1
|
Zhao Y, Song JY, Feng R, Hu JC, Xu H, Ye ML, Jiang JD, Chen LM, Wang Y. Renal Health Through Medicine-Food Homology: A Comprehensive Review of Botanical Micronutrients and Their Mechanisms. Nutrients 2024; 16:3530. [PMID: 39458524 PMCID: PMC11510533 DOI: 10.3390/nu16203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As an ancient concept and practice, "food as medicine" or "medicine-food homology" is receiving more and more attention these days. It is a tradition in many regions to intake medicinal herbal food for potential health benefits to various organs and systems including the kidney. Kidney diseases usually lack targeted therapy and face irreversible loss of function, leading to dialysis dependence. As the most important organ for endogenous metabolite and exogenous nutrient excretion, the status of the kidney could be closely related to daily diet. Therefore, medicinal herbal food rich in antioxidative, anti-inflammation micronutrients are ideal supplements for kidney protection. Recent studies have also discovered its impact on the "gut-kidney" axis. METHODS Here, we review and highlight the kidney-protective effects of botanicals with medicine-food homology including the most frequently used Astragalus membranaceus and Angelica sinensis (Oliv.) Diels, concerning their micronutrients and mechanism, offering a basis and perspective for utilizing and exploring the key substances in medicinal herbal food to protect the kidney. RESULTS The index for medicine-food homology in China contains mostly botanicals while many of them are also consumed by people in other regions. Micronutrients including flavonoids, polysaccharides and others present powerful activities towards renal diseases. CONCLUSIONS Botanicals with medicine-food homology are widely speeded over multiple regions and incorporating these natural compounds into dietary habits or as supplements shows promising future for renal health.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Meng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Ontawong A, Aida CJ, Vivithanaporn P, Amornlerdpison D, Vaddhanaphuti CS. Cladophora glomerata Kützing extract exhibits antioxidant, anti-inflammation, and anti-nitrosative stress against impairment of renal organic anion transport in an in vivo study. Nutr Res Pract 2024; 18:633-646. [PMID: 39398884 PMCID: PMC11464274 DOI: 10.4162/nrp.2024.18.5.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cladophora glomerata extract (CGE), rich in polyphenols, was reported to exhibit antidiabetic and renoprotective effects by modulating the functions of protein kinases-mediated organic anion transporter 1 (Oat1) and 3 (Oat3) in rats with type 2 diabetes mellitus (T2DM). Nevertheless, the antioxidant effects of CGE on such renoprotection have not been investigated. This study examined the mechanisms involved in the antioxidant effects of CGE on renal organic anion transport function in an in vivo study. MATERIALS/METHODS Diabetes was induced in the rats through a high-fat diet combined with a single dose of 40 mg/kg body weight (BW) streptozotocin. Subsequently, normal-diet rats were supplemented with a vehicle or 1,000 mg/kg BW of CGE, while T2DM rats were supplemented with a vehicle, CGE, or 200 mg/kg BW of vitamin C for 12 weeks. The study evaluated the general characteristics of T2DM and renal oxidative stress markers. The renal organic transport function was assessed by measuring the para-aminohippurate (PAH) uptake using renal cortical slices and renal inflammatory cytokine expression in the normal diet (ND) and ND + CGE treated groups. RESULTS CGE supplementation significantly reduced hyperglycemia, hypertriglyceridemia, insulin resistance, and renal lipid peroxidation in T2DM rats. This was accompanied by the normalization of high expressions of renal glutathione peroxidase and nuclear factor kappa B by CGE and vitamin C. The renal anti-inflammation of CGE was evidenced by the reduction of tumor necrosis factor-1α and interleukin-1β. CGE directly blunted sodium nitroprusside-induced renal oxidative/nitrosative stresses and mediated the PAH uptake in the normally treated CGE in rats was particularly noteworthy. These data also correlated with reduced nitric oxide production, highlighting the potential of CGE as a therapeutic agent for managing T2DM-related renal complications. CONCLUSION These findings suggest that CGE has antidiabetic effects and directly prevents diabetic nephropathy through oxidative/nitrosative stress pathways.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chaliya J. Aida
- Office of Educational Affairs, Faculty of Abhaibhubejhr Thai Traditional Medicine, Burapha University, Chon Buri 20131, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Doungporn Amornlerdpison
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneurs and Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| | - Chutima S. Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Liu X, Liang Q, Wang Y, Xiong S, Yue R. Advances in the pharmacological mechanisms of berberine in the treatment of fibrosis. Front Pharmacol 2024; 15:1455058. [PMID: 39372209 PMCID: PMC11450235 DOI: 10.3389/fphar.2024.1455058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The rising incidence of fibrosis poses a major threat to global public health, and the continuous exploration of natural products for the effective treatment of fibrotic diseases is crucial. Berberine (BBR), an isoquinoline alkaloid, is widely used clinically for its anti-inflammatory, anti-tumor and anti-fibrotic pharmacological effects. Until now, researchers have worked to explore the mechanisms of BBR for the treatment of fibrosis, and multiple studies have found that BBR attenuates fibrosis through different pathways such as TGF-β/Smad, AMPK, Nrf2, PPAR-γ, NF-κB, and Notch/snail axis. This review describes the anti-fibrotic mechanism of BBR and its derivatives, and the safety evaluation and toxicity studies of BBR. This provides important therapeutic clues and strategies for exploring new drugs for the treatment of fibrosis. Nevertheless, more studies, especially clinical studies, are still needed. We believe that with the continuous implementation of high-quality studies, significant progress will be made in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | - Shuai Xiong
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
5
|
Huang S, Lu H, Chen J, Jiang C, Jiang G, Maduraiveeran G, Pan Y, Liu J, Deng LE. Advances in drug delivery-based therapeutic strategies for renal fibrosis treatment. J Mater Chem B 2024; 12:6532-6549. [PMID: 38913013 DOI: 10.1039/d4tb00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Renal fibrosis is the result of all chronic kidney diseases and is becoming a major global health hazard. Currently, traditional treatments for renal fibrosis are difficult to meet clinical needs due to shortcomings such as poor efficacy or highly toxic side effects. Therefore, therapeutic strategies that target the kidneys are needed to overcome these shortcomings. Drug delivery can be attained by improving drug stability and addressing controlled release and targeted delivery of drugs in the delivery category. By combining drug delivery technology with nanosystems, controlled drug release and biodistribution can be achieved, enhancing therapeutic efficacy and reducing toxic cross-wise effects. This review discusses nanomaterial drug delivery strategies reported in recent years. Firstly, the present review describes the mechanisms of renal fibrosis and anti-renal fibrosis drug delivery. Secondly, different nanomaterial drug delivery strategies for the treatment of renal injury and fibrosis are highlighted. Finally, the limitations of these strategies are also discussed. Investigating various anti-renal fibrosis drug delivery strategies reveals the characteristics and therapeutic effects of various novel nanosystem-derived drug delivery approaches. This will serve as a reference for future research on drug delivery strategies for renal fibrosis treatment.
Collapse
Affiliation(s)
- Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Hanqi Lu
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Jin Chen
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Chengyi Jiang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Guanmin Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan people's hospital), 78 Wandao Road South, Dongguan, 523059 Guangdong, China.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu, Tamil Nadu, India.
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Li-Er Deng
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| |
Collapse
|
6
|
Rao J, Gao Q, Li N, Wang Y, Wang T, Wang K, Qiu F. Unraveling the enigma: Molecular mechanisms of berberrubine-induced nephrotoxicity reversed by its parent form berberine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155648. [PMID: 38669970 DOI: 10.1016/j.phymed.2024.155648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Berberine is an isoquinoline alkaloid that is extensively applied in the clinic due to its potential therapeutic effects on dysentery and infectious diarrhoea. Its main metabolite, berberrubine, a promising candidate for ameliorating hyperlipidaemia, has garnered more attention than berberine. However, our study revealed that berberrubine induces severe kidney damage, while berberine was proven to be safe. PURPOSE Herein, we explored the opposite biological effects of these two compounds on the kidney and elucidated their underlying mechanisms. METHODS First, integrated metabolomic and proteomic analyses were conducted to identify relevant signalling pathways. Second, a click chemistry method combined with a cellular thermal shiftassay, a drug affinity responsive target stability assay, and microscale thermophoresis were used to identify the direct target proteins. Moreover, a mutation experiment was performed to study the specific binding sites. RESULTS Animal studies showed that berberrubine, but not berberine, induced severe chronic, subchronic, and acute nephrotoxicity. More importantly, berberine reversed the berberrubine-reduced nephrotoxicity. The results indicated that the cPLA2 signalling pathway was highly involved in the nephrotoxicity induced by berberrubine. We further confirmed that the direct target of berberrubine is the BASP1 protein (an upstream factor of cPLA2 signalling). Moreover, berberine alleviated nephrotoxicity by binding cPLA2 and inhibiting cPLA2 activation. CONCLUSION This study is the first to revel the opposite biological effects of berberine and its metabolite berberrubine in inducing kidney injury. Berberrubine, but not berberine, shows strong nephrotoxicity. The cPLA2 signalling pathway can be activated by berberrubine through targeting of BASP1, while berberine inhibits this pathway by directly binding with cPLA2. Our study paves the way for studies on the exact molecular targets of herbal ingredients. We also demonstrated that natural small molecules and their active metabolites can have opposite regulatory roles in vivo through the same signalling pathway.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
7
|
Gao R, Lu Y, Zhang W, Zhang Z. The Application of Berberine in Fibrosis and the Related Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:753-773. [PMID: 38716621 DOI: 10.1142/s0192415x24500307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Rongmao Gao
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Yuanyu Lu
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Wei Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610057, P. R. China
| | - Zhao Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
8
|
Akash MSH, Yaqoob S, Rehman K, Hussain A, Chauhdary Z, Nadeem A, Shahzad A, Shah MA, Panichayupakaranant P. Biochemical Investigation of Therapeutic Efficacy of Berberine-Enriched Extract in Streptozotocin-Induced Metabolic Impairment. ACS OMEGA 2024; 9:15677-15688. [PMID: 38585081 PMCID: PMC10993375 DOI: 10.1021/acsomega.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Metabolic disorders pose significant global health challenges, necessitating innovative therapeutic approaches. This study focused on the multifaceted therapeutic potential of berberine-enriched extract (BEE) in mitigating metabolic impairment induced by streptozotocin (STZ) in a rat model and compared the effects of BEE with berberine (BBR) and metformin (MET) to comprehensively evaluate their impact on various biochemical parameters. Our investigation reveals that BEE surpasses the effects of BBR and MET in ameliorating metabolic impairment, making it a promising candidate for managing metabolic disorders. For this, 30 male Wistar rats were divided into five groups (n = 6): control (CN), STZ, STZ + MET, STZ + BBR, and STZ + BEE. The treatment duration was extended over 4 weeks, during which various biochemical parameters were monitored, including fasting blood glucose (FBG), lipid profiles, inflammation, liver and kidney function biomarkers, and gene expressions of various metabolizing enzymes. The induction of metabolic impairment by STZ was evident through an elevated FBG level and disrupted lipid profiles. The enriched extract effectively regulated glucose homeostasis, as evidenced by the restoration of FBG levels, superior to both BBR and MET. Furthermore, BEE demonstrated potent effects on insulin sensitivity, upregulating the key genes involved in carbohydrate metabolism: GCK, IGF-1, and GLUT2. This highlights its potential in enhancing glucose utilization and insulin responsiveness. Dyslipidemia, a common occurrence in metabolic disorders, was effectively managed by BEE. The extract exhibited superior efficacy in regulating lipid profiles. Additionally, BEE exhibited significant anti-inflammatory properties, surpassing the effects of BBR and MET in lowering the levels of inflammatory biomarkers (IL-6 and TNF-α), thereby ameliorating insulin resistance and systemic inflammation. The extract's superior hepatoprotective and nephroprotective effects, indicated by the restoration of liver and kidney function biomarkers, further highlight its potential in maintaining organ health. Moreover, BEE demonstrated potent antioxidant properties, reducing oxidative stress and lipid peroxidation in liver tissue homogenates. Histopathological examination of the pancreas underscored the protective effects of BEE, preserving and recovering pancreatic β-cells damaged by STZ. This collective evidence positions BEE as a promising therapeutic candidate for managing metabolic disorders and offers potential benefits beyond current treatments. In conclusion, our findings emphasize the remarkable therapeutic efficacy of BEE and provide a foundation for further research into its mechanisms, long-term safety, and clinical translation.
Collapse
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Punjab, Pakistan
| | - Sahrish Yaqoob
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Punjab, Pakistan
| | - Kanwal Rehman
- Department
of Pharmacy, The Women University, Multan 6000, Pakistan
| | - Amjad Hussain
- Institute
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Punjab, Pakistan
| | - Ahmed Nadeem
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asif Shahzad
- Department
of Biochemistry and Molecular Biology, Kunming
Medical University, Yunnan 650031, China
| | | | - Pharkphoom Panichayupakaranant
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| |
Collapse
|
9
|
Chen X, Li X, Cao B, Chen X, Zhang K, Han F, Kan C, Zhang J, Sun X, Guo Z. Mechanisms and efficacy of traditional Chinese herb monomers in diabetic kidney disease. Int Urol Nephrol 2024; 56:571-582. [PMID: 37552392 DOI: 10.1007/s11255-023-03703-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes and is the primary cause of end-stage renal disease. Current treatment strategies primarily focus on the inhibition of the renin-angiotensin-aldosterone system and the attainment of blood glucose control. Although current medical therapies for DKD have been shown to delay disease progression and improve long-term outcomes, their efficacy is limited and they may be restricted in certain cases, particularly when hyperkalemia is present. Traditional Chinese medicine (TCM) treatment has emerged as a significant complementary approach for DKD. TCM monomers, derived from various Chinese herbs, have been found to modulate multiple therapeutic targets and exhibit a broad range of therapeutic effects in patients with DKD. This review aims to summarize the mechanisms of action of TCM monomers in the treatment of DKD, based on findings from clinical trials, as well as cell and animal studies. The results of these investigations demonstrate the potential effective use of TCM monomers in treating or preventing DKD, offering a promising new direction for future research in the field. By providing a comprehensive overview of the mechanisms and efficacy of TCM monomers in DKD, this review highlights the potential of these natural compounds as alternative therapeutic options for improving outcomes in patients with DKD.
Collapse
Affiliation(s)
- Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Bo Cao
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xinping Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
10
|
Wang W, Yu R, Wu C, Li Q, Chen J, Xiao Y, Chen H, Song J, Ji M, Zuo Z. Berberine alleviates contrast-induced nephropathy by activating Akt/Foxo3a/Nrf2 signalling pathway. J Cell Mol Med 2024; 28:e18016. [PMID: 37909687 PMCID: PMC10805492 DOI: 10.1111/jcmm.18016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Contrast-induced nephropathy (CIN) is a condition that causes kidney damage in patients receiving angiography with iodine-based contrast agents. This study investigated the potential protective effects of berberine (BBR) against CIN and its underlying mechanisms. The researchers conducted both in vivo and in vitro experiments to explore BBR's renal protective effects. In the in vivo experiments, SD rats were used to create a CIN model, and different groups were established. The results showed that CIN model group exhibited impaired renal function, severe damage to renal tubular cells and increased apoptosis and ferroptosis. However, BBR treatment group demonstrated improved renal function, decreased apoptosis and ferroptosis. Similar results were observed in the in vitro experiments using HK-2 cells. BBR reduced ioversol-induced apoptosis and ferroptosis, and exerted its protective effects through Akt/Foxo3a/Nrf2 signalling pathway. BBR administration increased the expression of Foxo3a and Nrf2 while decreasing the levels of p-Akt and p-Foxo3a. In conclusion, this study revealed that BBR effectively inhibited ioversol-induced apoptosis and ferroptosis in vivo and in vitro. The protective effects of BBR were mediated through the modulation of Akt/Foxo3a/Nrf2 signalling pathway, leading to the alleviation of CIN. These findings suggest that BBR may have therapeutic potential for protecting against CIN in patients undergoing angiography with iodine-based contrast agents.
Collapse
Affiliation(s)
- Wanpeng Wang
- Department of NephrologyLianshui People's Hospital, Affiliated Kangda College of Nanjing Medical UniversityHuai'anJiangsuChina
- School of Clinical MedicineMedical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhouJiangsuChina
- Jiangsu College of NursingHuai'anJiangsuChina
| | - Ran Yu
- School of Clinical MedicineMedical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhouJiangsuChina
- Jiangsu College of NursingHuai'anJiangsuChina
- Department of CardiologyLianshui People's Hospital, Affiliated Kangda college of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Caixia Wu
- Department of NephrologyLianshui People's Hospital, Affiliated Kangda College of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Qingju Li
- Department of NephrologyLianshui People's Hospital, Affiliated Kangda College of Nanjing Medical UniversityHuai'anJiangsuChina
- School of Clinical MedicineMedical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhouJiangsuChina
- Jiangsu College of NursingHuai'anJiangsuChina
| | - Jiajia Chen
- Department of NephrologyLianshui People's Hospital, Affiliated Kangda College of Nanjing Medical UniversityHuai'anJiangsuChina
- Jiangsu College of NursingHuai'anJiangsuChina
| | - Yao Xiao
- Department of NephrologyLianshui People's Hospital, Affiliated Kangda College of Nanjing Medical UniversityHuai'anJiangsuChina
- Jiangsu College of NursingHuai'anJiangsuChina
| | - Haoyu Chen
- Department of NephrologyLianshui People's Hospital, Affiliated Kangda College of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Jian Song
- Department of NephrologyLianshui People's Hospital, Affiliated Kangda College of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Mingyue Ji
- Department of CardiologyLianshui People's Hospital, Affiliated Kangda college of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Zhi Zuo
- Department of CardiologyThe First Affiliated Hospital with Nanjing Medical University/Jiangsu Province HospitalNanjingJiangsuChina
| |
Collapse
|
11
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
12
|
Tan E, Gao Z, Wang Q, Han B, Shi H, Wang L, Zhu G, Hou Y. Berberine ameliorates renal interstitial inflammation and fibrosis in mice with unilateral ureteral obstruction. Basic Clin Pharmacol Toxicol 2023; 133:757-769. [PMID: 37811696 DOI: 10.1111/bcpt.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 10/10/2023]
Abstract
Berberine acts via multiple pathways to alleviate fibrosis in various tissues and shows renoprotective effects. However, its role and underlying mechanisms in renal fibrosis remain unclear. Herein, we aimed to investigate the protective effects and molecular mechanisms of berberine against unilateral ureteric obstruction-induced renal fibrosis. The results indicated that berberine treatment (50 mg/kg/day) markedly alleviated histopathological alterations, collagen deposition and inflammatory cell infiltration in kidney tissue and restored mouse renal function. Mechanistically, berberine intervention inhibited NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation and the levels of the inflammatory cytokine IL-1β in the kidneys of unilateral ureteric obstruction mice. In addition, berberine relieved unilateral ureteric obstruction-induced renal injury by activating adenosine monophosphate-activated protein kinase (AMPK) signalling and promoting fatty acid β-oxidation. In vitro models showed that berberine treatment prevented the TGF-β1-induced profibrotic phenotype of hexokinase 2 (HK-2) cells, characterized by loss of an epithelial phenotype (alpha smooth muscle actin [α-SMA]) and acquisition of mesenchymal marker expression (E-cadherin), by restoring abnormal fatty acid β-oxidation and upregulating the expression of the fatty acid β-oxidation related-key enzymes or regulators (phosphorylated-AMPK, peroxisome proliferator activated receptor alpha [PPARα] and carnitine palmitoyltransferase 1A [CPT1A]). Collectively, berberine alleviated renal fibrosis by inhibiting NLRP3 inflammasome activation and protected tubular epithelial cells by reversing defective fatty acid β-oxidation. Our findings might be exploited clinically to provide a potential novel therapeutic strategy for renal fibrosis.
Collapse
Affiliation(s)
- Enxue Tan
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhihong Gao
- Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, China
| | - Qian Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Honghong Shi
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Guozhen Zhu
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
14
|
Wang Y, Yue S, Cai F, Zhu W, Zhong Y, Chen J, Li C. Treatment of berberine alleviates diabetic nephropathy by reducing iron overload and inhibiting oxidative stress. Histol Histopathol 2023; 38:1009-1016. [PMID: 36861878 DOI: 10.14670/hh-18-599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Diabetic nephropathy (DN) has become one of the major fatal factors in diabetic patients. The aim of this study was to elucidate the function and mechanism by which berberine exerts renoprotective effects in DN. In this work, we first demonstrated that urinary iron concentration, serum ferritin and hepcidin levels were increased and total antioxidant capacity was significantly decreased in DN rats, while these changes could be partially reversed by berberine treatment. Berberine treatment also alleviated DN-induced changes in the expression of proteins involved in iron transport or iron uptake. In addition, berberine treatment also partially blocked the expression of renal fibrosis markers induced by DN, including MMP2, MMP9, TIMP3, β-arrestin-1, and TGF-β1. In conclusion, the results of this study suggest that berberine may exert renoprotective effects by ameliorating iron overload and oxidative stress and reducing DN.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Hemodialysis, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China
| | - Shuling Yue
- Department Renal Pathology, King Medical Diagnostics Center, Guangzhou, China
| | - Feng Cai
- Department Ophthalmology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China
| | - Wen Zhu
- College of Tropical Crops, Hainan University, Hainan, China
| | - Yuxiang Zhong
- Deparment of Hemodialysis, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China
| | - Juanjuan Chen
- Deparment of Hemodialysis, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China
| | - Chunyun Li
- Clinical Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China.
| |
Collapse
|
15
|
Liu Z, Nan P, Gong Y, Tian L, Zheng Y, Wu Z. Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy. Biomed Pharmacother 2023; 164:114897. [PMID: 37224754 DOI: 10.1016/j.biopha.2023.114897] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetic nephropathy (DN) is characterized by tubulointerstitial fibrosis caused by epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. Although ferroptosis promotes DN development, the specific pathological process that is affected by ferroptosis in DN remains unclear. Herein, EMT-related changes, including increased α-smooth muscle actin (α-SMA) and Vimentin expression and decreased E-cadherin expression, were observed in the renal tissues of streptozotocin-induced DN mice and high glucose-cultured human renal proximal tubular (HK-2) cells. Treatment with ferrostatin-1 (Fer-1) ameliorated these changes and rescued renal pathological injury in diabetic mice. Interestingly, endoplasmic reticulum stress (ERS) was activated during EMT progression in DN. Inhibiting ERS improved the expression of EMT-associated indicators and further rescued the characteristic changes in ferroptosis caused by high glucose, including reactive oxygen species (ROS) accumulation, iron overload, increased lipid peroxidation product generation, and reduced mitochondrial cristae. Moreover, overexpression of XBP1 increased Hrd1 expression and inhibited NFE2-related factor 2 (Nrf2) expression, which could enhance cell susceptibility to ferroptosis. Co-immunoprecipitation (Co-IP) and ubiquitylation assays indicated that Hrd1 interacted with and ubiquitinated Nrf2 under high-glucose conditions. Collectively, our results demonstrated that ERS triggers ferroptosis-related EMT progression through the XBP1-Hrd1-Nrf2 pathway, which provides new insights into potential mechanisms for delaying EMT progression in DN.
Collapse
Affiliation(s)
- Zijun Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| | - Ping Nan
- Department of Obster & Gynecol, Shengli Oilfield Center Hospital, Dongying, Shandong 257000, China.
| | - Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| | - Ling Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| | - Yin Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
16
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
17
|
Alagal RI, AlFaris NA, Alshammari GM, ALTamimi JZ, AlMousa LA, Yahya MA. The protection afforded by Berberine against chemotherapy-mediated nephropathy in rats involves regulation of the antioxidant axis. Basic Clin Pharmacol Toxicol 2023; 132:98-110. [PMID: 36221996 DOI: 10.1111/bcpt.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 12/30/2022]
Abstract
Doxorubicin (DOX) treatment in cancer patients leads to nephrotoxicity. The nephroprotective effect of Berberine (BBR), a herbal ingredient, is well documented as antioxidant and activation of the Nrf2 signalling. This study aimed to investigate if Nrf2 is a major protective mechanism of BBR in DOX animal models. Rats were divided as (n = 6 each): Control, BBR (100 mg/kg, orally), DOX (15 mg/kg, orally), BBR + DOX, and BBR + DOX + brusatol (0.2 mg/kg, i.p./twice per week) (an Nrf2 inhibitor). DOX was given as a single dose (day 10), whereas BBR was administered for 3 weeks on a daily basis. BBR reduced tubular degeneration and improved renal markers in DOX-treated rats. It also reduced renal nuclear levels of NF-κB p65, total reactive oxygen species (ROS), lipid peroxides, interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α), as well as mRNA levels of Bax and cleaved caspase-3. However, BBR stimulated glutathione (GSH) and superoxide dismutase (SOD) levels, the transcription of Bcl2, and the mRNA, total cytoplasmic, and nuclear levels of Nrf2 with no effect on the cytoplasmic keap1 levels. All these effects disappeared by brusatol. In conclusion, BBR prevents DOX-induced renal damage by activating Nrf2.
Collapse
Affiliation(s)
- Reham I Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, P.O.Box 84428, 11671, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science (PHD), Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, 11671, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jozaa Z ALTamimi
- Nutrition and Food Science (PHD), Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, 11671, Saudi Arabia
| | - Lujain A AlMousa
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, P.O.Box 84428, 11671, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2023; 241:108314. [PMID: 36427568 DOI: 10.1016/j.pharmthera.2022.108314] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy is one of the most common complications in diabetes. It has been shown to be the leading cause of end-stage renal disease. However, due to their complex pathological mechanisms, effective therapeutic drugs other than angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which have been used for 20 years, have not been developed so far. Recent studies have shown that diabetic nephropathy is characterized by multiple signalling pathways and multiple targets, including inflammation, apoptosis, pyroptosis, autophagy, oxidative stress, endoplasmic reticulum stress and their interactions. It definitely exacerbates the difficulty of therapy, but at the same time it also brings out the chance for natural products treatment. In the most recent two decades, a large number of natural products have displayed their potential in preclinical studies and a few compounds are under invetigation in clinical trials. Hence, many compounds targeting these singals have been emerged as a comprehensive blueprint for treating strategy of diabetic nephropathy. This review focuses on the cellular and molecular mechanisms of natural prouducts that alleviate this condition, including preclinical studies and clinical trials, which will provide new insights into the treatment of diabetic nephropathy and suggest novel ideas for new drug development.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
19
|
Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action. Pharmacol Res 2022; 185:106481. [DOI: 10.1016/j.phrs.2022.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022]
|
20
|
Tanase DM, Gosav EM, Anton MI, Floria M, Seritean Isac PN, Hurjui LL, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives. Biomolecules 2022; 12:biom12091227. [PMID: 36139066 PMCID: PMC9496369 DOI: 10.3390/biom12091227] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most debilitating chronic diseases worldwide, with increased prevalence and incidence. In addition to its macrovascular damage, through its microvascular complications, such as Diabetic Kidney Disease (DKD), DM further compounds the quality of life of these patients. Considering DKD is the main cause of end-stage renal disease (ESRD) in developed countries, extensive research is currently investigating the matrix of DKD pathophysiology. Hyperglycemia, inflammation and oxidative stress (OS) are the main mechanisms behind this disease. By generating pro-inflammatory factors (e.g., IL-1,6,18, TNF-α, TGF-β, NF-κB, MCP-1, VCAM-1, ICAM-1) and the activation of diverse pathways (e.g., PKC, ROCK, AGE/RAGE, JAK-STAT), they promote a pro-oxidant state with impairment of the antioxidant system (NRF2/KEAP1/ARE pathway) and, finally, alterations in the renal filtration unit. Hitherto, a wide spectrum of pre-clinical and clinical studies shows the beneficial use of NRF2-inducing strategies, such as NRF2 activators (e.g., Bardoxolone methyl, Curcumin, Sulforaphane and their analogues), and other natural compounds with antioxidant properties in DKD treatment. However, limitations regarding the lack of larger clinical trials, solubility or delivery hamper their implementation for clinical use. Therefore, in this review, we will discuss DKD mechanisms, especially oxidative stress (OS) and NRF2/KEAP1/ARE involvement, while highlighting the potential of therapeutic approaches that target DKD via OS.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Madalina Ioana Anton
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
21
|
Zhou Z, Qiao Y, Zhao Y, Chen X, Li J, Zhang H, Lan Q, Yang B. Natural products: potential drugs for the treatment of renal fibrosis. Chin Med 2022; 17:98. [PMID: 35978370 PMCID: PMC9386947 DOI: 10.1186/s13020-022-00646-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing prevalence and mortality, chronic kidney disease (CKD) has become a world public health problem. As the primary pathological manifestation in CKD, renal fibrosis is often used as a critical target for the treatment of CKD and inhibits the progression of CKD to end-stage renal disease (ESRD). As a potential drug, natural products have been confirmed to have the potential as a routine or supplementary therapy for chronic kidney disease, which may target renal fibrosis and act through various pharmacological activities such as anti-inflammatory and anti-oxidation of natural products. This article briefly introduces the pathological mechanism of renal fibrosis and systematically summarizes the latest research on the treatment of renal fibrosis with natural products of Chinese herbal medicines.
Collapse
Affiliation(s)
- Zijun Zhou
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanheng Qiao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Zhao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hanqing Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiumei Lan
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
22
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Mohamed NM, Ross SA. Protective effects of berberine on various kidney diseases: Emphasis on the promising effects and the underlined molecular mechanisms. Life Sci 2022; 306:120697. [PMID: 35718235 DOI: 10.1016/j.lfs.2022.120697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Berberine (BBR) is a pentacyclic benzylisoquinoline alkaloid that can be found in diversity of medicinal plants. BBR has a wide range of pharmacological bioactivities, in addition when administrated orally, it has a broad safety margin. It has been used as an antidiarrheal, antimicrobial, and anti-diabetic drug in Ayurvedic and Chinese medicine. Several scholars have found that BBR has promising renoprotective effects against different renal illnesses, including diabetic nephropathy, renal fibrosis, renal ischemia, renal aging, and renal stones. Also, it has renoprotective effects against nephrotoxicity induced by chemotherapy, heavy metal, aminoglycosides, NSAID, and others. These effects imply that BBR has an evolving therapeutic potential against acute renal failure and chronic renal diseases. Hence, we report herein the beneficial therapeutic renoprotective properties of BBR, as well as the highlighted molecular mechanism. In conclusion, the studies discussed throughout this review will afford a comprehensive overview about renoprotective effect of BBR and its therapeutic impact on different renal diseases.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
23
|
Nazari Soltan Ahmad S, Kalantary-Charvadeh A, Hamzavi M, Ezzatifar F, Aboutalebi Vand Beilankouhi E, Toofani-Milani A, Geravand F, Golshadi Z, Mesgari-Abbasi M. TGF-β1 receptor blockade attenuates unilateral ureteral obstruction-induced renal fibrosis in C57BL/6 mice through attenuating Smad and MAPK pathways. J Mol Histol 2022; 53:691-698. [PMID: 35704228 DOI: 10.1007/s10735-022-10078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Renal fibrosis is characterized by accumulation of extracellular matrix components and collagen deposition. TGF-β1 acts as a master switch promoting renal fibrosis through Smad dependent and/or Smad independent pathways. Thirty-five male C57BL/6 mice were divided into five groups of seven each; sham, unilateral ureteral obstruction (UUO), UUO+galunisertib (150 and 300 mg/kg/day), galunisertib (300 mg/kg/day). The UUO markedly induced renal fibrosis and injury as indicated by renal functional loss, increased levels of collagen Iα1, fibronectin and α-SMA; it also activated both the Smad 2/3 and MAPKs pathways as indicated by increased levels of TGF-β1, p-Smad 2, p-Smad 3, p-p38, p-JNK and p-ERK. These UUO-induced changes were markedly attenuated by oral administration of galunisertib, the TGFβRI small molecule inhibitor. In conclusion, we demonstrated that TGF-β1 receptor blockade can prevent UUO-induced renal fibrosis through indirect modulation of Smad and MAPKs signaling pathways and may be useful as a therapeutic agent in treatment and/or prevention of renal fibrosis.
Collapse
Affiliation(s)
| | - Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamzavi
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ezzatifar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Attabak Toofani-Milani
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Faezeh Geravand
- Department of Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zakieh Golshadi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehran Mesgari-Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Avenue, Tabriz, Iran.
| |
Collapse
|
24
|
Mombeini MA, Kalantar H, Sadeghi E, Goudarzi M, Khalili H, Kalantar M. Protective effects of berberine as a natural antioxidant and anti-inflammatory agent against nephrotoxicity induced by cyclophosphamide in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:187-194. [PMID: 34994821 DOI: 10.1007/s00210-021-02182-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Cyclophosphamide is an alkylating agent with nephrotoxicity that constrains its clinical application. Berberine is an isoquinoline derivative alkaloid with biological functions like antioxidant and anti-inflammatory. The current research intended to examine the nephroprotective impacts of berberine against cyclophosphamide-stimulated nephrotoxicity. METHODS Forty animal subjects were randomly separated into five categories of control (Group I), cyclophosphamide (200 mg/kg, i.p., on 7th day) (Group II), and groups III and IV that received berberine 50 and 100 mg/kg orally for seven days and a single injection of cyclophosphamide on 7th day. Group V as berberine (100 mg/kg, alone). On day 8, blood samples were drawn from the retro-orbital sinus to determine serum levels of blood urea nitrogen (BUN), creatinine (Cr), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) as biomarkers for kidney injury. Nitric oxide (NO), malondialdehyde (MDA) and glutathione (GSH) levels, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities as oxidative stress factors, tumor necrosis factor-α (TNF-α) and interleukin 1 beta (IL-1β) levels as inflammatory mediators were assessed in kidney tissue. RESULTS The results of this study demonstrated that berberine was able to protect remarkably the kidney from CP-induced injury through decreasing the level of BUN, Cr, NGAL, KIM-1, NO, MDA TNF-α, IL-1β and increasing the level of GSH, CAT, SOD, and GPx activities. CONCLUSION Berberine may be employed as a natural agent to prevent cyclophosphamide-induced nephrotoxicity through anti-oxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Mohammad Amin Mombeini
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elahe Sadeghi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Khalili
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
25
|
Rong Q, Han B, Li Y, Yin H, Li J, Hou Y. Berberine Reduces Lipid Accumulation by Promoting Fatty Acid Oxidation in Renal Tubular Epithelial Cells of the Diabetic Kidney. Front Pharmacol 2022; 12:729384. [PMID: 35069186 PMCID: PMC8766852 DOI: 10.3389/fphar.2021.729384] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormal lipid metabolism in renal tubular epithelial cells contributes to renal lipid accumulation and disturbed mitochondrial bioenergetics which are important in diabetic kidney disease. Berberine, the major active constituent of Rhizoma coptidis and Cortex phellodendri, is involved in regulating glucose and lipid metabolism. The present study aimed to investigate the protective effects of berberine on lipid accumulation in tubular epithelial cells of diabetic kidney disease. We treated type 2 diabetic db/db mice with berberine (300 mg/kg) for 12 weeks. Berberine treatment improved the physical and biochemical parameters of the db/db mice compared with db/m mice. In addition, berberine decreased intracellular lipid accumulation and increased the expression of fatty acid oxidation enzymes CPT1, ACOX1 and PPAR-α in tubular epithelial cells of db/db mice. The mitochondrial morphology, mitochondrial membrane potential, cytochrome c oxidase activity, mitochondrial reactive oxygen species, and mitochondrial ATP production in db/db mice kidneys were significantly improved by berberine. Berberine intervention activated the AMPK pathway and increased the level of PGC-1α. In vitro berberine suppressed high glucose-induced lipid accumulation and reversed high glucose-induced reduction of fatty acid oxidation enzymes in HK-2 cells. Importantly, in HK-2 cells, berberine treatment blocked the change in metabolism from fatty acid oxidation to glycolysis under high glucose condition. Moreover, berberine restored high glucose-induced dysfunctional mitochondria. These data suggested that berberine alleviates diabetic renal tubulointerstitial injury through improving high glucose-induced reduction of fatty acid oxidation, alleviates lipid deposition, and protect mitochondria in tubular epithelial cells.
Collapse
Affiliation(s)
- Qingfeng Rong
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Province People's Hospital, Taiyuan, China.,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Haizhen Yin
- Central Laboratory, Shanxi Province People's Hospital, Taiyuan, China
| | - Jing Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
26
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1689-1699. [DOI: 10.1093/jpp/rgac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
|
27
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
28
|
Tang G, Li S, Zhang C, Chen H, Wang N, Feng Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm Sin B 2021; 11:2749-2767. [PMID: 34589395 PMCID: PMC8463270 DOI: 10.1016/j.apsb.2020.12.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/17/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.
Collapse
Key Words
- ACEI, angiotensin-converting enzyme inhibitor
- ADE, adverse event
- AGEs, advanced glycation end-products
- AM, mesangial area
- AMPKα, adenosine monophosphate-activated protein kinase α
- ARB, angiotensin receptor blocker
- AREs, antioxidant response elements
- ATK, protein kinase B
- BAX, BCL-2-associated X protein
- BCL-2, B-cell lymphoma 2
- BCL-XL, B-cell lymphoma-extra large
- BMP-7, bone morphogenetic protein-7
- BUN, blood urea nitrogen
- BW, body weight
- C, control group
- CCR, creatinine clearance rate
- CD2AP, CD2-associated protein
- CHOP, C/EBP homologous protein
- CI, confidence interval
- COL-I/IV, collagen I/IV
- CRP, C-reactive protein
- CTGF, connective tissue growth factor
- Chinese medicine
- D, duration
- DAG, diacylglycerol
- DG, glomerular diameter
- DKD, diabetic kidney disease
- DM, diabetes mellitus
- DN, diabetic nephropathy
- Diabetic kidney disease
- Diabetic nephropathy
- EMT, epithelial-to-mesenchymal transition
- EP, E-prostanoid receptor
- ER, endoplasmic reticulum
- ESRD, end-stage renal disease
- ET-1, endothelin-1
- ETAR, endothelium A receptor
- FBG, fasting blood glucose
- FN, fibronectin
- GCK, glucokinase
- GCLC, glutamate-cysteine ligase catalytic subunit
- GFR, glomerular filtration rate
- GLUT4, glucose transporter type 4
- GPX, glutathione peroxidase
- GRB 10, growth factor receptor-bound protein 10
- GRP78, glucose-regulated protein 78
- GSK-3, glycogen synthase kinase 3
- Gαq, Gq protein alpha subunit
- HDL-C, high density lipoprotein-cholesterol
- HO-1, heme oxygenase-1
- HbA1c, glycosylated hemoglobin
- Herbal medicine
- ICAM-1, intercellular adhesion molecule-1
- IGF-1, insulin-like growth factor 1
- IGF-1R, insulin-like growth factor 1 receptor
- IKK-β, IκB kinase β
- IL-1β/6, interleukin 1β/6
- IR, insulin receptor
- IRE-1α, inositol-requiring enzyme-1α
- IRS, insulin receptor substrate
- IκB-α, inhibitory protein α
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- LC3, microtubule-associated protein light chain 3
- LDL, low-density lipoprotein
- LDL-C, low density lipoprotein-cholesterol
- LOX1, lectin-like oxidized LDL receptor 1
- MAPK, mitogen-activated protein kinase
- MCP-1, monocyte chemotactic protein-1
- MD, mean difference
- MDA, malondialdehyde
- MMP-2, matrix metallopeptidase 2
- MYD88, myeloid differentiation primary response 88
- Molecular target
- N/A, not applicable
- N/O, not observed
- N/R, not reported
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOX-4, nicotinamide adenine dinucleotide phosphate-oxidase-4
- NQO1, NAD(P)H:quinone oxidoreductase 1
- NRF2, nuclear factor erythroid 2-related factor 2
- OCP, oxidative carbonyl protein
- ORP150, 150-kDa oxygen-regulated protein
- P70S6K, 70-kDa ribosomal protein S6 kinase
- PAI-1, plasminogen activator inhibitor-1
- PARP, poly(ADP-Ribose) polymerase
- PBG, postprandial blood glucose
- PERK, protein kinase RNA-like eukaryotic initiation factor 2A kinase
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1α
- PGE2, prostaglandin E2
- PI3K, phosphatidylinositol 3 kinases
- PINK1, PTEN-induced putative kinase 1
- PKC, protein kinase C
- PTEN, phosphatase and tensin homolog
- RAGE, receptors of AGE
- RASI, renin-angiotensin system inhibitor
- RCT, randomized clinical trial
- ROS, reactive oxygen species
- SCr, serum creatinine
- SD, standard deviation
- SD-rat, Sprague–Dawley rat
- SIRT1, sirtuin 1
- SMAD, small mothers against decapentaplegic
- SMD, standard mean difference
- SMURF-2, SMAD ubiquitination regulatory factor 2
- SOCS, suppressor of cytokine signaling proteins
- SOD, superoxide dismutase
- STAT, signal transducers and activators of transcription
- STZ, streptozotocin
- Signaling pathway
- T, treatment group
- TBARS, thiobarbituric acid-reactive substance
- TC, total cholesterol
- TCM, traditional Chinese medicine
- TFEB, transcription factor EB
- TG, triglyceride
- TGBM, thickness of glomerular basement membrane
- TGF-β, tumor growth factor β
- TGFβR-I/II, TGF-β receptor I/II
- TII, tubulointerstitial injury index
- TLR-2/4, toll-like receptor 2/4
- TNF-α, tumor necrosis factor α
- TRAF5, tumor-necrosis factor receptor-associated factor 5
- UACR, urinary albumin to creatinine ratio
- UAER, urinary albumin excretion rate
- UMA, urinary microalbumin
- UP, urinary protein
- VCAM-1, vascular cell adhesion molecule-1
- VEGF, vascular endothelial growth factor
- WMD, weight mean difference
- XBP-1, spliced X box-binding protein 1
- cAMP, cyclic adenosine monophosphate
- eGFR, estimated GFR
- eIF2α, eukaryotic initiation factor 2α
- mTOR, mammalian target of rapamycin
- p-IRS1, phospho-IRS1
- p62, sequestosome 1 protein
- α-SMA, α smooth muscle actin
Collapse
Affiliation(s)
- Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
29
|
Chen XC, Li ZH, Yang C, Tang JX, Lan HY, Liu HF. Lysosome Depletion-Triggered Autophagy Impairment in Progressive Kidney Injury. KIDNEY DISEASES 2021; 7:254-267. [PMID: 34395541 DOI: 10.1159/000515035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Background Macroautophagy (autophagy) is a cellular recycling process involving the destruction of damaged organelles and proteins in intracellular lysosomes for efficient nutrient reuse. Summary Impairment of the autophagy-lysosome pathway is tightly associated with multiple kidney diseases, such as diabetic nephropathy, proteinuric kidney disease, acute kidney injury, crystalline nephropathy, and drug- and heavy metal-induced renal injury. The impairment in the process of autophagic clearance may induce injury in renal intrinsic cells by activating the inflammasome, inducing cell cycle arrest, and cell death. The lysosome depletion may be a key mechanism triggering this process. In this review, we discuss this pathway and summarize the protective mechanisms for restoration of lysosome function and autophagic flux via the endosomal sorting complex required for transport (ESCRT) machinery, lysophagy, and transcription factor EB-mediated lysosome biogenesis. Key Message Further exploring mechanisms of ESCRT, lysophagy, and lysosome biogenesis may provide novel therapy strategies for the management of kidney diseases.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi-Hang Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
30
|
Uddin MJ, Kim EH, Hannan MA, Ha H. Pharmacotherapy against Oxidative Stress in Chronic Kidney Disease: Promising Small Molecule Natural Products Targeting Nrf2-HO-1 Signaling. Antioxidants (Basel) 2021; 10:antiox10020258. [PMID: 33562389 PMCID: PMC7915495 DOI: 10.3390/antiox10020258] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The global burden of chronic kidney disease (CKD) intertwined with cardiovascular disease has become a major health problem. Oxidative stress (OS) plays an important role in the pathophysiology of CKD. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) antioxidant system plays a critical role in kidney protection by regulating antioxidants during OS. Heme oxygenase-1 (HO-1), one of the targets of Nrf2-ARE, plays an important role in regulating OS and is protective in a variety of human and animal models of kidney disease. Thus, activation of Nrf2-HO-1 signaling may offer a potential approach to the design of novel therapeutic agents for kidney diseases. In this review, we have discussed the association between OS and the pathogenesis of CKD. We propose Nrf2-HO-1 signaling-mediated cell survival systems be explored as pharmacological targets for the treatment of CKD and have reviewed the literature on the beneficial effects of small molecule natural products that may provide protection against CKD.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
| | - Ee Hyun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- Correspondence: ; Tel.: +82-2-3277-4075
| |
Collapse
|
31
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Mandal SK, Maji AK, Mishra SK, Ishfaq PM, Devkota HP, Silva AS, Das N. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacol Res 2020; 160:105085. [PMID: 32683037 DOI: 10.1016/j.phrs.2020.105085] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Goldenseal (Hydrastis canadensis L.) is a medicinal plant widely used in various traditional systems of medicine and as a food supplement. It has been traditionally used by Native Americans as a coloring agent and as medicinal remedy for common diseases and conditions like wounds, digestive disorders, ulcers, skin and eye ailments, and cancer. Over the years, goldenseal has become a popular food supplement in the USA and other regions. The rhizome of this plant has been used for the treatment of a variety of diseases including, gastrointestinal disorders, ulcers, muscular debility, nervous prostration, constipation, skin and eye infections, cancer, among others. Berberine is one of the most bioactive alkaloid that has been identified in different parts of goldenseal. The goldenseal extract containing berberine showed numerous therapeutic effects such as antimicrobial, anti-inflammatory, hypolipidemic, hypoglycemic, antioxidant, neuroprotective (anti-Alzheimer's disease), cardioprotective, and gastrointestinal protective. Various research finding suggest the health promoting effects of goldenseal components and their extracts. However, few studies have also suggested the possible neurotoxic, hepatotoxic and phototoxic activities of goldenseal extract and its alkaloids. Thus, large randomized, double-blind clinical studies need to be conducted on goldenseal supplements and their main alkaloids to provide more evidence on the mechanisms responsible for the pharmaceutical activity, clinical efficacy and safety of these products. Thus, it is very important to review the scientific information about goldenseal to understand about the current scenario.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, 713206, West Bengal, India
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Pir Mohammad Ishfaq
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, Health Life Sciences: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, 4051-401, Portugal
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, 799155, Tripura, India.
| |
Collapse
|
33
|
El-Horany HES, Gaballah HH, Helal DS. Berberine ameliorates renal injury in a rat model of D-galactose-induced aging through a PTEN/Akt-dependent mechanism. Arch Physiol Biochem 2020; 126:157-165. [PMID: 30145915 DOI: 10.1080/13813455.2018.1499117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the protective effects of berberine (BBR) against D-galactose (D-gal)-induced renal aging in rats, pointing to its ability to modulate phosphatase and tensin homolog deleted on chromosome ten (PTEN)/Akt signalling, and to attenuate oxidative stress, inflammation and apoptosis. Renal aging was induced by subcutaneous injection of D-gal for six consecutive weeks along with simultaneous oral administration of BBR and compared to control rats and rats received individual doses of either drug. BBR treatment significantly reduced the serum levels of urea and creatinine, retrieved the alterations in kidney histopathology, and restored redox balance evidenced by alleviations of the level of malondialdehyde, 8-hydroxy-2'-deoxyguanosine and activating heme oxygenase-1 enzyme. Moreover, it markedly reduced the serum levels of pro-inflammatory mediators, along with down-regulation of PTEN expression, enhanced Akt activity, as well as significantly higher immunostaining of the anti-apoptotic marker (Bcl-2). These findings hold a great promise for the use of BBR as a protecting agent against renal aging.
Collapse
Affiliation(s)
| | | | - Duaa Samir Helal
- Faculty of Medicine, Department of Histopathology,Tanta University, Tanta, Egypt
| |
Collapse
|
34
|
Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res 2020; 155:104746. [PMID: 32156650 DOI: 10.1016/j.phrs.2020.104746] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes and causes kidney failure. Ginsenoside Rg5 (Rg5) is an important monomer in the main protopanaxadiol component of black ginseng. Rg5 has exhibited some beneficial biological effects, such as anti-cancer, neuroprotection, and anti-depression, but the effect of Rg5 on DN and its potential mechanism remains unclear. The aim of this study is to investigate the effect of Rg5 on kidney injury of C57BL/6 diabetic mice induced by high-fat diet and streptozotocin. After treatment with different concentration of Rg5 (30 and 60 mg kg-1·d-1) for 6 consecutive weeks, the fasting blood glucose, insulin levels, serum creatinine, serum urea, and serum UA in Rg5-treated DN mice were significantly reduced, while the renal histopathology was remarkably improved, compared with untreated DN mice. Moreover, ROS production, oxidative stress markers (MDA, SOD, and GSH-PX), Nox4 and TXNIP expressions of kidney in DN mice were significantly reduced after Rg5 treatment. Additionally, the expression levels of the NLRP3 inflammasome (NLRP3, ASC, and Caspase-1) and the inflammatory cytokines IL-1β and IL-18 were significantly inhibited, and the expression of NF-kB and the phosphorylation of p38 MAPK were also decreased with Rg5 treatment compared with no treatment in DN mice. Together, our results indicate that Rg5 attenuated renal injury in diabetic mice by inhibiting oxidative stress and NLRP3 inflammasome activation to reduce inflammatory responses, indicating that Rg5 is a potential compound to prevent or control diabetic renal injury.
Collapse
|
35
|
Metabolic memory and diabetic nephropathy: Beneficial effects of natural epigenetic modifiers. Biochimie 2020; 170:140-151. [DOI: 10.1016/j.biochi.2020.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023]
|
36
|
Song J, Gao X, Tang Z, Li H, Ruan Y, Liu Z, Wang T, Wang S, Liu J, Jiang H. Protective effect of Berberine on reproductive function and spermatogenesis in diabetic rats via inhibition of ROS/JAK2/NFκB pathway. Andrology 2020; 8:793-806. [PMID: 32012485 DOI: 10.1111/andr.12764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/12/2020] [Accepted: 01/22/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) induces impairment of male reproductive system and is considered as a key factor that could partially provide an explanation for male infertility. Thus, understanding the mechanism underlying DM-induced infertility will aid in the identification of novel therapeutic stratagems. OBJECTIVES To delineate the role of ROS/JAK2/NFκB pathway in DM-induced low reproductive function and impaired spermatogenesis. Additionally, to investigate the protective effect of monomeric Berberine (BB) that inhibits ROS/JAK2/NFκB pathway, in the pathogenesis of DM-induced infertility. METHODS 12-week-old male Sprague-Dawley rats were divided into four groups: control group, DM group, control plus BB group, and DM plus BB group. Streptozotocin was used to induce DM. After treating the rats with BB for 4 weeks, fertility tests were conducted to investigate the reproductive function, and testis weight along with sperm motility was assessed through microscope. Oxidative stress was evaluated by DHE staining. TUNEL staining was utilized to detect the state of apoptosis. Cell experiments were carried out to define the role of BB in vitro. Immunohistochemistry, immunofluorescence, and Western blotting were employed to measure the protein expression. RESULTS Our results indicate that the reproductive function of DM rats was low, accompanied by decreased testis weight and sperm motility in addition to the impairment of the seminiferous tubules. However, there was a significant improvement in the reproductive function parameters in the BB-treated DM rats. Subsequently, our data revealed that DM rats produce an increased level of ROS in the testis, which activates JAK2 further activating the NFκB pathway, leading to increased apoptosis and impaired cells in the testicles. However, BB could attenuate the ROS production and abrogate activation of JAK2/NFκB pathway, thus inhibiting the apoptosis in the testicular cells of DM rats. CONCLUSION ROS/JAK2/NFκB pathway is involved in the DM-induced low reproductive function and impaired spermatogenesis. BB can play a protective role in preserving the reproductive function and spermatogenesis in DM by inhibiting ROS/JAK2/NFκB pathway.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Xintao Gao
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhe Tang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hao Li
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yajun Ruan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhuo Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Tao Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shaogang Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jihong Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hongyang Jiang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
37
|
Shinjyo N, Parkinson J, Bell J, Katsuno T, Bligh A. Berberine for prevention of dementia associated with diabetes and its comorbidities: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:125-151. [PMID: 32005442 DOI: 10.1016/j.joim.2020.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A growing number of epidemiological studies indicate that metabolic syndrome (MetS) and its associated features play a key role in the development of certain degenerative brain disorders, including Alzheimer's disease and vascular dementia. Produced by several different medicinal plants, berberine is a bioactive alkaloid with a wide range of pharmacological effects, including antidiabetic effects. However, it is not clear whether berberine could prevent the development of dementia in association with diabetes. OBJECTIVE To give an overview of the therapeutic potential of berberine as a treatment for dementia associated with diabetes. SEARCH STRATEGY Database searches A and B were conducted using PubMed and ScienceDirect. In search A, studies on berberine's antidementia activities were identified using "berberine" and "dementia" as search terms. In search B, recent studies on berberine's effects on diabetes were surveyed using "berberine" and "diabetes" as search terms. INCLUSION CRITERIA Clinical and preclinical studies that investigated berberine's effects associated with MetS and cognitive dysfunction were included. DATA EXTRACTION AND ANALYSIS Data from studies were extracted by one author, and checked by a second; quality assessments were performed independently by two authors. RESULTS In search A, 61 articles were identified, and 22 original research articles were selected. In search B, 458 articles were identified, of which 101 were deemed relevant and selected. Three duplicates were removed, and a total of 120 articles were reviewed for this study. The results demonstrate that berberine exerts beneficial effects directly in the brain: enhancing cholinergic neurotransmission, improving cerebral blood flow, protecting neurons from inflammation, limiting hyperphosphorylation of tau and facilitating β-amyloid peptide clearance. In addition, evidence is growing that berberine is effective against diabetes and associated disorders, such as atherosclerosis, cardiomyopathy, hypertension, hepatic steatosis, diabetic nephropathy, gut dysbiosis, retinopathy and neuropathy, suggesting indirect benefits for the prevention of dementia. CONCLUSION Berberine could impede the development of dementia via multiple mechanisms: preventing brain damages and enhancing cognition directly in the brain, and indirectly through alleviating risk factors such as metabolic dysfunction, and cardiovascular, kidney and liver diseases. This study provided evidence to support the value of berberine in the prevention of dementia associated with MetS.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - James Parkinson
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom
| | - Jimmy Bell
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom.
| | - Tatsuro Katsuno
- Kashiwanoha Clinic of East Asian Medicine, Chiba University Hospital, Kashiwa, Chiba 277-0882, Japan
| | - Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, NT 999077, Hong Kong, China.
| |
Collapse
|
38
|
Yu J, Zong GN, Wu H, Zhang KQ. Podoplanin mediates the renoprotective effect of berberine on diabetic kidney disease in mice. Acta Pharmacol Sin 2019; 40:1544-1554. [PMID: 31270434 PMCID: PMC7470856 DOI: 10.1038/s41401-019-0263-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/22/2019] [Indexed: 11/29/2022] Open
Abstract
Hyperglycemia-caused podocyte injury plays a crucial role in the progress of diabetic kidney disease. Podoplanin, one of the podocyte-associated molecules, is closely related to the integrity of the glomerular filtration barrier. A number of studies demonstrate that berberine could ameliorate renal dysfunction in diabetic mice with nephropathy, but the molecular mechanisms have not been fully elucidated. In this study, we explored the relationship between the renoprotective effect of berberine and podoplanin expression in streptozotocin (STZ)-induced diabetic mice as well as mouse podocytes (MPC5 cells) cultured in high glucose (HG, 30 mM) medium. We found that the expression levels of podoplanin were significantly decreased both in the renal glomerulus of STZ-induced diabetic mice and HG-cultured MPC5 cells. We also demonstrated that NF-κB signaling pathway was activated in MPC5 cells under HG condition, which downregulated the expression level of podoplanin, thus leading to increased podocyte apoptosis. Administration of berberine (100, 200 mg/kg every day, ig, for 8 weeks) significantly improved hyperglycemia and the renal function of STZ-induced diabetic mice and restored the expression level of podoplanin in renal glomerulus. In high glucose-cultured MPC5 cells, treatment with berberine (30–120 μM) dose-dependently decreased the apoptosis rate, increased the expression of podoplanin, and inhibited the activation of NF-κB signaling pathway. When podoplanin expression was silenced with shRNA, berberine treatment still inhibited the NF-κB signaling pathway, but its antiapoptotic effect on podocytes almost disappeared. Our results suggest that berberine inhibits the activation of NF-κB signaling pathway, thus increasing the podoplanin expression to exert renoprotective effects.
Collapse
|
39
|
Song J, Tang Z, Li H, Jiang H, Sun T, Lan R, Wang T, Wang S, Ye Z, Liu J. Role of JAK2 in the Pathogenesis of Diabetic Erectile Dysfunction and an Intervention With Berberine. J Sex Med 2019; 16:1708-1720. [DOI: 10.1016/j.jsxm.2019.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 10/25/2022]
|
40
|
Ashrafizadeh M, Fekri HS, Ahmadi Z, Farkhondeh T, Samarghandian S. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway. J Cell Biochem 2019; 121:1575-1585. [PMID: 31609017 DOI: 10.1002/jcb.29392] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Since the beginning of the 21st century, studies have focused on developing drugs from naturally occurring compounds. Berberine (Brb) as a plant-derived compound is of interest. It is an isoquinone alkaloid which is derived from Berberis aristata, Berberis aquifolium and Berberis vulgaris. This plant-derived compound has a variety of pharmacological effects such as antioxidant, anti-inflammatory, antidiabetic, antidiarrheal, antitumor, antimicrobial, and anti-inflammatory. Various studies have demonstrated the therapeutic and biological activities of Brb, but there is a lack of a precise review to manifest the signaling pathway of action of Brb. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a highly conserved pathway which mainly involves in preservation of redox balance. At the present review, we describe the therapeutic and biological activities of Brb as well as the relevant mechanisms specially focused on the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hojjat Samareh Fekri
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.,Central Research Laboratory, Deputy of Research, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
41
|
Wang J, Zhu H, Huang L, Zhu X, Sha J, Li G, Ma G, Zhang W, Gu M, Guo Y. Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways. Exp Mol Pathol 2019; 111:104296. [PMID: 31449784 DOI: 10.1016/j.yexmp.2019.104296] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is imprecise. METHODS The relationship between Nrf2 and renal interstitial fibrosis was investigated using the unilateral ureteral obstruction (UUO) model of Nrf2-/- mice. The mice were separated into four groups, based on the treatment and intervention: Nrf2-/- + UUO, Nrf2-/- + Sham, WT + UUO and WT + Sham. Histological examination of renal tissue following the hematoxylin-eosin and Masson staining was carried out, as well as immunohistochemical staining. Additionally, to confirm the in vivo discoveries, in vitro experiments with HK-2 cells were also performed. RESULTS The Nrf2-/- + UUO group showed more severe renal interstitial fibrosis compared to the WT + UUO, Nrf2-/- + Sham and WT + Sham groups. Furthermore, the manifestations of α-SMA and Fibronectin significantly increased, and the manifestation of E-cadherin considerably decreased in kidney tissues from the group of Nrf2-/- + UUO, compared to the WT + UUO group. The Nrf2 protein level significantly decreased in HK-2 cells, in reaction to the TGF-β1 concentration. In addition, the overexpression of Nrf2 presented contradictory results. What is more, the PI3K/Akt signaling pathway was discovered to be activated in the proteins extracted from cultured cells, and treated with Nrf2 siRNA and kidney tissues from the Nrf2-/- + UUO group. CONCLUSIONS The results we obtained demonstrate that Nrf2 signaling pathway may perhaps offset the development of EMT, prompted by TGF-β1 and renal interstitial fibrosis. Likewise, the anti-fibrotic effect of Nrf2 was imparted by the inactivation of PI3K/Akt signaling. From our discoveries, we deliver new insight related to the prevention and treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Jun Wang
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Haobo Zhu
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Liqu Huang
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaojiang Zhu
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jintong Sha
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Guogen Li
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Geng Ma
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Yunfei Guo
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
42
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
43
|
Ma H, He K, Zhu J, Li X, Ye X. The anti-hyperglycemia effects of Rhizoma Coptidis alkaloids: A systematic review of modern pharmacological studies of the traditional herbal medicine. Fitoterapia 2019; 134:210-220. [PMID: 30836124 DOI: 10.1016/j.fitote.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
Hyperglycemia is a common endocrine system disease, which seriously affects people's health with a increasing morbidity in recent years. Rhizoma Coptidis (RC), one of the most commonly used traditional Chinese medicines, has been applied to treat diabetes in clinic for thousands of years. Since scientists demonstrated that alkaloids from RC owned the amazing anti-hyperglycemia activities 30 years ago, these compounds have been widely used for the treatment of diabetes and hyperglycemia with unconspicuous toxicities and side effects. With the help of molecular biology, immunology and other techniques, the mechanisms about anti-hyperglycemia effect of RC alkaloids have been extensively discussed. Numerous studies showed that RC alkaloids balanced the glucose homeostasis not only by widely recognizing insulin resistance pathways, but also by promoting insulin secretion, regulating intestinal hormones, ameliorating gut microbiota structures and many other ways. In this review, we combine the latest advances and systematically summarize the mechanisms of RC alkaloids in treating hyperglycemia and diabetic nephropathy to provide a deeper understanding of these natural alkaloids. In addition, the important role of gut microbiota associated with the glucose metabolism is also reviewed.
Collapse
Affiliation(s)
- Hang Ma
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; Engineering Research Center of Cell and Therapeutic Antibody Medicine, Ministry of Education, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Kai He
- Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody Medicine, Ministry of Education, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xuegang Li
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
44
|
Qin X, Zhao Y, Gong J, Huang W, Su H, Yuan F, Fang K, Wang D, Li J, Zou X, Xu L, Dong H, Lu F. Berberine Protects Glomerular Podocytes via Inhibiting Drp1-Mediated Mitochondrial Fission and Dysfunction. Theranostics 2019; 9:1698-1713. [PMID: 31037132 PMCID: PMC6485199 DOI: 10.7150/thno.30640] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Elevated levels of plasma free fatty acid (FFA) and disturbed mitochondrial dynamics play crucial roles in the pathogenesis of diabetic kidney disease (DKD). However, the mechanisms by which FFA leads to mitochondrial damage in glomerular podocytes of DKD and the effects of Berberine (BBR) on podocytes are not fully understood. Methods: Using the db/db diabetic mice model and cultured mouse podocytes, we investigated the molecular mechanism of FFA-induced disturbance of mitochondrial dynamics in podocytes and testified the effects of BBR on regulating mitochondrial dysfunction, podocyte apoptosis and glomerulopathy in the progression of DKD. Results: Intragastric administration of BBR for 8 weeks in db/db mice significantly reversed glucose and lipid metabolism disorders, podocyte damage, basement membrane thickening, mesangial expansion and glomerulosclerosis. BBR strongly inhibited podocyte apoptosis, increased reactive oxygen species (ROS) generation, mitochondrial fragmentation and dysfunction both in vivo and in vitro. Mechanistically, BBR could stabilize mitochondrial morphology in podocytes via abolishing palmitic acid (PA)-induced activation of dynamin-related protein 1 (Drp1). Conclusions: Our study demonstrated for the first time that BBR may have a previously unrecognized role in protecting glomerulus and podocytes via positively regulating Drp1-mediated mitochondrial dynamics. It might serve as a novel therapeutic drug for the treatment of DKD.
Collapse
|
45
|
Protective effects of Astragaloside IV on endoplasmic reticulum stress-induced renal tubular epithelial cells apoptosis in type 2 diabetic nephropathy rats. Biomed Pharmacother 2019; 109:84-92. [DOI: 10.1016/j.biopha.2018.10.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
|
46
|
Khan MA, Aldebasi YH, Alsuhaibani SA, AlSahli MA, Alzohairy MA, Khan A, Younus H. Therapeutic potential of thymoquinone liposomes against the systemic infection of Candida albicans in diabetic mice. PLoS One 2018; 13:e0208951. [PMID: 30589842 PMCID: PMC6320018 DOI: 10.1371/journal.pone.0208951] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
The present study was aimed to develop a liposomal formulation of thymoquinone (Lip-TQ) to treat Candida albicans infection in diabetic mice. Streptozotocin (STZ) was injected to induce hyperglycemia and on day 3 post STZ administration, mice were intravenously infected with C. albicans. Various doses (2, 5 and 10 mg/kg) of Free or Lip-TQ were administered in C. albicans infected diabetic mice. The effect of Lip-TQ was also determined on the organ indices, liver and kidney function parameters. Lip-TQ at a dose of 10 mg/kg significantly reduced the level of the blood glucose and alleviated the systemic C. albicans infection in diabetic mice. C. albicans infected diabetic mice treated with Lip-TQ at a dose of 10 mg/kg showed the survival rate of 70% as compared to that of 20% in the group treated with free TQ. The treatment with Lip-TQ resulted in the recovery of the organ indices, liver inflammation, kidney functioning and pancreas regeneration in diabetic mice. Moreover, TQ formulations also showed the direct therapeutic effect against candidiasis in the untreated or metformin-treated diabetic mice. Therefore, the findings of the present study support the use of Lip-TQ in the treatment of candidiasis in the diabetic patients.
Collapse
Affiliation(s)
- Masood A Khan
- College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Yousef H Aldebasi
- College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Mohammed A AlSahli
- College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Arif Khan
- College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
47
|
Stolf AM, Campos Cardoso C, Morais HD, Alves de Souza CE, Lomba LA, Brandt AP, Agnes JP, Collere FC, Galindo CM, Corso CR, Spercoski KM, Locatelli Dittrich R, Zampronio AR, Cadena SMSC, Acco A. Effects of silymarin on angiogenesis and oxidative stress in streptozotocin-induced diabetes in mice. Biomed Pharmacother 2018; 108:232-243. [DOI: 10.1016/j.biopha.2018.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
|
48
|
Abstract
Renal fibrosis was a chronic and progressive process affecting kidneys in chronic kidney disease (CKD), regardless of cause. Although no effective targeted therapy yet existed to retard renal fibrosis, a number of important recent advances have highlighted the cellular and molecular mechanisms underlying the renal fibrosis. The advances including TGF-β/Smad pathway, oxidative stress and inflammation, hypoxia and gut microbiota-derived from uremic solutes were highlighted that could provide therapeutic targets. New therapeutic targets and strategies that are particularly promising for development of new treatments for patients with CKD were also highlighted.
Collapse
Affiliation(s)
- Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| |
Collapse
|
49
|
Chen H, Ji Y, Yan X, Su G, Chen L, Xiao J. Berberine attenuates apoptosis in rat retinal Müller cells stimulated with high glucose via enhancing autophagy and the AMPK/mTOR signaling. Biomed Pharmacother 2018; 108:1201-1207. [PMID: 30372821 DOI: 10.1016/j.biopha.2018.09.140] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 11/30/2022] Open
Abstract
Berberine (BBR) has beneficial effects on diabetes and the multiple complications of diabetes due to its anti-apoptotic activity; however, the effect of BBR on diabetic retinopathy and its mechanism of action have not been clarified. The present study investigated the effect of BBR on Müller cells stimulated with high glucose (HG). Primary retinal Müller cells were incubated with high glucose to induce cell apoptosis; cells were pretreated with the AMPK inhibitor compound C and the AMPK activator AICAR to further explore the role of the AMPK/mTOR signaling pathway in the anti-apoptotic action of BBR. Immunofluorescence was used to measure apoptosis and autophagy. Western blot analysis was employed to determine the levels of p-AMPK and p-mTOR, as well as apoptosis-related proteins and autophagy-related proteins in Müller cells. Our results showed that BBR attenuated apoptosis, up regulated Bcl-2 and down regulated Bax and caspase-3 expression; enhanced the formation of autophagy, elevated the expression of Beclin-1 and LC3II and activated the AMPK/mTOR signaling pathway in Müller cells under high glucose conditions compared with the control group. The effect of BBR was partly blocked by compound C and strengthened by AICAR. BBR may have therapeutic potential to protect Müller cells from high-glucose-inducing apoptosis through enhancing autophagy and activating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Han Chen
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xin Yan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; General Hospital of Fushun Mining Bureau, Fushun, 113008, China
| | - Guanfang Su
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; School of Nursing, Jilin University, Changchun, 130021, China
| | - Jun Xiao
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
50
|
Chen CM, Juan SH, Chou HC. Hyperglycemia activates the renin-angiotensin system and induces epithelial-mesenchymal transition in streptozotocin-induced diabetic kidneys. J Renin Angiotensin Aldosterone Syst 2018; 19:1470320318803009. [PMID: 30264671 PMCID: PMC6166313 DOI: 10.1177/1470320318803009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The renin-angiotensin system and epithelial-mesenchymal transition play crucial roles in the development of kidney fibrosis. The connection between the renin-angiotensin system and transforming growth factor-β in epithelial-mesenchymal transition remains largely unknown. MATERIALS AND METHODS We assessed oxidative stress, cytokine levels, renal morphology, profibrotic growth factor and renin-angiotensin system component expression, and cell-specific E- and N-cadherin expression in the kidneys of gerbils with streptozotocin-induced diabetes mellitus. RESULTS Animals in the experimental group received an intraperitoneal injection of streptozotocin to induce diabetes. The diabetic gerbil kidneys presented kidney injury, which was manifested as distorted glomeruli, necrosis of tubular cells, dilated tubular lumen, and brush border loss. Additionally, the diabetic gerbil kidneys exhibited significantly higher expressions of 8-hydroxy-2'-deoxyguanosine, nuclear factor-kB, toll-like receptor 4, tumor necrosis factor-α, transforming growth factor-β, connective tissue growth factor, α-smooth muscle actin, and N-cadherin and higher collagen deposition than did the control gerbil kidneys. Compared with the control kidneys, the diabetic gerbil kidneys exhibited significantly lower E-cadherin expression. These epithelial-mesenchymal transition characteristics were associated with an increase in renin-angiotensin system expression in the diabetic gerbils. CONCLUSIONS We demonstrate that hyperglycemia activated the renin-angiotensin system, induced epithelial-mesenchymal transition, and contributed to kidney fibrosis in an experimental diabetes mellitus model.
Collapse
Affiliation(s)
- Chung-Ming Chen
- Department of Pediatrics, Taipei Medical
University Hospital, Taipei, Taiwan
- Department of Pediatrics, School of
Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hui Juan
- Graduate Institute of Medical Science,
Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of
Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology,
School of Medicine, College of Medicine, Taipei Medical University, Taipei,
Taiwan
| |
Collapse
|