1
|
Micic N, Holmelund Rønager A, Sørensen M, Bjarnholt N. Overlooked and misunderstood: can glutathione conjugates be clues to understanding plant glutathione transferases? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230365. [PMID: 39343017 PMCID: PMC11449216 DOI: 10.1098/rstb.2023.0365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Plant glutathione transferases (GSTs) constitute a large and diverse family of enzymes that are involved in plant stress response, metabolism and defence, yet their physiological functions remain largely elusive. Consistent with the traditional view on GSTs across organisms as detoxification enzymes, in vitro most plant GSTs catalyse glutathionylation, conjugation of the tripeptide glutathione (GSH; γ-Glu-Cys-Gly) onto reactive molecules. However, when it comes to elucidating GST functions, it remains a key challenge that the endogenous plant glutathione conjugates (GS-conjugates) that would result from such glutathionylation reactions are rarely reported. Furthermore, GSTs often display high substrate promiscuity, and their proposed substrates are prone to spontaneous chemical reactions with GSH; hence, single-gene knockouts rarely provide clear chemotypes or phenotypes. In a few cases, GS-conjugates are demonstrated to be biosynthetic intermediates that are rapidly further metabolized towards a pathway end product, explaining their low abundance and rare detection. In this review, we summarize the current knowledge of plant GST functions and how and possibly why evolution has resulted in a broad and extensive expansion of the plant GST family. Finally, we demonstrate that endogenous GS-conjugates are more prevalent in plants than assumed and suggest they are overlooked as clues towards the identification of plant GST functions. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Nikola Micic
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Asta Holmelund Rønager
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Mette Sørensen
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
- Novo Nordisk Pharmatech A/S , Køge 4600, Denmark
| | - Nanna Bjarnholt
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| |
Collapse
|
2
|
Yang W, Zhang L, Yang Y, Xiang H, Yang P. Plant secondary metabolites-mediated plant defense against bacteria and fungi pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109224. [PMID: 39437667 DOI: 10.1016/j.plaphy.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Plant diseases caused by pathogenic bacteria and fungi are major threats to both wild plants and crops. To counteract these threats, plants have evolved various defense mechanisms, including the production of plant secondary metabolites (PSMs). These compounds, such as terpenoids, phenolics, alkaloids, and glucosinolates, offer a versatile, efficient, and cost-effective means of pathogen resistance. The traditional pathogen management methods relying on synthetic microbicides are often environment unfriendly. In contrast, PSMs provide promising alternative way due to their high efficiency and environmental benefits. This article reviews the categories, biosynthetic pathways, mechanisms of actions, and the commercialization of the PSMs to enhance our understanding of their pathogen resistance capabilities. The goal is to develop sustainable disease management strategies using PSM-based bactericides and fungicides.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Selman S, Engelberth M, Engelberth J. Organizing the Chaos: Novel Insights into the Regulation of Z-3-Hexenal Production in Damaged Maize Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2772. [PMID: 39409641 PMCID: PMC11479226 DOI: 10.3390/plants13192772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Green leaf volatiles (GLVs) are important signaling compounds that help to regulate plant defenses against pests and pathogens. Made through the hydroperoxide lyase (HPL) pathway, they are rapidly produced upon damage and can signal to other parts of the same plant or even plants nearby, where they can induce rapid defense responses directly or prime them against impending danger. In this primed state, plants can respond faster and/or stronger should pests or pathogens attack. However, while all proteins and genes involved in the biosynthesis of GLVs have been identified, little is still known about how the first two steps in the pathway, e.g., oxygenation by a lipoxygenase (LOX) and subsequent cleavage by HPL, are facilitated within the damaged tissue, resulting in the production of Z-3-hexenal (Z3al) as the first committed product of the pathway. Here, we provide evidence that several factors might be involved in the production of Z3al, including pH, Ca2+, and an environment that is highly hydrophobic. We present a model in which the extraordinary circumstances that are present at the site of Z3al production are considered, and shine new light on potential regulatory mechanisms.
Collapse
Affiliation(s)
- Samantha Selman
- Department of Plant Pathology, Texas A&M University, College Station, TX 77843, USA;
| | - Marie Engelberth
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Jurgen Engelberth
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
4
|
Engelberth J. Green Leaf Volatiles: A New Player in the Protection against Abiotic Stresses? Int J Mol Sci 2024; 25:9471. [PMID: 39273416 PMCID: PMC11395555 DOI: 10.3390/ijms25179471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
To date, the role of green leaf volatiles (GLVs) has been mainly constrained to protecting plants against pests and pathogens. However, increasing evidence suggests that among the stresses that can significantly harm plants, GLVs can also provide significant protection against heat, cold, drought, light, and salinity stress. But while the molecular basis for this protection is still largely unknown, it seems obvious that a common theme in the way GLVs work is that most, if not all, of these stresses are associated with physical damage to the plants, which, in turn, is the major event responsible for the production of GLVs. Here, I summarize the current state of knowledge on GLVs and abiotic stresses and provide a model explaining the multifunctionality of these compounds.
Collapse
Affiliation(s)
- Jurgen Engelberth
- Department of Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78247, USA
| |
Collapse
|
5
|
Haas RA, Crișan I, Vârban D, Vârban R. Aerobiology of the Family Lamiaceae: Novel Perspectives with Special Reference to Volatiles Emission. PLANTS (BASEL, SWITZERLAND) 2024; 13:1687. [PMID: 38931119 PMCID: PMC11207455 DOI: 10.3390/plants13121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view on the aerobiology of species from the family Lamiaceae, with an emphasis on novelties and emerging applications. From the aerobiology point of view, the greatest interest in this botanical family is related to the volatile organic compounds emitted by the plants and, to a much lesser extent, their pollen. Research has shown that the major volatile organic compounds emitted by the plants from this botanical family are monoterpenes and sesquiterpenes. The most important monoterpenes reported across studies include α-pinene, β-pinene, 1,8-cineole, menthol, limonene, and γ-terpinene. Most reports tend to cover species from the subfamily Nepetoideae. Volatile oils are produced by glandular trichomes found on aerial organs. Based on general morphology, two main types are found in the family Lamiaceae, namely peltate and capitate trichomes. As a result of pollinator-mediated transfer of pollen, Lamiaceae species present a reduced number of stamens and quantity of pollen. This might explain the low probability of pollen presence in the air from these species. A preliminary synopsis of the experimental evidence presented in this work suggests that the interplay of the organic particles and molecules released by these plants and their environment could be leveraged for beneficial outcomes in agriculture and landscaping. Emerging reports propose their use for intercropping to ensure the success of fructification, increased yield of entomophilous crops, as well as in sensory gardens due to the therapeutic effect of volatiles.
Collapse
Affiliation(s)
| | - Ioana Crișan
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania; (R.A.H.); (D.V.); (R.V.)
| | | | | |
Collapse
|
6
|
Moore CD, Farman DI, Särkinen T, Stevenson PC, Vallejo-Marín M. Floral scent changes in response to pollen removal are rare in buzz-pollinated Solanum. PLANTA 2024; 260:15. [PMID: 38829528 PMCID: PMC11147924 DOI: 10.1007/s00425-024-04403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/30/2024] [Indexed: 06/05/2024]
Abstract
MAIN CONCLUSION One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.
Collapse
Affiliation(s)
- C Douglas Moore
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Philip C Stevenson
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36, Uppsala, Sweden
| |
Collapse
|
7
|
Piesik D, Miler N, Lemańczyk G, Tymoszuk A, Lisiecki K, Bocianowski J, Krawczyk K, Mayhew CA. Induction of volatile organic compounds in chrysanthemum plants following infection by Rhizoctonia solani. PLoS One 2024; 19:e0302541. [PMID: 38696430 PMCID: PMC11065281 DOI: 10.1371/journal.pone.0302541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.
Collapse
Affiliation(s)
- Dariusz Piesik
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Natalia Miler
- Department of Biotechnology, Laboratory of Horticulture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Grzegorz Lemańczyk
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Tymoszuk
- Department of Biotechnology, Laboratory of Horticulture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Karol Lisiecki
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Krzysztof Krawczyk
- Department of Virology and Bacteriology, Institute of Plant Protection – National Research Institute, Poznań, Poland
| | - Chris A. Mayhew
- Institute for Breath Research, Universität Innsbruck, Innrain, Innsbruck, Austria
| |
Collapse
|
8
|
Wang N, Wang Y, Zhang X, Wu Y, Zhang L, Liu G, Fu J, Li X, Mu D, Li Z. Elevated Ozone Reduces the Quality of Tea Leaves but May Improve the Resistance of Tea Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1108. [PMID: 38674517 PMCID: PMC11054534 DOI: 10.3390/plants13081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Tropospheric ozone (O3) pollution can affect plant nutritional quality and secondary metabolites by altering plant biochemistry and physiology, which may lead to unpredictable effects on crop quality and resistance to pests and diseases. Here, we investigated the effects of O3 (ambient air, Am; ambient air +80 ppb of O3, EO3) on the quality compounds and chemical defenses of a widely cultivated tea variety in China (Camellia sinensis cv. 'Baiye 1 Hao') using open-top chamber (OTC). We found that elevated O3 increased the ratio of total polyphenols to free amino acids while decreasing the value of the catechin quality index, indicating a reduction in leaf quality for green tea. Specifically, elevated O3 reduced concentrations of amino acids and caffeine but shows no impact on the concentrations of total polyphenols in tea leaves. Within individual catechins, elevated O3 increased the concentrations of ester catechins but not non-ester catechins, resulting in a slight increase in total catechins. Moreover, elevated O3 increased the emission of biogenic volatile organic compounds involved in plant defense against herbivores and parasites, including green leaf volatiles, aromatics, and terpenes. Additionally, concentrations of main chemical defenses, represented as condensed tannins and lignin, in tea leaves also increased in response to elevated O3. In conclusion, our results suggest that elevated ground-level O3 may reduce the quality of tea leaves but could potentially enhance the resistance of tea plants to biotic stresses.
Collapse
Affiliation(s)
- Nuo Wang
- Anhui Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuxi Wang
- Anhui Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinyang Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiqi Wu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Guanhua Liu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Dan Mu
- Anhui Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Zhengzhen Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
9
|
Dweck HKM, Rutledge CE. The subapical labial sensory organ of spotted lanternfly Lycorma delicatula. Open Biol 2024; 14:230438. [PMID: 38531420 PMCID: PMC10965328 DOI: 10.1098/rsob.230438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Deciphering how spotted lanternfly (SLF), an invasive polyphagous planthopper in North America, engages with its environment is a pressing issue with fundamental biological significance and economic importance. This interaction primarily depends on olfaction. However, the cellular basis of olfaction in SLF remains elusive. Here we investigate the neuronal and functional organization of the subapical labial sensory organ using scanning electron microscopy and electrophysiological recordings. This organ is believed to supply planthoppers with crucial sensory information that influences their subsequent feeding behaviour. We find in SLF that this organ comprises two identical placoid sensilla, each housing two distinct neurons. The A neuron displays a remarkable sensitivity to changes in airflow speed. Importantly, the same neuron also exhibits robust excitatory responses exclusively to three aldehydes out of a diverse pool of 85 tested odorants and inhibitory responses to 62 other odorants. By contrast, the B neuron solely serves as an olfactory detector, showing strong excitatory responses to 17 odorants and inhibitory responses to only three. The results provide a potential cellular basis for the behavioural responses of SLF to its ecologically relevant stimuli. Our study also identifies new odorants that may be useful for managing this serious pest.
Collapse
Affiliation(s)
- Hany K. M. Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Claire E. Rutledge
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| |
Collapse
|
10
|
Erba F, Mei G, Minicozzi V, Sabatucci A, Di Venere A, Maccarrone M. Conformational Dynamics of Lipoxygenases and Their Interaction with Biological Membranes. Int J Mol Sci 2024; 25:2241. [PMID: 38396917 PMCID: PMC10889196 DOI: 10.3390/ijms25042241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Lipoxygenases (LOXs) are a family of enzymes that includes different fatty acid oxygenases with a common tridimensional structure. The main functions of LOXs are the production of signaling compounds and the structural modifications of biological membranes. These features of LOXs, their widespread presence in all living organisms, and their involvement in human diseases have attracted the attention of the scientific community over the last decades, leading to several studies mainly focused on understanding their catalytic mechanism and designing effective inhibitors. The aim of this review is to discuss the state-of-the-art of a different, much less explored aspect of LOXs, that is, their interaction with lipid bilayers. To this end, the general architecture of six relevant LOXs (namely human 5-, 12-, and 15-LOX, rabbit 12/15-LOX, coral 8-LOX, and soybean 15-LOX), with different specificity towards the fatty acid substrates, is analyzed through the available crystallographic models. Then, their putative interface with a model membrane is examined in the frame of the conformational flexibility of LOXs, that is due to their peculiar tertiary structure. Finally, the possible future developments that emerge from the available data are discussed.
Collapse
Affiliation(s)
- Fulvio Erba
- Department of Clinical Science and Translational Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Giampiero Mei
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Velia Minicozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via Della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Annalaura Sabatucci
- Department of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy;
| | - Almerinda Di Venere
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
11
|
Qian Q, Guo X, Wu L, Cui J, Gao H, Yang Y, Xu H, Lu Z, Zhu P. Molecular Characterization of Plant Volatile Compound Interactions with Cnaphalocrocis medinalis Odorant-Binding Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:479. [PMID: 38498446 PMCID: PMC10892019 DOI: 10.3390/plants13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Odorant-binding proteins (OBPs) play important roles in the insect olfactory system since they bind external odor molecules to trigger insect olfactory responses. Previous studies have identified some plant-derived volatiles that attract the pervasive insect pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), such as phenylacetaldehyde, benzyl acetate, 1-heptanol, and hexanal. To characterize the roles of CmedOBPs in the recognition of these four volatiles, we analyzed the binding abilities of selected CmedOBPs to each of the four compounds, as well as the expression patterns of CmedOBPs in different developmental stages of C. medinalis adult. Antennaes of C. medinalis adults were sensitive to the studied plant volatile combinations. Expression levels of multiple CmedOBPs were significantly increased in the antennae of 2-day-old adults after exposure to volatiles. CmedOBP1, CmedOBP6, CmedPBP1, CmedPBP2, and CmedGOBP2 were significantly up-regulated in the antennae of volatile-stimulated female and male adults when compared to untreated controls. Fluorescence competition assays confirmed that CmedOBP1 could strongly bind 1-heptanol, hexanal, and phenylacetaldehyde; CmedOBP15 strongly bound benzyl acetate and phenylacetaldehyde; and CmedOBP26 could weakly bind 1-heptanol. This study lays a theoretical foundation for further analysis of the mechanisms by which plant volatiles can attract C. medinalis. It also provides a technical basis for the future development of efficient plant volatile attractants of C. medinalis.
Collapse
Affiliation(s)
- Qi Qian
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Xin Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Lingjie Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Huiying Gao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| |
Collapse
|
12
|
Shi T, Shi M, Ye Y, Yue Y, Wang L, Yang X. Floral Volatile Organic Compounds Change the Composition and Function of the Endophytic Fungal Community in the Flowers of Osmanthus fragrans. Int J Mol Sci 2024; 25:857. [PMID: 38255929 PMCID: PMC10815108 DOI: 10.3390/ijms25020857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic fungi in flowers influence plant health and reproduction. However, whether floral volatile organic compounds (VOCs) affect the composition and function of the endophytic fungal community remains unclear. Here, gas chromatography-mass spectrometry (GC-MS) and high-throughput sequencing were used to explore the relationship between floral VOCs and the endophytic fungal community during different flower development stages in Osmanthus fragrans 'Rixiang Gui'. The results showed that the composition of the endophytic fungal community and floral VOCs shifted along with flowering development. The highest and lowest α diversity of the endophytic fungal community occurred in the flower fading stage and full blooming stage, respectively. The dominant fungi, including Dothideomycetes (class), Pleosporales (order), and Neocladophialophora, Alternaria, and Setophoma (genera), were enriched in the flower fading stage and decreased in the full blooming stage, demonstrating the enrichment of the Pathotroph, Saprotroph, and Pathotroph-Saprotroph functions in the flower fading stage and their depletion in the full blooming stage. However, the total VOC and terpene contents were highest in the full blooming stage and lowest in the flower fading stage, which was opposite to the α diversity of the endophytic fungal community and the dominant fungi during flowering development. Linalool, dihydro-β-ionone, and trans-linalool oxide(furan) were key factors affecting the endophytic fungal community composition. Furthermore, dihydro-β-ionone played an extremely important role in inhibiting endophytic fungi in the full blooming stage. Based on the above results, it is believed that VOCs, especially terpenes, changed the endophytic fungal community composition in the flowers of O. fragrans 'Rixiang Gui'. These findings improve the understanding of the interaction between endophytic fungi and VOCs in flowers and provide new insight into the mechanism of flower development.
Collapse
Affiliation(s)
- Tingting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunfang Ye
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| |
Collapse
|
13
|
Kanagendran A, Turlings TCJ. Cowpea volatiles induced by beet armyworm or fall armyworm differentially prime maize plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154164. [PMID: 38141481 DOI: 10.1016/j.jplph.2023.154164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Exposure to herbivore-induced plant volatiles (HIPVs) is known to enhance the defense responses in plants. This so-called priming effect has only been marginally studied in intercropping systems. We tested whether HIPVs from cowpea, which often serves as an intercrop alongside maize, can prime herbivore-induced volatile emissions in maize. Conventional volatile collection assays and real-time mass spectrometry revealed that maize plants that were exposed to HIPVs from cowpea infested with Spodoptera exigua caterpillars emitted more than control plants when they themselves were subsequently damaged by the same pest. The enhanced emission was only evident on the first day after infestation. Maize plants that were exposed to HIPVs from cowpea infested by S. frugiperda larvae showed no priming effect and released considerably less upon S. frugiperda infestation than upon S. exigua infestation. The latter may be explained by the fact that S. frugiperda is particularly well adapted to feed on maize and is known to suppress maize HIPV emissions. Our results imply that HIPVs from cowpea, depending on the inducing insect herbivore, may strongly prime maize plants. This deserves further investigation, also in other intercropping systems, as it can have important consequences for tritrophic interactions and crop protection.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Fundamental and Applied Research in Chemical Ecology (FARCE) Lab, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Ted C J Turlings
- Fundamental and Applied Research in Chemical Ecology (FARCE) Lab, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
14
|
Mleziva AD, Ngumbi EN. Comparative analysis of defensive secondary metabolites in wild teosinte and cultivated maize under flooding and herbivory stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14216. [PMID: 38366721 DOI: 10.1111/ppl.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
Climate change is driving an alarming increase in the frequency and intensity of abiotic and biotic stress factors, negatively impacting plant development and agricultural productivity. To survive, plants respond by inducing changes in below and aboveground metabolism with concomitant alterations in defensive secondary metabolites. While plant responses to the isolated stresses of flooding and insect herbivory have been extensively studied, much less is known about their response in combination. Wild relatives of cultivated plants with robust stress tolerance traits provide an excellent system for comparing how diverse plant species respond to combinatorial stress, and provide insight into potential germplasms for stress-tolerant hybrids. In this study, we compared the below and aboveground changes in the secondary metabolites of maize (Zea mays) and a flood-tolerant wild relative Nicaraguan teosinte (Zea nicaraguensis) in response to flooding, insect herbivory, and their combination. Root tissue was analyzed for changes in belowground metabolism. Leaf total phenolic content and headspace volatile organic compound emission were analyzed for changes in aboveground secondary metabolism. Results revealed significant differences in the root metabolome profiles of teosinte and maize. Notably, the accumulation of the flavonoids apigenin, naringenin, and luteolin during flooding and herbivory differentiated teosinte from maize. Aboveground, terpenes, including trans-α-bergamotene and (E)-4,8-dimethylnona-1,3,7-triene, shaped compositional differences in their volatile profiles between flooding, herbivory, and their combination. Taken together, these results suggest teosinte may be more tolerant than maize due to dynamic metabolic changes during flooding and herbivory that help relieve stress and influence plant-insect interactions.
Collapse
Affiliation(s)
- Aaron D Mleziva
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Esther N Ngumbi
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
15
|
Takashima S, Tokiya M, Izui K, Miyamoto H, Matsumoto A. Asian flush is a potential protective factor against COVID-19: a web-based retrospective survey in Japan. Environ Health Prev Med 2024; 29:14. [PMID: 38462476 PMCID: PMC10937249 DOI: 10.1265/ehpm.23-00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/10/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), first reported in December 2019, spread worldwide in a short period, resulting in numerous cases and associated deaths; however, the toll was relatively low in East Asia. A genetic polymorphism unique to East Asians, Aldehyde dehydrogenase 2 rs671, has been reported to confer protection against infections. METHOD We retrospectively investigated the association between the surrogate marker of the rs671 variant, the skin flushing phenomenon after alcohol consumption, and the timing of COVID-19 incidence using a web-based survey tool to test any protective effects of rs671 against COVID-19. RESULTS A total of 807 valid responses were received from 362 non-flushers and 445 flushers. During the 42 months, from 12/1/2019 to 5/31/2023, 40.6% of non-flushers and 35.7% of flushers experienced COVID-19. Flushers tended to have a later onset (Spearman's partial rank correlation test, p = 0.057, adjusted for sex and age). Similarly, 2.5% of non-flushers and 0.5% of flushers were hospitalized because of COVID-19. Survival analysis estimated lower risks of COVID-19 and associated hospitalization among flushers (p = 0.03 and <0.01, respectively; generalized Wilcoxon test). With the Cox proportional hazards model covering 21 months till 8/31/2021, when approximately half of the Japanese population had received two doses of COVID-19 vaccine, the hazard ratio (95% confidence interval) of COVID-19 incidence was estimated to be 0.21 (0.10-0.46) for flusher versus non-flusher, with adjustment for sex, age, steroid use, and area of residence. CONCLUSIONS Our study suggests an association between the flushing phenomenon after drinking and a decreased risk of COVID-19 morbidity and hospitalization, suggesting that the rs671 variant is a protective factor. This study provides valuable information for infection control and helps understand the unique constitutional diversity of East Asians.
Collapse
Affiliation(s)
- Satoshi Takashima
- Department of Social and Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
- Plant Products Safety Division, Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, 1-2-1 Kasumigaseki, Chiyodaku, Tokyo 100-8950, Japan
| | - Mikiko Tokiya
- Department of Social and Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Katsura Izui
- Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Akiko Matsumoto
- Department of Social and Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
16
|
Yan XZ, Ma L, Li XF, Chang L, Liu QZ, Song CF, Zhao JY, Qie XT, Deng CP, Wang CZ, Hao C. Identification and evaluation of cruciferous plant volatiles attractive to Plutella xylostella L. (Lepidoptera: Plutellidae). PEST MANAGEMENT SCIENCE 2023; 79:5270-5282. [PMID: 37602963 DOI: 10.1002/ps.7735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The diamondback moth, Plutella xylostella, has developed resistance to almost all insecticides used for its control. The 'push-pull' method has been shown as an effective control strategy to address this resistance challenge of P. xylostella. The key focus of the strategy is the identification of attractive or repellent volatile components. The aim of this study was to identify attractive volatile compounds released from host plants. Identified compounds were applied in the biological control of this pest. RESULTS Nine active compounds released into the headspace of seven cruciferous plant species were identified using gas chromatography-electroantennographic detection and gas chromatography-mass spectrometry. Electroantennographic detection-active compounds included five green leaf volatiles (hexanal, trans-2-hexen-1-ol, cis-3-hexen-1-ol, cis-3-hexenyl acetate, and 1-penten-3-ol), three isothiocyanates (isopropyl isothiocyanate, allyl isothiocyanate, and butyl isothiocyanate), and nonanal. Except for nonanal, all the identified green leaf volatiles and isothiocyanates elicited strong electrophysiological and behavioral responses in P. xylostella. The strongest attractive compounds, trans-2-hexen-1-ol and isopropyl isothiocyanate, were further evaluated in oviposition and field-trapping assays. Results showed that they both lured female moths to lay eggs, and were highly attractive to P. xylostella adults in field, especially when used in combination with yellow and green sticky boards. However, a blend of the two compounds showed no synergistic effect, but rather an antagonistic effect. CONCLUSIONS Green leaf volatiles and isothiocyanates were identified as key olfactory cues for host selection of P. xylostella. Trans-2- hexen-1-ol and isopropyl isothiocyanate were identified as candidate attractive compounds to serve in a 'push-pull' strategy for P. xylostella control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi-Zhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Xiao-Fei Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Le Chang
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Qing-Zhao Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Cheng-Fei Song
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Jin-Yu Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Xing-Tao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Cai-Ping Deng
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
17
|
Desmedt W, Ameye M, Filipe O, De Waele E, Van Nieuwerburgh F, Deforce D, Van Meulebroek L, Vanhaecke L, Kyndt T, Höfte M, Audenaert K. Molecular analysis of broad-spectrum induced resistance in rice by the green leaf volatile Z-3-hexenyl acetate. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6804-6819. [PMID: 37624920 DOI: 10.1093/jxb/erad338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Green leaf volatiles (GLVs), volatile organic compounds released by plants upon tissue damage, are key signaling molecules in plant immunity. The ability of exogenous GLV application to trigger an induced resistance (IR) phenotype against arthropod pests has been widely reported, but its effectiveness against plant pathogens is less well understood. In this study, we combined mRNA sequencing-based transcriptomics and phytohormone measurements with multispectral imaging-based precision phenotyping to gain insights into the molecular basis of Z-3-hexenyl acetate-induced resistance (Z-3-HAC-IR) in rice. Furthermore, we evaluated the efficacy of Z-3-HAC-IR against a panel of economically significant rice pathogens: Pyricularia oryzae, Rhizoctonia solani, Xanthomonas oryzae pv. oryzae, Cochliobolus miyabeanus, and Meloidogyne graminicola. Our data revealed rapid induction of jasmonate metabolism and systemic induction of plant immune responses upon Z-3-HAC exposure, as well as a transient allocation cost due to accelerated chlorophyll degradation and nutrient remobilization. Z-3-HAC-IR proved effective against all tested pathogens except for C. miyabeanus, including against the (hemi)biotrophs M. graminicola, X. oryzae pv. oryzae, and P. oryzae. The Z-3-HAC-IR phenotype was lost in the jasmonate (JA)-deficient hebiba mutant, which confirms the causal role of JA in Z-3-HAC-IR. Together, our results show that GLV exposure in rice induces broad-spectrum, JA-mediated disease resistance with limited allocation costs, and may thus be a promising alternative crop protection approach.
Collapse
Affiliation(s)
- Willem Desmedt
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | | | - Osvaldo Filipe
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Evelien De Waele
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemse Steenweg 460, 9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemse Steenweg 460, 9000 Ghent, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Tina Kyndt
- Epigenetics and Defence Research Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Sarkar T, Salauddin M, Roy S, Chakraborty R, Rebezov M, Shariati MA, Thiruvengadam M, Rengasamy KRR. Underutilized green leafy vegetables: frontier in fortified food development and nutrition. Crit Rev Food Sci Nutr 2023; 63:11679-11733. [PMID: 35816152 DOI: 10.1080/10408398.2022.2095555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
From the ancient period, Green leafy vegetables (GLV) are part of the daily diet and were believed to have several health beneficial properties. Later it has been proved that GLV has outstanding nutritional value and can be used for medicinal benefits. GLV is particularly rich in minerals like iron, calcium, and zinc. These are also rich in vitamins like beta carotene, vitamin E, K, B and vitamin C. In addition, some anti-nutritional elements in GLV can be reduced if it is grown properly and processed properly before consumption. Tropical countries have a wide variety of these green plants such as Red Spinach, Amaranth, Malabar Spinach, Taro Leaf, Fenugreek leaf, Bengal Gram Leaves, Radish Leaves, Mustard Leaves, and many more. This review focuses on listing this wide range of GLVs (in total 54 underutilized GLVs) and their compositions in a comparative manner. GLV also possesses medicinal activities due to its rich bioactive and nutritional potential. Different processing techniques may alter the nutritional and bioactive potential of the GLVs significantly. The GLVs have been considered a food fortification agent, though not explored widely. All of these findings suggest that increasing GLV consumption could provide nutritional requirements necessary for proper growth as well as adequate protection against diseases caused by malnutrition.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, West Bengal, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Government Polytechnic, West Bengal State Council of Technical Education, West Bengal, India
| | - Sarita Roy
- Department of Food Processing and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Runu Chakraborty
- Department of Food Processing and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of technologies and management, The First Cossack University, Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, South Korea
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
19
|
Zia B, Chanda B, Bai J, Gilliard A, Ling KS. Comparative Evaluation of Volatile Organic Compounds in Two Bottle Gourd Accessions with Distinct Fruit Shapes. Foods 2023; 12:3921. [PMID: 37959039 PMCID: PMC10649024 DOI: 10.3390/foods12213921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Bottle gourd (Lagenaria siceraria L.) belongs to the cucurbit family and has a long history of cultivation in tropical and subtropical regions worldwide, both for food and medicine. Popularized by its unique fruit shapes, gourds are used to make ornaments and musical instruments. However, there is limited information on volatile organic compounds (VOCs) in the bottle gourd fruit. In the present study, we conducted a comparative analysis of VOCs profiled in two accessions (USVL5 and USVL10) with distinct fruit shapes: bottle and cylinder. While USVL5 only produced long cylinder fruits, USVL10 produced two fruit types, cylinder (USVL10CYN) and bottle (USVL10A and USVL10B). VOCs in each line were analyzed using headspace solid-phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS). Aliphatic aldehydes and alcohols were the most abundant compounds found in these bottle gourd accessions. Based on the functional profile of the identified VOCs, our results reveal the suitability of our tested line (USVL10), enriched in functionally important VOCs such as hexanal (abundance = 381.07), nonanal (abundance = 9.85), 2-methoxy-2-methylpropane (abundance = 21.26) and D-limonene (abundance = 31.48). The VOCs profiling and functional analyses support the notion that the bottle gourd accession USVL10 can be a good candidate for its use in agriculture, the health care industry and domestic uses.
Collapse
Affiliation(s)
- Bazgha Zia
- U.S. Vegetable Laboratory, United States Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA; (B.Z.); (B.C.); (A.G.)
| | - Bidisha Chanda
- U.S. Vegetable Laboratory, United States Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA; (B.Z.); (B.C.); (A.G.)
| | - Jinhe Bai
- Horticultural Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945, USA;
| | - Andrea Gilliard
- U.S. Vegetable Laboratory, United States Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA; (B.Z.); (B.C.); (A.G.)
| | - Kai-Shu Ling
- U.S. Vegetable Laboratory, United States Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA; (B.Z.); (B.C.); (A.G.)
| |
Collapse
|
20
|
Jones AC, Lin PA, Peiffer M, Felton G. Caterpillar Salivary Glucose Oxidase Decreases Green Leaf Volatile Emission and Increases Terpene Emission from Maize. J Chem Ecol 2023; 49:518-527. [PMID: 37432514 DOI: 10.1007/s10886-023-01440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023]
Abstract
Caterpillar salivary glucose oxidase (GOX) can function as both an elicitor or as an effector of plant defense responses depending upon the system. Treatment with GOX reduces the stomatal aperture of tomato and soybean leaves, thereby reducing the emission of volatile organic compounds (VOCs), that are important indirect defense responses of plants by attracting natural enemies of the caterpillars. Here we examined the effect of fungal GOX (fungal glucose oxidases have been used to determine specificity in defense response elicitation) on stomatal closure of maize leaves and on the volatile emission pattern whole maize plants. We also used salivary gland homogenate from wild-type and CRISPR-Cas9 Helicoverpa zea mutants deficient in GOX activity to determine the effect caterpillar saliva with and without GOX had on maize volatile emission. Collecting volatiles at 2-hour intervals allowed us to examine the changes in emission over time. Fungal GOX reduced the stomatal aperture in maize leaves, which may have influenced the observed significant reduction in total green leaf volatile (GLV) emission. Furthermore, fungal GOX significantly increased the emission of several key terpenes: linalool, DMNT, and Z-β-farnesene from maize, while salivary gland homogenate from wild type (WT; GOX+) H. zea increased the emission of α-pinene, β-pinene, and ocimene compared to H. zea unable to synthesize GOX. This study addressed a significant knowledge gap about the effect of GOX on maize volatiles and provides a baseline for further research on the effect of GOX on the regulation of terpene synthase genes and their relation to terpene volatile emission.
Collapse
Affiliation(s)
- Anne C Jones
- (Entomology), Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Po-An Lin
- (Entomology), National Taiwan University, New Taipei, Taiwan
| | - Michelle Peiffer
- (Entomology), Pennsylvania State University, State College, Pennsylvania, PA, USA
| | - Gary Felton
- (Entomology), Pennsylvania State University, State College, Pennsylvania, PA, USA
| |
Collapse
|
21
|
Jin J, Zhao M, Jing T, Zhang M, Lu M, Yu G, Wang J, Guo D, Pan Y, Hoffmann TD, Schwab W, Song C. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. HORTICULTURE RESEARCH 2023; 10:uhad143. [PMID: 37691961 PMCID: PMC10483893 DOI: 10.1093/hr/uhad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
Plants respond to environmental stimuli via the release of volatile organic compounds (VOCs), and neighboring plants constantly monitor and respond to these VOCs with great sensitivity and discrimination. This sensing can trigger increased plant fitness and reduce future plant damage through the priming of their own defenses. The defense mechanism in neighboring plants can either be induced by activation of the regulatory or transcriptional machinery, or it can be delayed by the absorption and storage of VOCs for the generation of an appropriate response later. Despite much research, many key questions remain on the role of VOCs in interplant communication and plant fitness. Here we review recent research on the VOCs induced by biotic (i.e. insects and pathogens) and abiotic (i.e. cold, drought, and salt) stresses, and elucidate the biosynthesis of stress-induced VOCs in tea plants. Our focus is on the role of stress-induced VOCs in complex ecological environments. Particularly, the roles of VOCs under abiotic stress are highlighted. Finally, we discuss pertinent questions and future research directions for advancing our understanding of plant interactions via VOCs.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guomeng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| |
Collapse
|
22
|
Tserevelakis GJ, Theocharis A, Spyropoulou S, Trantas E, Goumas D, Ververidis F, Zacharakis G. Hybrid Autofluorescence and Optoacoustic Microscopy for the Label-Free, Early and Rapid Detection of Pathogenic Infections in Vegetative Tissues. J Imaging 2023; 9:176. [PMID: 37754940 PMCID: PMC10532063 DOI: 10.3390/jimaging9090176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Agriculture plays a pivotal role in food security and food security is challenged by pests and pathogens. Due to these challenges, the yields and quality of agricultural production are reduced and, in response, restrictions in the trade of plant products are applied. Governments have collaborated to establish robust phytosanitary measures, promote disease surveillance, and invest in research and development to mitigate the impact on food security. Classic as well as modernized tools for disease diagnosis and pathogen surveillance do exist, but most of these are time-consuming, laborious, or are less sensitive. To that end, we propose the innovative application of a hybrid imaging approach through the combination of confocal fluorescence and optoacoustic imaging microscopy. This has allowed us to non-destructively detect the physiological changes that occur in plant tissues as a result of a pathogen-induced interaction well before visual symptoms occur. When broccoli leaves were artificially infected with Xanthomonas campestris pv. campestris (Xcc), eventually causing an economically important bacterial disease, the induced optical absorption alterations could be detected at very early stages of infection. Therefore, this innovative microscopy approach was positively utilized to detect the disease caused by a plant pathogen, showing that it can also be employed to detect quarantine pathogens such as Xylella fastidiosa.
Collapse
Affiliation(s)
- George J. Tserevelakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Crete, Greece; (G.J.T.); (S.S.)
| | - Andreas Theocharis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, GR-71410 Heraklion, Crete, Greece; (A.T.); (E.T.); (D.G.)
| | - Stavroula Spyropoulou
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Crete, Greece; (G.J.T.); (S.S.)
| | - Emmanouil Trantas
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, GR-71410 Heraklion, Crete, Greece; (A.T.); (E.T.); (D.G.)
- Institute of Agri-Food and Life Sciences, University Research Centre, Hellenic Mediterranean University, GR-71410 Heraklion, Crete, Greece
| | - Dimitrios Goumas
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, GR-71410 Heraklion, Crete, Greece; (A.T.); (E.T.); (D.G.)
- Institute of Agri-Food and Life Sciences, University Research Centre, Hellenic Mediterranean University, GR-71410 Heraklion, Crete, Greece
| | - Filippos Ververidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, GR-71410 Heraklion, Crete, Greece; (A.T.); (E.T.); (D.G.)
- Institute of Agri-Food and Life Sciences, University Research Centre, Hellenic Mediterranean University, GR-71410 Heraklion, Crete, Greece
| | - Giannis Zacharakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Crete, Greece; (G.J.T.); (S.S.)
| |
Collapse
|
23
|
Yuan P, Borrego E, Park YS, Gorman Z, Huang PC, Tolley J, Christensen SA, Blanford J, Kilaru A, Meeley R, Koiwa H, Vidal S, Huffaker A, Schmelz E, Kolomiets MV. 9,10-KODA, an α-ketol produced by the tonoplast-localized 9-lipoxygenase ZmLOX5, plays a signaling role in maize defense against insect herbivory. MOLECULAR PLANT 2023; 16:1283-1303. [PMID: 37434355 DOI: 10.1016/j.molp.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/10/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
13-Lipoxygenases (LOXs) initiate the synthesis of jasmonic acid (JA), the best-understood oxylipin hormone in herbivory defense. However, the roles of 9-LOX-derived oxylipins in insect resistance remain unclear. Here, we report a novel anti-herbivory mechanism mediated by a tonoplast-localized 9-LOX, ZmLOX5, and its linolenic acid-derived product, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (9,10-KODA). Transposon-insertional disruption of ZmLOX5 resulted in the loss of resistance to insect herbivory. lox5 knockout mutants displayed greatly reduced wound-induced accumulation of multiple oxylipins and defense metabolites, including benzoxazinoids, abscisic acid (ABA), and JA-isoleucine (JA-Ile). However, exogenous JA-Ile failed to rescue insect defense in lox5 mutants, while applications of 1 μM 9,10-KODA or the JA precursor, 12-oxo-phytodienoic acid (12-OPDA), restored wild-type resistance levels. Metabolite profiling revealed that exogenous 9,10-KODA primed the plants for increased production of ABA and 12-OPDA, but not JA-Ile. While none of the 9-oxylipins were able to rescue JA-Ile induction, the lox5 mutant accumulated lower wound-induced levels of Ca2+, suggesting this as a potential explanation for lower wound-induced JA. Seedlings pretreated with 9,10-KODA exhibited rapid or more robust wound-induced defense gene expression. In addition, an artificial diet supplemented with 9,10-KODA arrested fall armyworm larvae growth. Finally, analysis of single and double lox5 and lox10 mutants showed that ZmLOX5 also contributed to insect defense by modulating ZmLOX10-mediated green leaf volatile signaling. Collectively, our study uncovered a previously unknown anti-herbivore defense and hormone-like signaling activity for a major 9-oxylipin α-ketol.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Eli Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; Currently at Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Yong-Soon Park
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; Department of Plant Resources, Agriculture and Fisheries Life Science Research Institute, Kongju National University, Yesan, Chungnam 32439, South Korea
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Jordan Tolley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shawn A Christensen
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37659, USA
| | - Robert Meeley
- Formerly at Corteva Agriscience, Johnston, IA 50131, USA
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Stefan Vidal
- Department of Crop Sciences, Agricultural Entomology, Georg-August-Universität, 37077 Göttingen, Germany
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Eric Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA.
| |
Collapse
|
24
|
Ranner JL, Schalk S, Martyniak C, Parniske M, Gutjahr C, Stark TD, Dawid C. Primary and Secondary Metabolites in Lotus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466334 DOI: 10.1021/acs.jafc.3c02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lotus japonicus is a leguminous model plant used to gain insight into plant physiology, stress response, and especially symbiotic plant-microbe interactions, such as root nodule symbiosis or arbuscular mycorrhiza. Responses to changing environmental conditions, stress, microbes, or insect pests are generally accompanied by changes in primary and secondary metabolism to account for physiological needs or to produce defensive or signaling compounds. Here we provide an overview of the primary and secondary metabolites identified in L. japonicus to date. Identification of the metabolites is mainly based on mass spectral tags (MSTs) obtained by gas chromatography linked with tandem mass spectrometry (GC-MS/MS) or liquid chromatography-MS/MS (LC-MS/MS). These MSTs contain retention index and mass spectral information, which are compared to databases with MSTs of authentic standards. More than 600 metabolites are grouped into compound classes such as polyphenols, carbohydrates, organic acids and phosphates, lipids, amino acids, nitrogenous compounds, phytohormones, and additional defense compounds. Their physiological effects are briefly discussed, and the detection methods are explained. This review of the exisiting literature on L. japonicus metabolites provides a valuable basis for future metabolomics studies.
Collapse
Affiliation(s)
- Josef L Ranner
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sabrina Schalk
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Cindy Martyniak
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich (LMU), Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Professorship of Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
25
|
Lin YH, Silven JJM, Wybouw N, Fandino RA, Dekker HL, Vogel H, Wu YL, de Koster C, Große-Wilde E, Haring MA, Schuurink RC, Allmann S. A salivary GMC oxidoreductase of Manduca sexta re-arranges the green leaf volatile profile of its host plant. Nat Commun 2023; 14:3666. [PMID: 37380635 DOI: 10.1038/s41467-023-39353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Green leaf volatiles (GLVs) are short-chain oxylipins that are emitted from plants in response to stress. Previous studies have shown that oral secretions (OS) of the tobacco hornworm Manduca sexta, introduced into plant wounds during feeding, catalyze the re-arrangement of GLVs from Z-3- to E-2-isomers. This change in the volatile signal however is bittersweet for the insect as it can be used by their natural enemies, as a prey location cue. Here we show that (3Z):(2E)-hexenal isomerase (Hi-1) in M. sexta's OS catalyzes the conversion of the GLV Z-3-hexenal to E-2-hexenal. Hi-1 mutants that were raised on a GLV-free diet showed developmental disorders, indicating that Hi-1 also metabolizes other substrates important for the insect's development. Phylogenetic analysis placed Hi-1 within the GMCβ-subfamily and showed that Hi-1 homologs from other lepidopterans could catalyze similar reactions. Our results indicate that Hi-1 not only modulates the plant's GLV-bouquet but also functions in insect development.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Richard A Fandino
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, US
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chris de Koster
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- EXTEMIT-K, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500, Prague, Czech Republic
| | - Michel A Haring
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Silke Allmann
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
26
|
Sarang K, Otto T, Gagan S, Rudzinski K, Schaefer T, Brüggemann M, Grgić I, Kubas A, Herrmann H, Szmigielski R. Aqueous-phase photo-oxidation of selected green leaf volatiles initiated by OH radicals: Products and atmospheric implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162622. [PMID: 36878296 DOI: 10.1016/j.scitotenv.2023.162622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 05/17/2023]
Abstract
C5- and C6- unsaturated oxygenated organic compounds emitted by plants under stress like cutting, freezing or drying, known as Green Leaf Volatiles (GLVs), may clear some of the existing uncertainties in secondary organic aerosol (SOA) budget. The transformations of GLVs are a potential source of SOA components through photo-oxidation processes occurring in the atmospheric aqueous phase. Here, we investigated the aqueous photo-oxidation products from three abundant GLVs (1-penten-3-ol, (Z)-2-hexen-1-ol, and (E)-2-hexen-1-al) induced by OH radicals, carried out in a photo-reactor under simulated solar conditions. The aqueous reaction samples were analyzed using advanced hyphenated mass spectrometry techniques: capillary gas chromatography mass spectrometry (c-GC-MS); and reversed-phase liquid chromatography high resolution mass spectrometry (LC-HRMS). Using carbonyl-targeted c-GC-MS analysis, we confirmed the presence of propionaldehyde, butyraldehyde, 1-penten-3-one, and 2-hexen-1-al in the reaction samples. The LC-HRMS analysis confirmed the presence of a new carbonyl product with the molecular formula C6H10O2, which probably bears the hydroxyhexenal or hydroxyhexenone structure. Density functional theory (DFT)-based quantum calculations were used to evaluate the experimental data and obtain insight into the formation mechanism and structures of the identified oxidation products via the addition and hydrogen-abstraction pathways. DFT calculations highlighted the importance of the hydrogen abstraction pathway leading to the new product C6H10O2. Atmospheric relevance of the identified products was evaluated using a set of physical property data like Henry's law constant (HLC) and vapor pressure (VP). The unknown product of molecular formula C6H10O2 has higher HLC and lower VP than the parent GLV and thus has potential to remain in the aqueous phase leading to possible aqueous SOA formation. Other observed carbonyl products are likely first stage oxidation products and precursors of aged SOA.
Collapse
Affiliation(s)
- Kumar Sarang
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Tobias Otto
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Sahir Gagan
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Krzysztof Rudzinski
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Martin Brüggemann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Irena Grgić
- Department of Analytical Chemistry, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
| | - Adam Kubas
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany.
| | - Rafal Szmigielski
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland.
| |
Collapse
|
27
|
Wu Z, Gao T, Liang Z, Hao J, Liu P, Liu X. Dynamic Changes in Plant Secondary Metabolites Induced by Botrytis cinerea Infection. Metabolites 2023; 13:metabo13050654. [PMID: 37233695 DOI: 10.3390/metabo13050654] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
In response to pathogen infection, some plants increase production of secondary metabolites, which not only enhance plant defense but also induce fungicide resistance, especially multidrug resistance (MDR) in the pathogen through preadaptation. To investigate the cause of MDR in Botrytis cinerea, grapes 'Victoria' (susceptible to B. cinerea) and 'Shine Muscat' (resistant to B. cinerea) were inoculated into seedling leaves with B. cinerea, followed by extraction of metabolites from the leaves on days 3, 6, and 9 after inoculation. The extract was analyzed using gas chromatography/quadrupole time-of-flight mass (GC/QTOF) combined with solid-phase microextraction (SPME) for volatile and nonvolatile metabolomic components. Nonvolatile metabolites γ-aminobutyric acid (GABA), resveratrol, piceid, and some carbohydrates or amino acids, coupled with volatile metabolites β-ocimene, α-farnesene, caryophyllene, germacrene D, β-copaene, and alkanes, accumulated at a higher level in grape leaves infected with B. cinerea compared to in noninoculated leaves. Among the established metabolic pathways, seven had greater impacts, including aminoacyl-tRNA biosynthesis, galactose metabolism, valine, leucine, and isoleucine biosynthesis. Furthermore, isoquinoline alkaloid biosynthesis; phenylpropanoid biosynthesis; monobactam biosynthesis; tropane, piperidine, and pyridine alkaloid biosynthesis; phenylalanine metabolism; and glucosinolate biosynthesis were related to antifungal activities. Based on liquid chromatography/quadrupole time-of-flight mass (LC/QTOF) detection and bioassay, B. cinerea infection induced production of plant secondary metabolites (PSMs) including eugenol, flavanone, reserpine, resveratrol, and salicylic acid, which all have inhibitory activity against B. cinerea. These compounds also promoted overexpression of ATP-binding cassette (ABC) transporter genes, which are involved in induction of MDR in B. cinerea.
Collapse
Affiliation(s)
- Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tuqiang Gao
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhengya Liang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Jakobina M, Łyczko J, Zydorowicz K, Galek R, Szumny A. The Potential Use of Plant Growth Regulators for Modification of the Industrially Valuable Volatile Compounds Synthesis in Hylocreus undatus Stems. Molecules 2023; 28:molecules28093843. [PMID: 37175252 PMCID: PMC10180215 DOI: 10.3390/molecules28093843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The pitaya (dragon fruit) Hylocereus is a genus which belongs to the Cactaceae family. It is native to Mexico, occurring also in other regions of Central and South America. Pitaya fruit is mainly intended for consumption and for this reason the species is grown commercially. The fruit is a rich source of vitamins, biologically active compounds, and dietary fibre. Using in vitro culture can accelerate the process of reproduction and growth of pitaya plants. Profiling of volatile compounds contained in the stem of Hylocereus undatus was carried out using the SPME-GC-MS technique. The main compounds present were hexanal, 2-hexenal and 1-hexanol. The results showed differences in the occurrence of volatile compounds between plants grown in media with an addition of BA (6-benzylaminopurine) and IAA (indole-3-acetic acid), which have been used as plant growth regulators. Statistically significant differences between the contents of volatile compounds were observed in the case of 2-hexenal and 1-hexanol. The effect of BA on reducing the amount of volatile compounds was observed. However, introduction of IAA to the in vitro medium resulted in more compounds being synthesized. This study is the first to describe the volatile compounds in the pitaya stem. The results indicate that plant hormones are able to modify the profile of volatile compounds.
Collapse
Affiliation(s)
- Maciej Jakobina
- Department of Plant Breeding and Seed Production, University of Environmental and Life Sciences, Grunwaldzki Square 24a, 50-363 Wrocław, Poland
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 53-375 Wrocław, Poland
| | - Kinga Zydorowicz
- Department of Plant Breeding and Seed Production, University of Environmental and Life Sciences, Grunwaldzki Square 24a, 50-363 Wrocław, Poland
| | - Renata Galek
- Department of Plant Breeding and Seed Production, University of Environmental and Life Sciences, Grunwaldzki Square 24a, 50-363 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 53-375 Wrocław, Poland
| |
Collapse
|
29
|
Nawrocka J, Szymczak K, Skwarek-Fadecka M, Małolepsza U. Toward the Analysis of Volatile Organic Compounds from Tomato Plants ( Solanum lycopersicum L.) Treated with Trichoderma virens or/and Botrytis cinerea. Cells 2023; 12:cells12091271. [PMID: 37174671 PMCID: PMC10177525 DOI: 10.3390/cells12091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Gray mold caused by Botrytis cinerea causes significant losses in tomato crops. B. cinerea infection may be halted by volatile organic compounds (VOCs), which may exhibit fungistatic activity or enhance the defense responses of plants against the pathogen. The enhanced VOC generation was observed in tomato (Solanum lycopersicum L.), with the soil-applied biocontrol agent Trichoderma virens (106 spores/1 g soil), which decreased the gray mold disease index in plant leaves at 72 hpi with B. cinerea suspension (1 × 106 spores/mL). The tomato leaves were found to emit 100 VOCs, annotated and putatively annotated, assigned to six classes by the headspace GCxGC TOF-MS method. In Trichoderma-treated plants with a decreased grey mold disease index, the increased emission or appearance of 2-hexenal, (2E,4E)-2,4-hexadienal, 2-hexyn-1-ol, 3,6,6-trimethyl-2-cyclohexen-1-one, 1-octen-3-ol, 1,5-octadien-3-ol, 2-octenal, octanal, 2-penten-1-ol, (Z)-6-nonenal, prenol, and acetophenone, and 2-hydroxyacetophenone, β-phellandrene, β-myrcene, 2-carene, δ-elemene, and isocaryophyllene, and β-ionone, 2-methyltetrahydrofuran, and 2-ethyl-, and 2-pentylfuran, ethyl, butyl, and hexyl acetate were most noticeable. This is the first report of the VOCs that were released by tomato plants treated with Trichoderma, which may be used in practice against B. cinerea, although this requires further analysis, including the complete identification of VOCs and determination of their potential as agents that are capable of the direct and indirect control of pathogens.
Collapse
Affiliation(s)
- Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Kamil Szymczak
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Monika Skwarek-Fadecka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Urszula Małolepsza
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
30
|
Schultz CR, Johnson M, Wallace JG. Effects of Inbreeding on Microbial Community Diversity of Zea mays. Microorganisms 2023; 11:microorganisms11040879. [PMID: 37110300 PMCID: PMC10145435 DOI: 10.3390/microorganisms11040879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Heterosis, also known as hybrid vigor, is the basis of modern maize production. The effect of heterosis on maize phenotypes has been studied for decades, but its effect on the maize-associated microbiome is much less characterized. To determine the effect of heterosis on the maize microbiome, we sequenced and compared the bacterial communities of inbred, open pollinated, and hybrid maize. Samples covered three tissue types (stalk, root, and rhizosphere) in two field experiments and one greenhouse experiment. Bacterial diversity was more affected by location and tissue type than genetic background for both within-sample (alpha) and between-sample (beta) diversity. PERMANOVA analysis similarly showed that tissue type and location had significant effects on the overall community structure, whereas the intraspecies genetic background and individual plant genotypes did not. Differential abundance analysis identified only 25 bacterial ASVs that significantly differed between inbred and hybrid maize. Predicted metagenome content was inferred with Picrust2, and it also showed a significantly larger effect of tissue and location than genetic background. Overall, these results indicate that the bacterial communities of inbred and hybrid maize are often more similar than they are different and that non-genetic effects are generally the largest influences on the maize microbiome.
Collapse
|
31
|
Knieper M, Viehhauser A, Dietz KJ. Oxylipins and Reactive Carbonyls as Regulators of the Plant Redox and Reactive Oxygen Species Network under Stress. Antioxidants (Basel) 2023; 12:antiox12040814. [PMID: 37107189 PMCID: PMC10135161 DOI: 10.3390/antiox12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Reactive oxygen species (ROS), and in particular H2O2, serve as essential second messengers at low concentrations. However, excessive ROS accumulation leads to severe and irreversible cell damage. Hence, control of ROS levels is needed, especially under non-optimal growth conditions caused by abiotic or biotic stresses, which at least initially stimulate ROS synthesis. A complex network of thiol-sensitive proteins is instrumental in realizing tight ROS control; this is called the redox regulatory network. It consists of sensors, input elements, transmitters, and targets. Recent evidence revealed that the interplay of the redox network and oxylipins–molecules derived from oxygenation of polyunsaturated fatty acids, especially under high ROS levels–plays a decisive role in coupling ROS generation and subsequent stress defense signaling pathways in plants. This review aims to provide a broad overview of the current knowledge on the interaction of distinct oxylipins generated enzymatically (12-OPDA, 4-HNE, phytoprostanes) or non-enzymatically (MDA, acrolein) and components of the redox network. Further, recent findings on the contribution of oxylipins to environmental acclimatization will be discussed using flooding, herbivory, and establishment of thermotolerance as prime examples of relevant biotic and abiotic stresses.
Collapse
|
32
|
Koutsogeorgiou EI, Kouloussis NA, Sarrou E, Andreadis SS. Headspace determination of the volatile organic compounds (VOCs) emitted by host plants of the brown marmorated stink bug Halyomorpha halys. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2188219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Eleni I. Koutsogeorgiou
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization “DEMETER”, Thermi, Greece
| | - Nikos A. Kouloussis
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization “DEMETER”, Thermi, Greece
| | - Stefanos S. Andreadis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization “DEMETER”, Thermi, Greece
| |
Collapse
|
33
|
Ben Abdallah S, Riahi C, Vacas S, Navarro-Llopis V, Urbaneja A, Pérez-Hedo M. The Dual Benefit of Plant Essential Oils against Tuta absoluta. PLANTS (BASEL, SWITZERLAND) 2023; 12:985. [PMID: 36903846 PMCID: PMC10005231 DOI: 10.3390/plants12050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Plant essential oils (PEOs) are being studied as a potential alternative to synthetic pesticides in agriculture. PEOs have the potential to control pests both directly, by being toxic or repellent to pests, and indirectly, by activating plant's defense mechanisms. In this study, the effectiveness of five PEOs (Achillea millefolium, Allium sativum, Rosmarinus officinallis, Tagetes minuta, and Thymus zygis) on controlling Tuta absoluta and their impact on the predator Nesidiocoris tenuis was examined. The study revelead that PEOs from A. millefolium and A. sativum-sprayed plants significantly reduced the number of T. absoluta-infested leaflets and did not affect the establishment and reproduction of N. tenuis. Additionally, the spraying of A. millefolium and A. sativum increased the expression of defense genes in the plants, triggering the release of herbivory-induced plant volatiles (HIPVs), such as C6 green leaf volatiles, monoterpenes, and aldehydes, which can be messengers in tritrophic interactions. The results suggest that PEOs from A. millefolium and A. sativum can provide a dual benefit for controlling arthropod pests, as they can directly exhibit toxicity against these pests while also activating plant defense mechanisms. Overall, this study provides new insights into using PEOs as a sustainable solution for controlling pests and diseases in agriculture, by reducing synthetic pesticides and promoting the use of natural predators.
Collapse
Affiliation(s)
- Saoussen Ben Abdallah
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km 10.7, 46113 Moncada, Valencia, Spain
- Horticultural Science Department, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142, USA
| | - Chaymaa Riahi
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km 10.7, 46113 Moncada, Valencia, Spain
| | - Sandra Vacas
- Centro de Ecología Química Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Valencia, Spain
| | - Vicente Navarro-Llopis
- Centro de Ecología Química Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km 10.7, 46113 Moncada, Valencia, Spain
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km 10.7, 46113 Moncada, Valencia, Spain
| |
Collapse
|
34
|
de Sousa DB, da Silva GS, Serrano LAL, Martins MVV, Rodrigues THS, Lima MAS, Zocolo GJ. Metabolomic Profile of Volatile Organic Compounds from Leaves of Cashew Clones by HS-SPME/GC-MS for the Identification of Candidates for Anthracnose Resistance Markers. J Chem Ecol 2023; 49:87-102. [PMID: 36631524 DOI: 10.1007/s10886-022-01402-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Anthracnose caused by Colletotrichum gloeosporioides affects the leaves, inflorescences, nuts, and peduncles of cashew trees (Anacardium occidentale). The use of genetically improved plants and the insertion of dwarf cashew clones that are more resistant to phytopathogens are strategies to minimize the impact of anthracnose on cashew production. However, resistance mechanisms related to the biosynthesis of secondary metabolites remain unknown. Thus, this study promoted the investigation of the profile of volatile organic compounds of resistant cashew clone leaves ('CCP 76', 'BRS 226' and 'BRS 189') and susceptible ('BRS 265') to C. gloeosporioides, in the periods of non-infection and infection of the pathogen in the field (July-December 2019 - Brazil). Seventy-eight compounds were provisionally identified. Chemometric analyses, such as Principal Component Analysis (PCA), Discriminating Partial Least Squares Analysis (PLS-DA), Discriminating Analysis of Orthogonal Partial Least Squares (OPLS-DA), and Hierarchical Cluster Analysis (HCA), separated the samples into different groups, highlighting hexanal, (E)-hex-2-enal, (Z)-hex-2-en-1-ol, (E)-hex-3-en-1-ol, in addition to α-pinene, α-terpinene, γ-terpinene, β-pinene, and δ-3-carene, in the samples of the resistant clones in comparison to the susceptible clone. According to the literature, these metabolites have antimicrobial activity and are therefore chemical marker candidates for resistance to C. gloeosporioides in cashew trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary Anne Sousa Lima
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | |
Collapse
|
35
|
Rieksta J, Li T, Davie‐Martin CL, Aeppli LCB, Høye TT, Rinnan R. Volatile responses of dwarf birch to mimicked insect herbivory and experimental warming at two elevations in Greenlandic tundra. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:23-35. [PMID: 37284597 PMCID: PMC10168049 DOI: 10.1002/pei3.10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/08/2023]
Abstract
Plants release a complex blend of volatile organic compounds (VOCs) in response to stressors. VOC emissions vary between contrasting environments and increase with insect herbivory and rising temperatures. However, the joint effects of herbivory and warming on plant VOC emissions are understudied, particularly in high latitudes, which are warming fast and facing increasing herbivore pressure. We assessed the individual and combined effects of chemically mimicked insect herbivory, warming, and elevation on dwarf birch (Betula glandulosa) VOC emissions in high-latitude tundra ecosystems in Narsarsuaq, South Greenland. We hypothesized that VOC emissions and compositions would respond synergistically to warming and herbivory, with the magnitude differing between elevations. Warming increased emissions of green leaf volatiles (GLVs) and isoprene. Herbivory increased the homoterpene, (E)-4,8-dimethyl-1,3,7-nonatriene, emissions, and the response was stronger at high elevation. Warming and herbivory had synergistic effects on GLV emissions. Dwarf birch emitted VOCs at similar rates at both elevations, but the VOC blends differed between elevations. Several herbivory-associated VOC groups did not respond to herbivory. Harsher abiotic conditions at high elevations might not limit VOC emissions from dwarf birch, and high-elevation plants might be better at herbivory defense than assumed. The complexity of VOC responses to experimental warming, elevation, and herbivory are challenging our understanding and predictions of future VOC emissions from dwarf birch-dominated ecosystems.
Collapse
Affiliation(s)
- Jolanta Rieksta
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Tao Li
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research StationKey Laboratory for Bio‐resource and Eco‐environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Cleo L. Davie‐Martin
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Laurids Christian Brogaard Aeppli
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Toke Thomas Høye
- Department of Bioscience and Arctic Research CentreAarhus UniversityAarhus CDenmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| |
Collapse
|
36
|
Chen HH, Zhang R, Tan SQ, Wang Y, Liu XL, Shi WP. Components and composition of active volatiles attract on Diorhabda tarsalis (Coleoptera: Chrysomelidae) from Glycyrrhiza uralensis (Rosales: Leguminoseae). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1080208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
IntroductionPerennial Chinese licorice, Glycyrrhiza uralensis, is an important medicinal plant. Diorhabda tarsalis, a leaf beetle, is a serious insect pest on the plant and cause serious yield losses every year and is attracted to healthy and pest-damaged licorice by plant volatiles.AimThe biologically active components of the volatiles released from G. uralensis have not been reported; the components of the volatiles that attract D. tarsalis need to be identified. Such compounds could potentially be used for monitoring and mass-trapping pests.MethodsGC-EAD, GC-MS, EAG, Y-shaped olfactometer behavioral bioassays, and field trials were performed to identify the components and composition of active volatiles.ResultsMale and virgin female adults were generally attracted to volatiles from licorice, and volatiles from pest-infested plants were more attractive. Four compounds from licorice elicited a significant electrophysiological response (EAD) and were confirmed by EAG, including hexanal, (Z)-3-hexenal, (Z)-3-hexen-1-ol, and (E)-2-hexenal. With the exception of the (E)-2-hexenal, these molecules significantly attracted adults in individual behavioral bioassays, and a proportional mixture corresponding to beetle-damaged licorice of hexanal, (Z)-3-hexenal, (Z)-3-hexen-1-ol, and (E)-2-hexenal (8.78:15.26:57.24:18.72) was most effective for attracting D. tarsalis in the field, attracted a mean of 26 ± 7.19 beetles per trap.DiscussionD. tarsalis was attracted to volatiles from healthy and herbivore-induced G. uralensis under both laboratory and field conditions. The aforementioned compounds show considerable potential for commercial application to monitor and control D. tarsalis populations.
Collapse
|
37
|
Almeida OAC, de Araujo NO, Dias BHS, de Sant’Anna Freitas C, Coerini LF, Ryu CM, de Castro Oliveira JV. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Front Microbiol 2023; 13:951130. [PMID: 36687575 PMCID: PMC9845590 DOI: 10.3389/fmicb.2022.951130] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
Plant diseases caused by phytopathogens result in huge economic losses in agriculture. In addition, the use of chemical products to control such diseases causes many problems to the environment and to human health. However, some bacteria and fungi have a mutualistic relationship with plants in nature, mainly exchanging nutrients and protection. Thus, exploring those beneficial microorganisms has been an interesting and promising alternative for mitigating the use of agrochemicals and, consequently, achieving a more sustainable agriculture. Microorganisms are able to produce and excrete several metabolites, but volatile organic compounds (VOCs) have huge biotechnology potential. Microbial VOCs are small molecules from different chemical classes, such as alkenes, alcohols, ketones, organic acids, terpenes, benzenoids and pyrazines. Interestingly, volatilomes are species-specific and also change according to microbial growth conditions. The interaction of VOCs with other organisms, such as plants, insects, and other bacteria and fungi, can cause a wide range of effects. In this review, we show that a large variety of plant pathogens are inhibited by microbial VOCs with a focus on the in vitro and in vivo inhibition of phytopathogens of greater scientific and economic importance in agriculture, such as Ralstonia solanacearum, Botrytis cinerea, Xanthomonas and Fusarium species. In this scenario, some genera of VOC-producing microorganisms stand out as antagonists, including Bacillus, Pseudomonas, Serratia and Streptomyces. We also highlight the known molecular and physiological mechanisms by which VOCs inhibit the growth of phytopathogens. Microbial VOCs can provoke many changes in these microorganisms, such as vacuolization, fungal hyphal rupture, loss of intracellular components, regulation of metabolism and pathogenicity genes, plus the expression of proteins important in the host response. Furthermore, we demonstrate that there are aspects to investigate by discussing questions that are still not very clear in this research area, especially those that are essential for the future use of such beneficial microorganisms as biocontrol products in field crops. Therefore, we bring to light the great biotechnological potential of VOCs to help make agriculture more sustainable.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno Henrique Silva Dias
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla de Sant’Anna Freitas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,*Correspondence: Juliana Velasco de Castro Oliveira,
| |
Collapse
|
38
|
Ma D, Yu H, Cui G, Zhu J, Zhu B, Mu W, Liu F. Exposure of zebrafish (Danio rerio) to trans-2-hexenal induces oxidative stress and protein degeneration of the gill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158813. [PMID: 36113795 DOI: 10.1016/j.scitotenv.2022.158813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Trans-2-hexenal (T2H) has great commercial value for development as a biopesticide, but its toxicity risk to nontarget organisms is unknown. Here, the toxicity and underlying mechanism of T2H on zebrafish (Danio rerio) were investigated. The LC50 (48 h) of T2H on zebrafish is 4.316 μg/mL, and the aldehyde group is essential to its toxicity. In 14-day chronic toxicity tests, 0.432 μg/mL T2H resulted in a higher mortality of zebrafish than the control group. Furthermore, the sensitivity of zebrafish to different administration methods was gill administration>oral administration>transdermal administration>intravenous injection. T2H induced significant cell death and ROS generation in zebrafish gill cells in a concentration-dependent manner. After treatment with 4.316 μg/mL T2H, the expression of oxidative stress-related genes (nrf2, gstp1, keap1b, sod1 and sod2) and the content of malondialdehyde (MDA) were up-regulated. Incubation with T2H caused an immediate denaturation of gill protein, which was aggravated with increasing dose of T2H. We also found that T2H at 21.225 mg/mL significantly reduced the in vitro activity of succinate dehydrogenase (SDH). Among the three amino acids tested, T2H was only found to react with methionine and glycine to form adducts, which may be the basis of the protein denaturation. This study confirmed that T2H could induce oxidative stress and protein denaturation in zebrafish gills, providing important information for risk assessment of T2H exposure.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Haiyan Yu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangrui Cui
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiamei Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Bingyu Zhu
- Rongcheng Agricultural and Rural Affairs Service Center, Weihai 264300, China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
39
|
Yamamoto K, Endo S. Novel aldo-keto reductase AKR2E9 regulates aldehyde content in the midgut and antennae of the silkworm (Bombyx mori). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21979. [PMID: 36283966 DOI: 10.1002/arch.21979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
We studied the effects of green leaf volatiles (including reactive aldehydes) emitted by plants on insects that feed on these plants. The silkworm (Bombyx mori) is a model lepidopteran that eats mulberry leaves. Defense-related enzymes in silkworms can be targeted for developing new pest control methods. The aldo-keto reductase (AKR) superfamily catalyzes aldehyde reduction by converting a carbonyl group into an alcohol group. Here, we characterized a novel silkworm AKR, designated as AKR2E9. Recombinant AKR2E9 was overexpressed in Escherichia coli. The recombinant protein was used, along with nicotinamide adenine dinucleotide phosphate as a coenzyme, to reduce aldehydes present in mulberry (Morus alba) leaves. The catalytic efficiency of AKR2E9 toward various aldehyde substrates and its inhibitor sensitivity was lower than those of AKR2E8. High expression levels of akr2e9 messenger RNA (mRNA) were detected in the midgut and antennae of silkworms. In the antennae of adult silkworms, akr2e9 mRNA was more abundant than akr2e8 mRNA. The catalytic efficiency of AKR2E9 was low because of steric hindrance, due to which its active site is blocked. High expression levels of AKR2E9 in the midgut and antennae suggest that it may regulate the detoxification of toxic aldehydes in silkworms.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University Graduate School, Fukuoka, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
40
|
Laupheimer S, Kurzweil L, Proels R, Unsicker SB, Stark TD, Dawid C, Hückelhoven R. Volatile-mediated signalling in barley induces metabolic reprogramming and resistance against the biotrophic fungus Blumeria hordei. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:72-84. [PMID: 36377298 DOI: 10.1111/plb.13487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Plants have evolved diverse secondary metabolites to counteract biotic stress. Volatile organic compounds (VOCs) are released upon herbivore attack or pathogen infection. Recent studies suggest that VOCs can act as signalling molecules in plant defence and induce resistance in distant organs and neighbouring plants. However, knowledge is lacking on the function of VOCs in biotrophic fungal infection on cereal plants. We analysed VOCs emitted by 13 ± 1-day-old barley plants (Hordeum vulgare L.) after mechanical wounding using passive absorbers and TD-GC/MS. We investigated the effect of pure VOC and complex VOC mixtures released from wounded plants on the barley-powdery mildew interaction by pre-exposure in a dynamic headspace connected to a powdery mildew susceptibility assay. Untargeted metabolomics and lipidomics were applied to investigate metabolic changes in sender and receiver barley plants. Green leaf volatiles (GLVs) dominated the volatile profile of wounded barley plants, with (Z)-3-hexenyl acetate (Z3HAC) as the most abundant compound. Barley volatiles emitted after mechanical wounding enhanced resistance in receiver plants towards fungal infection. We found volatile-mediated modifications of the plant-pathogen interaction in a concentration-dependent manner. Pre-exposure with physiologically relevant concentrations of Z3HAC resulted in induced resistance, suggesting that this GLV is a key player in barley anti-pathogen defence. The complex VOC mixture released from wounded barley and Z3HAC induced e.g. accumulation of chlorophyll, linolenic acid and linolenate-conjugated lipids, as well as defence-related secondary metabolites, such as hordatines in receiving plants. Barley VOCs hence induce a complex physiological response and disease resistance in receiver plants.
Collapse
Affiliation(s)
- S Laupheimer
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - L Kurzweil
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - R Proels
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - S B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology (MPI-CE), Jena, Germany
| | - T D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - C Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - R Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
41
|
Rubiño S, Peteiro C, Aymerich T, Hortós M. Brown Macroalgae (Phaeophyceae): A Valuable Reservoir of Antimicrobial Compounds on Northern Coast of Spain. Mar Drugs 2022; 20:775. [PMID: 36547922 PMCID: PMC9787464 DOI: 10.3390/md20120775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The search for new sources of antimicrobial compounds has become an urgent need, due to the threat that the spread of bacterial resistance represents for global health and food safety. Brown macroalgae have been proposed as a great reservoir in the search for novel antimicrobial compounds. In this study, mid-polarity extracts were performed with a selection of 20 brown macroalgae species from northern Spain. The total polyphenol, carbohydrate and protein contents were quantified by spectrophotometry. The volatile organic compounds (VOCs) of whole macroalgae were also studied as a biomarker of their metabolic state in the representative species of the tested families by gas chromatography-mass spectrometry (GC-MS). The antimicrobial potential of the extracts was assessed by a disk diffusion assay against 20 target bacteria and further determinations of the minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) were performed by a microdilution assay for the active extracts. Ericaria selaginoides, Bifurcaria bifurcata and Dictyota dichotoma showed an antimicrobial effect against six Gram-positive strains: Bacillus cereus, Bacillus subtilis, Geobacillus stearothermophilus, Listeria monocytogenes, Staphylococcus aureus and Staphylococcus haemolyticus. The phenolic content was generally higher in the extracts that showed antimicrobial activity, followed by carbohydrates and low contents of proteins. The results obtained in this study reveal the potential of brown macroalgae as a promising alternative source of antimicrobial compounds as functional ingredients for the application in industrial fields.
Collapse
Affiliation(s)
- Susana Rubiño
- Institute of Agrifood Research and Technology (IRTA), Food Safety and Functionality Program, Finca Camps i Armet s/n, 17121 Girona, Spain
| | - César Peteiro
- Oceanographic Centre of Santander (COST-IEO), Spanish Institute of Oceanography of the Spanish, National Research Council (IEO, CSIC), Marine Culture Units “El Bocal”, Seaweeds Unit, Barrio Corbanera s/n., 39012 Santander, Spain
| | - Teresa Aymerich
- Institute of Agrifood Research and Technology (IRTA), Food Safety and Functionality Program, Finca Camps i Armet s/n, 17121 Girona, Spain
| | - Maria Hortós
- Institute of Agrifood Research and Technology (IRTA), Food Safety and Functionality Program, Finca Camps i Armet s/n, 17121 Girona, Spain
| |
Collapse
|
42
|
Ngumbi E, Dady E, Calla B. Flooding and herbivory: the effect of concurrent stress factors on plant volatile emissions and gene expression in two heirloom tomato varieties. BMC PLANT BIOLOGY 2022; 22:536. [PMID: 36396998 PMCID: PMC9670554 DOI: 10.1186/s12870-022-03911-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In nature and in cultivated fields, plants encounter multiple stress factors. Nonetheless, our understanding of how plants actively respond to combinatorial stress remains limited. Among the least studied stress combination is that of flooding and herbivory, despite the growing importance of these stressors in the context of climate change. We investigated plant chemistry and gene expression changes in two heirloom tomato varieties: Cherokee Purple (CP) and Striped German (SG) in response to flooding, herbivory by Spodoptera exigua, and their combination. RESULTS Volatile organic compounds (VOCs) identified in tomato plants subjected to flooding and/or herbivory included several mono- and sesquiterpenes. Flooding was the main factor altering VOCs emission rates, and impacting plant biomass accumulation, while different varieties had quantitative differences in their VOC emissions. At the gene expression levels, there were 335 differentially expressed genes between the two tomato plant varieties, these included genes encoding for phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA-reductase-like, and phytoene synthase (Psy1). Flooding and variety effects together influenced abscisic acid (ABA) signaling genes with the SG variety showing higher levels of ABA production and ABA-dependent signaling upon flooding. Flooding downregulated genes associated with cytokinin catabolism and general defense response and upregulated genes associated with ethylene biosynthesis, anthocyanin biosynthesis, and gibberellin biosynthesis. Combining flooding and herbivory induced the upregulation of genes including chalcone synthase (CHS), PAL, and genes encoding BAHD acyltransferase and UDP-glucose iridoid glucosyltransferase-like genes in one of the tomato varieties (CP) and a disproportionate number of heat-shock proteins in SG. Only the SG variety had measurable changes in gene expression due to herbivory alone, upregulating zeatin, and O-glucosyltransferase and thioredoxin among others. CONCLUSION Our results suggest that both heirloom tomato plant varieties differ in their production of secondary metabolites including phenylpropanoids and terpenoids and their regulation and activation of ABA signaling upon stress associated with flooding. Herbivory and flooding together had interacting effects that were evident at the level of plant chemistry (VOCs production), gene expression and biomass markers. Results from our study highlight the complex nature of plant responses to combinatorial stresses and point at specific genes and pathways that are affected by flooding and herbivory combined.
Collapse
Affiliation(s)
- Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Erinn Dady
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bernarda Calla
- USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR, 97331, USA
| |
Collapse
|
43
|
Gong X, Huang J, Xu Y, Li Z, Li L, Li D, Belwal T, Jeandet P, Luo Z, Xu Y. Deterioration of plant volatile organic compounds in food: Consequence, mechanism, detection, and control. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Yang F, Zhang X, Xue H, Tian T, Tong H, Hu J, Zhang R, Tang J, Su Q. (Z)-3-hexenol primes callose deposition against whitefly-mediated begomovirus infection in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:694-708. [PMID: 36086899 DOI: 10.1111/tpj.15973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Rapid callose accumulation has been shown to mediate defense in certain plant-virus interactions. Exposure to the green leaf volatile (Z)-3-hexenol (Z-3-HOL) can prime tomato (Solanum lycopersicum) for an enhanced defense against subsequent infection by whitefly-transmitted Tomato yellow leaf curl virus (TYLCV). However, the molecular mechanisms affecting Z-3-HOL-induced resistance are poorly understood. Here, we explored the mechanisms underlying Z-3-HOL-induced resistance against whitefly-transmitted TYLCV infection and the role of callose accumulation during this process. Tomato plants pre-treated with Z-3-HOL displayed callose priming upon whitefly infestation. The callose inhibitor 2-deoxy-d-glucose abolished Z-3-HOL-induced resistance, confirming the importance of callose in this induced resistance. We also found that Z-3-HOL pre-treatment enhanced salicylic acid levels and activated sugar signaling in tomato upon whitefly infestation, which increased the expression of the cell wall invertase gene Lin6 to trigger augmented callose deposition against TYLCV infection resulting from whitefly transmission. Using virus-induced gene silencing, we demonstrated the Lin6 expression is relevant for sugar accumulation mediated callose priming in restricting whitefly-transmitted TYLCV infection in plants that have been pre-treated with Z-3-HOL. Moreover, Lin6 induced the expression of the callose synthase gene Cals12, which is also required for Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. These findings highlight the importance of sugar signaling in the priming of callose as a defense mechanism in Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. The results will also increase our understanding of defense priming can be useful for the biological control of viral diseases.
Collapse
Affiliation(s)
- Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Xinyi Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hu Xue
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Tian Tian
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hong Tong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Juan Tang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| |
Collapse
|
45
|
Matsui K, Engelberth J. Green Leaf Volatiles-The Forefront of Plant Responses Against Biotic Attack. PLANT & CELL PHYSIOLOGY 2022; 63:1378-1390. [PMID: 35934892 DOI: 10.1093/pcp/pcac117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 05/23/2023]
Abstract
Green leaf volatiles (GLVs) are six-carbon volatile oxylipins ubiquitous in vascular plants. GLVs are produced from acyl groups in the biological membranes via oxygenation by a pathway-specific lipoxygenase (LOX) and a subsequent cleavage reaction by hydroperoxide lyase. Because of the universal distribution and ability to form GLVs, they have been anticipated to play a common role in vascular plants. While resting levels in intact plant tissues are low, GLVs are immediately synthesized de novo in response to stresses, such as insect herbivory, that disrupt the cell structure. This rapid GLV burst is one of the fastest responses of plants to cell-damaging stresses; therefore, GLVs are the first plant-derived compounds encountered by organisms that interact with plants irrespective of whether the interaction is competitive or friendly. GLVs should therefore be considered important mediators between plants and organisms that interact with them. GLVs can have direct effects by deterring herbivores and pathogens as well as indirect effects by attracting predators of herbivores, while other plants can recruit them to prepare their defenses in a process called priming. While the beneficial effects provided to plants by GLVs are often less dramatic and even complementary, the buildup of these tiny effects due to the multiple functions of GLVs can amass to levels that become substantially beneficial to plants. This review summarizes the current understanding of the spatiotemporal resolution of GLV biosynthesis and GLV functions and outlines how GLVs support the basic health of plants.
Collapse
Affiliation(s)
- Kenji Matsui
- Graduate School of Sciences and Technology for Innovation (Agriculture), Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Jurgen Engelberth
- Department of Integrative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
46
|
How different amounts of leaves added during the extraction process affect the biochemical composition of Chemlali olive oil cultivar? JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
De Palma M, Scotti R, D’Agostino N, Zaccardelli M, Tucci M. Phyto-Friendly Soil Bacteria and Fungi Provide Beneficial Outcomes in the Host Plant by Differently Modulating Its Responses through (In)Direct Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:2672. [PMID: 36297696 PMCID: PMC9612229 DOI: 10.3390/plants11202672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Sustainable agricultural systems based on the application of phyto-friendly bacteria and fungi are increasingly needed to preserve soil fertility and microbial biodiversity, as well as to reduce the use of chemical fertilizers and pesticides. Although there is considerable attention on the potential applications of microbial consortia as biofertilizers and biocontrol agents for crop management, knowledge on the molecular responses modulated in host plants because of these beneficial associations is still incomplete. This review provides an up-to-date overview of the different mechanisms of action triggered by plant-growth-promoting microorganisms (PGPMs) to promote host-plant growth and improve its defense system. In addition, we combined available gene-expression profiling data from tomato roots sampled in the early stages of interaction with Pseudomonas or Trichoderma strains to develop an integrated model that describes the common processes activated by both PGPMs and highlights the host's different responses to the two microorganisms. All the information gathered will help define new strategies for the selection of crop varieties with a better ability to benefit from the elicitation of microbial inoculants.
Collapse
Affiliation(s)
- Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Riccardo Scotti
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Massimo Zaccardelli
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| |
Collapse
|
48
|
Twidle AM, Barker D, Pilkington LI, Fedrizzi B, Suckling DM. Identification of herbivore-induced plant volatiles from selected Rubus species fed upon by raspberry bud moth (Heterocrossa rubophaga) larvae. PHYTOCHEMISTRY 2022; 202:113325. [PMID: 35843359 DOI: 10.1016/j.phytochem.2022.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Heterocrossa rubophaga (raspberry bud moth) feed on a range of Rubus species, including commercial berryfruit crops where they are a pest. This study aimed to characterize the responses of native and non-native Rubus species to feeding by raspberry bud moth larvae. In a laboratory environment, in situ headspace volatiles of three Rubus species were collected from healthy plants and those fed upon by raspberry bud moth. Rubus cissoides (bush lawyer), the native host of raspberry bud moth, gave a limited response to larval feeding with green leaf volatiles (GLVs) representing the only new headspace constituents of the infested plants. The non-native hosts, Rubus ursinus var. loganobaccus cv Boysenberry (Boysenberry), and Rubus fruticosus (blackberry), gave strong responses to raspberry bud moth herbivory, releasing a number of unique nitrogenous compounds in conjunction with the GLVs. The nitrogenous compounds were identified as 2-methylbutanenitrile, (Z)- and (E)- 2-methylbutanal O-methyloxime, benzyl nitrile, (Z)- and (E)- phenylacetaldehyde O-methyloxime and indole. The four methyloximes and 2-methylbutanenitrile were confirmed by synthesis. Field collected phenology data showed that raspberry bud moth were active year round on both bush lawyer and blackberry.
Collapse
Affiliation(s)
- Andrew M Twidle
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand; School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - David Barker
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David M Suckling
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
49
|
Determination of Reactive Oxygen or Nitrogen Species and Novel Volatile Organic Compounds in the Defense Responses of Tomato Plants against Botrytis cinerea Induced by Trichoderma virens TRS 106. Cells 2022; 11:cells11193051. [PMID: 36231012 PMCID: PMC9563596 DOI: 10.3390/cells11193051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
In the present study, Trichoderma virens TRS 106 decreased grey mould disease caused by Botrytis cinerea in tomato plants (S. lycopersicum L.) by enhancing their defense responses. Generally, plants belonging to the ‘Remiz’ variety, which were infected more effectively by B. cinerea than ‘Perkoz’ plants, generated more reactive molecules such as superoxide (O2−) and peroxynitrite (ONOO−), and less hydrogen peroxide (H2O2), S-nitrosothiols (SNO), and green leaf volatiles (GLV). Among the new findings, histochemical analyses revealed that B. cinerea infection caused nitric oxide (NO) accumulation in chloroplasts, which was not detected in plants treated with TRS 106, while treatment of plants with TRS 106 caused systemic spreading of H2O2 and NO accumulation in apoplast and nuclei. SPME-GCxGC TOF-MS analysis revealed 24 volatile organic compounds (VOC) released by tomato plants treated with TRS 106. Some of the hexanol derivatives, e.g., 4-ethyl-2-hexynal and 1,5-hexadien-3-ol, and salicylic acid derivatives, e.g., 4-hepten-2-yl and isoamyl salicylates, are considered in the protection of tomato plants against B. cinerea for the first time. The results are valuable for further studies aiming to further determine the location and function of NO in plants treated with Trichoderma and check the contribution of detected VOC in plant protection against B. cinerea.
Collapse
|
50
|
Lim AH, Low ZJ, Shingate PN, Hong JH, Chong SC, Ng CCY, Liu W, Vaser R, Šikić M, Sung WKK, Nagarajan N, Tan P, Teh BT. Genome assembly and chemogenomic profiling of National Flower of Singapore Papilionanthe Miss Joaquim 'Agnes' reveals metabolic pathways regulating floral traits. Commun Biol 2022; 5:967. [PMID: 36109650 PMCID: PMC9477820 DOI: 10.1038/s42003-022-03940-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Singapore's National Flower, Papilionanthe (Ple.) Miss Joaquim 'Agnes' (PMJ) is highly prized as a horticultural flower from the Orchidaceae family. A combination of short-read sequencing, single-molecule long-read sequencing and chromatin contact mapping was used to assemble the PMJ genome, spanning 2.5 Gb and 19 pseudo-chromosomal scaffolds. Genomic resources and chemical profiling provided insights towards identifying, understanding and elucidating various classes of secondary metabolite compounds synthesized by the flower. For example, presence of the anthocyanin pigments detected by chemical profiling coincides with the expression of ANTHOCYANIN SYNTHASE (ANS), an enzyme responsible for the synthesis of the former. Similarly, the presence of vandaterosides (a unique class of glycosylated organic acids with the potential to slow skin aging) discovered using chemical profiling revealed the involvement of glycosyltransferase family enzymes candidates in vandateroside biosynthesis. Interestingly, despite the unnoticeable scent of the flower, genes involved in the biosynthesis of volatile compounds and chemical profiling revealed the combination of oxygenated hydrocarbons, including traces of linalool, beta-ionone and vanillin, forming the scent profile of PMJ. In summary, by combining genomics and biochemistry, the findings expands the known biodiversity repertoire of the Orchidaceae family and insights into the genome and secondary metabolite processes of PMJ.
Collapse
Affiliation(s)
- Abner Herbert Lim
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore, Singapore
| | - Zhen Jie Low
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore, Singapore
| | | | - Jing Han Hong
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Shu Chen Chong
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore, Singapore
| | | | - Wei Liu
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore, Singapore
| | - Robert Vaser
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Mile Šikić
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Wing-Kin Ken Sung
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- SingHealth/Duke-NUS Institute of Precision Medicine, Singapore, Singapore.
| | - Bin Tean Teh
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore, Singapore.
- Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
- SingHealth/Duke-NUS Institute of Precision Medicine, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Singapore, Singapore.
- National Cancer Center Singapore, Singapore, Singapore.
| |
Collapse
|