, neurodegenerative, cardiovascular, and hepatic diseases and various types of cancer by activating the Nrf2/Keap1 transcription system, suppressing the nuclear factor κB (NF-κB)/IκB kinase inflammatory pathway, abrogating the function of the Hsp90/Hsf1 complex, inhibiting the PTEN/PI3K/Akt pathway, and preventing mitochondrial dysfunction. Some flavonoids, especially genistein, apigenin, amentoflavone, baicalein, quercetin, licochalcone A, and biochanin A, play a potential role in redox regulation. Conclusions of this review on the antioxidant aspects of flavonoids highlight the medicinal and folk values of these compounds against oxidative stress and various diseases and ailments. In short, treatment with flavonoids could be a novel therapeutic invention in clinical trials, as we hope.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
28
|
Kimura AM, Tsuji M, Yasumoto T, Mori Y, Oguchi T, Tsuji Y, Umino M, Umino A, Nishikawa T, Nakamura S, Inoue T, Kiuchi Y, Yamada M, Teplow DB, Ono K. Myricetin prevents high molecular weight Aβ 1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria. Free Radic Biol Med 2021; 171:232-244. [PMID: 34015458 DOI: 10.1016/j.freeradbiomed.2021.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Excessive accumulation of amyloid β-protein (Aβ) is one of the primary mechanisms that leads to neuronal death with phosphorylated tau in the pathogenesis of Alzheimer's disease (AD). Protofibrils, one of the high-molecular-weight Aβ oligomers (HMW-Aβo), are implicated to be important targets of disease modifying therapy of AD. We previously reported that phenolic compounds such as myricetin inhibit Aβ1-40, Aβ1-42, and α-synuclein aggregations, including their oligomerizations, which may exert protective effects against AD and Parkinson's disease. The purpose of this study was to clarify the detailed mechanism of the protective effect of myricetin against the neurotoxicity of HMW-Aβo in SH-SY5Y cells. To assess the effect of myricetin on HMW-Aβo-induced oxidative stress, we systematically examined the level of membrane oxidative damage by measuring cell membrane lipid peroxidation, membrane fluidity, and cell membrane potential, and the mitochondrial oxidative damage was evaluated by mitochondrial permeability transition (MPT), mitochondrial reactive oxygen species (ROS), and manganese-superoxide dismutase (Mn-SOD), and adenosine triphosphate (ATP) assay in SH-SY5Y cells. Myricetin has been found to increased cell viability by suppression of HMW-Aβo-induced membrane disruption in SH-SY5Y cells, as shown in reducing membrane phospholipid peroxidation and increasing membrane fluidity and membrane resistance. Myricetin has also been found to suppress HMW-Aβo-induced mitochondria dysfunction, as demonstrated in decreasing MPT, Mn-SOD, and ATP generation, raising mitochondrial membrane potential, and increasing mitochondrial-ROS generation. These results suggest that myricetin preventing HMW-Aβo-induced neurotoxicity through multiple antioxidant functions may be developed as a disease-modifying agent against AD.
Collapse
Affiliation(s)
- Atsushi Michael Kimura
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan; Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan.
| | - Taro Yasumoto
- Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | - Yukiko Mori
- Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | - Tatsunori Oguchi
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Yuya Tsuji
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Masakazu Umino
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Asami Umino
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Toru Nishikawa
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Tomio Inoue
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E. Young Drive South, Room 445, Los Angeles, CA, 90095, USA
| | - Kenjiro Ono
- Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan.
| |
Collapse
|
29
|
Ibrahim KA, Abdelgaid HA, El-Desouky MA, Fahmi AA, Abdel-Daim MM. Linseed ameliorates renal apoptosis in rat fetuses induced by single or combined exposure to diesel nanoparticles or fenitrothion by inhibiting transcriptional activation of p21/p53 and caspase-3/9 through pro-oxidant stimulus. ENVIRONMENTAL TOXICOLOGY 2021; 36:958-974. [PMID: 33393722 DOI: 10.1002/tox.23097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/27/2020] [Indexed: 02/05/2023]
Abstract
Gestational exposure to environmental pollutants can induce oxidative injury and apoptosis since the fetal organs are sensitively vulnerable to these chemicals. In this work, we have investigated the renal anti-apoptotic efficiency of linseed (LS) against the oxidative stress-mediated upregulation of the fetal apoptosis-related genes following the prenatal intoxication with diesel nanoparticles (DNPs) and/or fenitrothion (FNT). A fifty-six timed-pregnant rats were equally divided to eight groups; control, LS (20% in diet), DNPs (0.5 mg/kg by intratracheal inoculation), FNT (3.76 mg/kg by gavage), DNPs+FNT, LS + DNPs, LS + FNT, and LS + DNPs+FNT. The transmission electron microscope analysis revealed the spherical shape of diesel particles with a homogeneous nanosized range (20-92.3 nm) and the crystallinity was confirmed by electron diffraction microscopy. Administration of DNPs and/or FNT significantly increased fetal renal malondialdehyde, nitric oxide, and glutathione reductase as compared with the control group. However, they declined the level of glutathione together with the activities of glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase. Furthermore, DNPs and/or FNT elicited many histopathological changes in fetal renal cells, markedly up-regulated apoptosis-related gene expressions (p53, p21 caspase-3, and caspase-9), and evoked DNA breaks as detected by comet assay. Interestingly, LS supplementation significantly ameliorated the disturbances in oxidant/antioxidant biomarkers, downregulated the apoptosis gene expressions, and alleviated DNA damage alongside renal cell architecture. These findings reveal that the antioxidant and anti-apoptotic characteristics of LS are acceptable defender pointers for the renal injury especially during gestational exposure to DNPs and/or FNT.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Hala A Abdelgaid
- Biochemistry Division, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
30
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
31
|
Comprehensive Transcriptome Analysis of mRNA Expression Patterns of Early Embryo Development in Goat under Hypoxic and Normoxic Conditions. BIOLOGY 2021; 10:biology10050381. [PMID: 33924908 PMCID: PMC8146044 DOI: 10.3390/biology10050381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Oxygen plays a vital role in the development of early embryos, no matter whether it is too high or low, it will adversely affect the early embryo development, but the mechanisms involved in these effects are still unclear. RNA-seq was performed to compare 8-cell-stage and blastocyst-stage goat embryos under hypoxic and normoxic conditions, the mRNA expression mechanisms of 8-cell- and blastocyst-stage embryos were systematically analyzed under hypoxic and normoxic conditions. Functional enrichment analysis indicated that these differentially expressed genes (DEGs) were mainly related to biological processes and function regulation. In conclusion, we can infer that oxidative stress regulates early embryo development by affecting the expression of zygotic genes and transcription factors, and those stress genes play a potential role in adaptation to normoxic environments in goat embryos. Abstract It has been reported that hypoxic environments were more suitable for the in vitro development of mammalian embryos, but the underlying mechanisms were still unclear. In the present study, RNA-seq was performed to compare 8-cell-stage and blastocyst-stage goat embryos under hypoxic and normoxic conditions; zygotes were checked at 72 and 168 h to 8-cell stage (L8C) and blastocyst stage (LM) in hypoxic conditions and 8-cell stage (H8C) and blastocyst stage (HM) in normoxic conditions. In the H8C and L8C groups, 399 DEGs were identified, including 348 up- and 51 down-regulated DEGs. In the HM and LM groups, 1710 DEGs were identified, including 1516 up- and 194 down-regulated DEGs. The expression levels of zygotic genes, transcription factors, and maternal genes, such as WEE2, GDF9, HSP70.1, BTG4, and UBE2S showed significant changes. Functional enrichment analysis indicated that these DEGs were mainly related to biological processes and function regulation. In addition, combined with the pathway–gene interaction network and protein–protein interaction network, twenty-two of the hub genes were identified and they are mainly involved in energy metabolism, immune stress response, cell cycle, receptor binding, and signal transduction pathways. The present study provides comprehensive insights into the effects of oxidative stress on early embryo development in goats.
Collapse
|
32
|
The Anticancer Effects of Flavonoids through miRNAs Modulations in Triple-Negative Breast Cancer. Nutrients 2021; 13:nu13041212. [PMID: 33916931 PMCID: PMC8067583 DOI: 10.3390/nu13041212] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022] Open
Abstract
Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last decades and is expected to increase in the future. Finding novel treatment options with minimum or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive molecules that might fulfill this promising therapeutic option. Flavonoids have shown many biological activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several preclinical and epidemiological studies indicate the possible therapeutic potential of these compounds. Flavonoids display a unique ability to change miRNAs' levels via different mechanisms, either by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcriptional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation, modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation, emphasizing their anticipated role in the prevention and treatment of TNBC.
Collapse
|
33
|
Chen M, Tang X, Liu T, Peng F, Zhou Q, Luo H, He M, Xue W. Antimicrobial evaluation of myricetin derivatives containing benzimidazole skeleton against plant pathogens. Fitoterapia 2020; 149:104804. [PMID: 33309970 DOI: 10.1016/j.fitote.2020.104804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
A series of novel myricetin derivatives containing benzimidazole skeleton were constructed. The structure of compound 4g was further corroborated via X-ray single crystal diffractometer. The antimicrobial bioassays showed that all compounds exhibited potent inhibitory activities against Xanthomonas axonopodis pv. Citri (Xac), Ralstonia solanacearum (Rs) and Xanthomonas oryzae pv. Oryzae (Xoo) in vitro. Significantly, compound 4q showed the best inhibitory activities against Xoo, with the EC50 value of 8.2 μg/mL, which was better than thiodiazole copper (83.1 μg/mL) and bismerthiazol (60.1 μg/mL). In vivo experimental studies showed that compound 4q can treat rice bacterial leaf blight at 200 μg/mL, and the corresponding curative and protection efficiencies were 45.2 and 48.6%, respectively. Meanwhile, the antimicrobial mechanism of the compounds 4l and 4q were investigated through scanning electron microscopy (SEM). Studies showed that compounds 4l or 4q can cause deformation or rupture of Rs or Xoo cell membrane. These results indicated that novel benzimidazole-containing myricetin derivatives can be used as a potential antibacterial reagent.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hui Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
34
|
Khan H, Tundis R, Ullah H, Aschner M, Belwal T, Mirzaei H, Akkol EK. Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem Toxicol 2020; 146:111817. [PMID: 33069760 DOI: 10.1016/j.fct.2020.111817] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023]
Abstract
Neurodegenerative disorders are characterized by progressive loss of neurons. To date, no efficacious therapies exist for these disorders, and current therapies provide only symptomatic relief. The neuroprotective effects of natural compounds have been reported in several neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) amyotrophic lateral sclerosis (ALS), cerebral ischemia and brain tumors. Flavonoids are the most widely studied natural products for the prevention and treatment of neurodegenerative disorders. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) represents a complex gene regulated cytoprotective pathway. Several natural compounds have been identified as Nrf2 regulators in various chronic disorders, including carcinogenic, liver ailments, inflammatory conditions, neurodegeneration, diabetes and cardiotoxicities. The current review focuses on Nrf2 targeting by flavonoids in the prevention and treatment of neurodegenerative disorders, addressing the most contemporary information available on this timely subject.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci 87036 Rende (CS), Italy.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Tarun Belwal
- Centre for Biodiversity Conservation and Management, G.B. Plant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| | - Esra Kupeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy Gazi University 06330, Etiler/Ankara Turkey.
| |
Collapse
|
35
|
Liu M, Guo H, Li Z, Zhang C, Zhang X, Cui Q, Tian J. Molecular Level Insight Into the Benefit of Myricetin and Dihydromyricetin Uptake in Patients With Alzheimer's Diseases. Front Aging Neurosci 2020; 12:601603. [PMID: 33192493 PMCID: PMC7645199 DOI: 10.3389/fnagi.2020.601603] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a high incidence rate and complicated pathogenesis. Currently, all anti-AD drugs treat the symptoms of the disease, and with currently no cure for AD. Flavonoid containing natural products, Myricetin (MYR) and Dihydromyricetin (DMY), are abundant in fruits and vegetables, and have been approved as food supplements in some countries. Interestingly, MYR and DMY have been reported to have anti-AD effects. However, the underlying anti-AD mechanism of action of MYR and DMY is complex with many facets being identified. In this review, we explore the benefit of MYR and DMY in AD patients from a molecular level. Their mechanism of action are discussed from various aspects including amyloid β-protein (Aβ) imbalance, neuroinflammation, dyshomeostasis of metal ions, autophagy disorder, and oxidative stress.
Collapse
Affiliation(s)
- Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenghua Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoping Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
36
|
Aboulhoda BE, Abdeltawab DA, Rashed LA, Abd Alla MF, Yassa HD. Hepatotoxic Effect of Oral Zinc Oxide Nanoparticles and the Ameliorating Role of Selenium in Rats: A histological, immunohistochemical and molecular study. Tissue Cell 2020; 67:101441. [PMID: 32949962 DOI: 10.1016/j.tice.2020.101441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Despite the emerging concerns about the hepatotoxic risks associated with Zinc oxide nanoparticles (ZnO NPs), yet, the morphological and molecular alterations associated with these extensively-used nanoparticles remain to be elucidated. Thus, the current study has been designed to analyze the effect of ZnO NPs on the hepatic histopathological and immunohistochemical changes, along with the modulation of the oxidative-stress induced JNK/p38MAPK and the STAT-3 signalling. The study also explored the potential protective role of selenium against those alterations. ZnO NPs disrupted the hepatic architecture, elevated the serum liver enzyme alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) levels and caused dose-dependent decrease in the activity of the antioxidant enzymes glutathione-peroxidase, superoxide dismutase and catalase along with an increase in the lipid peroxidation product malondialdehyde. ZnO NPs also increased the area of immune-reactivity of the apoptotic protein bax and decreased the area of immune-reactivity of the anti-apoptotic protein bcl2 together with augmentation of the hepatic caspase 3 gene expression. The role of selenium in ameliorating the hepatotoxicity, oxidative stress injury, and apoptosis induced by ZnO-NPs, along with its role in modulating the JNK/p38MAPK and the STAT-3 signalling and improving the histopathological hepatic changes, offers selenium as a promising adjunctive therapy in individuals subjected to high concentrations of ZnO NPs especially in cases of extensive occupational, medicinal and industrial exposure.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt.
| | - Dina Adel Abdeltawab
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Laila Ahmed Rashed
- Department of biochemistry and molecular biology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Fathi Abd Alla
- Department of biochemistry and molecular biology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hanan Dawood Yassa
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
37
|
Salama RM, Mohamed AM, Hamed NS, Ata RM, NourelDeen AS, Hassan MA. Alogliptin: a novel approach against cyclophosphamide-induced hepatic injury via modulating SIRT1/FoxO1 pathway. Toxicol Res (Camb) 2020; 9:561-568. [PMID: 32905193 DOI: 10.1093/toxres/tfaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclophosphamide (CP) is one of the most potent alkylating agents and is widely used in the treatment of numerous neoplastic conditions, autoimmune diseases and following organ transplantation. Due to its ability to induce oxidative stress and subsequent apoptosis, CP is affiliated with many adverse effects with special emphasis on the highly prevalent hepatotoxicity. Dipeptidyl peptidase 4 (DDP-IV) inhibitors are being rediscovered for new biological effects due to their ability to target multiple pathways, among which is the phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) axis. This could offer protection to multiple organs against reactive oxygen species (ROS) through modulating sirtuin 1 (SIRT1) expression and, in turn, inactivation of forkhead box transcription factor of the O class 1 (FoxO1), thus inhibiting apoptosis. Accordingly, the current study aimed to investigate the potential therapeutic benefit of alogliptin (Alo), a DPP-IV inhibitor, against CP-induced hepatotoxicity through enhancing PI3K/Akt/SIRT1 pathway. Forty male Wistar rats were randomly divided into four groups. The CP-treated group received a single dose of CP (200 mg/kg; i.p.). The Alo-treated group received Alo (20 mg/kg; p.o.) for 7 days with single CP injection on Day 2. Alo successfully reduced hepatic injury as witnessed through decreased liver function enzymes, increased phospho (p)-PI3K, p-Akt, superoxide dismutase (SOD) levels, SIRT1 expression, p-FoxO1 and anti-apoptotic B-cell lymphoma 2 (Bcl-2). This resulted in decreased apoptosis, as witnessed through decreased caspase-3 levels and improved histopathological picture. In conclusion, the current study succeeded to elaborate, for the first time, the promising impact of Alo in ameliorating chemotherapy-induced liver injury.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Abdelkader M Mohamed
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nada S Hamed
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Raneem M Ata
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Amira S NourelDeen
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Mohamed A Hassan
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|
38
|
Taheri Y, Suleria HAR, Martins N, Sytar O, Beyatli A, Yeskaliyeva B, Seitimova G, Salehi B, Semwal P, Painuli S, Kumar A, Azzini E, Martorell M, Setzer WN, Maroyi A, Sharifi-Rad J. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther 2020; 20:241. [PMID: 32738903 PMCID: PMC7395214 DOI: 10.1186/s12906-020-03033-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Several flavonoids have been recognized as nutraceuticals, and myricetin is a good example. Myricetin is commonly found in plants and their antimicrobial and antioxidant activities is well demonstrated. One of its beneficial biological effects is the neuroprotective activity, showing preclinical activities on Alzheimer, Parkinson, and Huntington diseases, and even in amyotrophic lateral sclerosis. Also, myricetin has revealed other biological activities, among them as antidiabetic, anticancer, immunomodulatory, cardiovascular, analgesic and antihypertensive. However, few clinical trials have been performed using myricetin as nutraceutical. Thus, this review provides new insights on myricetin preclinical pharmacological activities, and role in selected clinical trials.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska str., 64, Kyiv, 01033 Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Ahmet Beyatli
- Department of Medicinal and Aromatic Plants, University of Health Sciences, 34668 Istanbul, Turkey
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248001 India
- Uttarakhand State Council for Science and Technology, Vigyan Dham, Dehradun, Uttarakhand 248007 India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248001 India
- Himalayan Environmental Studies and Conservation Organization, Prem Nagar, Dehradun, Uttarakhand 248001 India
| | - Anuj Kumar
- Uttarakhand Council for Biotechnology, Silk Park, Prem Nagar, Dehradun, Uttarakhand 248007 India
| | - Elena Azzini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, 4070386 Concepción, Chile
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899 USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043 USA
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice, 5700 South Africa
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
39
|
Liu J, Wang H, Liu X, Zhang G, Liu Z. Chinese liquor extract attenuates oxidative damage in HepG2 cells and extends lifespan of Caenorhabditis elegans. Food Sci Nutr 2020; 8:3164-3172. [PMID: 32724581 PMCID: PMC7382174 DOI: 10.1002/fsn3.1564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 11/08/2022] Open
Abstract
Chinese liquor is obtained from various grains by fermentation and complex processes. Chinese liquor contains complex ingredients. However, the low contents and presence of ethanol restricted the flavor substances function study. In current study, a flavor substance, homofuraneol (HOMO) was isolated from the Chinese liquor and the potency against H2O2-induced oxidative damage in HepG2 cells and lifespan-extending ability in Caenorhabditis elegans were explored. Results indicated that HOMO increased the HepG2 cells cytoactive by eliminating excessive intracellular free radicals, upregulating antioxidant enzyme activity and inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs) pathway. Further study revealed that HOMO extended the lifespan of N2 nematodes under normal and oxidative stress conditions. Moreover, RT-PCR results showed that paraquat activated the expression of PMK-1 and SKN-1 was significantly regulated by HOMO. Of note, our results indicated that HOMO recovered the redox states of HepG2 cells by targeting MAPKs and upregulating the stress resistance of nematodes by modulating the expression of stress-responsive genes, such as DAF-16.
Collapse
Affiliation(s)
- Jie Liu
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Huailing Wang
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Guohao Zhang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Zhigang Liu
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| |
Collapse
|
40
|
You S, Jang M, Kim GH. Mori Cortex Radicis Attenuates High Fat Diet-Induced Cognitive Impairment via an IRS/Akt Signaling Pathway. Nutrients 2020; 12:nu12061851. [PMID: 32575897 PMCID: PMC7353299 DOI: 10.3390/nu12061851] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Present study was conducted to investigate ameliorating effects of Mori Cortex radicis on cognitive impair and neuronal defects in HFD-induced (High Fat Diet-Induced) obese mice. To induce obesity, C57BL/6 mice were fed an HFD for 8 weeks, and then mice were fed the HFD plus Mori Cortex radicis extract (MCR) (100 or 200 mg/kg/day) for 6 weeks. Prior to sacrifice, body weights were measured, and Y-maze test and oral glucose tolerance test were performed. Serum lipid metabolic biomarkers (TG, LDL, and HDL/total cholesterol ratio) and antioxidant enzymes (glutathione, superoxide dismutase, and catalase), malondialdehyde (MDA), and acetylcholinesterase (AChE) levels were measured in brain tissues. The expressions of proteins related to insulin signaling (p-IRS, PI3K, p-Akt, and GLUT4) and neuronal protection (p-Tau, Bcl-2, and Bax) were examined. MCR suppressed weight gain, improved serum lipid metabolic biomarker and glucose tolerance, inhibited AChE levels and MDA production, and restored antioxidant enzyme levels in brain tissue. In addition, MCR induced neuronal protective effects by inhibiting p-Tau expression and increasing Bcl-2/Bax ratio, which was attributed to insulin-induced increases in the expressions p-IRS, PI3K, p-Akt, and GLUT4. These indicate MCR may reduce HFD-induced insulin dysfunction and neuronal damage and suggest MCR be considered a functional material for the prevention of T2DM-associated neuronal disease.
Collapse
Affiliation(s)
- SoHyeon You
- Department of Health Functional Materials, Duksung Women’s University, Seoul 01369, Korea;
| | - Miran Jang
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA;
| | - Gun-Hee Kim
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01369, Korea
- Correspondence: ; Tel.: +82-2-901-8496; Fax: +82-2-901-8661
| |
Collapse
|
41
|
Mo F, Ma J, Yang X, Zhang P, Li Q, Zhang J. In vitro and in vivo effects of the combination of myricetin and miconazole nitrate incorporated to thermosensitive hydrogels, on C. albicans biofilms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153223. [PMID: 32460204 DOI: 10.1016/j.phymed.2020.153223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Candida albicans-related infections are common infections in clinic, among which biofilm-associated infections are most devastating and challenging to overcome. Myricetin (MY) is a plant-derived natural product with various pharmacological activities. Its anti-biofilm effect against C. albicans and its ability to increase the antifungal effect of miconazole nitrate (MN) were unclear and yet need to be explored. HYPOTHESIS/PURPOSE In this study the anti-biofilm effect of MY and its ability to increase the antifungal effect of MN were investigated in vitro and in vivo. STUDY DESIGN AND METHODS MY or/and MN were incorporated into a thermosensitive hydrogel (TSH) of poloxamer. The safety of MY or/and MN loaded TSHs towards human umbilical vein endothelial cells (HUVEC) was evaluated by a MTT assay and the in vivo safety towards mice knees was confirmed by histopathological examination. The anti-biofilm effect of MY and its ability to increase the antifungal effect of MN were investigated in vitro with C. albicans ATCC 10231 by broth microdilution method, crystal violet staining and scanning electron microscopy (SEM), as well as in vivo in an established mouse model of periprosthetic joint infection (PJI) by SEM, histological analysis, microorganism culture and detection of the serum levels of interleukin-6 (IL-6). The mechanism of action of MY was analyzed by qRT-PCR assay with C. albicans SC5314. RESULTS Our results showed that MY and MN incorporated into TSHs exhibited good stability and safety, excellent temperature sensitivity and controlled drug release property. MY (5-640 µg/ml) exhibited no effect on C. albicans cell viability and MY (≥80 µg/ml) showed a significantly inhibitory effect on biofilm formation. MIC50 (the lowest concentrations of drugs resulting in 50% decrease of C. albicans growth) and MIC80 (the lowest concentrations of drugs resulting in 80% decrease of C. albicans growth) of MN were respectively decreased from 2 µg/ml to 0.5 µg/ml and from 4 µg/ml to 2 µg/ml when used in combination with MY (80 µg/ml). The mouse PJI was effectively prevented by MY and MN incorporated into TSH. CONCLUSIONS Local application of MY and MN incorporated into TSH might be useful for clinical biofilm-associated infections.
Collapse
Affiliation(s)
- Fei Mo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xianwei Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Peipei Zhang
- Biobank, The first affiliated hospital of Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| |
Collapse
|
42
|
Lin X, Lin CH, Liu R, Li C, Jiao S, Yi X, Walker MJ, Xu XM, Zhao T, Huang PC, Sun G. Myricetin against myocardial injury in rat heat stroke model. Biomed Pharmacother 2020; 127:110194. [PMID: 32371315 DOI: 10.1016/j.biopha.2020.110194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Heat stroke-induced mortality is rising across the globe. So, the design of prophylactic and/or therapeutic modalities for heat stroke is pressing need. The common plant derived flavonoid exhibits strong anti-oxidant and anti-inflammatory activities; however, its effects in heat stroke remain unknown. The study aimed to investigate the cardioprotective effects of myricetin on heat stroke induced acute myocardial injury as well as lethality in rats and to explore the underlying mechanisms. METHODS Myocardial injury was induced by subjecting the anesthetized rats to a high ambient temperature of 43 °C for 70 min. An intragastrical dose of myricetin (5-25 mg/kg body weight) was given to rats once per day for one week prior to the start of heat stress. Heat shock protein 72 antibodies was given intraperitoneally to rats 24 h before the start of heat stress. Myocardial injury severity was estimated by determing myocardial damage scores, myocardial injury indicators, myocardial oxidative and inflammatory factors. Western blot analysis was used for cardiac expression of heat shock protein (HSP)72. RESULTS Significant (P < 0.05) up-regulation of HSP-72 after chronic administration of myricetin coincided with significant (P < 0.05) reduction in hyperthermia, hypotension, cardiac inflammatory and oxidative damage and lethality. Inhibition of HSP-72 showed a significant (P < 0.05) reversal in the cardiaprotection as well as survival. CONCLUSIONS Our results indicate that myricetin diminishes myocardial injury as well as lethality in heat stroke by up-regulating HSP-72 and show promise as a novel prevention therapeutic for heat stroke.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics Institute of Chinese PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China; Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Ruoxu Liu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chenyi Li
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shuxin Jiao
- Department of Neuroscience, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China
| | - Xueqing Yi
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China
| | - M J Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain andSpine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain andSpine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tingbao Zhao
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics Institute of Chinese PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China
| | - Po-Chang Huang
- Department of Orthopaedics, Chi Mei Medical Center, Tainan, Taiwan.
| | - Gang Sun
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China.
| |
Collapse
|
43
|
ROS-induced oxidative damage in lymphocytes ex vivo/in vitro from healthy individuals and MGUS patients: protection by myricetin bulk and nanoforms. Arch Toxicol 2020; 94:1229-1239. [PMID: 32107588 PMCID: PMC7225194 DOI: 10.1007/s00204-020-02688-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
We investigated the protective role of myricetin bulk and nanoforms, against reactive oxygen species (ROS)-induced oxidative stress caused by hydrogen peroxide and tertiary-butyl hydro peroxide in lymphocytes in vitro from healthy individuals and those from pre-cancerous patients suffering with monoclonal gammopathy of undetermined significance (MGUS). The change in intracellular reactive oxygen species was measured once cells were treated with myricetin bulk forms and nanoforms with and without either hydrogen peroxide or tertiary-butyl hydro peroxide co-supplementation. The direct and indirect antioxidant activity of myricetin was spectrofluometrically measured using the fluorescent dye 2',7'-dichlorofluorescin diacetate and using the Comet assay, respectively. Hydrogen peroxide (50 µM) and tertiary-butyl hydro peroxide (300 µM) induced a higher level of reactive oxygen species-related DNA damage and strand breaks. Addition of myricetin nanoform (20 µM) and bulk (10 µM) form could, however, significantly prevent hydrogen peroxide- and tertiary-butyl hydro peroxide-induced oxidative imbalances and the nanoform was more effective. Glutathione levels were also quantified using a non-fluorescent dye. Results suggest that myricetin treatment had no significant effect on the cellular antioxidant enzyme, glutathione. The current study also investigates the effect of myricetin on the induction of double-strand breaks by staining the gamma-H2AX foci immunocytochemically. It was observed that myricetin does not induce double-strand breaks at basal levels rather demonstrated a protective effect.
Collapse
|
44
|
Jang JH, Lee SH, Jung K, Yoo H, Park G. Inhibitory Effects of Myricetin on Lipopolysaccharide-Induced Neuroinflammation. Brain Sci 2020; 10:brainsci10010032. [PMID: 31935983 PMCID: PMC7016734 DOI: 10.3390/brainsci10010032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Microglial activation elicits an immune response by producing proinflammatory modulators and cytokines that cause neurodegeneration. Therefore, a plausible strategy to prevent neurodegeneration is to inhibit neuroinflammation caused by microglial activation. Myricetin, a natural flavanol, induces neuroprotective effects by inhibiting inflammation and oxidative stress. However, whether myricetin inhibits lipopolysaccharide (LPS)-induced neuroinflammation in hippocampus and cortex regions is not known. To test this, we examined the effects of myricetin on LPS-induced neuroinflammation in a microglial BV2 cell line. We found that myricetin significantly downregulated several markers of the neuroinflammatory response in LPS-induced activated microglia, including inducible nitric oxide (NO) synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory modulators and cytokines such as prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). Moreover, myricetin suppressed the expression of c-Jun NH2-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK), which are components of the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, myricetin inhibited LPS-induced macrophages and microglial activation in the hippocampus and cortex of mice. Based on our results, we suggest that myricetin inhibits neuroinflammation in BV2 microglia by inhibiting the MAPK signaling pathway and the production of proinflammatory modulators and cytokines. Therefore, this could potentially be used for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Department of Neurologic Disorders & Aging Brain Constitution, Dunsan Korean Medicine Hospital, Daejeon 34054, Korea;
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Seung Hoon Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea;
| | - Kyungsook Jung
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Korea;
| | - Horyong Yoo
- Department of Neurologic Disorders & Aging Brain Constitution, Dunsan Korean Medicine Hospital, Daejeon 34054, Korea;
- Correspondence: (H.Y.); or (G.P.); Tel.: +82-42-470-9490 (H.Y.); +82-61-338-7112 (G.P.)
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do 58245, Korea
- Correspondence: (H.Y.); or (G.P.); Tel.: +82-42-470-9490 (H.Y.); +82-61-338-7112 (G.P.)
| |
Collapse
|
45
|
Natural Flavonol, Myricetin, Enhances the Function and Survival of Cryopreserved Hepatocytes In Vitro and In Vivo. Int J Mol Sci 2019; 20:ijms20246123. [PMID: 31817281 PMCID: PMC6940939 DOI: 10.3390/ijms20246123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
To improve the therapeutic potential of hepatocyte transplantation, the effects of the mitogen-activated protein kinase kinase 4 (MKK4) inhibitor, myricetin (3,3′,4′,5,5′,7-hexahydroxylflavone) were examined using porcine and human hepatocytes in vitro and in vivo. Hepatocytes were cultured, showing the typical morphology of hepatic parenchymal cell under 1–10 µmol/L of myricetin, keeping hepatocyte specific gene expression, and ammonia removal activity. After injecting the hepatocytes into neonatal Severe combined immunodeficiency (SCID) mouse livers, cell colony formation was found at 10–15 weeks after transplantation. The human albumin levels in the sera of engrafted mice were significantly higher in the recipients of myricetin-treated cells than non-treated cells, corresponding to the size of the colonies. In terms of therapeutic efficacy, the injection of myricetin-treated hepatocytes significantly prolonged the survival of ornithine transcarbamylase-deficient SCID mice from 32 days (non-transplant control) to 54 days. Biochemically, the phosphorylation of MKK4 was inhibited in the myricetin-treated hepatocytes. These findings suggest that myricetin has a potentially therapeutic benefit that regulates hepatocyte function and survival, thereby treating liver failure.
Collapse
|
46
|
Aminzadeh A, Bashiri H. Myricetin ameliorates high glucose-induced endothelial dysfunction in human umbilical vein endothelial cells. Cell Biochem Funct 2019; 38:12-20. [PMID: 31691320 DOI: 10.1002/cbf.3442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/18/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Endothelial dysfunction is recognized as the initial detectable stage of cardiovascular disease, a serious complication of diabetes. In this study, we evaluated effects of myricetin on high glucose (HG)-elicited oxidative damage in human umbilical vein endothelial cells (HUVECs). The cells were pre-incubated with myricetin and then treated with HG to induce apoptosis. The effect of myricetin on viability was investigated by MTT assay. The levels of lipid peroxidation (LPO) were determined by thiobarbituric acid (TBA) method. The protein expression of Bax, Bcl-2 and caspase-3 was measured by western blot analysis. Moreover, the effect of myricetin on total antioxidant capacity (TAC) and total thiol molecules was also determined. Our results showed that myricetin was able to markedly restore the viability of endothelial cells under oxidative stress. Myricetin reduced HG-caused increase in LPO levels. Also, TAC and total thiol molecules were notably elevated by myricetin. Incubation with myricetin decreased the protein expression levels of Bax, whereas it increased the expression levels of the Bcl-2, compared with HG treatment alone. Furthermore, myricetin significantly decreased cleaved caspase-3 protein expression. It is concluded that myricetin may protect HUVECs from oxidative stress induced by HG via increasing cell TAC and reducing Bax/Bcl-2 protein ratio, and caspase-3 expression.
Collapse
Affiliation(s)
- Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
47
|
Zhao J, Du X, Wang M, Yang P, Zhang J. Salidroside mitigates hydrogen peroxide-induced injury by enhancement of microRNA-27a in human trabecular meshwork cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1758-1765. [PMID: 31062616 DOI: 10.1080/21691401.2019.1608222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Salidroside (Sal) exerted widely pharmacological effects in multitudinous diseases had been certified. The actual study clarified the protective activity of Sal in H2O2-injured human trabecular meshwork (HTM) cells. HTM cells were disposed with H2O2 to construct an oxidative damage model in vitro. Then, Sal was utilized to administrate HTM cells, and cell viability, apoptosis, apoptosis-interrelated proteins and ROS production were appraised using CCK-8, flow cytometry, western blot and DCFH-DA staining. MiR-27a inhibitor and its control were transfected into HTM cells, and the influences of miR-27a inhibition in HTM cells stimulated with H2O2 and Sal were detected. PI3K/AKT and Wnt/β-catenin pathways were ultimately investigated to uncover the underlying mechanism. We found that H2O2 evoked HTM cells oxidative damage, as evidenced by repressing cell viability, inducing apoptosis, activating cleaved-caspase-3/-9 expression and increasing ROS production. Sal significantly lightened H2O2-evoked oxidative damage in HTM cells. Additionally, miR-27a was up-regulated by Sal, and miR-27a suppression significantly reversed the protective effect of Sal on H2O2-injured HTM cells. Finally, Sal activated PI3K/AKT and Wnt/β-catenin pathways through enhancement of miR-27a in H2O2-injured HTM cells. In conclusion, these discoveries suggested that Sal could protect HTM cells against H2O2-evoked oxidative damage by activating PI3K/AKT and Wnt/β-catenin pathways through enhancement of miR-27a. Highlights H2O2 evokes HTM cells oxidative damage; Sal relieves H2O2-induced oxidative damage in HTM cells; Sal enhances miR-27a expression in H2O2-injured HTM cells; Repressed miR-27a reverses the protective impacts of Sal on H2O2-injured HTM cells; Sal activates PI3K/AKT and Wnt/β-catenin pathways by increasing miR-27a.
Collapse
Affiliation(s)
- Jun Zhao
- a Department of Ophthalmology , Linyi People's Hospital , Linyi , China
| | - Xiujuan Du
- b Department of Ophthalmology, Eye Institute of Shandong University of Traditional Chinese Medicine , Affiliated Eye Hospital of Shandong University of TCM , Jinan , China
| | - Meng Wang
- a Department of Ophthalmology , Linyi People's Hospital , Linyi , China
| | | | - Juanmei Zhang
- a Department of Ophthalmology , Linyi People's Hospital , Linyi , China
| |
Collapse
|
48
|
Soleymani S, Farzaei MH, Zargaran A, Niknam S, Rahimi R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review. Arch Dermatol Res 2019; 312:5-23. [PMID: 31448393 DOI: 10.1007/s00403-019-01968-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
49
|
Zhou Z, Mao W, Li Y, Qi C, He Y. Myricetin Inhibits Breast Tumor Growth and Angiogenesis by Regulating VEGF/VEGFR2 and p38MAPK Signaling Pathways. Anat Rec (Hoboken) 2019; 302:2186-2192. [DOI: 10.1002/ar.24222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/10/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Zhiqing Zhou
- School of Basic MedicineGuangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Wenli Mao
- School of Basic MedicineGuangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Yuanyuan Li
- School of Basic MedicineGuangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Cuiling Qi
- Guangdong Pharmaceutical University Guangzhou Guangdong China
| | - Yanli He
- School of Basic MedicineGuangzhou University of Chinese Medicine Guangzhou Guangdong China
| |
Collapse
|
50
|
Pan X, Chen T, Zhang Z, Chen X, Chen C, Chen L, Wang X, Ying X. Activation of Nrf2/HO-1 signal with Myricetin for attenuating ECM degradation in human chondrocytes and ameliorating the murine osteoarthritis. Int Immunopharmacol 2019; 75:105742. [PMID: 31325727 DOI: 10.1016/j.intimp.2019.105742] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Osteoarthritis (OA), one of the prevailing joint degenerative disorders, contributes to the disability around the world. However, no effective therapeutic was introduced currently. Myricetin was reported to possess the function of anti-inflammatory, anti-diabetic and anti-cancer. Thus, we investigate the protection role of myricetin in OA progression and the potential molecular mechanism in present study. METHODS Quantitative realtime PCR and western blotting were performed to evaluate the expression of MMP-13, Aggrecan, iNOS, and COX-2 at both gene and protein levels. An enzyme-linked immunosorbent assay was used to evaluate the levels of inflammatory factors (PGE2, TNF-α, and IL-6). The PI3K/AKT, Nrf2/HO-1 and nuclear factor kappa B (NF-κB) signaling pathways were analyzed by western blotting, and immunofluorescence was used to assess the expression of Nrf2, Collagen II and MMP13. The in vitro effect of myricetin was evaluated by intragastric administration into a mouse osteoarthritis model induced by destabilization of the medial meniscus. RESULTS Myricetin not only inhibited the generation of inflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2 (PGE2), TNF-α and IL-6, but also suppressed the production of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human chondrocytes under IL-1β stimulation. Moreover, Metalloproteinase 13 (MMP13) and thrombospondin motifs 5 (ADAMTS5), which resulted in the degradation of cartilage, were also suppressed in chondrocytes with the treatment of myricetin. To explore the potential mechanism, we found out that myricetin suppressed NF-κB signaling pathway through Nrf2/HO-1 axis in human chondrocytes. Besides, myricetin regulated the Nrf2 signaling pathway through PI3K/Akt pathway. In addition, in vivo study demonstrated that myricetin could ameliorated the progression of OA in mice DMM model through PI3K/Akt mediated Nrf2 signaling pathway. CONCLUSION Taken together, our data first demonstrated that myricetin possesses the therapeutic potential on OA through PI3K/Akt mediated Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xiangxiang Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tingting Chen
- The First Affiliated Hospital of Wenzhou Medical University, NanBaiXiang Street, Wenzhou, Zhejiang Province, China
| | - Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaowei Chen
- The First Affiliated Hospital of Wenzhou Medical University, NanBaiXiang Street, Wenzhou, Zhejiang Province, China
| | - Chengshu Chen
- The Second People Hospital of Pingyang, Wenzhou, Zhejiang Province, China
| | - Long Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaozhou Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|