1
|
Zhang K, Li Y, Ge X, Meng L, Kong J, Meng X. Regulatory T cells protect against diabetic cardiomyopathy in db/db mice. J Diabetes Investig 2024; 15:1191-1201. [PMID: 38943657 PMCID: PMC11363098 DOI: 10.1111/jdi.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/01/2024] Open
Abstract
AIMS/INTRODUCTION Regulatory T cells (Tregs) have protected against many cardiovascular diseases. This study was intended to explore the effect of Tregs on diabetic cardiomyopathy (DCM) using a db/db mouse model. MATERIALS AND METHODS Eight-week-old male db/db mice were randomly divided into four groups: the control group, administered 200 μL phosphate-buffered saline; the small-dose Treg group, administered 105 Tregs; the large-dose Treg group, administered 106 Tregs; and the PC group, administered 100 μg anti-CD25 specific antibody (PC61) and 106 Tregs. After 12 weeks, mice were euthanized. Transthoracic echocardiography was carried out at the beginning and end of the experiment. Relevant basic experiments to evaluate the effects of Tregs on DCM were carried out. RESULTS Echocardiography showed that the impaired diastolic and systolic functions were significantly improved in mice administered large-dose Tregs. Large-dose Tregs significantly ameliorated myocardial hypertrophy and fibrosis, and decreased hypertrophic gene expression and collagen deposition. The protective effects of Tregs on diabetic hearts were associated with decreased oxidative stress, inflammatory response and apoptosis. In addition, Tregs promoted the activation of the phosphatidylinositol 3-kinase-protein kinase B signaling pathway, whereas they inhibited extracellular signal-regulated kinase 1/2 and Jun N-terminal kinase phosphorylation, which might be responsible for the cardioprotective role of Tregs against DCM. CONCLUSIONS Tregs ameliorated myocardial hypertrophy and fibrosis, improved cardiac dysfunction, and protected against DCM progression in db/db mice. The mechanisms involved a decrease of inflammatory response, oxidative stress and apoptosis, which might be mediated by phosphatidylinositol 3-kinase-protein kinase B and mitogen-activated protein kinase pathways. Hence, Tregs might serve as a promising therapeutic approach for DCM treatment.
Collapse
Affiliation(s)
- Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yunyi Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiao Ge
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoChina
| | - Linlin Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
2
|
Roth M, Han B, S’ng CT, Hoang BX, Lambers C. Zinc Iodide Dimethyl Sulfoxide Reduces Collagen Deposition by Increased Matrix Metalloproteinase-2 Expression and Activity in Lung Fibroblasts. Biomedicines 2024; 12:1257. [PMID: 38927463 PMCID: PMC11200730 DOI: 10.3390/biomedicines12061257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammatory lung diseases are characterized by disease-specific extracellular matrix accumulation resulting from an imbalance of matrix metalloproteinases (MMPs) and their inhibitors. Zinc is essential for the function of MMPs, and zinc deficiency has been associated with enhanced tissue remodeling. This study assessed if zinc iodide (ZnI) supplementation through dimethyl sulfoxide (DMSO) modifies the action of MMPs in isolated human lung fibroblasts. The expression and activity of two gelatinases, MMP-2 and MMP-9, were determined by gelatin zymography and enzyme-linked immuno-sorbent assay (ELISA). Collagen degradation was determined by cell-based ELISAs. Collagen type I and fibronectin deposition was stimulated by human recombinant tumor growth factor β1 (TGF-β1). Untreated fibroblasts secreted MMP-2 but only minute amounts of MMP-9. TGF-β1 (5 ng/mL) reduced MMP-2 secretion, but stimulated collagen type I and fibronectin deposition. All the effects of TGF-β1 were significantly reduced in cells treated with ZnI-DMSO over 24 h, while ZnI and DMSO alone had a lower reducing effect. ZnI-DMSO alone did not increase MMP secretion but enhanced the ratio of active to inactive of MMP-2. ZnI alone had a lower enhancing effect than ZnI-DMSO on MMP activity. Furthermore, MMP-2 activity was increased by ZnI-DMSO and ZnI in the absence of cells. Soluble collagen type I increased in the medium of ZnI-DMSO- and ZnI-treated cells. Blocking MMP activity counteracted all the effects of ZnI-DMSO. Conclusion: The data suggest that the combination of ZnI with DMSO reduces fibrotic processes by increasing the degradation of collagen type I by up-regulating the activity of gelatinases. Thus, the combination of ZnI with DMSO might be considered for treatment of fibrotic disorders of the lung. DMSO supported the beneficial effects of ZnI.
Collapse
Affiliation(s)
- Michael Roth
- University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Bo Han
- Cordoba-Nimni Tissue Engineering and Drug Discovery Lab, Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Ba Xuan Hoang
- Cordoba-Nimni Tissue Engineering and Drug Discovery Lab, Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Lambers
- Department of Pneumology, Ordensklinikum Linz Elisabethinen, Fadingerstr. 1, 4020 Linz, Austria;
| |
Collapse
|
3
|
Fu Y, Liu T, He S, Zhang Y, Tan Y, Bai Y, Shi J, Deng W, Qiu J, Wang Z, Chen Y, Jin Q, Xie M, Wang J. Ursolic acid reduces oxidative stress injury to ameliorate experimental autoimmune myocarditis by activating Nrf2/HO-1 signaling pathway. Front Pharmacol 2023; 14:1189372. [PMID: 37547335 PMCID: PMC10403233 DOI: 10.3389/fphar.2023.1189372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Background: Oxidative stress is crucial in experimental autoimmune myocarditis (EAM)-induced inflammatory myocardial injury. Ursolic acid (UA) is an antioxidant-enriched traditional Chinese medicine formula. The present study aimed to investigate whether UA could alleviate inflammatory cardiac injury and determine the underlying mechanisms. Methods: Six-week-old male BALB/c mice were randomly assigned to one of the three groups: Sham, EAM group, or UA intervention group (UA group) by gavage for 2 weeks. An EAM model was developed by subcutaneous injection of α-myosin heavy chain derived polypeptide (α-MyHC peptide) into lymph nodes on days 0 and 7. Echocardiography was used to assess cardiac function on day 21. The inflammation level in the myocardial tissue of each group was compared using hematoxylin and eosin staining (HE) of heart sections and Interleukin-6 (IL-6) immunohistochemical staining. Masson staining revealed the degree of cardiac fibrosis. Furthermore, Dihydroethidium staining, Western blot, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to determine the mechanism of cardioprotective effects of UA on EAM-induced cardiac injury, and the level of IL-6, Nrf2, and HO-1. Results: In EAM mice, UA intervention significantly reduced the degree of inflammatory infiltration and myocardial fibrosis while improving cardiac function. Mechanistically, UA reduced myocardial injury by inhibiting oxidative stress (as demonstrated by a decrease of superoxide and normalization of pro- and antioxidant enzyme levels). Interestingly, UA intervention upregulated the expression of antioxidant factors such as Nrf2 and HO-1. In vitro experiments, specific Nrf2 inhibitors reversed the antioxidant and antiapoptotic effects of ursolic acid, which further suggested that the amelioration of EAM by UA was in a Nrf2/HO-1 pathway-dependent manner. Conclusion: These findings indicate that UA is a cardioprotective traditional Chinese medicine formula that reduces EAM-induced cardiac injury by up-regulating Nrf2/HO-1 expression and suppressing oxidative stress, making it a promising therapeutic strategy for the treatment of EAM.
Collapse
Affiliation(s)
- Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yichan Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuting Tan
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ying Bai
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiani Qiu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zhen Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
4
|
Zhu N, Huang B, Zhu L. Bibliometric analysis of the inflammation in diabetic cardiomyopathy. Front Cardiovasc Med 2022; 9:1006213. [PMID: 36582738 PMCID: PMC9792483 DOI: 10.3389/fcvm.2022.1006213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Maladaptive inflammation is implicated in the development of diabetic cardiomyopathy (DCM). This study aimed to visually analyze the global scientific output over the past two decades regarding research on inflammation associated with DCM. Methods All relevant articles and reviews were retrieved in the Web of Science (WOS) Core Collection (limited to SCIE) using "inflammation" and "diabetic cardiomyopathy" as search terms. Articles and reviews published from 1 January 2001 to 28 February 2021 were collected. Visualization analysis and statistical analysis were conducted by Microsoft 365 Excel and VOSviewer 1.6.18. Results A total of 578 documents were finally selected for further analysis. The publications regarding inflammation and DCM increased gradually over approximately 20 years. The most prolific country was China, with 296 documents and the most citations (9,366). The most influential author groups were Lu Cai and Yihui Tan who were from the United States. The bibliometric analysis of co-occurrence keywords showed that inflammation in DCM is composed of numerous molecules (NF-κB, NLRP3 inflammasome, Nrf-2, TNF-α, protein kinase C, PPARα, TLR4, p38 mitogen-activated protein kinase, TGF-β, Sirt1, and AKT), a variety of cardiac cell types (stem cell, fibroblast, and cardiomyocyte), physiological processes (apoptosis, oxidative stress, autophagy, endoplasmic reticulum stress, hypertrophy, mitochondrion dysfunction, and proliferation), and drugs (sulforaphane, metformin, empagliflozin, and rosuvastatin). Conclusion Our bibliometric analysis presents the characteristics and trends of inflammation in DCM and shows that research on inflammation in DCM will continue to be a hotspot.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University, Wenzhou People’s Hospital, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China,*Correspondence: Ning Zhu,
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuyan Zhu
- Department of General Practice, The Third Affiliated Hospital of Shanghai University, Wenzhou People’s Hospital, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Kaur S, Garg N, Rubal R, Dhiman M. Correlative study on heavy metal-induced oxidative stress and hypertension among the rural population of Malwa Region of Punjab, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90948-90963. [PMID: 35881282 DOI: 10.1007/s11356-022-20850-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal-induced toxicity contributes to the progression of various metabolic disorders and possible mechanisms involved in disease progression are not well established. In this study, the correlation of heavy metal exposure and hypertension have been demonstrated. The results showed that in hypertensive subjects, the lipid profiles (triglycerides, LDL-C, HDL-C, and total cholesterol) and cardiac markers (CK-MB and LDH) were altered abruptly. As a consequence of heavy- induced oxidative stress, the oxidants (TBARS and protein carbonyls) and antioxidants (SOD, GSH, and TAC) were significantly increased and decreased, respectively in hypertension subjects. The concentrations of heavy metals (Pb, Cd, and As) exceeded the permissible limits in hypertensive subjects. The Nrf-2 genotyping indicated that heavy metals may induce mutations at molecular level. The results of correlation analysis revealed that the heavy metals interact with cellular components and interfere with metabolic processes which then results in disturbed lipid profile, enhanced oxidative stress, and reduced antioxidant status. The current study systematically estimated the association of hair and nail heavy metal concentrations with hypertension among the population residing in the Malwa region of Punjab. The proposed study highlighted that heavy metals act as a silent risk factor in the hypertension progression in the population of Malwa region. Future studies are required to confirm current findings and further scrutinize the effect of heavy metals exposure in early adulthood, early, and late mid-life to develop metabolic complications such as hypertension.
Collapse
Affiliation(s)
- Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Neha Garg
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Rubal Rubal
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
6
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
7
|
Gaburjakova J, Gaburjakova M. The Cardiac Ryanodine Receptor Provides a Suitable Pathway for the Rapid Transport of Zinc (Zn2+). Cells 2022; 11:cells11050868. [PMID: 35269490 PMCID: PMC8909583 DOI: 10.3390/cells11050868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
The sarcoplasmic reticulum (SR) in cardiac muscle is suggested to act as a dynamic storage for Zn2+ release and reuptake, albeit it is primarily implicated in the Ca2+ signaling required for the cardiac cycle. A large Ca2+ release from the SR is mediated by the cardiac ryanodine receptor (RYR2), and while this has a prominent conductance for Ca2+ in vivo, it also conducts other divalent cations in vitro. Since Zn2+ and permeant Mg2+ have similar physical properties, we tested if the RYR2 channel also conducts Zn2+. Using the method of planar lipid membranes, we evidenced that the RYR2 channel is permeable to Zn2+ with a considerable conductance of 81.1 ± 2.4 pS, which was significantly lower than the values for Ca2+ (127.5 ± 1.8 pS) and Mg2+ (95.3 ± 1.4 pS), obtained under the same asymmetric conditions. Despite similar physical properties, the intrinsic Zn2+ permeability (PCa/PZn = 2.65 ± 0.19) was found to be ~2.3-fold lower than that of Mg2+ (PCa/PMg = 1.146 ± 0.071). Further, we assessed whether the channel itself could be a direct target of the Zn2+ current, having the Zn2+ finger extended into the cytosolic vestibular portion of the permeation pathway. We attempted to displace Zn2+ from the RYR2 Zn2+ finger to induce its structural defects, which are associated with RYR2 dysfunction. Zn2+ chelators were added to the channel cytosolic side or strongly competing cadmium cations (Cd2+) were allowed to permeate the RYR2 channel. Only the Cd2+ current was able to cause the decay of channel activity, presumably as a result of Zn2+ to Cd2+ replacement. Our findings suggest that the RYR2 channel can provide a suitable pathway for rapid Zn2+ escape from the cardiac SR; thus, the channel may play a role in local and/or global Zn2+ signaling in cardiomyocytes.
Collapse
|
8
|
MacKenzie S, Bergdahl A. Zinc Homeostasis in Diabetes Mellitus and Vascular Complications. Biomedicines 2022; 10:biomedicines10010139. [PMID: 35052818 PMCID: PMC8773686 DOI: 10.3390/biomedicines10010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress represents an impaired metabolic system that promotes damage to cells and tissues. This is the predominant factor that leads to the development and progression of diabetes and diabetic complications. Research has indicated that zinc plays a consequential mechanistic role in the protection against oxidative stress as zinc is required for the proper functioning of the antioxidant system, the suppression of inflammatory mediators, and the modulation of zinc transporters. Recently, the mechanisms surrounding ZnT8, ZIP7, and metallothionein have shown to be of particular pathogenic importance and are considered as potential therapeutic targets in disease management. The literature has shown that zinc dysregulation is associated with diabetes and may be considered as a leading contributor to the deleterious vascular alterations exhibited by the disease. Although further investigation is required, studies have indicated the favorable use of zinc supplementation in the protection against and prevention of oxidative stress and its consequences over the course of the condition. This review aims to provide a comprehensive account of zinc homeostasis, the oxidative mechanisms governed by zinc status, current therapeutic targets, and the impact of zinc supplementation in the prevention of disease onset and in mitigating vascular complications.
Collapse
|
9
|
Henze LA, Estepa M, Pieske B, Lang F, Eckardt KU, Alesutan I, Voelkl J. Zinc Ameliorates the Osteogenic Effects of High Glucose in Vascular Smooth Muscle Cells. Cells 2021; 10:cells10113083. [PMID: 34831306 PMCID: PMC8623153 DOI: 10.3390/cells10113083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
In diabetic patients, medial vascular calcification is common and associated with increased cardiovascular mortality. Excessive glucose concentrations can activate the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and trigger pro-calcific effects in vascular smooth muscle cells (VSMCs), which may actively augment vascular calcification. Zinc is able to mitigate phosphate-induced VSMC calcification. Reduced serum zinc levels have been reported in diabetes mellitus. Therefore, in this study the effects of zinc supplementation were investigated in primary human aortic VSMCs exposed to excessive glucose concentrations. Zinc treatment was found to abrogate the stimulating effects of high glucose on VSMC calcification. Furthermore, zinc was found to blunt the increased expression of osteogenic and chondrogenic markers in high glucose-treated VSMCs. High glucose exposure was shown to activate NF-kB in VSMCs, an effect that was blunted by additional zinc treatment. Zinc was further found to increase the expression of TNFα-induced protein 3 (TNFAIP3) in high glucose-treated VSMCs. The silencing of TNFAIP3 was shown to abolish the protective effects of zinc on high glucose-induced NF-kB-dependent transcriptional activation, osteogenic marker expression, and the calcification of VSMCs. Silencing of the zinc-sensing receptor G protein-coupled receptor 39 (GPR39) was shown to abolish zinc-induced TNFAIP3 expression and the effects of zinc on high glucose-induced osteogenic marker expression. These observations indicate that zinc may be a protective factor during vascular calcification in hyperglycemic conditions.
Collapse
Affiliation(s)
- Laura A. Henze
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.-U.E.); (J.V.)
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- Correspondence: ; Tel.: +43-732-2468-8990
| | - Jakob Voelkl
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.-U.E.); (J.V.)
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| |
Collapse
|
10
|
Parker AM, Tate M, Prakoso D, Deo M, Willis AM, Nash DM, Donner DG, Crawford S, Kiriazis H, Granata C, Coughlan MT, De Blasio MJ, Ritchie RH. Characterisation of the Myocardial Mitochondria Structural and Functional Phenotype in a Murine Model of Diabetic Cardiomyopathy. Front Physiol 2021; 12:672252. [PMID: 34539423 PMCID: PMC8442993 DOI: 10.3389/fphys.2021.672252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
People affected by diabetes are at an increased risk of developing heart failure than their non-diabetic counterparts, attributed in part to a distinct cardiac pathology termed diabetic cardiomyopathy. Mitochondrial dysfunction and excess reactive oxygen species (ROS) have been implicated in a range of diabetic complications and are a common feature of the diabetic heart. In this study, we sought to characterise impairments in mitochondrial structure and function in a recently described experimental mouse model of diabetic cardiomyopathy. Diabetes was induced in 6-week-old male FVB/N mice by the combination of three consecutive-daily injections of low-dose streptozotocin (STZ, each 55 mg/kg i.p.) and high-fat diet (42% fat from lipids) for 26 weeks. At study end, diabetic mice exhibited elevated blood glucose levels and impaired glucose tolerance, together with increases in both body weight gain and fat mass, replicating several aspects of human type 2 diabetes. The myocardial phenotype of diabetic mice included increased myocardial fibrosis and left ventricular (LV) diastolic dysfunction. Elevated LV superoxide levels were also evident. Diabetic mice exhibited a spectrum of LV mitochondrial changes, including decreased mitochondria area, increased levels of mitochondrial complex-III and complex-V protein abundance, and reduced complex-II oxygen consumption. In conclusion, these data suggest that the low-dose STZ-high fat experimental model replicates some of the mitochondrial changes seen in diabetes, and as such, this model may be useful to study treatments that target the mitochondria in diabetes.
Collapse
Affiliation(s)
- Alex M Parker
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Mitchel Tate
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Andrew M Willis
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - David M Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Daniel G Donner
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Cesare Granata
- Department of Diabetes, Monash University, Melbourne, VIC, Australia.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021; 9:701788. [PMID: 34307381 PMCID: PMC8299754 DOI: 10.3389/fcell.2021.701788] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD) attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent years, accumulating researches have suggested that ferroptosis may play a vital role in the development of diverse metabolic diseases, for example, diabetes and its complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and adrenal injury. However, the specific physiopathological mechanism and precise therapeutic effect is still not clear. In this review, we summarized recent advances about the development of ferroptosis, focused on its potential character as the therapeutic target in metabolic diseases, and put forward our insights on this topic, largely to offer some help to forecast further directions.
Collapse
Affiliation(s)
- Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Zhang B, Zhang CY, Zhang XL, Sun GB, Sun XB. Guan Xin Dan Shen formulation protects db/db mice against diabetic cardiomyopathy via activation of Nrf2 signaling. Mol Med Rep 2021; 24:531. [PMID: 34036388 PMCID: PMC8170264 DOI: 10.3892/mmr.2021.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Guan Xin Dan Shen formulation (GXDSF) is a widely used treatment for the management of coronary heart disease in China and is composed of three primary components: Dalbergiae odoriferae Lignum, Salviae miltiorrhizae Radix et Rhizoma and Panax notoginseng Radix et Rhizoma. However, the potential use of GXDSF for the management of diabetic cardiomyopathy (DCM) has not been previously assessed. The present study aimed to assess the effects of GXDSF on DCM, as well as the underlying mechanism. In the present study, db/db mice were used. Following treatment with GXDSF for 10 weeks, fasting blood glucose, insulin sensitivity, serum lipid levels and cardiac enzyme levels were detected. Cardiac pathological alterations and cardiac function were assessed by performing hematoxylin and eosin staining and echocardiograms, respectively. TUNEL assays were conducted to assess cardiomyocyte apoptosis. Additionally, reverse transcription‑quantitative PCR and western blotting were performed to evaluate the expression of apoptosis‑associated genes and proteins, respectively. In the model group, the db/db mice displayed obesity, hyperlipidemia and hyperglycemia, accompanied by noticeable myocardial hypertrophy and diastolic dysfunction. Following treatment with GXDSF for 10 weeks, serum triglyceride levels were lower and insulin sensitivity was enhanced in db/db mice compared with the model group, which indicated improvement in condition. Cardiac hypertrophy and dysfunction were also improved in db/db mice following treatment with GXDSF, resulting in significantly increased left ventricular ejection fraction and fractional shortening compared with the model group. Following treatment with metformin or GXDSF, model‑induced increases in levels of myocardial enzymes were decreased in the moderate and high dose groups. Moreover, the results indicated that, compared with the model group, GXDSF significantly inhibited cardiomyocyte apoptosis in diabetic heart tissues by increasing Bcl‑2 expression and decreasing the expression levels of Bax, cleaved caspase‑3 and cleaved caspase‑9. Mechanistically, GXDSF enhanced Akt phosphorylation, which upregulated antioxidant enzymes mediated by nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling. Collectively, the results of the present study indicated that GXDSF attenuated cardiac dysfunction and inhibited cardiomyocyte apoptosis in diabetic mice via activation of Akt/Nrf2 signaling. Therefore, GXDSF may serve as a potential therapeutic agent for the management of DCM.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Chen-Yang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Xue-Lian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| |
Collapse
|
13
|
Nogami M, Nishio T, Hoshi T, Toukairin Y, Arai T. Hyperketonemia as the diagnostic basis for hypothermia: An experimental study in diabetic and control mice. Leg Med (Tokyo) 2021; 52:101908. [PMID: 34062368 DOI: 10.1016/j.legalmed.2021.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
Hypothermia is an important cause of death in forensic pathology. For the forensic diagnosis of hypothermia, some reports point out the possibility that hypothermia without diabetes may cause ketoacidosis. In this study, we evaluated the diagnostic value of ketoacidosis in a murine model of hypothermia, using the cold stress at 4 °C for 3 or 5 hrs in genetically diabetic (BKS.Cg-+Leprdb/+Leprdb/J) mice, compared with control (BKS.Cg- Dock7m+/Dock7m+/J) mice. The core temperature decrease was larger in diabetic mice than in control mice. We observed a novel finding that ketoacidosis assessed by elevated serum 3-hydroxybutyrate (3HB) occurs in hypothermia both in diabetic and control mice. Diabetic mice showed a prominent elevation of serum 3HB under cold stress. The protein expressions of monocarboxylate cotransporter 1 (MCT1), the channel protein used for the uptake of 3HB in skeletal muscles, showed a statistically significant decrease under cold stress for 3 hrs in control mice, indicating that the serum 3HB increase may be partially due to the decrease in the cellular uptake through the channel protein. Our results suggest the usefulness of hyperketonemia for the diagnosis of hypothermia not only in diabetic but also in non-diabetic cases.
Collapse
Affiliation(s)
- Makoto Nogami
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Tadashi Nishio
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomoaki Hoshi
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoko Toukairin
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomomi Arai
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
14
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
15
|
Niderla-Bielińska J, Ścieżyńska A, Moskalik A, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M, Kiernozek E, Podgórska A, Ciszek B, Majchrzak B, Ratajska A. A Comprehensive miRNome Analysis of Macrophages Isolated from db/db Mice and Selected miRNAs Involved in Metabolic Syndrome-Associated Cardiac Remodeling. Int J Mol Sci 2021; 22:2197. [PMID: 33672153 PMCID: PMC7926522 DOI: 10.3390/ijms22042197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cardiac macrophages are known from various activities, therefore we presume that microRNAs (miRNAs) produced or released by macrophages in cardiac tissue have impact on myocardial remodeling in individuals with metabolic syndrome (MetS). We aim to assess the cardiac macrophage miRNA profile by selecting those miRNA molecules that potentially exhibit regulatory functions in MetS-related cardiac remodeling. Cardiac tissue macrophages from control and db/db mice (an animal model of MetS) were counted and sorted with flow cytometry, which yielded two populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Total RNA was then isolated, and miRNA expression profiles were evaluated with Next Generation Sequencing. We successfully sequenced 1400 miRNAs in both macrophage populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Among the 1400 miRNAs, about 150 showed different expression levels in control and db/db mice and between these two subpopulations. At least 15 miRNAs are possibly associated with MetS pathology in cardiac tissue due to direct or indirect regulation of the expression of miRNAs for proteins involved in angiogenesis, fibrosis, or inflammation. In this paper, for the first time we describe the miRNA transcription profile in two distinct macrophage populations in MetS-affected cardiac tissue. Although the results are preliminary, the presented data provide a foundation for further studies on intercellular cross-talk/molecular mechanism(s) involved in the regulation of MetS-related cardiac remodeling.
Collapse
Affiliation(s)
- Justyna Niderla-Bielińska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Moskalik
- Postgraduate School of Molecular Medicine, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Krzysztof Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
| | - Mateusz Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
- Department of History of Medicine, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Anna Podgórska
- Molecular Biology Laboratory, Department of Medical Biology, Cardinal Stefan Wyszyński Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Bogdan Ciszek
- Department of Clinical Anatomy, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Barbara Majchrzak
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Anna Ratajska
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| |
Collapse
|
16
|
Yu L, Liu Y, Jin Y, Liu T, Wang W, Lu X, Zhang C. Zinc Supplementation Prevented Type 2 Diabetes-Induced Liver Injury Mediated by the Nrf2-MT Antioxidative Pathway. J Diabetes Res 2021; 2021:6662418. [PMID: 34307690 PMCID: PMC8279848 DOI: 10.1155/2021/6662418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
Zinc is an essential trace element that is often reduced under the type 1 diabetic condition. Previous studies demonstrated that zinc deficiency enhanced type 1 diabetes-induced liver injury and that zinc supplementation significantly helped to prevent this. Due to the differences in pathogenesis between type 1 and type 2 diabetes, it is unknown whether zinc supplementation can induce a beneficial effect on type 2 diabetes-induced liver injury. This possible protective mechanism was investigated in the present study. A high-fat diet, along with a one-time dose of streptozotocin, was applied to metallothionein (MT) knockout mice, nuclear factor-erythroid 2-related factor (Nrf) 2 knockout mice, and age-matched wild-type (WT) control mice, in order to induce type 2 diabetes. This was followed by zinc treatment at 5 mg/kg body weight given every other day for 3 months. Global metabolic disorders of both glucose and lipids were unaffected by zinc supplementation. This induced preventive effects on conditions caused by type 2 diabetes like oxidative stress, apoptosis, the subsequent hepatic inflammatory response, fibrosis, hypertrophy, and hepatic dysfunction. Additionally, we also observed that type 2 diabetes reduced hepatic MT expression, while zinc supplementation induced hepatic MT expression. This is a crucial antioxidant. A mechanistic study showed that MT deficiency blocked zinc supplementation-induced hepatic protection under the condition of type 2 diabetes. This suggested that endogenous MT is involved in the hepatic protection of zinc supplementation in type 2 diabetic mice. Furthermore, zinc supplementation-induced hepatic MT increase was unobserved once Nrf2 was deficient, indicating that Nrf2 mediated the upregulation of hepatic MT in response to zinc supplementation. Results of this study indicated that zinc supplementation prevented type 2 diabetes-induced liver injury through the activation of the Nrf2-MT-mediated antioxidative pathway.
Collapse
Affiliation(s)
- Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yichun Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Tinghao Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenhan Wang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Félix LM, Luzio A, Antunes L, Coimbra AM, Valentim AM. Malformations and mortality in zebrafish early stages associated with elevated caspase activity after 24 h exposure to MS-222. Toxicol Appl Pharmacol 2020; 412:115385. [PMID: 33370555 DOI: 10.1016/j.taap.2020.115385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
Tricaine methanesulfonate (MS-222) is a commonly used anaesthetic agent for immobilization of aquatic species. However, delayed development and malformations have been observed in 24 hpf (hours post-fertilization) zebrafish embryos after long-term immobilization. Still, no comprehensive study has been described regarding zebrafish exposure to MS-222 during the first hours of development, which are one of the most sensitive life stages to toxicants. Therefore, this research aimed to assess the toxicity of a 24 h exposure to MS-222 on zebrafish embryonic development. Based on the MS-222 LC50, early blastula stage embryos (~2 hpf) were exposed to 0, 12.5, 25 and 50 mg L-1 for 24 h and then allowed to develop up to 144 hpf. The chromatographic analysis showed that this anaesthetic agent bioaccumulates in 26 hpf zebrafish larvae in a concentration-dependent manner. In addition, increased mortalities and skeletal abnormalities were observed at 144 hpf, namely in the highest tested concentration. Yet, no craniofacial anomalies were observed either by alcian blue or calcein staining methods. Independently of the tested concentration, decreased speed and distance travelled were perceived in 144 hpf larvae. At the biochemical level, decreased in vivo reactive oxygen species (ROS) generation and apoptosis was observed. Additionally, catalase activity was increased at 26 hpf while results of mRNA expression showed a decreased gclc transcript content at the same time-point. Overall, data obtained highlight the toxicological risk of MS-222 and support ROS-mediated cell death signalling changes through the elevation of catalase activity as an adaptative or protective response.
Collapse
Affiliation(s)
- Luís M Félix
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Laboratory Animal Science, IBMC - Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Valentim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Laboratory Animal Science, IBMC - Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
18
|
Barman S, Srinivasan K. Diabetes and zinc dyshomeostasis: Can zinc supplementation mitigate diabetic complications? Crit Rev Food Sci Nutr 2020; 62:1046-1061. [PMID: 33938330 DOI: 10.1080/10408398.2020.1833178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc present in the islet cells of the pancreas is crucial for the synthesis, storage, and secretion of insulin. The excretion of large amounts of zinc from the body is reported in diabetic situations. Zinc depletion and increased oxidative stress have a major impact on the pathogenesis of diabetic complications. It would be most relevant to ascertain if intervention with supplemental zinc compensating for its depletion would beneficially mitigate hyperglycemia and the attendant metabolic abnormalities, and secondary complications in diabetes. An exhaustive literature search on this issue indicates: (1) Concurrent hypozincemia and decreased tissue zinc stores in diabetes as a result of its increased urinary excretion and/or decreased intestinal absorption, (2) Several recent experimental studies have documented that supplemental zinc has a potential hypoglycemic effect in the diabetic situation, and also beneficially modulate the attendant metabolic abnormalities and compromised antioxidant status, and (3) Supplemental zinc also alleviates renal lesions, cataract and the risk of cardiovascular disease accompanying diabetes mellitus, and help restore gastrointestinal health in experimental diabetes. These studies have also attempted to identify the precise mechanisms responsible for zinc-mediated beneficial effects in diabetic situation. The evidence discussed in this review highlights that supplemental zinc may significantly contribute to its clinical application in the management of diabetic hyperglycemia and related metabolic abnormalities, and in the alleviation of secondary complications resulting from diabetic oxidative stress.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore, India
| | - Krishnapura Srinivasan
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
19
|
Ma W, Guo W, Shang F, Li Y, Li W, Liu J, Ma C, Teng J. Bakuchiol Alleviates Hyperglycemia-Induced Diabetic Cardiomyopathy by Reducing Myocardial Oxidative Stress via Activating the SIRT1/Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3732718. [PMID: 33062139 PMCID: PMC7545423 DOI: 10.1155/2020/3732718] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/03/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Bakuchiol (BAK), a monoterpene phenol reported to have exerted a variety of pharmacological effects, has been related to multiple diseases, including myocardial ischemia reperfusion injury, pressure overload-induced cardiac hypertrophy, diabetes, liver fibrosis, and cancer. However, the effects of BAK on hyperglycemia-caused diabetic cardiomyopathy and its underlying mechanisms remain unclear. In this study, streptozotocin-induced mouse model and high-glucose-treated cell model were conducted to investigate the protective roles of BAK on diabetic cardiomyopathy, in either the presence or absence of SIRT1-specific inhibitor EX527, SIRT1 siRNA, or Nrf2 siRNA. Our data demonstrated for the first time that BAK could significantly abate diabetic cardiomyopathy by alleviating the cardiac dysfunction, ameliorating the myocardial fibrosis, mitigating the cardiac hypertrophy, and reducing the cardiomyocyte apoptosis. Furthermore, BAK achieved its antifibrotic and antihypertrophic actions by inhibiting the TGF-β1/Smad3 pathway, as well as decreasing the expressions of fibrosis- and hypertrophy-related markers. Intriguingly, these above effects of BAK were largely attributed to the remarkable activation of SIRT1/Nrf2 signaling, which eventually strengthened cardiac antioxidative capacity by elevating the antioxidant production and reducing the reactive oxygen species generation. However, all the beneficial results were markedly abolished with the administration of EX527, SIRT1 siRNA, or Nrf2 siRNA. In summary, these novel findings indicate that BAK exhibits its therapeutic properties against hyperglycemia-caused diabetic cardiomyopathy by attenuating myocardial oxidative damage via activating the SIRT1/Nrf2 signaling.
Collapse
Affiliation(s)
- Wenshuai Ma
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wangang Guo
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Fujun Shang
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yan Li
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Li
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jing Liu
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Chao Ma
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jiwei Teng
- Department of Cardiology, Second Affiliated Hospital, The Air Force Medical University, 1 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
20
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
21
|
Schauer A, Draskowski R, Jannasch A, Kirchhoff V, Goto K, Männel A, Barthel P, Augstein A, Winzer E, Tugtekin M, Labeit S, Linke A, Adams V. ZSF1 rat as animal model for HFpEF: Development of reduced diastolic function and skeletal muscle dysfunction. ESC Heart Fail 2020; 7:2123-2134. [PMID: 32710530 PMCID: PMC7524062 DOI: 10.1002/ehf2.12915] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS The prevalence of heart failure with preserved ejection fraction (HFpEF) is still increasing, and so far, no pharmaceutical treatment has proven to be effective. A key obstacle for testing new pharmaceutical substances is the availability of suitable animal models for HFpEF, which realistically reflect the clinical picture. The aim of the present study was to characterize the development of HFpEF and skeletal muscle (SM) dysfunction in ZSF1 rats over time. METHODS AND RESULTS Echocardiography and functional analyses of the SM were performed in 6-, 10-, 15-, 20-, and 32-week-old ZSF1-lean and ZSF1-obese. Furthermore, myocardial and SM tissue was collected for molecular and histological analyses. HFpEF markers were evident as early as 10 weeks of age. Diastolic dysfunction, confirmed by a significant increase in E/e', was detectable at 10 weeks. Increased left ventricular mRNA expression of collagen and BNP was detected in ZSF1-obese animals as early as 15 and 20 weeks, respectively. The loss of muscle force was measurable in the extensor digitorum longus starting at 15 weeks, whereas the soleus muscle function was impaired at Week 32. In addition, at Week 20, markers for aortic valve sclerosis were increased. CONCLUSIONS Our measurements confirmed the appearance of HFpEF in ZSF1-obese rats as early as 10 weeks of age, most likely as a result of the pre-existing co-morbidities. In addition, SM function was reduced after the manifestation of HFpEF. In conclusion, the ZSF1 rat may serve as a suitable animal model to study pharmaceutical strategies for the treatment of HFpEF.
Collapse
Affiliation(s)
- Antje Schauer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Runa Draskowski
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Virginia Kirchhoff
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Keita Goto
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Anita Männel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Peggy Barthel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Antje Augstein
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Ephraim Winzer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemünd, Germany
| | - Axel Linke
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|
22
|
Roy B, Palaniyandi SS. Aldehyde dehydrogenase 2 inhibition potentiates 4-hydroxy-2-nonenal induced decrease in angiogenesis of coronary endothelial cells. Cell Biochem Funct 2020; 38:290-299. [PMID: 31943249 DOI: 10.1002/cbf.3468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 11/12/2022]
Abstract
Coronary endothelial cell (EC) dysfunction including defective angiogenesis is reported in cardiac diseases. 4-Hydroxynonenal (4HNE) is a lipid peroxidation product, which is increased in cardiac diseases and implicated in cellular toxicity. Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that metabolizes 4HNE and reduces 4HNE-mediated cytotoxicity. Thus, we hypothesize that ALDH2 inhibition potentiates 4HNE-mediated decrease in coronary EC angiogenesis in vitro. To test our hypothesis, first, we treated the cultured mouse coronary EC (MCEC) lines with 4HNE (25, 50, and 75 μM) for 2 and 4 hours. Next, we pharmacologically inhibited ALDH2 by disulfiram (DSF) (2.5 μM) before challenging the cells with 4HNE. In this study, we found that 4HNE attenuated tube formation which indicates decreased angiogenesis. Next, we found that 4HNE has significantly downregulated the expressions of vascular endothelial growth factor receptor (VEGFR) 2 (P < .05 for mRNA and P = .005 for protein), Sirtuin 1 (SIRT 1) (P < 0.0005 for mRNA), and Ets-related gene (ERG) (P < 0.0001 for mRNA and P < 0.005 for protein) in MCECs compared with control. ALDH 2 inhibition by DSF potentiated 4HNE-induced decrease in angiogenesis (P < 0.05 vs 4HNE at 2 h and P < 0.0005 vs 4HNE at 4 h) by decreasing the expressions of VEGFR2 (P < 0.005 for both mRNA and protein), SIRT 1 (P < 0.05), and ERG (P < 0.005) relative to 4HNE alone. Thus, we conclude that ALDH2 acts as a proangiogenic signaling molecule by alleviating the antiangiogenic effects of 4HNE in MCECs.
Collapse
Affiliation(s)
- Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
23
|
Ge T, Yu Y, Cui J, Cai L. The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad. Am J Physiol Heart Circ Physiol 2019; 317:H264-H275. [PMID: 31100011 DOI: 10.1152/ajpheart.00123.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is a metabolic disorder characterized by hyperglycemia, resulting in low-grade systemic inflammation. Diabetic cardiomyopathy (DCM) is a common complication among diabetic patients, and the mechanism underlying its induction of cardiac remodeling and dysfunction remains unclear. Numerous experimental and clinical studies have suggested that adaptive immunity, especially T lymphocyte-mediated immunity, plays a potentially important role in the pathogenesis of diabetes and DCM. Metallothioneins (MTs), cysteine-rich, metal-binding proteins, have antioxidant properties. Some potential mechanisms underlying the cardioprotective effects of MTs include the role of MTs in calcium regulation, zinc homeostasis, insulin sensitization, and antioxidant activity. Moreover, metal homeostasis, especially MT-regulated zinc homeostasis, is essential for immune function. This review discusses aberrant immune regulation in diabetic heart disease with respect to endothelial insulin resistance and the effects of hyperglycemia and hyperlipidemia on tissues and the different effects of intracellular and extracellular MTs on adaptive immunity. This review shows that intracellular MTs are involved in naïve T-cell activation and reduce regulatory T-cell (Treg) polarization, whereas extracellular MTs promote proliferation and survival in naïve T cells and Treg polarization but inhibit their activation, thus revealing potential therapeutic strategies targeting the regulation of immune cell function by MTs.
Collapse
Affiliation(s)
- Tingwen Ge
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky
| | - Youxi Yu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University , Changchun, Jilin , China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
24
|
da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves JV, Lobato NS, Tostes RC. Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Front Pharmacol 2019; 10:382. [PMID: 31031630 PMCID: PMC6473049 DOI: 10.3389/fphar.2019.00382] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Free radicals act as secondary messengers, modulating a number of important biological processes, including gene expression, ion mobilization in transport systems, protein interactions and enzymatic functions, cell growth, cell cycle, redox homeostasis, among others. In the cardiovascular system, the physiological generation of free radicals ensures the integrity and function of cardiomyocytes, endothelial cells, and adjacent smooth muscle cells. In physiological conditions, there is a balance between free radicals generation and the activity of enzymatic and non-enzymatic antioxidant systems. Redox imbalance, caused by increased free radical's production and/or reduced antioxidant defense, plays an important role in the development of cardiovascular diseases, contributing to cardiac hypertrophy and heart failure, endothelial dysfunction, hypertrophy and hypercontractility of vascular smooth muscle. Excessive production of oxidizing agents in detriment of antioxidant defenses in the cardiovascular system has been described in obesity, diabetes mellitus, hypertension, and atherosclerosis. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), a major regulator of antioxidant and cellular protective genes, is primarily activated in response to oxidative stress. Under physiological conditions, Nrf2 is constitutively expressed in the cytoplasm of cells and is usually associated with Keap-1, a repressor protein. This association maintains low levels of free Nrf2. Stressors, such as free radicals, favor the translocation of Nrf2 to the cell nucleus. The accumulation of nuclear Nrf2 allows the binding of this protein to the antioxidant response element of genes that code antioxidant proteins. Although little information on the role of Nrf2 in the cardiovascular system is available, growing evidence indicates that decreased Nrf2 activity contributes to oxidative stress, favoring the pathophysiology of cardiovascular disorders found in obesity, diabetes mellitus, and atherosclerosis. The present mini-review will provide a comprehensive overview of the role of Nrf2 as a contributing factor to cardiovascular risk in metabolic diseases.
Collapse
Affiliation(s)
- Rafael M da Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Josiane F Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Núbia S Lobato
- Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Zhu Y, Xu C, Zhang Y, Xie Z, Shu Y, Lu C, Mo X. Associations of trace elements in blood with the risk of isolated ventricular septum defects and abnormal cardiac structure in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10037-10043. [PMID: 30746621 DOI: 10.1007/s11356-019-04312-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
This study sought to determine correlations between the presence of isolated ventricular septum defects (VSDs) and blood levels of trace elements. A total of 144 patients with VSDs and 144 controls were recruited for cross-sectional assessment of trace elements and examination of cardiac structures in the Jiangsu and Anhui provinces between 2016 and 2018. Logistic regression was performed to explore the relationships between VSDs and trace elements. Additionally, general linear regression models were used to investigate relationships between trace elements and echocardiography indicators. Relative to the lowest zinc (Zn) concentrations, the highest Zn concentrations may be associated with lower odds of VSD development (OR = 0.03, 95% confidence interval [CI] = 0.01-0.29, P < 0.001). However, no significant relationships between the concentrations of other trace elements and the risk of VSD were identified. Aorta (AO) diameters were markedly smaller in the VSD group, whereas no significant between-group differences were observed for other echocardiography indicators. After adjusting for age and gender, linear regression indicated a significant association between Zn level and mean AO diameter (beta coefficient = 0.247, 95% CI = 0.126-0.367). Zn deficiency was observed in patients with isolated VSDs. Further work to explore the mechanisms by which Zn deficiency leads to VSDs is warranted.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Cheng Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yuxi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Zongyun Xie
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yaqin Shu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
26
|
Turan B. A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart. Biol Trace Elem Res 2019; 188:160-176. [PMID: 30091070 DOI: 10.1007/s12011-018-1464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Zinc (mostly as free/labile Zn2+) is an essential structural constituent of many proteins, including enzymes in cellular signaling pathways via functioning as an important signaling molecule in mammalian cells. In cardiomyocytes at resting condition, intracellular labile Zn2+ concentration ([Zn2+]i) is in the nanomolar range, whereas it can increase dramatically under pathological conditions, including hyperglycemia, but the mechanisms that affect its subcellular redistribution is not clear. Therefore, overall, very little is known about the precise mechanisms controlling the intracellular distribution of labile Zn2+, particularly via Zn2+ transporters during cardiac function under both physiological and pathophysiological conditions. Literature data demonstrated that [Zn2+]i homeostasis in mammalian cells is primarily coordinated by Zn2+ transporters classified as ZnTs (SLC30A) and ZIPs (SLC39A). To identify the molecular mechanisms of diverse functions of labile Zn2+ in the heart, the recent studies focused on the discovery of subcellular localization of these Zn2+ transporters in parallel to the discovery of novel physiological functions of [Zn2+]i in cardiomyocytes. The present review summarizes the current understanding of the role of [Zn2+]i changes in cardiomyocytes under pathological conditions, and under high [Zn2+]i and how Zn2+ transporters are important for its subcellular redistribution. The emerging importance and the promise of some Zn2+ transporters for targeted cardiac therapy against pathological stimuli are also provided. Taken together, the review clearly outlines cellular control of cytosolic Zn2+ signaling by Zn2+ transporters, the role of Zn2+ transporters in heart function under hyperglycemia, the role of Zn2+ under increased oxidative stress and ER stress, and their roles in cancer are discussed.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
27
|
Alex L, Russo I, Holoborodko V, Frangogiannis NG. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2018; 315:H934-H949. [PMID: 30004258 PMCID: PMC6230908 DOI: 10.1152/ajpheart.00238.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is caused, or exacerbated by, a wide range of extracardiac conditions. Diabetes, obesity, and metabolic dysfunction are associated with a unique HFpEF phenotype, characterized by inflammation, cardiac fibrosis, and microvascular dysfunction. Development of new therapies for HFpEF is hampered by the absence of reliable animal models. The leptin-resistant db/ db mouse has been extensively studied as a model of diabetes-associated cardiomyopathy; however, data on the functional and morphological alterations in db/ db hearts are conflicting. In the present study, we report a systematic characterization of the cardiac phenotype in db/ db mice, focusing on the time course of functional and histopathological alterations and on the identification of sex-specific cellular events. Although both male and female db/ db mice developed severe obesity, increased adiposity, and hyperglycemia, female mice had more impressive weight gain and exhibited a modest but significant increase in blood pressure. db/ db mice had hypertrophic ventricular remodeling and diastolic dysfunction with preserved ejection fraction; the increase in left ventricular mass was accentuated in female mice. Histological analysis showed that both male and female db/ db mice had cardiomyocyte hypertrophy and interstitial fibrosis, associated with marked thickening of the perimysial collagen, and expansion of the periarteriolar collagen network, in the absence of replacement fibrosis. In vivo and in vitro experiments showed that fibrotic changes in db/ db hearts were associated with increased collagen synthesis by cardiac fibroblasts, in the absence of periostin, α-smooth muscle actin, or fibroblast activation protein overexpression. Male db/ db mice exhibited microvascular rarefaction. In conclusion, the db/ db mouse model recapitulates functional and histological features of human HFpEF associated with metabolic dysfunction. Development of fibrosis in db/ db hearts, in the absence of myofibroblast conversion, suggests that metabolic dysfunction may activate an alternative profibrotic pathway associated with accentuated extracellular matrix protein synthesis. NEW & NOTEWORTHY We provide a systematic analysis of the sex-specific functional and structural myocardial alterations in db/ db mice. Obese diabetic C57BL6J db/ db mice exhibit diastolic dysfunction with preserved ejection fraction, associated with cardiomyocyte hypertrophy, interstitial/perivascular fibrosis, and microvascular rarefaction, thus recapitulating aspects of human obesity-related heart failure with preserved ejection fraction. Myocardial fibrosis in db/ db mice is associated with a matrix-producing fibroblast phenotype, in the absence of myofibroblast conversion, suggesting an alternative mechanism of activation.
Collapse
MESH Headings
- Adiposity
- Animals
- Cardiomyopathies/etiology
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cardiomyopathies/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Echocardiography, Doppler
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Extracellular Matrix Proteins/metabolism
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Humans
- Hypertension/etiology
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Obese
- Myocardium/metabolism
- Myocardium/pathology
- Obesity/complications
- Obesity/genetics
- Obesity/physiopathology
- Sex Factors
- Stroke Volume
- Time Factors
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Linda Alex
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Ilaria Russo
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Volodymir Holoborodko
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
28
|
Sun W, Yang J, Wang W, Hou J, Cheng Y, Fu Y, Xu Z, Cai L. The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J Trace Elem Med Biol 2018; 46:117-127. [PMID: 29413101 DOI: 10.1016/j.jtemb.2017.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Zinc is one of the essential trace elements and participates in numerous physiological processes. Abnormalities in zinc homeostasis often result in the pathogenesis of various chronic metabolic disorders, such as diabetes and its complications. Zinc has insulin-mimetic and anti-diabetic effects and deficiency has been shown to aggravate diabetes-induced oxidative stress and tissue injury in diabetic rodent models and human subjects with diabetes. Akt signaling pathway plays a central role in insulin-stimulated glucose metabolism and cell survival. Anti-diabetic effects of zinc are largely dependent on the activation of Akt signaling. Zn is also an inducer of metallothionein that plays important role in anti-oxidative stress and damage. However, the exact molecular mechanisms underlying zinc-induced activation of Akt signaling pathway remains to be elucidated. This review summarizes the recent advances in deciphering the possible mechanisms of zinc on Akt-mediated insulin and cell survival signaling pathways in diabetes conditions. Insights into the effects of zinc on epigenetic regulation and autophagy in diabetic nephropathy are also discussed in the latter part of this review.
Collapse
Affiliation(s)
- Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Jiaxing Yang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Jie Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yaowen Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
29
|
Hu X, Rajesh M, Zhang J, Zhou S, Wang S, Sun J, Tan Y, Zheng Y, Cai L. Protection by dimethyl fumarate against diabetic cardiomyopathy in type 1 diabetic mice likely via activation of nuclear factor erythroid-2 related factor 2. Toxicol Lett 2018; 287:131-141. [PMID: 29408448 DOI: 10.1016/j.toxlet.2018.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 12/01/2022]
Abstract
Oxidative stress and inflammation play key roles in the development of diabetic cardiomyopathy (DCM). Dimethyl fumarate (DMF), an FDA approved medicine for relapsing multiple sclerosis, has manifested its antioxidant and anti-inflammatory function mostly in the central nervous system. In this study, we investigated whether DMF could attenuate the development of DCM. Type 1 diabetes mouse model was established using multiple low-dose streptozotocin, and the diabetic mice were treated with DMF (10 mg/kg body weight) for 3 months. Cardiac functions were determined using echocardiography. Oxidative stress, pro-inflammatory cytokines and pro-fibrotic markers were determined with commercially available kits, real-time quantitative PCR or western blot techniques. DCM was characterized by diminished cardiac function, accompanied by oxidative stress and enhanced expression of pro-inflammatory cytokines. Diabetic cardiac tissue exhibited marked fibrosis, revealed by extracellular matrix deposition as determined by Sirius red staining of the myocardial tissues. Furthermore, Nrf2 and its downstream effectors were repressed in diabetic myocardium. On the contrary, diabetic animals treated with DMF exhibited blunted oxidative stress, inflammation, fibrosis and this correlated with Nrf2 activation. Our findings suggest that DMF could potentially thwart diabetes-induced myocardial tissue injury, likely via activation of Nrf2 function, providing firm impetus for future repurposing of DMF in the management of DCM.
Collapse
Affiliation(s)
- Xinyue Hu
- Cardiovascular Center of the First Hospital of Jilin University, Chang Chun, Jilin, 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, 40202, United States
| | - Mohanraj Rajesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, 17666, United Arab Emirates.
| | - Jian Zhang
- Cardiovascular Center of the First Hospital of Jilin University, Chang Chun, Jilin, 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, 40202, United States
| | - Shanshan Zhou
- Cardiovascular Center of the First Hospital of Jilin University, Chang Chun, Jilin, 130021, China
| | - Shudong Wang
- Cardiovascular Center of the First Hospital of Jilin University, Chang Chun, Jilin, 130021, China
| | - Jian Sun
- Cardiovascular Center of the First Hospital of Jilin University, Chang Chun, Jilin, 130021, China
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, 40202, United States
| | - Yang Zheng
- Cardiovascular Center of the First Hospital of Jilin University, Chang Chun, Jilin, 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, 40202, United States
| |
Collapse
|
30
|
Turan B, Tuncay E. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology. Int J Mol Sci 2017; 18:ijms18112395. [PMID: 29137144 PMCID: PMC5713363 DOI: 10.3390/ijms18112395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.
| |
Collapse
|
31
|
Giacconi R, Cai L, Costarelli L, Cardelli M, Malavolta M, Piacenza F, Provinciali M. Implications of impaired zinc homeostasis in diabetic cardiomyopathy and nephropathy. Biofactors 2017; 43:770-784. [PMID: 28845600 DOI: 10.1002/biof.1386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
Abstract
Impaired zinc homeostasis is observed in diabetes mellitus (DM2) and its complications. Zinc has a specific role in pancreatic β-cells via insulin synthesis, storage, and secretion. Intracellular zinc homeostasis is tightly controlled by zinc transporters (ZnT and Zip families) and metallothioneins (MT) which modulate the uptake, storage, and distribution of zinc. Several investigations in animal models demonstrate the protective role of MT in DM2 and its cardiovascular or renal complications, while a copious literature shows that a common polymorphism (R325W) in ZnT8, which affects the protein's zinc transport activity, is associated with increased DM2 risk. Emerging studies highlight a role of other zinc transporters in β-cell function, suggesting that targeting them could make a possible contribution in managing the hyperglycemia in diabetic patients. This article summarizes the current findings concerning the role of zinc homeostasis in DM2 pathogenesis and development of diabetic cardiomyopathy and nephropathy and suggests novel therapeutic targets. © 2017 BioFactors, 43(6):770-784, 2017.
Collapse
Affiliation(s)
- Robertina Giacconi
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Lu Cai
- Pediatric Research Institute at the Department of Pediatrics, Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| | - Laura Costarelli
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Francesco Piacenza
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| |
Collapse
|