1
|
Grundmane A, Radchenko V, Ramogida CF. Chemistry of Antimony in Radiopharmaceutical Development: Unlocking the Theranostic Potential of Sb Isotopes. Chempluschem 2024:e202400250. [PMID: 39048512 DOI: 10.1002/cplu.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Antimony-119 (119Sb) holds promise for radiopharmaceutical therapy (RPT), emitting short-range Auger and conversion electrons that can deliver cytotoxic radiation on a cellular level. While it has high promise theoretically, experimental validation is necessary for 119Sb in vivo applications. Current 119Sb production and separation methods face robustness and compatibility challenges in radiopharmaceutical synthesis. Limited progress in chelator development hampers targeted experiments with 119Sb. This review compiles literature on the toxicological, biodistribution and redox properties of Sb, along with existing Sb complexes, evaluating their suitability for radiopharmaceuticals. Sb(III) is suggested as the preferred oxidation state for radiopharmaceutical elaboration due to its stability in vivo and lack of skeletal uptake. While Sb complexes with both hard and soft donor atoms can be achieved, Sb thiol complexes offer enhanced stability and compatibility with the desired Sb(III) oxidation state. For 119Sb to find application in RPT, scientists need to make discoveries and advancements in the areas of isotope production, and radiometal chelation. This review aims to guide future research towards harnessing the therapeutic potential of 119Sb in RPT.
Collapse
Affiliation(s)
- Aivija Grundmane
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| |
Collapse
|
2
|
Takasaki T, Bamba A, Kukita Y, Nishida A, Kanbayashi D, Hagihara K, Satoh R, Ishihara K, Sugiura R. Rcn1, the fission yeast homolog of human DSCR1, regulates arsenite tolerance independently from calcineurin. Genes Cells 2024; 29:589-598. [PMID: 38715219 DOI: 10.1111/gtc.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/06/2024]
Abstract
Calcineurin (CN) is a conserved Ca2+/calmodulin-dependent phosphoprotein phosphatase that plays a key role in Ca2+ signaling. Regulator of calcineurin 1 (RCAN1), also known as Down syndrome critical region gene 1 (DSCR1), interacts with calcineurin and inhibits calcineurin-dependent signaling in various organisms. Ppb1, the fission yeast calcineurin regulates Cl--homeostasis, and Ppb1 deletion induces MgCl2 hypersensitivity. Here, we characterize the conserved and novel roles of the fission yeast RCAN1 homolog rcn1+. Consistent with its role as an endogenous calcineurin inhibitor, Rcn1 overproduction reproduced the calcineurin-null phenotypes, including MgCl2 hypersensitivity and inhibition of calcineurin signaling upon extracellular Ca2+ stimuli as evaluated by the nuclear translocation and transcriptional activation of the calcineurin substrate Prz1. Notably, overexpression of rcn1+ causes hypersensitivity to arsenite, whereas calcineurin deletion induces arsenite tolerance, showing a phenotypic discrepancy between Rcn1 overexpression and calcineurin deletion. Importantly, although Rcn1 deletion induces modest sensitivities to arsenite and MgCl2 in wild-type cells, the arsenite tolerance, but not MgCl2 sensitivity, associated with Ppb1 deletion was markedly suppressed by Rcn1 deletion. Collectively, our findings reveal a previously unrecognized functional collaboration between Rcn1 and calcineurin, wherein Rcn1 not only negatively regulates calcineurin in the Cl- homeostasis, but also Rcn1 mediates calcineurin signaling to modulate arsenite cytotoxicity.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Asuka Bamba
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Yuka Kukita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Aiko Nishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Daiki Kanbayashi
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Keiichi Ishihara
- Laboratory of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| |
Collapse
|
3
|
Safeer R, Liu G, Yousaf B, Ashraf A, Haider MIS, Cheema AI, Ijaz S, Rashid A, Sikandar A, Pikoń K. Insights into the biogeochemical transformation, environmental impacts and biochar-based soil decontamination of antimony. ENVIRONMENTAL RESEARCH 2024; 251:118645. [PMID: 38485077 DOI: 10.1016/j.envres.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.
Collapse
Affiliation(s)
- Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Anila Sikandar
- Department of Environmental Science, Kunming University of Science and Technology, 650500, Yunnan, PR China
| | - Krzysztof Pikoń
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
4
|
Congost-Escoin P, Lucherelli MA, Oestreicher V, García-Lainez G, Alcaraz M, Mizrahi M, Varela M, Andreu I, Abellán G. Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials. NANOSCALE 2024; 16:9754-9769. [PMID: 38625086 PMCID: PMC11112653 DOI: 10.1039/d4nr00532e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Pnictogen nanomaterials have recently attracted researchers' attention owing to their promising properties in the field of electronic, energy storage, and nanomedicine applications. Moreover, especially in the case of heavy pnictogens, their chemistry allows for nanomaterial synthesis using both top-down and bottom-up approaches, yielding materials with remarkable differences in terms of morphology, size, yield, and properties. In this study, we carried out a comprehensive structural and spectroscopic characterization of antimony-based nanomaterials (Sb-nanomaterials) obtained by applying different production methodologies (bottom-up and top-down routes) and investigating the influence of the synthesis on their oxidation state and stability in a biological environment. Indeed, in situ XANES/EXAFS studies of Sb-nanomaterials incubated in cell culture media were carried out, unveiling a different oxidation behavior. Furthermore, we investigated the cytotoxic effects of Sb-nanomaterials on six different cell lines: two non-cancerous (FSK and HEK293) and four cancerous (HeLa, SKBR3, THP-1, and A549). The results reveal that hexagonal antimonene (Sb-H) synthesized using a colloidal approach oxidizes the most and faster in cell culture media compared to liquid phase exfoliated (LPE) antimonene, suffering acute degradation and anticipating well-differentiated toxicity from its peers. In addition, the study highlights the importance of the synthetic route for the Sb-nanomaterials as it was observed to influence the chemical evolution of Sb-H into toxic Sb oxide species, playing a critical role in its ability to rapidly eliminate tumor cells. These findings provide insights into the mechanisms underlying the dark cytotoxicity of Sb-H and other related Sb-nanomaterials, underlining the importance of developing therapies based on controlled and on-demand nanomaterial oxidation.
Collapse
Affiliation(s)
- Pau Congost-Escoin
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| | - Matteo Andrea Lucherelli
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| | - Víctor Oestreicher
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| | - Guillermo García-Lainez
- Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Marta Alcaraz
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| | - Martín Mizrahi
- Instituto de Investigaciones Fisicoquímicas Técnicas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, CCT La Plata- CONICET. Diagonal 113 y 64, 1900, La Plata, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata, Calle 1 esq. 47, 1900, La Plata, Argentina
| | - Maria Varela
- Instituto Pluridisciplinar & Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Inmaculada Andreu
- Departamento de Química-Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
- Unidad Mixta de Investigación. Universitat Politècnica de València -Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| |
Collapse
|
5
|
Ran M, Wu J, Jiao Y, Li J. Biosynthetic selenium nanoparticles (Bio-SeNPs) mitigate the toxicity of antimony (Sb) in rice (Oryza sativa L.) by limiting Sb uptake, improving antioxidant defense system and regulating stress-related gene expression. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134263. [PMID: 38613951 DOI: 10.1016/j.jhazmat.2024.134263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 μM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
6
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
7
|
Li M, Wang W, Wu M, Lei J, Lu X, Wang H. Stibnite dissolution and Sb oxidation by Paraccocus versutus XT0.6 via direct and indirect contact. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133731. [PMID: 38340562 DOI: 10.1016/j.jhazmat.2024.133731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
In this study Paraccocus versutus XT0.6 was employed to address the mechanism of microbial dissolution and oxidation of stibnite. Results showed that with the growth of XT0.6, pH increased to 9.0 in both microbe-mineral contact (MM) and microbe-mineral non-contact groups (M[M]). Dissolved Sb(III) was released from stibnite, which was subsequently quickly oxidized to Sb(V) completely in MM and partially in M[M] groups. On the contrast, the final pH decreased to 6.5 and 4.9, respectviely, in system amended with extracellular secretion (EM) of XT0.6 and abiotic groups. Dissolution of stibnite and oxidation of Sb(III) were also observed in EM group, suggesting a potential contribution of extracellular enzyme in Sb(III) oxidation. The dissolution and oxidation rates were the highest in MM group, followed by those in M[M], EM and abiotic groups. To be noted, Sb(V) concentration decreased in MM group on the fifth day, which might indicate the formation of Sb(V)-bearing secondary mineral. Genome of XT0.6 consisted of two chromosomes and one plasmid, and most genes responsible for antimony oxidation and antimony resistance were located on the chromosomes. Proteomics analysis of the extracellular secretions indicated the up-regulated proteins were mainly related to electron-transfer, suggesting their potential role in Sb(III) oxidation.
Collapse
Affiliation(s)
- Min Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Weiqi Wang
- State key Laboratory of Biogeology and Environmental Geology, China
| | - Mengxiaojun Wu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jingwen Lei
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State key Laboratory of Biogeology and Environmental Geology, China.
| |
Collapse
|
8
|
Gong Q, Xiang L, Ye B, Liu D, Wang H, Ma L, Lu X. Characterization of an antimony-resistant fungus Sarocladium kiliense ZJ-1 and its potential as an antimony bio-remediator. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132676. [PMID: 37832441 DOI: 10.1016/j.jhazmat.2023.132676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Antimony (Sb) is a toxic metalloid widely distributed in the natural environments. Microorganisms, especially fungi, could serve as ideal biomaterials for bioremediation of Sb-polluted soils and waters. In this study, we isolated an antimony-resistant fungus, Sarocladium kiliense ZJ-1, from a slag sample collected in Xikuangshan Sb mine in P. R. China. ZJ-1 showed an extremely high resistance to Sb, with a MIC level of > 175 mM for arsenite [Sb(Ⅲ)] and 40 mM for arsenate [Sb(V)]. Whole genomic analysis identified multiple Sb (Ⅲ)- and/or As(Ⅲ)-resistant genes on ZJ-1's genome, which may partially explain its hyper-resistance to Sb. The potential of ZJ-1 in removing Sb from Sb(Ⅲ) or Sb(V) solutions was also quantified. The average biosorption capacity of ZJ-1 for Sb(Ⅲ) and Sb(V) is 635.14 mg/g and 149.65 mg/g, respectively, in Sb aqueous solutions with an initial concentration of 2000 mg/L (16.43 mM). Besides, almost 99% of Sb(Ⅲ) in the growing system was removed with an initial concentration of 500 mg/L (4.11 mM). Furthermore, Fourier transformation infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to probe the Sb adsorption mechanism on ZJ-1, and -OH, -NH2, -COOH, C-O and C-O-C were found to be the main surface functional groups of ZJ-1 cells to adsorb Sb.
Collapse
Affiliation(s)
- Qianhui Gong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Li Xiang
- Chongqing 136 Geology and Mineral Resources Co. LTD, China
| | - Botao Ye
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Deng Liu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| |
Collapse
|
9
|
Wang Y, Xing M, Gao X, Wu M, Liu F, Sun L, Zhang P, Duan M, Fan W, Xu J. Physiological and transcriptomic analyses reveal that phytohormone pathways and glutathione metabolism are involved in the arsenite toxicity response in tomatoes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165676. [PMID: 37481082 DOI: 10.1016/j.scitotenv.2023.165676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The main forms of inorganic arsenic (As) in soil are arsenate [As(V)] and arsenite [As(III)]. Both forms inhibit plant growth. Here, we investigate the effects of As(III) toxicity on the growth of tomatoes by integrating physiological and transcriptomic analyses. As(III) toxicity induces oxidative damage, inhibits photosynthetic efficiency, and reduces soluble sugar levels. As(III) toxicity leads to reductions in auxin, cytokinin and jasmonic acid contents by 29 %, 39 % and 55 %, respectively, but leads to increases in the ethylene precursor 1-amino-cyclopropane carboxylic acid, abscisic acid and salicylic acid contents in roots, by 116 %, 79 % and 39 %, respectively, thereby altering phytohormone signalling pathways. The total glutathione, reduced glutathione (GSH) and oxidized glutathione (GSSG) contents are reduced by 59 %, 49 % and 94 % in roots; moreover, a high GSH/GSSG ratio is maintained through increased glutathione reductase activity (increased by 214 %) and decreased glutathione peroxidase activity (decreased by 40 %) in the roots of As(III)-treated tomato seedlings. In addition, As(III) toxicity affects the expression of genes related to the endoplasmic reticulum stress response. The altered expression of aquaporins and ABCC transporters changes the level of As(III) accumulation in plants. A set of hub genes involved in modulating As(III) toxicity responses in tomatoes was identified via a weighted gene coexpression network analysis. Taken together, these results elucidate the physiological and molecular regulatory mechanism underlying As(III) toxicity and provide a theoretical basis for selecting and breeding tomato varieties with low As(III) accumulation. Therefore, these findings are expected to be helpful in improving food safety and to developing sustainable agricultural.
Collapse
Affiliation(s)
- Yingzhi Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Menglu Xing
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xinru Gao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Wu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Liangliang Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ming Duan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Weixin Fan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
10
|
Dashner-Titus EJ, Schilz JR, Alvarez SA, Wong CP, Simmons K, Ho E, Hudson LG. Zinc supplementation alters tissue distribution of arsenic in Mus musculus. Toxicol Appl Pharmacol 2023; 478:116709. [PMID: 37797845 PMCID: PMC10729601 DOI: 10.1016/j.taap.2023.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Arsenic occurs naturally in the environment and humans can be exposed through food, drinking water and inhalation of air-borne particles. Arsenic exposure is associated with cardiovascular, pulmonary, renal, immunologic, and developmental toxicities as well as carcinogenesis. Arsenic displays dose-depen toxicities in target organs or tissues with elevated levels of arsenic. Zinc is an essential micronutrient with proposed protective benefits due to its antioxidant properties, integration into zinc-containing proteins and zinc-related immune signaling. In this study, we tested levels of arsenic and zinc in plasma, kidney, liver, and spleen as model tissues after chronic (42-day) treatment with either arsenite, zinc, or in combination. Arsenite exposure had minimal impact on tissue zinc levels with the exception of the kidney. Conversely, zinc supplementation of arsenite-exposed mice reduced the amount of arsenic detected in all tissues tested. Expression of transporters associated with zinc or arsenic influx and efflux were evaluated under each treatment condition. Significant effects of arsenite exposure on zinc transporter expression displayed tissue selectivity for liver and kidney, and was restricted to Zip10 and Zip14, respectively. Arsenite also interacted with zinc co-exposure for Zip10 expression in liver tissue. Pairwise comparisons show neither arsenite nor zinc supplementation alone significantly altered expression of transporters utilized by arsenic. However, significant interactions between arsenite and zinc were evident for Aqp7 and Mrp1 in a tissue selective manner. These findings illustrate interactions between arsenite and zinc leading to changes in tissue metal level and suggest a potential mechanism by which zinc may offer protection from arsenic toxicities.
Collapse
Affiliation(s)
- Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America.
| | - Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Sandra A Alvarez
- Early Childhood Services Center, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Carmen P Wong
- School of Public Health, College of Health, Oregon State University, Corvallis, OR 97331, United States of America
| | - Karen Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Emily Ho
- School of Public Health, College of Health, Oregon State University, Corvallis, OR 97331, United States of America; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
11
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
12
|
Li M, Chen Z, Xiong Q, Mu Y, Xie Y, Zhang M, Ma LQ, Xiang P. Refining health risk assessment of arsenic in wild edible boletus from typical high geochemical background areas: The role of As species, bioavailability, and enterotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122148. [PMID: 37419204 DOI: 10.1016/j.envpol.2023.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Arsenic (As) is easily accumulated in wild Boletus. However, the accurate health risks and adverse effects of As on humans were largely unknown. In this study, we analyzed the total concentration, bioavailability, and speciation of As in dried wild boletus from some typical high geochemical background areas using an in vitro digestion/Caco-2 model. The health risk assessment, enterotoxicity, and risk prevention strategy after consumption of As-contaminated wild Boletus were further investigated. The results showed that the average concentration of As was 3.41-95.87 mg/kg dw, being 1.29-56.3 folds of the Chinese food safety standard limit. DMA and MMA were the dominant chemical forms in raw and cooked boletus, while their total (3.76-281 mg/kg) and bioaccessible (0.69-153 mg/kg) concentrations decreased to 0.05-9.27 mg/kg and 0.01-2.38 mg/kg after cooking. The EDI value of total As was higher than the WHO/FAO limit value, while the bioaccessible or bioavailable EDI suggested no health risks. However, the intestinal extracts of raw wild boletus triggered cytotoxicity, inflammation, cell apoptosis, and DNA damage in Caco-2 cells, indicating existing health risk assessment models based on total, bioaccessible, or bioavailable As may be not accurate enough. Given that, the bioavailability, species, and cytotoxicity should be systematically considered in accurate risk assessment. In addition, cooking mitigated the enterotoxicity along with decreasing the total and bioavailable DMA and MMA in wild boletus, suggesting that cooking could be a simple and effective way to decrease the health risks of consumption of As-contaminated wild boletus.
Collapse
Affiliation(s)
- Mengying Li
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Qing Xiong
- Environmental Health Institute, Center for Disease Control and Prevention of Yunnan Province, Kunming, 650022, China
| | - Yunzhen Mu
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yumei Xie
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Mengyan Zhang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ping Xiang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
13
|
Lu Y, Wu J, Li J. The alleviating effects and underlying mechanisms of exogenous selenium on both Sb(III) and Sb(V) toxicity in rice seedlings (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89927-89941. [PMID: 37460885 DOI: 10.1007/s11356-023-28631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/02/2023] [Indexed: 08/11/2023]
Abstract
Selenium (Se) has been used to detoxify various heavy metals in plants. However, the effects and underlying mechanisms of exogenous Se application on the toxicity of antimonite [Sb(III)] and antimonate [Sb(V)] in crops are still poorly understood. Therefore, the potential alleviating roles of Se on the plant growth, antioxidant system, uptake and subcellular distribution of Sb, and expression of Sb-related genes were comprehensively investigated in rice seedlings (Oryza sativa L.) under both Sb(III) and Sb(V) stress conditions. The results showed that high concentrations of Sb(III) (100 µM) and Sb(V) (300 µM) caused a significant decrease in plant growth parameters, photosynthetic pigments and relative water content in rice seedlings. In contrast, the addition of Se (20 or 2 µM) improved rice growth, decreased Sb accumulation, and reduced oxidative stress in rice seedlings when exposed to 100 µM Sb(III) and 300 µM Sb(V), respectively. Furthermore, Se application could effectively improve the physiological adaptability of rice seedlings under Sb(III) and Sb(V) stress by regulating enzymatic and non-enzymatic antioxidant systems, Sb subcellular distribution and transcription levels of Sb-related genes, including in antioxidant response (OsCuZnSOD2, OsCATA and OsGSH1), detoxification (OsPCS1, OsPCS2 and OsABCC1) and Sb transport and sequestration (OsLsi1 and OsWAK11). Moreover, we also discovered that the mitigation effect of Se was dose-dependent and depended on Sb valence states. Thus, these findings contribute to our understanding of the mechanisms underlying Se-Sb antagonism in rice, offering a potentially useful method for producing both safe and Se-rich crops.
Collapse
Affiliation(s)
- Yongqing Lu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
14
|
Popov M, Kubeš J, Vachová P, Hnilička F, Zemanová V, Česká J, Praus L, Lhotská M, Kudrna J, Tunklová B, Štengl K, Krucký J, Turnovec T. Effect of Arsenic Soil Contamination on Stress Response Metabolites, 5-Methylcytosine Level and CDC25 Expression in Spinach. TOXICS 2023; 11:568. [PMID: 37505533 PMCID: PMC10383220 DOI: 10.3390/toxics11070568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Experimental spinach plants grown in soil with (5, 10 and 20 ppm) arsenic (As) contamination were sampled in 21 days after As(V) contamination. Levels of As in spinach samples (from 0.31 ± 0.06 µg g-1 to 302.69 ± 11.83 µg g-1) were higher in roots and lower in leaves, which indicates a low ability of spinach to translocate As into leaves. Species of arsenic, As(III) and As(V), were represented in favor of the As (III) specie in contaminated variants, suggesting enzymatic arsenate reduction. In relation to predominant As accumulation in roots, changes in malondialdehyde levels were observed mainly in roots, where they decreased significantly with growing As contamination (from 11.97 ± 0.54 µg g-1 in control to 2.35 ± 0.43 µg g-1 in 20 ppm As). Higher values in roots than in leaves were observed in the case of 5-methylcytosine (5-mC). Despite that, a change in 5-mC by As contamination was further deepened in leaves (from 0.20 to 14.10%). In roots of spinach, expression of the CDC25 gene increased by the highest As contamination compared to the control. In the case of total phenolic content, total flavonoid content, total phenolic acids content and total antioxidant capacity were higher levels in leaves in all values, unlike the roots.
Collapse
Affiliation(s)
- Marek Popov
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Jan Kubeš
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Pavla Vachová
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Veronika Zemanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Jana Česká
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Lukáš Praus
- Laboratory of Environmental Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Marie Lhotská
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Jiří Kudrna
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Barbora Tunklová
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Karel Štengl
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Jiří Krucký
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Tomáš Turnovec
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| |
Collapse
|
15
|
Ogra Y, Roldán N, Verdugo M, González AA, Suzuki N, Quiroz W. Distribution, Metabolism, and Toxicity of Antimony Species in Wistar Rats. A Bio-Analytical Approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104160. [PMID: 37236494 DOI: 10.1016/j.etap.2023.104160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
This work studied the distribution, reactivity, and biological effects of pentavalent or trivalent antimony (Sb(V), Sb(III)) and N-methylglucamine antimonate (NMG-Sb(V)) in Wistar Rats. The expression of fibrosis genes such as α-SMA, PAI-1, and CTGF were determined in Liver, and Kidney tissues. Wistar rats were treated with different concentrations of Sb(V), Sb(III), As(V) and As(III), and MA via intra-peritoneal injections. The results indicated a noteworthy elevation in mRNA levels of plasminogen activator 1 (PAI-1) in the kidneys of rats that were injected. The main accumulation site for Sb(V) was observed to be the liver, from which it is primarily excreted in its reduced form (Sb(III)) through the urine. The generation of Sb(III) in the kidneys has been found to induce damage through the expression of α-SMA and CTGF, and also lead to a higher creatinine clearance compared to As(III).
Collapse
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Japan.
| | - Nicole Roldán
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Japan; Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Marcelo Verdugo
- Laboratorio de Química Analítica y Ambiental, Departamento de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alexis A González
- Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Waldo Quiroz
- Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| |
Collapse
|
16
|
Mizio K, Wawrzycka D, Staszewski J, Wysocki R, Maciaszczyk-Dziubinska E. Identification of amino acid substitutions that toggle substrate selectivity of the yeast arsenite transporter Acr3. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131653. [PMID: 37224717 DOI: 10.1016/j.jhazmat.2023.131653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
The Acr3 protein family plays a crucial role in metalloid detoxification and includes members from bacteria to higher plants. Most of the Acr3 transporters studied so far are specific for arsenite, whereas Acr3 from budding yeast also shows some capacity to transport antimonite. However, the molecular basis of Acr3 substrate specificity remains poorly understood. By analyzing randomly generated and rationally designed yeast Acr3 variants, critical residues determining substrate specificity were identified for the first time. Replacement of Val173 with Ala abolished antimonite transport without affecting arsenite extrusion. In contrast, substitution of Glu353 with Asp resulted in a loss of arsenite transport activity and a concomitant increase in antimonite translocation capacity. Importantly, Val173 is located close to the hypothetical substrate binding site, whereas Glu353 has been proposed to participate in substrate binding. Identification of key residues conferring substrate selectivity provides a valuable starting point for further studies of the Acr3 family and may have implications for the development of biotechnological applications in metalloid remediation. Moreover, our data contribute to understanding why members of the Acr3 family evolved as arsenite-specific transporters in an environment of ubiquitously present arsenic and trace amounts of antimony.
Collapse
Affiliation(s)
- Katarzyna Mizio
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Donata Wawrzycka
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Jacek Staszewski
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland.
| |
Collapse
|
17
|
Lashani E, Amoozegar MA, Turner RJ, Moghimi H. Use of Microbial Consortia in Bioremediation of Metalloid Polluted Environments. Microorganisms 2023; 11:microorganisms11040891. [PMID: 37110315 PMCID: PMC10143001 DOI: 10.3390/microorganisms11040891] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Metalloids are released into the environment due to the erosion of the rocks or anthropogenic activities, causing problems for human health in different world regions. Meanwhile, microorganisms with different mechanisms to tolerate and detoxify metalloid contaminants have an essential role in reducing risks. In this review, we first define metalloids and bioremediation methods and examine the ecology and biodiversity of microorganisms in areas contaminated with these metalloids. Then we studied the genes and proteins involved in the tolerance, transport, uptake, and reduction of these metalloids. Most of these studies focused on a single metalloid and co-contamination of multiple pollutants were poorly discussed in the literature. Furthermore, microbial communication within consortia was rarely explored. Finally, we summarized the microbial relationships between microorganisms in consortia and biofilms to remove one or more contaminants. Therefore, this review article contains valuable information about microbial consortia and their mechanisms in the bioremediation of metalloids.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| | - Raymond J. Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada;
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14178-64411, Iran
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| |
Collapse
|
18
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
19
|
Popov M, Kudrna J, Lhotská M, Hnilička F, Tunklová B, Zemanová V, Kubeš J, Vachová P, Česká J, Praus L, Štengl K, Krucký J. Arsenic Soil Contamination and Its Effects on 5-Methylcytosine Levels in Onions and Arsenic Distribution and Speciation. TOXICS 2023; 11:237. [PMID: 36977002 PMCID: PMC10056666 DOI: 10.3390/toxics11030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Arsenic represents a serious health threat in localities with a high arsenic-polluted environment and can easily get into the human food chain through agronomy production in areas affected by arsenic contamination. Onion plants that were grown in controlled conditions in arsenic-contaminated soil (5, 10, and 20 ppm) were harvested 21 days after contamination. Arsenic levels (from 0.43 ± 0.03 µg g-1 to 1761.11 ± 101.84 µg g-1) in the onion samples were high in the roots and low in the bulbs and leaves, which is probably caused by a reduced ability of the onions to transport arsenic from roots to bulbs and leaves. Arsenic species As(V) and As(III) in As(V)-contaminated soil samples were represented strongly in favor of the As(III) species. This indicates the presence of arsenate reductase. Levels of 5-methylcytosine (5-mC) (from 5.41 ± 0.28% to 21.17 ± 1.33%) in the onion samples were also higher in the roots than in the bulbs and leaves. Microscopic sections of the roots were examined, and the most damage was found in the 10 ppm As variant. Photosynthetic parameters pointed to a significant decrease in photosynthetic apparatus activity and the deterioration of the physiological state of plants as arsenic content increased in the soil.
Collapse
Affiliation(s)
- Marek Popov
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Jiří Kudrna
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Marie Lhotská
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Barbora Tunklová
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Veronika Zemanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Jan Kubeš
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Pavla Vachová
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Jana Česká
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Lukáš Praus
- Laboratory of Environmental Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Karel Štengl
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Jiří Krucký
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| |
Collapse
|
20
|
Lv P, Shang Y, Zhang Y, Wang W, Liu Y, Su D, Wang W, Li C, Ma C, Yang C. Structural basis for the arsenite binding and translocation of Acr3 antiporter with NhaA folding pattern. FASEB J 2022; 36:e22659. [PMID: 36394534 DOI: 10.1096/fj.202201280r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The arsenical resistance-3 (ACR3) family constitutes the most common pathway that confers high-level resistance to toxic metalloids in various microorganisms and lower plants. Based on the structural model constructed by AlphaFold2, the Acr3 antiporter from Bacillus subtilis (Acr3Bs ) exhibits a typical NhaA structure fold, with two discontinuous helices of transmembrane (TM) segments, TM4 and TM9, interacting with each other and forming an X-shaped structure. As the structural information available for these important arsenite-efflux pumps is limited, we investigated the evolutionary conservation among 300 homolog sequences and identified three conserved motifs in both the discontinuous helices and TM5. Through site-directed mutagenesis, microscale thermophoresis (MST), and fluorescence resonance energy transfer (FRET) analyses, the identified Motif C in TM9 was found to be a critical element for substrate binding, in which N292 and E295 are involved in substrate coordination, while R118 in TM4 and E322 in TM10 is responsible for structural stabilization. In addition, the highly conserved residues on Motif B of TM5 are potentially key factors in the protonation/deprotonation process. These consensus motifs and residues are essential for metalloid compound translocation of Acr3 antiporters, by framing the core domain and the typical X-shaped of NhaA fold.
Collapse
Affiliation(s)
- Peiwen Lv
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Yan Shang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Ye Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Wenkai Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Yuanxiang Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Dandan Su
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Wei Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Chunfang Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| |
Collapse
|
21
|
Sun C, Guo Q, Zeeshan M, Milham P, Qin S, Ma J, Yang Y, Lai H, Huang J. Dual RNA and 16S ribosomal DNA sequencing reveal arbuscular mycorrhizal fungi-mediated mitigation of selenate stress in Zea mays L. and reshaping of soil microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114217. [PMID: 36306613 DOI: 10.1016/j.ecoenv.2022.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Excessively high concentrations of selenium (Se) in soil are toxic to crop plants, and inoculation with arbuscular mycorrhizal fungi (AMF) can reverse Se stress in maize (Zea mays L.). To investigate the underlying mechanisms, maize seedlings were treated with sodium selenate (5 mg Se[VI] kg-1) and/or AMF (Funneliformis mosseae and Claroideoglomus etunicatum). Dual RNA sequencing in mycorrhiza and 16 S ribosomal DNA sequencing in soil were performed. The results showed that Se(VI) application alone decreased plant dry weight, but increased plant Se concentration, total Se content (mainly selenocysteine), and root superoxide content. Inoculation with either F. mosseae or C. etunicatum increased plant dry weight, decreased Se accumulation and selenocysteine proportion, enhanced root peroxidase activity, and alleviated oxidative stress in Se(VI)-treated plants. Inoculation also downregulated the expression of genes encoding Se transporters, assimilation enzymes, and cysteine-rich receptor-like kinases in Se(VI)-stressed plants, similar to plant-pathogen interaction and glutathione metabolism related genes. Conversely, genes encoding selenium-binding proteins and those related to phenylpropanoid biosynthesis were upregulated in inoculated plants under Se(VI) stress. Compared with Se(VI)-free plants, Se tolerance index, symbiotic feedback percentage on plant dry weight, and root colonization rate were all increased in inoculated plants under Se(VI) stress, corresponding to upregulated expression of 'key genes' in symbiosis. AMF inoculation increased bacterial diversity, decreased the relative abundances of selenobacteria related to plant Se absorption (e.g., Proteobacteria and Firmicutes), and improved bacterial network complexity in Se(VI)-stressed soils. We suggest that stress-mediated enhancement of mycorrhizal symbiosis contributed to plant Se(VI) tolerance, whereas AMF-mediated reshaping of soil bacterial community structure prevented excessive Se accumulation in maize.
Collapse
Affiliation(s)
- Chenyu Sun
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Zeeshan
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Paul Milham
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia
| | - Shengfeng Qin
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Junqing Ma
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yisen Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jinghua Huang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
22
|
Castro-Severyn J, Pardo-Esté C, Araya-Durán I, Gariazzo V, Cabezas C, Valdés J, Remonsellez F, Saavedra CP. Biochemical, genomic and structural characteristics of the Acr3 pump in Exiguobacterium strains isolated from arsenic-rich Salar de Huasco sediments. Front Microbiol 2022; 13:1047283. [PMID: 36406427 PMCID: PMC9671657 DOI: 10.3389/fmicb.2022.1047283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Arsenic is a highly toxic metalloid of major concern for public safety. However, microorganisms have several resistance mechanisms, particularly the expression of arsenic pumps is a critical component for bacterial ability to expel it and decrease intracellular toxicity. In this study, we aimed to characterize the biochemical, structural, and genomic characteristics of the Acr3 pump among a group of Exiguobacterium strains isolated from different sites of the arsenic-rich Salar de Huasco (SH) ecosystem. We also determined whether the differences in As(III) resistance levels presented by the strains could be attributed to changes in the sequence or structure of this protein. In this context, we found that based on acr3 sequences the strains isolated from the SH grouped together phylogenetically, even though clustering based on gene sequence identity did not reflect the strain’s geographical origin. Furthermore, we determined the genetic context of the acr3 sequences and found that there are two versions of the organization of acr3 gene clusters, that do not reflect the strain’s origin nor arsenic resistance level. We also contribute to the knowledge regarding structure of the Acr3 protein and its possible implications on the functionality of the pump, finding that although important and conserved components of this family of proteins are present, there are several changes in the amino acidic sequences that may affect the interactions among amino acids in the 3D model, which in fact are evidenced as changes in the structure and residues contacts. Finally, we demonstrated through heterologous expression that the Exiguobacterium Acr3 pump does indeed improve the organisms As resistance level, as evidenced in the complemented E. coli strains. The understanding of arsenic detoxification processes in prokaryotes has vast biotechnological potential and it can also provide a lot of information to understand the processes of evolutionary adaptation.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ingrid Araya-Durán
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Valentina Gariazzo
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- *Correspondence: Claudia P. Saavedra,
| |
Collapse
|
23
|
Zou H, Xu K, Yang A, Hu X, Niu A, Li Q. Antimony accumulation in zebrafish (Danio rerio) and its effect on genotoxicity, histopathology, and ultrastructure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106297. [PMID: 36122460 DOI: 10.1016/j.aquatox.2022.106297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Antimony (Sb) is a toxic metal in aquatic ecosystems. In this study, the accumulation of aqueous Sb in the liver, brain, gills and muscle of zebrafish (Danio rerio) and its effect on genotoxicity, histopathology and ultrastructure alterations were evaluated. The fishes were exposed to different concentrations (0, 8.29, 16.58, 33.16 mg L-1) of aqueous Sb for 18 days. The results showed that the order of Sb accumulation in different tissues was liver > gill > muscle > brain, and the accumulation increased with increasing Sb stress concentration. The mRNA expression levels of Nrf2, Cu/Zn-SOD, Mn-SOD, CAT and GPx genes showed different trends. In addition, significant histopathology and ultrastructure alterations were observed in the liver and gills exposed to Sb. Sb could accumulate in different tissues of zebrafish, inducing the expression of oxidative stress genes and activating antioxidant defense systems. Histological and ultrastructural changes could be used as valid biomarkers for the assessment of aqueous Sb contamination.
Collapse
Affiliation(s)
- HaiTao Zou
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Kun Xu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Aijiang Yang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China.
| | - Xia Hu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Aping Niu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Qing Li
- Guizhou Guida Yuanheng Environmental Protection Technology Co., LTD., Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
24
|
Gandhi D, Bhandari S, Mishra S, Tiwari RR, Rajasekaran S. Non-malignant respiratory illness associated with exposure to arsenic compounds in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103922. [PMID: 35779705 DOI: 10.1016/j.etap.2022.103922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As), a toxic metalloid, primarily originates from both natural and anthropogenic activities. Reports suggested that millions of people globally exposed to high levels of naturally occurring As compounds via inhalation and ingestion. There is evidence that As is a well-known lung carcinogen. However, there has been relatively little evidence suggesting its non-malignant lung effects. This review comprehensively summarises current experimental and clinical studies implicating the association of As exposure and the development of several non-malignant lung diseases. Experimental studies provided evidence that As exposure induces redox imbalance, apoptosis, inflammatory response, epithelial-to-mesenchymal transition (EMT), and affected normal lung development through alteration of the components of intracellular signaling cascades. In addition, we also discuss the sources and possible mechanisms of As influx and efflux in the lung. Finally, current experimental studies on treatment strategies using phytochemicals and our perspective on future research with As are also discussed.
Collapse
Affiliation(s)
- Deepa Gandhi
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Sneha Bhandari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Sehal Mishra
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
25
|
Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W. A new mushroom hyperaccumulator: Cadmium and arsenic in the ectomycorrhizal basidiomycete Thelephora penicillata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154227. [PMID: 35240185 DOI: 10.1016/j.scitotenv.2022.154227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Fruit-bodies of six Thelephora species (Fungi, Basidiomycota, Thelephoraceae) were analyzed for their trace element concentrations. In Thelephora penicillata, extremely high concentrations of Cd and As were found, followed by highly elevated concentrations of Cu and Zn. The highest accumulation ability was found for Cd with a mean concentration of 1.17 ± 0.37 g kg-1 (dry mass) in fruit-bodies collected from 20 unpolluted sites; the mean As concentration was 0.878 ± 0.242 g kg-1. Furthermore, striking accumulation of Se (923 ± 28 mg kg-1) was found in one sample of T. vialis and elevated concentrations of S were detected in T. palmata (19.6 ± 5.9 g kg-1). The analyzed Thelephora species were sequenced and, based on the Maximum Likelihood phylogenetic analysis (ITS rDNA) of the genus, possible other Thelephora (hyper)accumulators were predicted on the basis of their phylogenetic relationship with the discovered (hyper)accumulators. The striking ability of T. penicillata to accumulate simultaneously Cd, As, Cu, and Zn has no parallel in the Fungal Kingdom and raises the question of a biological importance of metal(loid) hyperaccumulation in mushrooms.
Collapse
Affiliation(s)
- Jan Borovička
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 16500 Prague 6, Czech Republic; Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, 25068 Husinec-Řež, Czech Republic.
| | - Simone Braeuer
- University of Graz, Institute of Chemistry, Universitätsplatz 1, 8010 Graz, Austria
| | - Martin Walenta
- University of Graz, Institute of Chemistry, Universitätsplatz 1, 8010 Graz, Austria
| | - Hana Hršelová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Antonín Kaňa
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Walter Goessler
- University of Graz, Institute of Chemistry, Universitätsplatz 1, 8010 Graz, Austria
| |
Collapse
|
26
|
Rodríguez-Martín D, Murciano A, Herráiz M, de Francisco P, Amaro F, Gutiérrez JC, Martín-González A, Díaz S. Arsenate and arsenite differential toxicity in Tetrahymena thermophila. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128532. [PMID: 35248958 DOI: 10.1016/j.jhazmat.2022.128532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of toxicities of both arsenic forms (arsenite and arsenate) in the model eukaryotic microorganism Tetrahymena thermophila (ciliate protozoa) has shown the presence of various detoxification mechanisms and cellular effects comparable to those of animal cells under arsenic stress. In the wild type strain SB1969 arsenate is almost 2.5 times more toxic than arsenite. According to the concentration addition model used in binary metallic mixtures their toxicities show an additive effect. Using fluorescent assays and flow cytometry, it has been detected that As(V) generates elevated levels of ROS/RNS compared to As(III). Both produce the same levels of superoxide anion, but As(V) also causes greater increases in hydrogen peroxide and peroxynitrite. The mitochondrial membrane potential is affected by both As(V) and As(III), and electron microscopy has also revealed that mitochondria are the main target of both arsenic ionic forms. Fusion/fission and swelling mitochondrial and mitophagy, together with macroautophagy, vacuolization and mucocyst extruction are mainly associated to As(V) toxicity, while As(III) induces an extensive lipid metabolism dysfunction (adipotropic effect). Quantitative RT-PCR analysis of some genes encoding antioxidant proteins or enzymes has shown that glutathione and thioredoxin metabolisms are involved in the response to arsenic stress. Likewise, the function of metallothioneins seems to be crucial in arsenic detoxification processes, after using both metallothionein knockout and knockdown strains and cells overexpressing metallothionein genes from this ciliate. The analysis of the differential toxicity of As(III) and As(V) shown in this study provides cytological and molecular tools to be used as biomarkers for each of the two arsenic ionic forms.
Collapse
Affiliation(s)
- Daniel Rodríguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain.
| | - Antonio Murciano
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Marta Herráiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | | | - Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Juan Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| |
Collapse
|
27
|
Abstract
Arsenic toxicity is a major concern due to its deleterious consequences for human health. Rapid industrialization also has weakened the quality of the environment by introducing pollutants that may disrupt balanced ecosystems, adversely and irreversibly impacting humans, plants, and animals. Arsenic, an important toxicant among all environmental hazards, can lead to several detrimental effects on cells and organs, impacting the overall quality of life. Nevertheless, arsenic also has a rich history as a chemotherapeutic agent used in ancient days for the treatment of diseases such as malaria, cancer, plague, and syphilis when other chemotherapeutic agents were yet to be discovered. Arsenicosis-mediated disorders remain a serious problem due to the lack of effective therapeutic options. Initially, chelation therapy was used to metabolically eliminate arsenic by forming a complex, but adverse effects limited their pharmacological use. More recently, plant-based products have been found to provide significant relief from the toxic effects of arsenic poisoning. They act by different mechanisms affecting various cellular processes. Phytoconstituents such as curcumin, quercetin, diallyl trisulfide, thymoquinone, and others act via various molecular pathways, primarily by attenuating oxidative damage, membrane damage, DNA damage, and proteinopathies. Nonetheless, most of the phytochemicals reviewed here protect against the adverse effects of metal or metalloid exposure, supporting their consideration as alternatives to chelation therapy. These agents, if used prophylactically and in conjunction with other chemotherapeutic agents, may provide an effective approach for management of arsenic toxicity. In a few instances, such strategies like coadministration of phytochemicals with a known chelating agent have led to more pronounced elimination of arsenic from the body with lesser off-site adverse effects. This is possible because combination treatment ensures the use of a reduced dose of chelating agent with a phytochemical without compromising treatment. Thus, these therapies are more practical than conventional therapeutic agents in ameliorating arsenic-mediated toxicity. This review summarizes the potential of phytochemicals in alleviating arsenic toxicity on the basis of available experimental and clinical evidence.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ankita Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226020, India
| | - Swaran J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226020, India
| |
Collapse
|
28
|
Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. FRONTIERS IN TOXICOLOGY 2022; 4:837579. [PMID: 35647576 PMCID: PMC9131020 DOI: 10.3389/ftox.2022.837579] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegeneration leads to the loss of structural and functioning components of neurons over time. Various studies have related neurodegeneration to a number of degenerative disorders. Neurological repercussions of neurodegeneration can have severe impacts on the physical and mental health of patients. In the recent past, various neurodegenerative ailments such as Alzheimer’s and Parkinson’s illnesses have received global consideration owing to their global occurrence. Environmental attributes have been regarded as the main contributors to neural dysfunction-related disorders. The majority of neurological diseases are mainly related to prenatal and postnatal exposure to industrially produced environmental toxins. Some neurotoxic metals, like lead (Pb), aluminium (Al), Mercury (Hg), manganese (Mn), cadmium (Cd), and arsenic (As), and also pesticides and metal-based nanoparticles, have been implicated in Parkinson’s and Alzheimer’s disease. The contaminants are known for their ability to produce senile or amyloid plaques and neurofibrillary tangles (NFTs), which are the key features of these neurological dysfunctions. Besides, solvent exposure is also a significant contributor to neurological diseases. This study recapitulates the role of environmental neurotoxins on neurodegeneration with special emphasis on major neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| |
Collapse
|
29
|
A comparative study indicates vertical inheritance and horizontal gene transfer of arsenic resistance-related genes in eukaryotes. Mol Phylogenet Evol 2022; 173:107479. [DOI: 10.1016/j.ympev.2022.107479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/10/2022] [Accepted: 04/05/2022] [Indexed: 12/27/2022]
|
30
|
Periferakis A, Caruntu A, Periferakis AT, Scheau AE, Badarau IA, Caruntu C, Scheau C. Availability, Toxicology and Medical Significance of Antimony. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084669. [PMID: 35457536 PMCID: PMC9030621 DOI: 10.3390/ijerph19084669] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 01/01/2023]
Abstract
Antimony has been known and used since ancient times, but its applications have increased significantly during the last two centuries. Aside from its few medical applications, it also has industrial applications, acting as a flame retardant and a catalyst. Geologically, native antimony is rare, and it is mostly found in sulfide ores. The main ore minerals of antimony are antimonite and jamesonite. The extensive mining and use of antimony have led to its introduction into the biosphere, where it can be hazardous, depending on its bioavailability and absorption. Detailed studies exist both from active and abandoned mining sites, and from urban settings, which document the environmental impact of antimony pollution and its impact on human physiology. Despite its evident and pronounced toxicity, it has also been used in some drugs, initially tartar emetics and subsequently antimonials. The latter are used to treat tropical diseases and their therapeutic potential for leishmaniasis means that they will not be soon phased out, despite the fact the antimonial resistance is beginning to be documented. The mechanisms by which antimony is introduced into human cells and subsequently excreted are still the subject of research; their elucidation will enable us to better understand antimony toxicity and, hopefully, to improve the nature and delivery method of antimonial drugs.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence: (A.C.); (C.S.)
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
- Correspondence: (A.C.); (C.S.)
| |
Collapse
|
31
|
Lee J, Levin DE. Differential metabolism of arsenicals regulates Fps1-mediated arsenite transport. J Cell Biol 2022; 221:212996. [PMID: 35139143 PMCID: PMC8932518 DOI: 10.1083/jcb.202109034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Arsenic is an environmental toxin that exists mainly as pentavalent arsenate and trivalent arsenite. Both forms activate the yeast SAPK Hog1 but with different consequences. We describe a mechanism by which cells distinguish between these arsenicals through one-step metabolism to differentially regulate the bidirectional glycerol channel Fps1, an adventitious port for arsenite. Cells exposed to arsenate reduce it to thiol-reactive arsenite, which modifies a set of cysteine residues in target proteins, whereas cells exposed to arsenite metabolize it to methylarsenite, which modifies an additional set of cysteine residues. Hog1 becomes arsenylated, which prevents it from closing Fps1. However, this block is overcome in cells exposed to arsenite through methylarsenylation of Acr3, an arsenite efflux pump that we found also regulates Fps1 directly. This adaptation allows cells to restrict arsenite entry through Fps1 and also allows its exit when produced from arsenate exposure. These results have broad implications for understanding how SAPKs activated by diverse stressors can drive stress-specific outputs.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA
| | - David E Levin
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA.,Department of Microbiology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
32
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
33
|
Romero AM, Maciaszczyk-Dziubinska E, Mombeinipour M, Lorentzon E, Aspholm E, Wysocki R, Tamás MJ. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6551893. [PMID: 35323907 PMCID: PMC9041338 DOI: 10.1093/femsyr/foac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
In a high-throughput yeast two-hybrid screen of predicted coiled-coil motif interactions in the Saccharomyces cerevisiae proteome, the protein Etp1 was found to interact with the yeast AP-1-like transcription factors Yap8, Yap1 and Yap6. Yap8 plays a crucial role during arsenic stress since it regulates expression of the resistance genes ACR2 and ACR3. The function of Etp1 is not well understood but the protein has been implicated in transcription and protein turnover during ethanol stress, and the etp1∆ mutant is sensitive to ethanol. In this current study, we investigated whether Etp1 is implicated in Yap8-dependent functions. We show that Etp1 is required for optimal growth in the presence of trivalent arsenite and for optimal expression of the arsenite export protein encoded by ACR3. Since Yap8 is the only known transcription factor that regulates ACR3 expression, we investigated whether Etp1 regulates Yap8. Yap8 ubiquitination, stability, nuclear localization and ACR3 promoter association were unaffected in etp1∆ cells, indicating that Etp1 affects ACR3 expression independently of Yap8. Thus, Etp1 impacts gene expression under arsenic and other stress conditions but the mechanistic details remain to be elucidated.
Collapse
Affiliation(s)
| | | | - Mandana Mombeinipour
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Emma Lorentzon
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Emelie Aspholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Robert Wysocki
- Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Markus J Tamás
- Corresponding author: Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, S-405 30 Göteborg, Sweden. Tel: +46-31-786-2548; E-mail:
| |
Collapse
|
34
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
35
|
De Francisco P, Martín-González A, Rodriguez-Martín D, Díaz S. Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12226. [PMID: 34831982 PMCID: PMC8618186 DOI: 10.3390/ijerph182212226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022]
Abstract
Arsenic (As) is quite an abundant metalloid, with ancient origin and ubiquitous distribution, which represents a severe environmental risk and a global problem for public health. Microbial exposure to As compounds in the environment has happened since the beginning of time. Selective pressure has induced the evolution of various genetic systems conferring useful capacities in many microorganisms to detoxify and even use arsenic, as an energy source. This review summarizes the microbial impact of the As biogeochemical cycle. Moreover, the poorly known adverse effects of this element on eukaryotic microbes, as well as the As uptake and detoxification mechanisms developed by yeast and protists, are discussed. Finally, an outlook of As microbial remediation makes evident the knowledge gaps and the necessity of new approaches to mitigate this environmental challenge.
Collapse
Affiliation(s)
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Daniel Rodriguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain;
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| |
Collapse
|
36
|
Shao J, Li X, Luo Y, Fang H, Lin F, Zhang G, Lu F, Guo L, Sun Y. Distribution of arsenic species and pathological characteristics of tissues of the mice fed with arsenic-supplemented food simulating rice. J Toxicol Sci 2021; 46:539-551. [PMID: 34719557 DOI: 10.2131/jts.46.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The exposure and harm of arsenic have attracted wide attention. Rice is an arsenic-rich crop. The purpose of this study was to learn the distribution of arsenic species and the pathological changes in tissues of mice exposed to arsenic-supplemented food simulating rice. Test groups of mice were orally exposed with prepared arsenic feeds supplemented with four arsenic species (arsenite iAsIII, arsenate iAsV, monomethylarsonate MMA, and dimethylarsinate DMA) at three doses (total As concentration: 0.91, 9.1 and 30 μg/g), which simulated the arsenic species ratio in rice. After 112 days, the concentrations of the arsenic species in the spleen, thymus, heart, skin and hair were detected, and histopathology of the spleen, heart and skin was observed. Each arsenic species was detected and their total concentration increased in a dose-dependent manner with a few exceptions. One interesting phenomenon is that ratio of the organic arsenic to inorganic arsenic also increased in a dose-dependent manner. For the other, the order of tissues from high to low arsenic concentration was the same in the medium- and high-dose groups. The histopathological sections of the spleen, heart and skin showed dose-dependent debilitating alterations in tissue architecture. Hyperplasia, hyaline degeneration and sclerosis of fibrous connective tissue occurred in the spleen. Myocardial cell atrophy and interstitial edema occurred in the heart. Hyperpigmentation, hyperkeratosis and atypia of basal cells occurred in the skin. In summary, the long-term intake of high arsenic rice has a health risk. Further studies are needed to assess it.
Collapse
Affiliation(s)
- Junli Shao
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Xin Li
- School of Food and Biological Engineering, Guangdong Polytechnic of Science and Trade, China
| | - Yu Luo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Heng Fang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Fangyan Lin
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, China
| | - Furong Lu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Lianxian Guo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, China
| |
Collapse
|
37
|
Sabir F, Zarrouk O, Noronha H, Loureiro-Dias MC, Soveral G, Gerós H, Prista C. Grapevine aquaporins: Diversity, cellular functions, and ecophysiological perspectives. Biochimie 2021; 188:61-76. [PMID: 34139292 DOI: 10.1016/j.biochi.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
High-scored premium wines are typically produced under moderate drought stress, suggesting that the water status of grapevine is crucial for wine quality. Aquaporins greatly influence the plant water status by facilitating water diffusion across the plasma membrane in a tightly regulated manner. They adjust the hydraulic conductance of the plasma membrane rapidly and reversibly, which is essential in specific physiological events, including adaptation to soil water scarcity. The comprehension of the sophisticated plant-water relations at the molecular level are thus important to optimize agricultural practices or to assist plant breeding programs. This review explores the recent progresses in understanding the water transport in grapevine at the cellular level through aquaporins and its regulation. Important aspects, including aquaporin structure, diversity, cellular localization, transport properties, and regulation at the cellular and whole plant level are addressed. An ecophysiological perspective about the roles of grapevine aquaporins in plant response to drought stress is also provided.
Collapse
Affiliation(s)
- Farzana Sabir
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| | - Olfa Zarrouk
- Association SFCOLAB - Collaborative Laboratory for Digital Innovation in Agriculture, Rua Cândido dos Reis nº1, Espaço SFCOLAB, 2560-312, Torres Vedras, Portugal
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Maria C Loureiro-Dias
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Catarina Prista
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal; Departamento de Recursos Biologicos, Ambiente e Territorio (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|
38
|
Complex Mechanisms of Antimony Genotoxicity in Budding Yeast Involves Replication and Topoisomerase I-Associated DNA Lesions, Telomere Dysfunction and Inhibition of DNA Repair. Int J Mol Sci 2021; 22:ijms22094510. [PMID: 33925940 PMCID: PMC8123508 DOI: 10.3390/ijms22094510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.
Collapse
|
39
|
Stýblo M, Venkatratnam A, Fry RC, Thomas DJ. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Arch Toxicol 2021; 95:1547-1572. [PMID: 33768354 DOI: 10.1007/s00204-021-03028-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Collapse
Affiliation(s)
- Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
40
|
Ray A, Shelly A, Roy S, Mazumder S. Arsenic induced alteration in Mrp-1 like activity leads to zebrafish hepatocyte apoptosis: The cellular GSH connection. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103427. [PMID: 32470611 DOI: 10.1016/j.etap.2020.103427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/19/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Multidrug-resistance protein-1 facilitates the efflux of arsenic conjugated with reduced glutathione nonetheless; the relation between Mrp-1 ATPase activity and cellular GSH levels is contentious. To study this, Mrp-1-ATPase activity was measured in 5 μM arsenic trioxide exposed zebrafish hepatocytes (ZFH) and correlated with intracellular GSH levels. Alongside, mrp-1 gene expression as well as Mrp-1 protein level was also monitored. Diverse mode of Mrp-1 inhibition was reflected from differential level of Km and Vmax of Mrp-1 at different time points. 3 h post-arsenic treatment demonstrated non-competitive inhibition. At 6 h, there was significant increase in Km and ZFH death, suggesting reduced binding affinity of Mrp-1 for ATP. Increased caspase-9-cytochromeC-ATP levels (putative apoptosome), reinforced ZFH apoptosis. The increase in Vmax coupled with reduced substrate affinity of Mrp-1 suggests malfunctioning in arsenic- tolerance mechanisms. We posit the triggering glutathione level regulate arsenic tolerance in ZFH. Irreversible impairment of ATP binding to Mrp-1 culminates in arsenic-induced ZFH apoptosis.
Collapse
Affiliation(s)
- Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Sonali Roy
- Natural Product Chemistry Group, CSTD, CSIR North East Institute of Science & Technology, Jorhat 785006, India; National Institute of Pharmaceutical Education and Research, Guwahati 781125, India.
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India; Faculty of Life Sciences & Biotechnology, South Asian University, New Delhi 110 021, India.
| |
Collapse
|
41
|
Insights into the Selectivity Mechanisms of Grapevine NIP Aquaporins. Int J Mol Sci 2020; 21:ijms21186697. [PMID: 32933135 PMCID: PMC7576499 DOI: 10.3390/ijms21186697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nodulin 26-like intrinsic proteins (NIPs) of the plant aquaporin family majorly facilitate the transport of physiologically relevant solutes. The present study intended to investigate how substrate selectivity in grapevine NIPs is influenced by the aromatic/arginine (ar/R) selectivity filter within the pore and the possible underlying mechanisms. A mutational approach was used to interchange the ar/R residues between grapevine NIPs (VvTnNIP1;1 with VvTnNIP6;1, and VvTnNIP2;1 with VvTnNIP5;1). Their functional characterization by stopped-flow spectroscopy in Saccharomyces cerevisiae revealed that mutations in residues of H2/H5 helices in VvTnNIP1;1 and VvTnNIP6;1 caused a general decline in membrane glycerol permeability but did not impart the expected substrate conductivity in the mutants. This result suggests that ar/R filter substitution could alter the NIP channel activity, but it was not sufficient to interchange their substrate preferences. Further, homology modeling analyses evidenced that variations in the pore radius combined with the differences in the channel's physicochemical properties (hydrophilicity/hydrophobicity) may drive substrate selectivity. Furthermore, yeast growth assays showed that H5 residue substitution alleviated the sensitivity of VvTnNIP2;1 and VvTnNIP5;1 to As, B, and Se, implying importance of H5 sequence for substrate selection. These results contribute to the knowledge of the overall determinants of substrate selectivity in NIPs.
Collapse
|
42
|
Hirano S. Biotransformation of arsenic and toxicological implication of arsenic metabolites. Arch Toxicol 2020; 94:2587-2601. [PMID: 32435915 DOI: 10.1007/s00204-020-02772-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Arsenic is a well-known environmental carcinogen and chronic exposure to arsenic through drinking water has been reported to cause skin, bladder and lung cancers, with arsenic metabolites being implicated in the pathogenesis. In contrast, arsenic trioxide (As2O3) is an effective therapeutic agent for the treatment of acute promyelocytic leukemia, in which the binding of arsenite (iAsIII) to promyelocytic leukemia (PML) protein is the proposed initial step. These findings on the two-edged sword characteristics of arsenic suggest that after entry into cells, arsenic reaches the nucleus and triggers various nuclear events. Arsenic is reduced, conjugated with glutathione, and methylated in the cytosol. These biotransformations, including the production of reactive metabolic intermediates, appear to determine the intracellular dynamics, target organs, and biological functions of arsenic.
Collapse
Affiliation(s)
- Seishiro Hirano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
43
|
Ashraf MA, Umetsu K, Ponomarenko O, Saito M, Aslam M, Antipova O, Dolgova N, Kiani CD, Nehzati S, Tanoi K, Minegishi K, Nagatsu K, Kamiya T, Fujiwara T, Luschnig C, Tanino K, Pickering I, George GN, Rahman A. PIN FORMED 2 Modulates the Transport of Arsenite in Arabidopsis thaliana. PLANT COMMUNICATIONS 2020; 1:100009. [PMID: 33404549 PMCID: PMC7747963 DOI: 10.1016/j.xplc.2019.100009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 05/23/2023]
Abstract
Arsenic contamination is a major environmental issue, as it may lead to serious health hazard. The reduced trivalent form of inorganic arsenic, arsenite, is in general more toxic to plants compared with the fully oxidized pentavalent arsenate. The uptake of arsenite in plants has been shown to be mediated through a large subfamily of plant aquaglyceroporins, nodulin 26-like intrinsic proteins (NIPs). However, the efflux mechanisms, as well as the mechanism of arsenite-induced root growth inhibition, remain poorly understood. Using molecular physiology, synchrotron imaging, and root transport assay approaches, we show that the cellular transport of trivalent arsenicals in Arabidopsis thaliana is strongly modulated by PIN FORMED 2 (PIN2) auxin efflux transporter. Root transport assay using radioactive arsenite, X-ray fluorescence imaging (XFI) coupled with X-ray absorption spectroscopy (XAS), and inductively coupled plasma mass spectrometry analysis revealed that pin2 plants accumulate higher concentrations of arsenite in roots compared with the wild-type. At the cellular level, arsenite specifically targets intracellular sorting of PIN2 and thereby alters the cellular auxin homeostasis. Consistently, loss of PIN2 function results in arsenite hypersensitivity in roots. XFI coupled with XAS further revealed that loss of PIN2 function results in specific accumulation of arsenical species, but not the other metals such as iron, zinc, or calcium in the root tip. Collectively, these results suggest that PIN2 likely functions as an arsenite efflux transporter for the distribution of arsenical species in planta.
Collapse
Affiliation(s)
- Mohammad Arif Ashraf
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan
| | - Kana Umetsu
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Olena Ponomarenko
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michiko Saito
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Mohammad Aslam
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Olga Antipova
- Argonne National Lab, Advanced Photon Source, XSD-MIC, Lemont, IL, USA
| | - Natalia Dolgova
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cheyenne D. Kiani
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susan Nehzati
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Keitaro Tanoi
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Katsuyuki Minegishi
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba, Japan
| | - Kotaro Nagatsu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1180 Wien, Austria
| | - Karen Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ingrid Pickering
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Graham N. George
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
- Agri-Innovation Center, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
44
|
|
45
|
Molecular and Functional Characterization of Grapevine NIPs through Heterologous Expression in aqy-Null Saccharomyces cerevisiae. Int J Mol Sci 2020; 21:ijms21020663. [PMID: 31963923 PMCID: PMC7013980 DOI: 10.3390/ijms21020663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022] Open
Abstract
Plant Nodulin 26-like Intrinsic Proteins (NIPs) are multifunctional membrane channels of the Major Intrinsic Protein (MIP) family. Unlike other homologs, they have low intrinsic water permeability. NIPs possess diverse substrate selectivity, ranging from water to glycerol and to other small solutes, depending on the group-specific amino acid composition at aromatic/Arg (ar/R) constriction. We cloned three NIPs (NIP1;1, NIP5;1, and NIP6;1) from grapevine (cv. Touriga Nacional). Their expression in the membrane of aqy-null Saccharomyces cerevisiae enabled their functional characterization for water and glycerol transport through stopped-flow spectroscopy. VvTnNIP1;1 demonstrated high water as well as glycerol permeability, whereas VvTnNIP6;1 was impermeable to water but presented high glycerol permeability. Their transport activities were declined by cytosolic acidification, implying that internal-pH can regulate NIPs gating. Furthermore, an extension of C-terminal in VvTnNIP6;1M homolog, led to improved channel activity, suggesting that NIPs gating is putatively regulated by C-terminal. Yeast growth assays in the presence of diverse substrates suggest that the transmembrane flux of metalloids (As, B, and Se) and the heavy metal (Cd) are facilitated through grapevine NIPs. This is the first molecular and functional characterization of grapevine NIPs, providing crucial insights into understanding their role for uptake and translocation of small solutes, and extrusion of toxic compounds in grapevine.
Collapse
|
46
|
Azogh A, Marashi SK, Babaeinejad T. Effect of zeolite on absorption and distribution of heavy metal concentrations in roots and shoots of wheat under soil contaminated with weapons. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1684949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ali Azogh
- Department of Agronomy, Khuzestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran
- Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | | | - Teimour Babaeinejad
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
47
|
Navazas A, Hendrix S, Cuypers A, González A. Integrative response of arsenic uptake, speciation and detoxification by Salix atrocinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:422-433. [PMID: 31279189 DOI: 10.1016/j.scitotenv.2019.06.279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Despite arsenic (As) being very toxic with deleterious effects on metabolism, it can be tolerated and accumulated by some plants. General genetic mechanisms responsible for As tolerance in plants, including Salix species, have been described in transcriptomic analysis, but further experimental verification of the significance of particular transcripts is needed. In this study, a Salix atrocinerea clone, able to thrive in an As-contaminated brownfield, was grown hydroponically in controlled conditions under an As concentration similar to the bioavailable fraction of the contaminated area (18 mg kg-1) for 30 days. At different time points, i.e. short-term and long-term exposure, biometric data, As accumulation, phytochelatin synthesis, non-protein thiol production and expression of target genes related to these processes were studied. Results showed that S. atrocinerea presents a great tolerance to As and accumulates up to 2400 mg As kg-1 dry weight in roots and 25 mg As kg-1 dry weight in leaves. Roots reduce As V to As III rapidly, with As III being the predominant form of As accumulated in root tissues, whereas in the leaves it is As V. After 1 d of As exposure, roots and leaves show de novo synthesis and an increase in non-protein thiols as compared to the control. Integrating these data on As accumulation in the plant and its speciation, non-protein thiol production and the kinetic gene expression of related target genes, a fundamental role is highlighted for these processes in As accumulation and tolerance in S. atrocinerea. As such, this study offers new insights in the plant tolerance mechanisms to As, which provides important knowledge for future application of high-biomass willow plants in phytoremediation of As-polluted soils.
Collapse
Affiliation(s)
- Alejandro Navazas
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain.
| | - Sophie Hendrix
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Aida González
- Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain; Institute of Biotechnology of Asturias, Spain.
| |
Collapse
|
48
|
Masjosthusmann S, Siebert C, Hübenthal U, Bendt F, Baumann J, Fritsche E. Arsenite interrupts neurodevelopmental processes of human and rat neural progenitor cells: The role of reactive oxygen species and species-specific antioxidative defense. CHEMOSPHERE 2019; 235:447-456. [PMID: 31272005 DOI: 10.1016/j.chemosphere.2019.06.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 05/10/2023]
Abstract
Arsenic exposure disturbs brain development in humans. Although developmental neurotoxicity (DNT) of arsenic has been studied in vivo and in vitro, its mode-of-action (MoA) is not completely understood. Here, we characterize the adverse neurodevelopmental effects of sodium arsenite on developing human and rat neural progenitor cells (hNPC, rNPC). Moreover, we analyze the involvement of reactive oxygen species (ROS) and the role of the glutathione (GSH)-dependent antioxidative defense for arsenite-induced DNT in a species-specific manner. We determined IC50 values for sodium arsenite-dependent (0.1-10 μM) inhibition of hNPC and rNPC migration (6.0 μM; >10 μM), neuronal (2.7 μM; 4.4 μM) and oligodendrocyte (1.1 μM; 2.0 μM) differentiation. ROS involvement was studied by quantifying the expression of ROS-regulated genes, measuring glutathione (GSH) levels, inhibiting GSH synthesis and co-exposing cells to the antioxidant N-acetylcysteine. Arsenite reduces NPC migration, neurogenesis and oligodendrogenesis of differentiating hNPC and rNPC at sub-cytotoxic concentrations. Species-specific arsenite cytotoxicity and induction of antioxidative gene expression is inversely related to GSH levels with rNPC possessing >3-fold the amount of GSH than hNPC. Inhibition of GSH synthesis increased the sensitivity towards arsenite in rNPC > hNPC. N-acetylcysteine antagonized arsenite-mediated induction of HMOX1 expression as well as reduction of neuronal and oligodendrocyte differentiation in hNPC suggesting involvement of oxidative stress in arsenite DNT. hNPC are more sensitive towards arsenite-induced neurodevelopmental toxicity than rNPC, probably due to their lower antioxidative defense capacities. This species-specific MoA data might be useful for adverse outcome pathway generation and future integrated risk assessment strategies concerning DNT.
Collapse
Affiliation(s)
- Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Clara Siebert
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ulrike Hübenthal
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Farina Bendt
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Jenny Baumann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany; Heinrich-Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
49
|
Pérez-Palacios P, Funes-Pinter I, Agostini E, Talano MA, Ibáñez SG, Humphry M, Edwards K, Rodríguez-Llorente ID, Caviedes MA, Pajuelo E. Targeting Acr3 from Ensifer medicae to the plasma membrane or to the tonoplast of tobacco hairy roots allows arsenic extrusion or improved accumulation. Effect of acr3 expression on the root transcriptome. Metallomics 2019; 11:1864-1886. [PMID: 31588944 DOI: 10.1039/c9mt00191c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transgenic tobacco hairy roots expressing the bacterial arsenite efflux pump Acr3 from Ensifer medicae were generated. The gene product was targeted either to the plasma membrane (ACR3 lines) or to the tonoplast by fusing the ACR3 protein to the tonoplast integral protein TIP1.1 (TIP-ACR3 lines). Roots expressing Acr3 at the tonoplast showed greater biomass than those expressing Acr3 at the plasma membrane. Furthermore, higher contents of malondialdehyde (MDA) and RNA degradation in ACR3 lines were indicative of higher oxidative stress. The determination of ROS-scavenging enzymes depicted the transient role of peroxidases in ROS detoxification, followed by the action of superoxide dismutase during both short- and medium-term exposure periods. Regarding As accumulation, ACR3 lines accumulated up to 20-30% less As, whereas TIP-ACR3 achieved a 2-fold increase in As accumulation in comparison to control hairy roots. Strategies that presumably induce As uptake, such as phosphate deprivation or dehydration followed by rehydration in the presence of As, fostered As accumulation up to 10 800 μg g-1. Finally, the effects of the heterologous expression of acr3 on the root transcriptome were assessed. Expression at the plasma membrane induced drastic changes in gene expression, with outstanding overexpression of genes related to electron transport, ATP synthesis and ATPases, suggesting that As efflux is the main detoxification mechanism in these lines. In addition, genes encoding heat shock proteins and those related to proline synthesis and drought tolerance were activated. On the other hand, TIP-ACR3 lines showed a similar gene expression profile to that of control roots, with overexpression of the glutathione and phytochelatin synthesis pathways, together with secondary metabolism pathways as the most important resistance mechanisms in TIP-ACR3, for which As allocation into the vacuole allowed better growth and stress management. Our results suggest that modulation of As accumulation can be achieved by subcellular targeting of Acr3: expression at the tonoplast enhances As accumulation in roots, whereas expression at the plasma membrane could promote As efflux. Thus, both approaches open the possibilities for developing safer crops when grown on As-polluted paddy soils, but expression at the tonoplast leads to better growth and less stressed roots, since the high energy cost of As efflux likely compromises growth in ACR3 lines.
Collapse
Affiliation(s)
- Patricia Pérez-Palacios
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain. and Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601 - Río Cuarto, Córdoba, Argentina and Plant Biotechnology Division, British American Tobacco, Cambridge, CB4 0WA, UK
| | - Iván Funes-Pinter
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain. and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza (CP 5507), Atte Brown 500, Chacras de Coria, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601 - Río Cuarto, Córdoba, Argentina
| | - Melina A Talano
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601 - Río Cuarto, Córdoba, Argentina
| | - Sabrina G Ibáñez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Matt Humphry
- British American Tobacco (Investments) Ltd, Cambridge, CB4 0WA, UK
| | - Kieron Edwards
- Plant Biotechnology Division, British American Tobacco, Cambridge, CB4 0WA, UK
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain.
| | - Miguel A Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain.
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain.
| |
Collapse
|
50
|
Sarkar S, Mukherjee A, Parvin R, Das S, Roy U, Ghosh S, Chaudhuri P, Roychowdhury T, Mukherjee J, Bhattacharya S, Gachhui R. Removal of Pb (II), As (III), and Cr (VI) by nitrogen-starved Papiliotrema laurentii strain RY1. J Basic Microbiol 2019; 59:1016-1030. [PMID: 31430397 DOI: 10.1002/jobm.201900222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 11/08/2022]
Abstract
Heavy metals such as lead, chromium, and metalloid like arsenic dominate the pinnacle in posing a threat to life. Being environment-friendly, elucidating the mechanism by which microorganisms detoxify such elements has always been an active field of research hitherto. In the present study, we have investigated the capability of nitrogen-deprived Papiliotrema laurentii strain RY1 toward enhanced tolerance and neutralizing toxic elements. There were biosorption and bioprecipitation of lead and chromium at the cell surfaces. Bioprecipitation mechanisms included the formation of lead phosphates and pyromorphites from lead, grimaldite from chromium. Transcripts such as metallothionein, aquaporins, and arsenical pump-driving ATPase have been surmised to be involved in the detoxification of elements. Furthermore, activation of antioxidant defense mechanisms for the cells for each of the elements should contribute towards yeast's propagation. The efficiency of removal of elements for live cells and immobilized cells were high for lead and chromium. To the best of our knowledge, this is the first report of such high tolerance of lead, arsenic, and chromium for any yeast. The yeast showed such varied response under dual stress due to nitrogen starvation and in the presence of respective elements. The yeast possesses promising potentials in nitrogen deprived and enriched environments to aid in bioremediation sectors.
Collapse
Affiliation(s)
- Soumyadev Sarkar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Avishek Mukherjee
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Rubia Parvin
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Uttariya Roy
- Department of Chemical Engineering, Jadavpur University, Kolkata, India
| | - Somdeep Ghosh
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | | | | | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Semantee Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Ratan Gachhui
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|