1
|
Feng Y, Cheng L, Zhou W, Lu J, Huang H. Metabolic Syndrome and the Risk of Alzheimer's Disease: A Meta-Analysis. Metab Syndr Relat Disord 2025; 23:30-40. [PMID: 39558765 DOI: 10.1089/met.2024.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Purpose: The relationship between metabolic syndrome (MetS) and the risk of Alzheimer's disease (AD) remains unclear. This meta-analysis aims to clarify the prospective association between MetS and AD risk and to explore how individual MetS components contribute to this relationship. Methods: Comprehensive searches of MEDLINE, Web of Science, and Embase were conducted up to April 12, 2024. Relevant prospective cohort studies were included. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to assess the associations. A random-effects model was used to incorporate the potential impact of heterogeneity. Findings: Six prospective cohort studies with seven datasets, including 484,994 participants and a follow-up of 3.5 to 13.0 years, were included. The pooled analysis showed no significant association between MetS and AD risk (HR: 0.96, 95% CI: 0.89-1.04, P = 0.37; I2 = 0%). Sensitivity and subgroup analyses confirmed these findings. Individual MetS components exhibited varied effects as follows: abdominal obesity was linked to a reduced AD risk (Risk ratio (RR): 0.70, 95% CI: 0.56-0.88, P = 0.002), whereas high blood pressure (BP) (RR: 1.15, 95% CI: 1.04-1.27, P = 0.007) and hyperglycemia (RR: 1.24, 95% CI: 1.08-1.42, P = 0.002) were associated with an increased risk. Low high-density lipoprotein cholesterol and high triglycerides showed no significant associations. Conclusions: This meta-analysis found no significant overall association between MetS and AD risk. However, specific MetS components, such as abdominal obesity, high BP, and hyperglycemia, may influence AD risk differently.
Collapse
Affiliation(s)
- Yanqiong Feng
- Department of Medical Services, Shanghai Civil Affairs Second Mental Health Center, Shanghai, China
| | - Lili Cheng
- Department of General Practice, Community Health Service Center, Shanghai, China
| | - Weiying Zhou
- Department of General Practice, Shanghai Pudong New Area Zhuqiao Community Health Service Center, Shanghai, China
| | - Jiru Lu
- Department of Medical Services, Shanghai Civil Affairs Second Mental Health Center, Shanghai, China
| | - Huiyu Huang
- Department of Psychological Rehabilitation, Shanghai Nanhui Mental Health Center, Shanghai, China
| |
Collapse
|
2
|
Li Y, Zhang W, Zhang Q, Li Y, Xin C, Tu R, Yan H. Oxidative stress of mitophagy in neurodegenerative diseases: Mechanism and potential therapeutic targets. Arch Biochem Biophys 2025; 764:110283. [PMID: 39743032 DOI: 10.1016/j.abb.2024.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/28/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Neurodegenerative diseases are now significant chronic progressive neurological conditions that affect individuals' physical health. Oxidative stress is crucial in the development of these diseases. Among the various neurodegenerative diseases, mitochondrial damage has become a major factor in oxidative stress and disease advancement. During this process, oxidative stress and mitophagy plays an important role. In this paper, we introduced the role of mitophagy and oxidative stress in detail, and expounded the relationship between them. In addition, we summarized the pathogenesis of some neurodegenerative diseases and the mechanism of three antioxidants. The former includes AD, PD, HD and ALS, while the latter includes carnosine, adiponectin and resveratrol. Provide goals and directions for further research and treatment of neurodegenerative diseases. This review summarizes the impact of oxidative stress on neurodegenerative diseases by regulating mitophagy, provides a deeper understanding of their pathological mechanisms, and suggests potential new therapeutic targets.
Collapse
Affiliation(s)
- Yixin Li
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Wanying Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qihang Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yunzhe Li
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Chonghui Xin
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Rongze Tu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
3
|
Daraban BS, Popa AS, Stan MS. Latest Perspectives on Alzheimer's Disease Treatment: The Role of Blood-Brain Barrier and Antioxidant-Based Drug Delivery Systems. Molecules 2024; 29:4056. [PMID: 39274904 PMCID: PMC11397357 DOI: 10.3390/molecules29174056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
There has been a growing interest recently in exploring the role of the blood-brain barrier (BBB) in the treatment of Alzheimer's disease (AD), a neurodegenerative disorder characterized by cognitive decline and memory loss that affects millions of people worldwide. Research has shown that the BBB plays a crucial role in regulating the entry of therapeutics into the brain. Also, the potential benefits of using antioxidant molecules for drug delivery were highlighted in Alzheimer's treatment to enhance the therapeutic efficacy and reduce oxidative stress in affected patients. Antioxidant-based nanomedicine shows promise for treating AD by effectively crossing the BBB and targeting neuroinflammation, potentially slowing disease progression and improving cognitive function. Therefore, new drug delivery systems are being developed to overcome the BBB and improve the delivery of therapeutics to the brain, ultimately improving treatment outcomes for AD patients. In this context, the present review provides an in-depth analysis of recent advancements in AD treatment strategies, such as silica nanoparticles loaded with curcumin, selenium nanoparticles loaded with resveratrol, and many others, focusing on the critical role of the BBB and the use of antioxidant-based drug delivery systems.
Collapse
Affiliation(s)
- Bianca Sânziana Daraban
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Andrei Sabin Popa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Zheng J, Zhang W, Xu R, Liu L. The role of adiponectin and its receptor signaling in ocular inflammation-associated diseases. Biochem Biophys Res Commun 2024; 717:150041. [PMID: 38710142 DOI: 10.1016/j.bbrc.2024.150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Ng RCL, Jian M, Ma OKF, Xiang AW, Bunting M, Kwan JSC, Wong CWK, Yick LW, Chung SK, Lam KSL, Alexander IE, Xu A, Chan KH. Liver-specific adiponectin gene therapy suppresses microglial NLRP3-inflammasome activation for treating Alzheimer's disease. J Neuroinflammation 2024; 21:77. [PMID: 38539253 PMCID: PMC10967198 DOI: 10.1186/s12974-024-03066-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/17/2024] [Indexed: 01/05/2025] Open
Abstract
Adiponectin (APN) is an adipokine which predominantly expresses in adipocytes with neuroprotective and anti-inflammatory effects. We have recently indicated that circulatory trimeric APN can enter the brain by crossing the blood-brain barrier (BBB) and modulate microglia-mediated neuroinflammation. Here, we found that the microglial NLR family pyrin domain containing 3 (NLRP3)-inflammasome activation was exacerbated in APN-/-5xFAD mice in age-dependent manner. The focus of this study was to develop a new and tractable therapeutic approach for treating Alzheimer's disease (AD)-related pathology in 5xFAD mice using peripheral APN gene therapy. We have generated and transduced adeno-associated virus (AAV2/8) expressing the mouse mutated APN gene (APNC39S) into the liver of 5xFAD mice that generated only low-molecular-weight trimeric APN (APNTri). Single dose of AAV2/8-APNC39S in the liver increased circulatory and cerebral APN levels indicating the overexpressed APNTri was able to cross the BBB. Overexpression of APNTri decreased both the soluble and fibrillar Aβ in the brains of 5xFAD mice. AAV2/8-APNTri treatment reduced Aβ-induced IL-1β and IL-18 secretion by suppressing microglial NLRP3-inflammasome activation. The memory functions improved significantly in AAV-APNTri-treated 5xFAD mice with reduction of dystrophic neurites. These findings demonstrate that peripheral gene delivery to overexpress trimeric APN can be a potential therapy for AD.
Collapse
Affiliation(s)
- Roy Chun-Laam Ng
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Min Jian
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Oscar Ka-Fai Ma
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ariya Weiman Xiang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Myriam Bunting
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jason Shing-Cheong Kwan
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Curtis Wai-Kin Wong
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leung-Wah Yick
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery at Macau University of Science and Technology, Taipa, Macao, China
| | - Karen Siu-Ling Lam
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ian E Alexander
- Gene Therapy Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute and Sydney Children's Hospitals Network, The University of Sydney, Westmead, NSW, Australia
| | - Aimin Xu
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Koon-Ho Chan
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong, Special Administrative Region, China.
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
6
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
7
|
Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, Andreo-Lopez J, Sanchez-Varo R, Garrido-Sánchez L, Gómez-Mediavilla Á, López MG, Garcia-Caballero M, Gutierrez A, Baglietto-Vargas D. Adipose tissue as a therapeutic target for vascular damage in Alzheimer's disease. Br J Pharmacol 2024; 181:840-878. [PMID: 37706346 DOI: 10.1111/bph.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Miriam Bettinetti-Luque
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Laura Trujillo-Estrada
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- Unidad de Gestión Clínica Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana Andreo-Lopez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raquel Sanchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Ángela Gómez-Mediavilla
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Melissa Garcia-Caballero
- Departamento de Biología Molecular y Bioquímica, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutierrez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Baglietto-Vargas
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Ali M, Kamran M, Talha M, Shad MU. Adiponectin blood levels and autism spectrum disorders: a systematic review. BMC Psychiatry 2024; 24:88. [PMID: 38297246 PMCID: PMC10832114 DOI: 10.1186/s12888-024-05529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE To review the relationship between adiponectin levels and autism spectrum disorders (ASDs) in children. BACKGROUND ASDs are associated with pervasive social interaction and communication abnormalities. Researchers have studied various pathophysiological mechanisms underlying ASDs to identify predictors for an early diagnosis to optimize treatment outcomes. Immune dysfunction, perhaps mediated by a decrease in anti-inflammatory adipokine, adiponectin, along with changes in other adipokines, may play a central role in increasing the risk for ASDs. However, other factors, such as low maternal vitamin D levels, atherosclerosis, diabetes, obesity, cardio-metabolic diseases, preterm delivery, and oxytocin gene polymorphism may also contribute to increased risk for ASDs. METHODS Searches on the database; PubMed, Google Scholar, and Cochrane using keywords; adiponectin, adipokines, ASD, autism, autistic disorder, included English-language studies published till September 2022. Data were extracted on mean differences between adiponectin levels in children with and without ASDs. RESULTS The search yielded six studies providing data on adiponectin levels in young patients with ASDs. As can be seen from Table 1, four of the six studies were positive for an inverse correlation between ASD and adiponectin levels. In addition, two of the four positive and one negative studies found low adiponectin levels associated with and the severity of autistic symptoms. However, results from one reviewed study were insignificant. CONCLUSION Most studies reviewed yielded lower adiponectin levels in children with ASDs as well as the severity of autistic symptoms.
Collapse
Affiliation(s)
- Mohsan Ali
- King Edward Medical University, Lahore, Pakistan.
| | - Maha Kamran
- King Edward Medical University, Lahore, Pakistan
| | - Muhammad Talha
- Combined Military Hospital Lahore Medical college and institute of Dentistry, Lahore, Pakistan
| | - Mujeeb U Shad
- University of Nevada, Las Vegas, NV, USA
- Touro University Nevada College of Osteopathic Medicine, Las Vegas, NV, USA
- The Valley Health System, Las Vegas, NV, USA
| |
Collapse
|
9
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Huber K, Szerenos E, Lewandowski D, Toczylowski K, Sulik A. The Role of Adipokines in the Pathologies of the Central Nervous System. Int J Mol Sci 2023; 24:14684. [PMID: 37834128 PMCID: PMC10572192 DOI: 10.3390/ijms241914684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Adipokines are protein hormones secreted by adipose tissue in response to disruptions in physiological homeostasis within the body's systems. The regulatory functions of adipokines within the central nervous system (CNS) are multifaceted and intricate, and they have been identified in a number of pathologies. Therefore, specific adipokines have the potential to be used as biomarkers for screening purposes in neurological dysfunctions. The systematic review presented herein focuses on the analysis of the functions of various adipokines in the pathogenesis of CNS diseases. Thirteen proteins were selected for analysis through scientific databases. It was found that these proteins can be identified within the cerebrospinal fluid either by their ability to modify their molecular complex and cross the blood-brain barrier or by being endogenously produced within the CNS itself. As a result, this can correlate with their measurability during pathological processes, including Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, depression, or brain tumors.
Collapse
Affiliation(s)
| | | | | | - Kacper Toczylowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland
| | | |
Collapse
|
11
|
Bayat Z, Damirchi A, Hasannejad-Bibalan M, Babaei P. Concurrent high-intensity interval training and probiotic supplementation improve associative memory via increase in insulin sensitivity in ovariectomized rats. BMC Complement Med Ther 2023; 23:262. [PMID: 37488554 PMCID: PMC10364354 DOI: 10.1186/s12906-023-04097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVES Metabolic syndrome (MetS) is a serious concern among postmenopausal women which predisposes them to cardiovascular and cognitive disorders. Healthful diet and exercise training have been essential strategies to prevent the progress of MetS. The aim of this study was to evaluate the effect of supplementation with a native potential probiotic and high-intensity interval training (HIIT) for 8 weeks on retention of associative memory in rats with ovariectomy- induced metabolic syndrome. METHOD Thirty-two female ovariectomized Wistar rats were divided into four groups (n = 8/group): Control (OVX + Veh), exercise (OVX + Exe), probiotic (OVX + Pro), exercise with probiotic (OVX + Exe + Pro). One sham surgery group was included as a control group. Animals received 8 weeks interventions, and then were tested in a step through passive avoidance learning and memory paradigm, to assess long term memory. Then serum levels of adiponectin, insulin and glucose were measured by ELISA and colorimetry respectively. Data were analyzed by Kruskal-Wallis, Mann-Whitney and also One-way analysis of variance (ANOVA). RESULTS Eight weeks of HIIT and probiotic supplementation caused an increase in step through latency and shortening of total time spent in the dark compartment in OVX + Exe + Pro group compared with OVX + Veh group. Also significant increase in serum adiponectin levels, in parallel with a reduction in glucose, insulin and HOMA-IR were achieved by the group of OVX + Exe + Pro. CONCLUSION The present study indicates that HIIT combined with probiotics supplementation for 8 weeks effectively improves associative memory in MetS model of rats partly via improving insulin sensitivity and adiponectin level.
Collapse
Affiliation(s)
- Zeinab Bayat
- Department of exercise physiology, Faculty of Physical Education &sport sciences, The University of Guilan, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Damirchi
- Department of exercise physiology, Faculty of Physical Education &sport sciences, The University of Guilan, Rasht, Iran
| | | | - Parvin Babaei
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Neuroscience Research center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
12
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Hakami ZH, Khamjan NA, Saad HM, Batiha GES, De Waard M. A Potential Link Between Visceral Obesity and Risk of Alzheimer's Disease. Neurochem Res 2023; 48:745-766. [PMID: 36409447 DOI: 10.1007/s11064-022-03817-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia characterized by the deposition of amyloid beta (Aβ) plaques and tau-neurofibrillary tangles in the brain. Visceral obesity (VO) is usually associated with low-grade inflammation due to higher expression of pro-inflammatory cytokines by adipose tissue. The objective of the present review was to evaluate the potential link between VO and the development of AD. Tissue hypoxia in obesity promotes tissue injury, production of adipocytokines, and release of pro-inflammatory cytokines leading to an oxidative-inflammatory loop with induction of insulin resistance. Importantly, brain insulin signaling is involved in the pathogenesis of AD and lower cognitive function. Obesity and enlargement of visceral adipose tissue are associated with the deposition of Aβ. All of this is consonant with VO increasing the risk of AD through the dysregulation of adipocytokines which affect the development of AD. The activated nuclear factor kappa B (NF-κB) pathway in VO might be a potential link in the development of AD. Likewise, the higher concentration of advanced glycation end-products in VO could be implicated in the pathogenesis of AD. Taken together, different inflammatory signaling pathways are activated in VO that all have a negative impact on the cognitive function and progression of AD except hypoxia-inducible factor 1 which has beneficial and neuroprotective effects in mitigating the progression of AD. In addition, VO-mediated hypoadiponectinemia and leptin resistance may promote the progression of Aβ formation and tau phosphorylation with the development of AD. In conclusion, VO-induced AD is mainly mediated through the induction of oxidative stress, inflammatory changes, leptin resistance, and hypoadiponectinemia that collectively trigger Aβ formation and neuroinflammation. Thus, early recognition of VO by visceral adiposity index with appropriate management could be a preventive measure against the development of AD in patients with VO.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120, Saint-Egrève, France.,L'institut du thorax, INSERM, CNRS, UNIV NANTES, 44007, Nantes, France.,LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
13
|
Ma OKF, Ronsisvalle S, Basile L, Xiang AW, Tomasella C, Sipala F, Pappalardo M, Chan KH, Milardi D, Ng RCL, Guccione S. Identification of a novel adiponectin receptor and opioid receptor dual acting agonist as a potential treatment for diabetic neuropathy. Biomed Pharmacother 2023; 158:114141. [PMID: 36542987 DOI: 10.1016/j.biopha.2022.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetic neuropathy (DN) is a long-term complication of diabetes mellitus, affecting different periphery nerve systems including sensory and motor neurons. Hyperglycemia is the major cause of DN with symptoms such as weakness of balance or coordination, insensitivity to sensation, weakness of the muscles as well as numbness and pain in limbs Analgesic drug such as opioids can be effective to relief neuropathy pain but there is no effective treatment. Adiponectin is an anti-diabetic adipokine, which possesses insulin-sensitizing and neuroprotective effects. In this project, we aim to identify an agent which is dual acting to opioid and adiponectin receptors. Within a virtual screening repositioning campaign, a large collection of compounds with different structures comprehensive of adipoRon-like piperidine derivatives was screened by docking. Recently developed opioid receptor benzomorphanic agonists finally emerged as good ligands to adiponectin receptors showing some 2D and 3D structural similarities with AdipoRon. Particularly, we have identified (+)-MML1017, which has high affinity to the same binding domain of AdipoR1 and AdipoR2 as AdipoRon. Our western blot results indicate (+)-MML1017 activates AMPK phosphorylation through both adipoR1 and adipoR2 in neuronal cell line. Moreover, pretreatment of (+)-MML1017 can improve the cell viability with motor neurons under hyperglycermic conditions. The (+)-MML1017 also activates μ-opioid receptor cells in a concentration-dependent manner. Our study identified a novel compound having dual activity on opioid receptors and adiponectin receptors that may have analgesic effects and neuroprotective effects to treat diabetic neuropathy.
Collapse
Affiliation(s)
- Oscar Ka-Fai Ma
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Simone Ronsisvalle
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Livia Basile
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Ariya Weiman Xiang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Cristina Tomasella
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Federica Sipala
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Matteo Pappalardo
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Koon-Ho Chan
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Danilo Milardi
- CNR (National Research Council of Italy) - Institute of Crystallography, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Roy Chun-Laam Ng
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Salvatore Guccione
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy.
| |
Collapse
|
14
|
D’Ambrosio C, Cigliano L, Mazzoli A, Matuozzo M, Nazzaro M, Scaloni A, Iossa S, Spagnuolo MS. Fructose Diet-Associated Molecular Alterations in Hypothalamus of Adolescent Rats: A Proteomic Approach. Nutrients 2023; 15:nu15020475. [PMID: 36678346 PMCID: PMC9862284 DOI: 10.3390/nu15020475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The enhanced consumption of fructose as added sugar represents a major health concern. Due to the complexity and multiplicity of hypothalamic functions, we aim to point out early molecular alterations triggered by a sugar-rich diet throughout adolescence, and to verify their persistence until the young adulthood phase. METHODS Thirty days old rats received a high-fructose or control diet for 3 weeks. At the end of the experimental period, treated animals were switched to the control diet for further 3 weeks, and then analyzed in comparison with those that were fed the control diet for the entire experimental period. RESULTS Quantitative proteomics identified 19 differentially represented proteins, between control and fructose-fed groups, belonging to intermediate filament cytoskeleton, neurofilament, pore complex and mitochondrial respiratory chain complexes. Western blotting analysis confirmed proteomic data, evidencing a decreased abundance of mitochondrial respiratory complexes and voltage-dependent anion channel 1, the coregulator of mitochondrial biogenesis PGC-1α, and the protein subunit of neurofilaments α-internexin in fructose-fed rats. Diet-associated hypothalamic inflammation was also detected. Finally, the amount of brain-derived neurotrophic factor and its high-affinity receptor TrkB, as well as of synaptophysin, synaptotagmin, and post-synaptic protein PSD-95 was reduced in sugar-fed rats. Notably, deregulated levels of all proteins were fully rescued after switching to the control diet. CONCLUSIONS A short-term fructose-rich diet in adolescent rats induces hypothalamic inflammation and highly affects mitochondrial and cytoskeletal compartments, as well as the level of specific markers of brain function; above-reported effects are reverted after switching animals to the control diet.
Collapse
Affiliation(s)
- Chiara D’Ambrosio
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Monica Matuozzo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Martina Nazzaro
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
- Correspondence:
| |
Collapse
|
15
|
Dezonne RS, Pereira CM, de Moraes Martins CJ, de Abreu VG, Francischetti EA. Adiponectin, the adiponectin paradox, and Alzheimer's Disease: Is this association biologically plausible? Metab Brain Dis 2023; 38:109-121. [PMID: 35921057 DOI: 10.1007/s11011-022-01064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023]
Abstract
Dementia, especially Alzheimer's Disease (AD) and vascular dementia, is a major public health problem that continues to expand in both economically emerging and hegemonic countries. In 2017, the World Alzheimer Report estimated that over 50 million people were living with dementia globally. Metabolic dysfunctions of brain structures such as the hippocampus and cerebral cortex have been implicated as risk factors for dementia. Several well-defined metabolic risk factors for AD include visceral obesity, chronic inflammation, peripheral and brain insulin resistance, type 2 diabetes mellitus (T2DM), hypercholesterolemia, and others. In this review, we describe the relationship between the dysmetabolic mechanisms, although still unknown, and dementia, particularly AD. Adiponectin (ADPN), the most abundant circulating adipocytokine, acts as a protagonist in the metabolic dysfunction associated with AD, with unexpected and intriguing dual biological functions. This contradictory role of ADPN has been termed the adiponectin paradox. Some evidence suggests that the adiponectin paradox is important in amyloidogenic evolvability in AD. We present cumulative evidence showing that AD and T2DM share many common features. We also review the mechanistic pathways involving brain insulin resistance. We discuss the importance of the evolvability of amyloidogenic proteins (APs), defined as the capacity of a system for adaptive evolution. Finally, we describe potential therapeutic strategies in AD, based on the adiponectin paradox.
Collapse
Affiliation(s)
- Rômulo Sperduto Dezonne
- Neuropathology and Molecular Genetics Laboratory, State Institute of the Brain Paulo Niemeyer, State Health Department, Rio de Janeiro, Brazil
| | | | - Cyro José de Moraes Martins
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Virgínia Genelhu de Abreu
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Emilio Antonio Francischetti
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Huang X, Wang YJ, Xiang Y. Bidirectional communication between brain and visceral white adipose tissue: Its potential impact on Alzheimer's disease. EBioMedicine 2022; 84:104263. [PMID: 36122553 PMCID: PMC9490488 DOI: 10.1016/j.ebiom.2022.104263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A variety of axes between brain and abdominal organs have been reported, but the interaction between brain and visceral white adipose tissue (vWAT) remains unclear. In this review, we summarized human studies on the association between brain and vWAT, and generalized their interaction and the underlying mechanisms according to animal and cell experiments. On that basis, we come up with the concept of the brain-vWAT axis (BVA). Furthermore, we analyzed the potential mechanisms of involvement of BVA in the pathogenesis of Alzheimer's disease (AD), including vWAT-derived fatty acids, immunological properties of vWAT, vWAT-derived retinoic acid and vWAT-regulated insulin resistance. The proposal of BVA may expand our understanding to some extent of how the vWAT impacts on brain health and diseases, and provide a novel approach to study the pathogenesis and treatment strategies of neurodegenerative disorders.
Collapse
|
17
|
AdipoRon induces AMPK activation and ameliorates Alzheimer's like pathologies and associated cognitive impairment in APP/PS1 mice. Neurobiol Dis 2022; 174:105876. [PMID: 36162737 DOI: 10.1016/j.nbd.2022.105876] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive devastating neurodegenerative disorder characterized by extracellular amyloid beta (Aβ42) plaque formation, hyperphosphorylation of tau protein leading to intracellular neurofibrillary tangle formation. Recently discovered hallmark features responsible for AD pathogenesis are neuronal insulin resistance, dysregulation in adiponectin and AMPK signaling. The presence of adiponectin and its receptor in the brain with its unique anti-diabetic effects and association with neurodegenerative diseases has raised our interest in exploring orally active small molecule adiponectin receptor agonist, AdipoRon. To date, all the available drugs for the treatment of AD provides symptomatic relief and do not stall the progression of the disease. Indeed, it is becoming increasingly apparent to find appropriate targets. Here, we attempt to shed lights on adiponectin receptor agonist, AdipoRon and its downstream molecular targets in reducing disease pathogenesis and insulin resistance. In brain, AdipoRon induced AMPK activation, increased insulin sensitivity, reduced amyloid beta plaque deposition and improved cognitive impairment. Levels of BACE were also downregulated while LDLR, APOE and neprilysin were upregulated promoting amyloid beta clearance from brain. AdipoRon further reduced the chronic inflammatory marker, GFAP and improved synaptic markers PSD-95 and synaptophysin in APP/PS1 mice. Our in-vitro studies further confirmed the potential role of AdipoRon in improving insulin sensitivity by increasing GLUT 4 translocation, glucose uptake and insulin signaling under hyperinsulinemic condition. Our findings suggest that AdipoRon could be a promising lead in the future treatment strategies in the development of effective AD treatment.
Collapse
|
18
|
Mehkri Y, McDonald B, Sriram S, Reddy R, Kounelis-Wuillaume S, Roberts JA, Lucke-Wold B. Recent Treatment Strategies in Alzheimer's Disease and Chronic Traumatic Encephalopathy. BIOMEDICAL RESEARCH AND CLINICAL REVIEWS 2022; 7:128. [PMID: 36743825 PMCID: PMC9897211 DOI: 10.31579/2692-9406/128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurotrauma has been well linked to the progression of neurodegenerative disease. Much work has been done characterizing chronic traumatic encephalopathy, but less has been done regarding the contribution to Alzheimer's Disease. This review focuses on AD and its association with neurotrauma. Emerging clinical trials are discussed as well as novel mechanisms. We then address how some of these mechanisms are shared with CTE and emerging pre-clinical studies. This paper is a user-friendly resource that summarizes the emerging findings and proposes further investigation into key areas of interest. It is intended to serve as a catalyst for both research teams and clinicians in the quest to improve effective treatment and diagnostic options.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville
| | | | - Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville
| | - Ramya Reddy
- Department of Neurosurgery, University of Florida, Gainesville
| | | | | | | |
Collapse
|
19
|
Yuan Q, Wu Y, Wang G, Zhou X, Dong X, Lou Z, Li S, Wang D. Preventive effects of arctigenin from Arctium lappa L against LPS-induced neuroinflammation and cognitive impairments in mice. Metab Brain Dis 2022; 37:2039-2052. [PMID: 35731324 DOI: 10.1007/s11011-022-01031-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 01/19/2023]
Abstract
Arctigenin (Arc) is a phenylpropanoid dibenzylbutyrolactone lignan in Arctium lappa L, which has been widely applied as a traditional Chinese herbal medicine for treating inflammation. In the present study, we explored the neuroprotective effect and the potential mechanisms of arctigenin against LPS-evoked neuroinflammation, neurodegeneration, and memory impairments in the mice hippocampus. Daily administration of arctigenin (50 mg/kg per day, i.g.) for 28 days revealed noticeable improvements in spatial learning and memory deficits after exposure to LPS treatment. Arctigenin prevented LPS-induced neuronal/synaptic injury and inhibited the increases in Abeta (Aβ) generation and the levels of amyloid precursor protein (APP) and β-site amyloid precursor protein cleavage enzyme 1 (BACE1). Moreover, arctigenin treatment also suppressed glial activation and reduced the production of proinflammatory cytokines. In LPS-treated BV-2 microglial cells and mice, activation of the TLR4 mediated NF-κB signaling pathway was significantly suppressed by arctigenin administration. Mechanistically, arctigenin reduced the LPS-induced interaction of adiponectin receptor 1 (AdipoR1) with TLR4 and its coreceptor CD14 and inhibited the TLR4-mediated downstream inflammatory response. The outcomes of the current study indicate that arctigenin mitigates LPS-induced apoptotic neurodegeneration, amyloidogenesis and neuroinflammation as well as cognitive impairments, and suggest that arctigenin may be a potential therapeutic candidate for neuroinflammation/neurodegeneration-related diseases.
Collapse
Affiliation(s)
- Quan Yuan
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Yiran Wu
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Gang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Xiang Zhou
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Xiaohui Dong
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Zihan Lou
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Sanqiang Li
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China.
| |
Collapse
|
20
|
A review of glucoregulatory hormones potentially applicable to the treatment of Alzheimer’s disease: mechanism and brain delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Hypoglycemia, Vascular Disease and Cognitive Dysfunction in Diabetes: Insights from Text Mining-Based Reconstruction and Bioinformatics Analysis of the Gene Networks. Int J Mol Sci 2021; 22:ijms222212419. [PMID: 34830301 PMCID: PMC8620086 DOI: 10.3390/ijms222212419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Hypoglycemia has been recognized as a risk factor for diabetic vascular complications and cognitive decline, but the molecular mechanisms of the effect of hypoglycemia on target organs are not fully understood. In this work, gene networks of hypoglycemia and cardiovascular disease, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, cognitive decline, and Alzheimer's disease were reconstructed using ANDSystem, a text-mining-based tool. The gene network of hypoglycemia included 141 genes and 2467 interactions. Enrichment analysis of Gene Ontology (GO) biological processes showed that the regulation of insulin secretion, glucose homeostasis, apoptosis, nitric oxide biosynthesis, and cell signaling are significantly enriched for hypoglycemia. Among the network hubs, INS, IL6, LEP, TNF, IL1B, EGFR, and FOS had the highest betweenness centrality, while GPR142, MBOAT4, SLC5A4, IGFBP6, PPY, G6PC1, SLC2A2, GYS2, GCGR, and AQP7 demonstrated the highest cross-talk specificity. Hypoglycemia-related genes were overrepresented in the gene networks of diabetic complications and comorbidity; moreover, 14 genes were mutual for all studied disorders. Eleven GO biological processes (glucose homeostasis, nitric oxide biosynthesis, smooth muscle cell proliferation, ERK1 and ERK2 cascade, etc.) were overrepresented in all reconstructed networks. The obtained results expand our understanding of the molecular mechanisms underlying the deteriorating effects of hypoglycemia in diabetes-associated vascular disease and cognitive dysfunction.
Collapse
|
22
|
Lopez-Vilaret KM, Cantero JL, Fernandez-Alvarez M, Calero M, Calero O, Lindín M, Zurrón M, Díaz F, Atienza M. Impaired glucose metabolism reduces the neuroprotective action of adipocytokines in cognitively normal older adults with insulin resistance. Aging (Albany NY) 2021; 13:23936-23952. [PMID: 34731089 PMCID: PMC8610113 DOI: 10.18632/aging.203668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022]
Abstract
Evidence suggests that aging-related dysfunctions of adipose tissue and metabolic disturbances increase the risk of diabetes and metabolic syndrome (MtbS), eventually leading to cognitive impairment and dementia. However, the neuroprotective role of adipocytokines in this process has not been specifically investigated. The present study aims to identify metabolic alterations that may prevent adipocytokines from exerting their neuroprotective action in normal ageing. We hypothesize that neuroprotection may occur under insulin resistance (IR) conditions as long as there are no other metabolic alterations that indirectly impair the action of adipocytokines, such as hyperglycemia. This hypothesis was tested in 239 cognitively normal older adults (149 females) aged 52 to 87 years (67.4 ± 5.9 yr). We assessed whether the homeostasis model assessment-estimated insulin resistance (HOMA-IR) and the presence of different components of MtbS moderated the association of plasma adipocytokines (i.e., adiponectin, leptin and the adiponectin to leptin [Ad/L] ratio) with cognitive functioning and cortical thickness. The results showed that HOMA-IR, circulating triglyceride and glucose levels moderated the neuroprotective effect of adipocytokines. In particular, elevated triglyceride levels reduced the beneficial effect of Ad/L ratio on cognitive functioning in insulin-sensitive individuals; whereas under high IR conditions, it was elevated glucose levels that weakened the association of the Ad/L ratio with cognitive functioning and with cortical thickness of prefrontal regions. Taken together, these findings suggest that the neuroprotective action of adipocytokines is conditioned not only by whether cognitively normal older adults are insulin-sensitive or not, but also by the circulating levels of triglycerides and glucose, respectively.
Collapse
Affiliation(s)
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Miguel Calero
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.,Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Calero
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.,Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Lindín
- Cognitive Neuroscience Laboratory, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Montserrat Zurrón
- Cognitive Neuroscience Laboratory, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Díaz
- Cognitive Neuroscience Laboratory, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
23
|
Samant NP, Gupta GL. Adiponectin: a potential target for obesity-associated Alzheimer's disease. Metab Brain Dis 2021; 36:1565-1572. [PMID: 34047927 DOI: 10.1007/s11011-021-00756-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022]
Abstract
Obesity and dementia are two growing problems worldwide. Obesity act as a crucial risk factor for various diseases including Alzheimer's disease (AD). Several preclinical studies showed that middle-age obesity can be act as a possible feature of mild cognitive impairment in later years. Some studies have also demonstrated that a high-fat diet causes AD pathology, including extracellular amyloid-beta accumulation, hyperphosphorylation of tau, and cognition impairment. The correlation and molecular mechanism related to obesity-associated AD needs to be better evaluated. Presently, obesity results in an altered expression of several hormones, growth factors, and adipokines. Multiple signaling pathways such as leptin, insulin, adiponectin, and glutamate are involved to regulate vital functions in the brain and act as neuroprotective mediators for AD in a normal state. In obesity, altered adiponectin (APN) level and its associated downstream pathway could result in multiple signaling pathway disruption. Presently, Adiponectin and its inducers or agonist are considered as potential therapeutics for obesity-associated AD. This review mainly focuses on the pleiotropic effects of adiponectin and its potential to treat obesity-associated AD.
Collapse
Affiliation(s)
- Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur Campus, Shirpur, 425 405, Maharashtra, India.
| |
Collapse
|
24
|
Joung KE, Rifas-Shiman SL, Oken E, Mantzoros CS. Maternal Midpregnancy Leptin and Adiponectin Levels as Predictors of Autism Spectrum Disorders: A Prenatal Cohort Study. J Clin Endocrinol Metab 2021; 106:e4118-e4127. [PMID: 34050756 PMCID: PMC8475238 DOI: 10.1210/clinem/dgab378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 01/03/2023]
Abstract
CONTEXT Autism spectrum disorders (ASDs) are a group of conditions characterized by impaired social function and repetitive behaviors. Their etiology is largely unknown. OBJECTIVE This work aims to examine the associations of maternal second-trimester and cord blood leptin and adiponectin levels with ASDs in offspring. METHODS We used data from 1164 mother-child pairs enrolled in Project Viva, a prospective prebirth cohort. We used logistic regression analysis to examine the associations of leptin and adiponectin levels in maternal second-trimester blood and cord blood obtained at birth with ASDs. Additionally, we examined the association of maternal prepregnancy body mass index (BMI) as an exposure. Main outcome measures included doctor-diagnosed ASDs reported by mothers using questionnaires in midchildhood and early adolescence. RESULTS The cumulative incidence of ASDs was 3.4%. Maternal prepregnancy BMI (per 5 points) was positively associated with ASDs in a logistic regression model adjusted for maternal race/ethnicity, education, smoking status and child sex (adjusted odds ratio [OR] 1.38; 95% CI, 1.06-1.79). Higher second-trimester adiponectin was associated with lower odds of ASD in offspring (unadjusted OR 0.49; 95% CI, 0.30-0.78; and OR 0.54; 95% CI, 0.32-0.91 after adjusting for maternal race/ethnicity, education, child sex, OR 0.55; 95% CI, 0.33-0.93 after adjusting for BMI, gestational weight gain, gestational diabetes, and smoking status). Maternal leptin and cord blood leptin and adiponectin levels were not associated with ASDs. CONCLUSION Prepregnancy BMI and adiponectin during pregnancy may be useful as a tool to monitor the risk of autism. Increasing adiponectin levels prenatally may play a role in the prevention of ASDs.
Collapse
Affiliation(s)
- Kyoung Eun Joung
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts 02215, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts 02215, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; USA
| | - Christos S Mantzoros
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
- Department of Medicine, Boston VA Healthcare System, Jamaica Plain, Massachusetts 02130, USA
| |
Collapse
|
25
|
Yuan Y, Li C, Guo S, Sun C, Ning N, Hao H, Wang L, Bian Y, Liu H, Wang X. Adiponectin improves amyloid-β 31-35-induced circadian rhythm disorder in mice. J Cell Mol Med 2021; 25:9851-9862. [PMID: 34523794 PMCID: PMC8505833 DOI: 10.1111/jcmm.16932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipocyte‐derived hormone, which is closely associated with the development of Alzheimer's disease (AD) and has potential preventive and therapeutic significance. In the present study, we explored the relationship between adiponectin and circadian rhythm disorder in AD, the effect of adiponectin on the abnormal expression of Bmal1 mRNA/protein induced by amyloid‐β protein 31‐35 (Aβ31‐35), and the underlying mechanism of action. We found that adiponectin‐knockout mice exhibited amyloid‐β deposition, circadian rhythm disorders and abnormal expression of Bmal1. Adiponectin ameliorated the abnormal expression of the Bmal1 mRNA/protein caused by Aβ31‐35 by inhibiting the activity of glycogen synthase kinase 3β (GSK3β). These results suggest that adiponectin deficiency could induce circadian rhythm disorders and abnormal expression of the Bmal1 mRNA/protein, whilst exogenous administration of adiponectin may improve Aβ31‐35‐induced abnormal expression of Bmal1 by inhibiting the activity of GSK3β, thus providing a novel idea for the treatment of AD.
Collapse
Affiliation(s)
- Yuan Yuan
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Chen Li
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Shuai Guo
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Cong Sun
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Na Ning
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Haihu Hao
- Department of Orthopedics, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Li Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China.,Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Department of Pathology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
26
|
Rojas M, Chávez-Castillo M, Pirela D, Parra H, Nava M, Chacín M, Angarita L, Añez R, Salazar J, Ortiz R, Durán Agüero S, Gravini-Donado M, Bermúdez V, Díaz-Camargo E. Metabolic Syndrome: Is It Time to Add the Central Nervous System? Nutrients 2021; 13:nu13072254. [PMID: 34208833 PMCID: PMC8308252 DOI: 10.3390/nu13072254] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic syndrome (MS) is a set of cardio-metabolic risk factors that includes central obesity, hyperglycemia, hypertension, and dyslipidemias. The syndrome affects 25% of adults worldwide. The definition of MS has evolved over the last 80 years, with various classification systems and criteria, whose limitations and benefits are currently the subject of some controversy. Likewise, hypotheses regarding the etiology of MS add more confusion from clinical and epidemiological points of view. The leading suggestion for the pathophysiology of MS is insulin resistance (IR). IR can affect multiple tissues and organs, from the classic “triumvirate” (myocyte, adipocyte, and hepatocyte) to possible effects on organs considered more recently, such as the central nervous system (CNS). Mild cognitive impairment (MCI) and Alzheimer’s disease (AD) may be clinical expressions of CNS involvement. However, the association between MCI and MS is not understood. The bidirectional relationship that seems to exist between these factors raises the questions of which phenomenon occurs first and whether MCI can be a precursor of MS. This review explores shared pathophysiological mechanisms between MCI and MS and establishes a hypothesis of a possible MCI role in the development of IR and the appearance of MS.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | | | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 08002, Colombia;
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andrés Bello, Sede Concepción 4260000, Chile;
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | - Rina Ortiz
- Posgrado, Carrera de Medicina, Universidad Católica de Cuenca, Cantón de Cuenca 010101, Ecuador;
| | - Samuel Durán Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile;
| | - Marbel Gravini-Donado
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| | - Valmore Bermúdez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia;
| | - Edgar Díaz-Camargo
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia;
- Correspondence:
| |
Collapse
|
27
|
Signoriello E, Mallardo M, Nigro E, Polito R, Casertano S, Di Pietro A, Coletta M, Monaco ML, Rossi F, Lus G, Daniele A. Adiponectin in Cerebrospinal Fluid from Patients Affected by Multiple Sclerosis Is Correlated with the Progression and Severity of Disease. Mol Neurobiol 2021; 58:2663-2670. [PMID: 33486671 PMCID: PMC8128828 DOI: 10.1007/s12035-021-02287-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Adiponectin exerts relevant actions in immunity and is modulated in several disorders, such as multiple sclerosis (MS). In this study, we characterized adiponectin expression and profiles in cerebrospinal fluid (CSF) from MS patients to investigate its potential relationship with the severity and progression of the disease. Total adiponectin in CSF was measured by ELISA in 66 unrelated CSF MS patients and compared with 24 age- and sex-matched controls. Adiponectin oligomer profiles were analysed by Western blotting and FPLC chromatography. Total CSF adiponectin was significantly increased in MS patients compared with controls (9.91 ng/mL vs 6.02 ng/mL) (p < 0.001). Interestingly, CSF adiponectin positively correlated with CSF IgG, and CSF/serum albumin directly correlated with CSF/serum adiponectin. Our data demonstrated that CSF adiponectin predicts a worse prognosis: patients with the progressive form of MS had higher levels compared with the relapsing remitting form; patients with higher EDSS at baseline and a higher MS severity score at 4.5-year follow-up had significantly elevated adiponectin levels with respect to patients with a less severe phenotype. Finally, the adiponectin oligomerization profile was altered in CSF from MS patients, with a significant increase in HMW and MMW. The correlation of CSF adiponectin with the severity and prognosis of MS disease confirmed the role of this adipokine in the inflammatory/immune processes of MS and suggested its use as a complementary tool to assess the severity, progression and prognosis of the disease. Further studies on larger MS cohorts are needed to clarify the contribution of adiponectin to the etiopathogenesis of MS.
Collapse
Affiliation(s)
- Elisabetta Signoriello
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Marta Mallardo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli", Via G. Vivaldi 42, 81100, Caserta, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli", Via G. Vivaldi 42, 81100, Caserta, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy
| | - Rita Polito
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli "Federico II", via Pansini 5, 80145, Naples, Italy
| | - Sara Casertano
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Andrea Di Pietro
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Marcella Coletta
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | | | - Fabiana Rossi
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Giacomo Lus
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli", Via G. Vivaldi 42, 81100, Caserta, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy.
| |
Collapse
|
28
|
Li X, Tian Y, Yang YX, Ma YH, Shen XN, Chen SD, Dong Q, Tan L, Yu JT. Life Course Adiposity and Alzheimer's Disease: A Mendelian Randomization Study. J Alzheimers Dis 2021; 82:503-512. [PMID: 34057091 DOI: 10.3233/jad-210345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Several studies showed that life course adiposity was associated with Alzheimer's disease (AD). However, the underlying causality remains unclear. OBJECTIVE We aimed to examine the causal relationship between life course adiposity and AD using Mendelian randomization (MR) analysis. METHODS Instrumental variants were obtained from large genome-wide association studies (GWAS) for life course adiposity, including birth weight (BW), childhood body mass index (BMI), adult BMI, waist circumference (WC), waist-to-hip ratio (WHR), and body fat percentage (BFP). A meta-analysis of GWAS for AD including 71,880 cases and 383,378 controls was used in this study. MR analyses were performed using inverse variance weighted (IVW), weighted median, and MR-Egger regression methods. We calculated odds ratios (ORs) per genetically predicted standard deviation (1-SD) unit increase in each trait for AD. RESULTS Genetically predicted 1-SD increase in adult BMI was significantly associated with higher risk of AD (IVW: OR = 1.03, 95% confidence interval [CI] = 1.01-1.05, p = 2.7×10-3) after Bonferroni correction. The weighted median method indicated a significant association between BW and AD (OR = 0.94, 95% CI = 0.90-0.98, p = 1.8×10-3). We also found suggestive associations of AD with WC (IVW: OR = 1.03, 95% CI = 1.00-1.07, p = 0.048) and WHR (weighted median: OR = 1.04, 95% CI = 1.00-1.07, p = 0.029). No association was detected of AD with childhood BMI and BFP. CONCLUSION Our study demonstrated that lower BW and higher adult BMI had causal effects on increased AD risk.
Collapse
Affiliation(s)
- Xian Li
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Yan Tian
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Ali T, Rehman SU, Khan A, Badshah H, Abid NB, Kim MW, Jo MH, Chung SS, Lee HG, Rutten BPF, Kim MO. Adiponectin-mimetic novel nonapeptide rescues aberrant neuronal metabolic-associated memory deficits in Alzheimer's disease. Mol Neurodegener 2021; 16:23. [PMID: 33849621 PMCID: PMC8042910 DOI: 10.1186/s13024-021-00445-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Recently, we and other researchers reported that brain metabolic disorders are implicated in Alzheimer’s disease (AD), a progressive, devastating and incurable neurodegenerative disease. Hence, novel therapeutic approaches are urgently needed to explore potential and novel therapeutic targets/agents for the treatment of AD. The neuronal adiponectin receptor 1 (AdipoR1) is an emerging potential target for intervention in metabolic-associated AD. We aimed to validate this hypothesis and explore in-depth the therapeutic effects of an osmotin-derived adiponectin-mimetic novel nonapeptide (Os-pep) on metabolic-associated AD. Methods We used an Os-pep dosage regimen (5 μg/g, i.p., on alternating days for 45 days) for APP/PS1 in amyloid β oligomer-injected, transgenic adiponectin knockout (Adipo−/−) and AdipoR1 knockdown mice. After behavioral studies, brain tissues were subjected to biochemical and immunohistochemical analyses. In separate cohorts of mice, electrophysiolocal and Golgi staining experiments were performed. To validate the in vivo studies, we used human APP Swedish (swe)/Indiana (ind)-overexpressing neuroblastoma SH-SY5Y cells, which were subjected to knockdown of AdipoR1 and APMK with siRNAs, treated with Os-pep and other conditions as per the mechanistic approach, and we proceeded to perform further biochemical analyses. Results Our in vitro and in vivo results show that Os-pep has good safety and neuroprotection profiles and crosses the blood-brain barrier. We found reduced levels of neuronal AdipoR1 in human AD brain tissue. Os-pep stimulates AdipoR1 and its downstream target, AMP-activated protein kinase (AMPK) signaling, in AD and Adipo−/− mice. Mechanistically, in all of the in vivo and in vitro studies, Os-pep rescued aberrant neuronal metabolism by reducing neuronal insulin resistance and activated downstream insulin signaling through regulation of AdipoR1/AMPK signaling to consequently improve the memory functions of the AD and Adipo−/− mice, which was associated with improved synaptic function and long-term potentiation via an AdipoR1-dependent mechanism. Conclusion Our findings show that Os-pep activates AdipoR1/AMPK signaling and regulates neuronal insulin resistance and insulin signaling, which subsequently rescues memory deficits in AD and adiponectin-deficient models. Taken together, the results indicate that Os-pep, as an adiponectin-mimetic novel nonapeptide, is a valuable and promising potential therapeutic candidate to treat aberrant brain metabolism associated with AD and other neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00445-4.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Amjad Khan
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Haroon Badshah
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Noman Bin Abid
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Woo Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeung Hoon Jo
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung Soo Chung
- Department of Physiology, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas at San Antonio, San Antonio, USA
| | - Bart P F Rutten
- Translational Neuroscience and Psychiatry, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
30
|
Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021; 13:nu13041180. [PMID: 33918360 PMCID: PMC8066826 DOI: 10.3390/nu13041180] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Adiponectin (a protein consisting of 244 amino acids and characterized by a molecular weight of 28 kDa) is a cytokine that is secreted from adipose tissues (adipokine). Available evidence suggests that adiponectin is involved in a variety of physiological functions, molecular and cellular events, including lipid metabolism, energy regulation, immune response and inflammation, and insulin sensitivity. It has a protective effect on neurons and neural stem cells. Adiponectin levels have been reported to be negatively correlated with cancer, cardiovascular disease, and diabetes, and shown to be affected (i.e., significantly increased) by proper healthy nutrition. The present review comprehensively overviews the role of adiponectin in a range of diseases, showing that it can be used as a biomarker for diagnosing these disorders as well as a target for monitoring the effectiveness of preventive and treatment interventions.
Collapse
|
31
|
McCarty MF, DiNicolantonio JJ, Lerner A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer's Pathogenesis-And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int J Mol Sci 2021; 22:2140. [PMID: 33669995 PMCID: PMC7926325 DOI: 10.3390/ijms22042140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and increased cytoplasmic calcium are key mediators of the detrimental effects on neuronal function and survival in Alzheimer's disease (AD). Pathways whereby these perturbations arise, and then prevent dendritic spine formation, promote tau hyperphosphorylation, further amplify amyloid β generation, and induce neuronal apoptosis, are described. A comprehensive program of nutraceutical supplementation, comprised of the NADPH oxidase inhibitor phycocyanobilin, phase two inducers, the mitochondrial antioxidant astaxanthin, and the glutathione precursor N-acetylcysteine, may have important potential for antagonizing the toxic effects of amyloid β on neurons and thereby aiding prevention of AD. Moreover, nutraceutical antioxidant strategies may oppose the adverse impact of amyloid β oligomers on astrocyte clearance of glutamate, and on the ability of brain capillaries to export amyloid β monomers/oligomers from the brain. Antioxidants, docosahexaenoic acid (DHA), and vitamin D, have potential for suppressing microglial production of interleukin-1β, which potentiates the neurotoxicity of amyloid β. Epidemiology suggests that a health-promoting lifestyle, incorporating a prudent diet, regular vigorous exercise, and other feasible measures, can cut the high risk for AD among the elderly by up to 60%. Conceivably, complementing such lifestyle measures with long-term adherence to the sort of nutraceutical regimen outlined here may drive down risk for AD even further.
Collapse
Affiliation(s)
| | | | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel
| |
Collapse
|
32
|
Uddin MS, Rahman MM, Sufian MA, Jeandet P, Ashraf GM, Bin-Jumah MN, Mousa SA, Abdel-Daim MM, Akhtar MF, Saleem A, Amran MS. Exploring the New Horizon of AdipoQ in Obesity-Related Alzheimer's Dementia. Front Physiol 2021; 11:567678. [PMID: 33584324 PMCID: PMC7873563 DOI: 10.3389/fphys.2020.567678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes abnormalities in learning, thinking, memory, as well as behavior. Generally, symptoms of AD develop gradually and aggravate over time, and consequently severely interfere with daily activities. Furthermore, obesity is one of the common risk factors for dementia. Dysregulation of adipokine and adipocyte dysfunction are assumed to be accountable for the high risk of obesity in people that develop many related disorders such as AD. Moreover, it has been observed that the dysfunction of adipose is connected with changes in brain metabolism, brain atrophy, cognitive decline, impaired mood, neuroinflammation, impaired insulin signaling, and neuronal dysfunction in people with obesity. Conversely, the pathological mechanisms, as well as the molecular players which are involved in this association, have been unclear until now. In this article, we discuss the impact of adiponectin (AdipoQ) on obesity-related Alzheimer's dementia.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Mohammad Abu Sufian
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex, France
| | - Ghulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY, United States
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
33
|
Restoration of the reduced CLSP activity alleviates memory impairment in Alzheimer disease. Transl Psychiatry 2021; 11:44. [PMID: 33441550 PMCID: PMC7806720 DOI: 10.1038/s41398-020-01168-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Calmodulin-like skin protein (CLSP), a secreted peptide, inhibits neuronal death in cell-based Alzheimer's disease (AD) models and transgenic overexpression of the CLSP gene suppresses synaptic loss and memory impairment in AD model mice, APPswe/PS1dE9 double transgenic mice (APP/PS1 mice). Despite the anticipated role of CLSP as an AD-suppressing factor, it remains unanswered whether the insufficiency of the CLSP activity is linked to the AD pathogenesis. In this study, we first show that adiponectin, a CLSP potentiator/protector, dominantly determines the CLSP activity in the central nervous system where there are sufficient concentrations of CLSP, higher concentrations of CLSP inhibitors such as apolipoprotein E, and smaller concentrations of adiponectin. We next show that both the levels of brain adiponectin and the intraneuronal levels of SH3BP5, an important effector of the CLSP signal, are reduced in both AD patients and APP/PS1 mice. Finally, the restoration of the CLSP activity by subcutaneous injection of a hybrid peptide named CLSPCOL consisting of CLSP(1-61) and the collagen-homologous region of adiponectin, which has more potent neuroprotective activity than CLSP, is insensitive to the suppression by the CLSP inhibitors, and is efficiently recruited into brains, alleviates dementia and synaptic loss in the aged APP/PS1 mice. Collectively, these results suggest that the reduction in the CLSP activity, likely caused by the reduction in the levels of adiponectin, leads to the insufficient protection of neurons from neurotoxicity in the AD brains and the restoration of the CLSP activity is a promising strategy for the treatment of AD.
Collapse
|
34
|
Cheng J, Zhang M, Cheng S, Li F, Zhang B, Sun X, Hu H, Chen L, Zhao Z, Hu H, Zhang Z. Low-dose alcohol ameliorated high fat diet-induced anxiety-related behavior via enhancing adiponectin expression and activating the Nrf2 pathway. Food Funct 2021; 12:241-251. [PMID: 33295905 DOI: 10.1039/d0fo02704a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Long-term high-fat-diet (HFD)-induced obesity is associated with many comorbidities, such as cognitive impairment and anxiety, which are increasing public health burdens that have gained prevalence in adolescents. Although low-dose alcohol could attenuate the risk of cardiovascular disease, its mechanism on HFD-induced anxiety-related behavior remains not clear. The mice were divided into 4 groups, Control (Con), Alcohol (Alc), HFD and HFD + Alc groups. To verify the effects of low-dose alcohol on HFD-induced anxiety-related behavior, the mice were fed with HFD for 16 weeks. At the beginning of week 13, the HFD-fed mice were administered intragastrically with low-dose alcohol (0.8 g kg-1) for 4 weeks. After 4 weeks of oral administration, low-dose alcohol decreased body weight and Lee's index in HFD-induced obese mice. Moreover, low-dose alcohol alleviated the anxiety-related behaviors of obese mice in the open field test and the elevated plus maze test. The HFD-induced damage to the hippocampus was improved in hematoxylin-eosin staining assay in mice. In addition, low-dose alcohol also suppressed HFD-induced oxidative stress and increased HFD-suppressed adiponectin (APN) expression and nuclear factor erythroid 2-related factor 2 (Nrf2) activation in the hippocampus. Taken together, low-dose alcohol significantly ameliorates HFD-induced obesity, oxidative stress and anxiety-related behavior in mice, which might be related to APN upregulation, Nrf2 activation and related antioxidase expression including SOD1, HO-1, and catalase.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Meng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Shaoli Cheng
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bingyi Zhang
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoming Sun
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huijuan Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China. and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China. and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China. and Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Zhanqin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
35
|
Polito R, Di Meo I, Barbieri M, Daniele A, Paolisso G, Rizzo MR. Adiponectin Role in Neurodegenerative Diseases: Focus on Nutrition Review. Int J Mol Sci 2020; 21:ijms21239255. [PMID: 33291597 PMCID: PMC7729837 DOI: 10.3390/ijms21239255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Adiponectin is an adipokine produced by adipose tissue. It has numerous beneficial effects. In particular, it improves metabolic effects and glucose homeostasis, lipid profile, and is involved in the regulation of cytokine profile and immune cell production, having anti-inflammatory and immune-regulatory effects. Adiponectin’s role is already known in immune diseases and also in neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, are a set of diseases of the central nervous system, characterized by a chronic and selective process of neuron cell death, which occurs mainly in relation to oxidative stress and neuroinflammation. Lifestyle is able to influence the development of these diseases. In particular, unhealthy nutrition on gut microbiota, influences its composition and predisposition to develop many diseases such as neurodegenerative diseases, given the importance of the “gut-brain” axis. There is a strong interplay between Adiponectin, gut microbiota, and brain-gut axis. For these reasons, a healthy diet composed of healthy nutrients such as probiotics, prebiotics, polyphenols, can prevent many metabolic and inflammatory diseases such as neurodegenerative diseases and obesity. The special Adiponectin role should be taken into account also, in order to be able to use this component as a therapeutic molecule.
Collapse
Affiliation(s)
- Rita Polito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
- CEINGE-Advanced Biotechnologies Scarl, Via G. Salvatore 486, 80145 Naples, Italy
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
| | - Aurora Daniele
- Department of Environmental Biological Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via G. Vivaldi 42, 81100 Caserta, Italy;
- CEINGE-Advanced Biotechnologies Scarl, Via G. Salvatore 486, 80145 Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
- Correspondence: ; Tel.: +39-081-566-5135; Fax: +39-081-566-5303
| |
Collapse
|
36
|
Hejazi SA, Rohampour K, Sharifipour E, Sharifimoghadam S, Paybast S, Ghoreishi A, Hassanzadeh N, Vahedian M. The correlation of serum adiponectin and insulin resistance with the presence and severity of dementia in non-obese Alzheimer's patients. Clin Nutr ESPEN 2020; 40:376-382. [PMID: 33183566 DOI: 10.1016/j.clnesp.2020.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS Alteration in the insulin signaling could contribute to the development of Alzheimer's disease (AD) through metabolic or inflammatory processes, adipokines could affect insulin dysregulation. This study aimed to investigate whether there is a correlation between serum adiponectin level alteration and insulin resistance with the presence and severity of AD, compared to normal controls. METHODS This analytical observational study was conducted on 60 non-overweight and non-diabetic participants who were assigned to AD patients (n = 34) and healthy volunteers (n = 26). The diagnosis and severity of dementia were evaluated by the same protocol, and the Mini-Mental Score Exam (MMSE) questionnaire was utilized to collect the data. Moreover, adiponectin concentration, fasting blood sugar, and plasma insulin levels were measured using enzyme-linked immunosorbent assay. Furthermore, the homeostasis model assessment for insulin resistance (HOMA-IR) was utilized in this study. RESULTS The mean ages of the AD patients and control participants were 71.35 and 70.46, respectively. In addition, the mean values of the serum adiponectin level of the participants were 9660 and 12,730 ng/mL in control and AD groups, respectively (P ≤ 0.05). Additionally, the insulin resistance (IR) was 2.90 and 5.10 in the control and AD groups, respectively (P ≤ 0.05). According to the results, there was a significant positive correlation between serum adiponectin level and HOMA-IR in the AD group; however, no significant correlation was observed between serum adiponectin level and MMSE score in this group. The MMSE score of AD patients significantly decreased by 1.2 times with an increase in each score of the IR (P ≤ 0.05). CONCLUSION A significant direct positive correlation was observed between the serum adiponectin level and IR among the AD patients. However, a significant decrease in cognition levels was detected following an increase in IR scores of the AD patients.
Collapse
Affiliation(s)
- Seyed Amir Hejazi
- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Kambiz Rohampour
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Sharifipour
- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran.
| | | | | | - Abdoreza Ghoreishi
- Department of Neurology, Vali-e-Asr Hospital, School of Medicine, University of Medical Sciences, Zanjan, Iran
| | - Navid Hassanzadeh
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Mostafa Vahedian
- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
37
|
Autophagy-Associated lncRNAs: Promising Targets for Neurological Disease Diagnosis and Therapy. Neural Plast 2020; 2020:8881687. [PMID: 33029125 PMCID: PMC7528122 DOI: 10.1155/2020/8881687] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurological diseases are a major threat to global public health and prosperity. The number of patients with neurological diseases is increasing due to the population aging and increasing life expectancy. Autophagy is one of the crucial mechanisms to maintain nerve cellular homeostasis. Numerous studies have demonstrated that autophagy plays a dual role in neurological diseases. Long noncoding RNAs (lncRNAs) are a vital class of noncoding RNAs with a length of more than 200 nucleotides and cannot encode proteins themselves but are expressed in most neurological diseases. An early phase, emerging knowledge has revealed that long noncoding RNAs (lncRNAs) are crucial in autophagy regulation. Furthermore, autophagy-associated lncRNAs can promote the development of neurological diseases or slow their progression. In this review, we introduce a general overview of lncRNA functional mechanisms and summarizes the recent progress of lncRNAs on autophagy regulation in neurological diseases to reveal possible novel therapeutic targets or useful biomarkers.
Collapse
|
38
|
Crosstalk between obesity, diabetes, and alzheimer's disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev 2020; 62:101095. [PMID: 32535272 DOI: 10.1016/j.arr.2020.101095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes are the most common metabolic disorders, which are strongly related to Alzheimer's disease (AD) in aging. Diabetes and obesity can lead to the accumulation of amyloid plaques, neurofibrillary tangles (NFTs), and other symptoms of AD through several pathways, including insulin resistance, hyperglycemia, hyperinsulinemia, chronic inflammation, oxidative stress, adipokines dysregulation, and vascular impairment. Currently, the use of polyphenols has been expanded in animal models and in-vitro studies because of their comparatively negligible adverse effects. Among them, quercetin (QT) is one of the most abundant polyphenolic flavonoids, which is present in fruits and vegetables and displays many biological, health-promoting effects in a wide range of diseases. The low bioavailability and poor solubility of QT have also led researchers to make various QT-involved nanoparticles (NPs) to overcome these limitations. In this paper, we review significant molecular mechanisms induced by diabetes and obesity that increase AD pathogenesis. Then, we summarize in vitro, in vivo, and clinical evidence regarding the anti-Alzheimer, anti-diabetic and anti-obesity effects of QT. Finally, QT in pure and combination form using NPs has been suggested as a promising therapeutic agent for future studies.
Collapse
|
39
|
Picone P, Di Carlo M, Nuzzo D. Obesity and Alzheimer’s disease: Molecular bases. Eur J Neurosci 2020; 52:3944-3950. [DOI: 10.1111/ejn.14758] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Pasquale Picone
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| | - Marta Di Carlo
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| | - Domenico Nuzzo
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| |
Collapse
|
40
|
Adiponectin and Cognitive Decline. Int J Mol Sci 2020; 21:ijms21062010. [PMID: 32188008 PMCID: PMC7139651 DOI: 10.3390/ijms21062010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Adiponectin (ADPN) is a plasma protein secreted by adipose tissue showing pleiotropic effects with anti-diabetic, anti-atherogenic, and anti-inflammatory properties. Initially, it was thought that the main role was only the metabolism control. Later, ADPN receptors were also found in the central nervous system (CNS). In fact, the receptors AdipoR1 and AdipoR2 are expressed in various areas of the brain, including the hypothalamus, hippocampus, and cortex. While AdipoR1 regulates insulin sensitivity through the activation of the AMP-activated protein kinase (AMPK) pathway, AdipoR2 stimulates the neural plasticity through the activation of the peroxisome proliferator-activated receptor alpha (PPARα) pathway that inhibits inflammation and oxidative stress. Overall, based on its central and peripheral actions, ADPN appears to have neuroprotective effects by reducing inflammatory markers, such as C-reactive protein (PCR), interleukin 6 (IL6), and Tumor Necrosis Factor a (TNFa). Conversely, high levels of inflammatory cascade factors appear to inhibit the production of ADPN, suggesting bidirectional modulation. In addition, ADPN appears to have insulin-sensitizing action. It is known that a reduction in insulin signaling is associated with cognitive impairment. Based on this, it is of great interest to investigate the mechanism of restoration of the insulin signal in the brain as an action of ADPN, because it is useful for testing a possible pharmacological treatment for the improvement of cognitive decline. Anyway, if ADPN regulates neuronal functioning and cognitive performances by the glycemic metabolic system remains poorly explored. Moreover, although the mechanism is still unclear, women compared to men have a doubled risk of developing cognitive decline. Several studies have also supported that during the menopausal transition, the estrogen reduction can adversely affect the brain, in particular, verbal memory and verbal fluency. During the postmenopausal period, in obese and insulin-resistant individuals, ADPN serum levels are significantly reduced. Our recent study has evaluated the relationship between plasma ADPN levels and cognitive performances in menopausal women. Thus, the aim of this review is to summarize both the mechanisms and the effects of ADPN in the central nervous system and the relationship between plasma ADPN levels and cognitive performances, also in menopausal women.
Collapse
|
41
|
Hahm JR, Jo MH, Ullah R, Kim MW, Kim MO. Metabolic Stress Alters Antioxidant Systems, Suppresses the Adiponectin Receptor 1 and Induces Alzheimer's Like Pathology in Mice Brain. Cells 2020; 9:cells9010249. [PMID: 31963819 PMCID: PMC7016950 DOI: 10.3390/cells9010249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress and insulin resistance play major roles in numerous neurodegenerative diseases, including Alzheimer’s disease (AD). A high-fat diet induces obesity-associated oxidative stress, neuronal insulin resistance, microglial activation, and neuroinflammation, which are considered important risk factors for neurodegeneration. Obesity-related metabolic dysfunction is a risk factor for cognitive decline. The present study aimed to elucidate whether chronic consumption of a high-fat diet (HFD; 24 weeks) can induce insulin resistance, neuroinflammation, and amyloid beta (Aβ) deposition in mouse brains. Male C57BL/6N mice were used for a high-fat diet (HFD)-induced pre-clinical model of obesity. The protein expression levels were examined via Western blot, immunofluorescence, and the behavior analysis was performed using the Morris water maze test. To obtain metabolic parameters, insulin sensitivity and glucose tolerance tests were performed. We found that metabolic perturbations from the chronic consumption of HFD elevated neuronal oxidative stress and insulin resistance through adiponectin receptor (AdipoR1) suppression in HFD-fed mice. Similarly, our in vitro results also indicated that knockdown of AdipoR1 in the embryonic mouse hippocampal cell line mHippoE-14 leads to increased oxidative stress in neurons. In addition, HFD markedly increased neuroinflammatory markers’ glial activation in the cortex and hippocampus regions of HFD mouse brains. More importantly, we observed that AdipoR1 suppression increased the amyloidogenic pathway both in vivo and in vitro. Furthermore, deregulated synaptic proteins and behavioral deficits were observed in the HFD mouse brains. Taken together, our findings suggest that excessive consumption of an HFD has a profound impact on brain function, which involves the acceleration of cognitive impairment due to increased obesity-associated oxidative stress, insulin resistance, and neuroinflammation, which ultimately may cause early onset of Alzheimer’s pathology via the suppression of AdipoR1 signaling in the brain.
Collapse
Affiliation(s)
- Jong Ryeal Hahm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gyeongsang National University Hospital and Institute of Health Sciences and Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Myeung Hoon Jo
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (M.H.J.); (R.U.); (M.W.K.)
| | - Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (M.H.J.); (R.U.); (M.W.K.)
| | - Min Woo Kim
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (M.H.J.); (R.U.); (M.W.K.)
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (M.H.J.); (R.U.); (M.W.K.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
42
|
Chen R, Shu Y, Zeng Y. Links Between Adiponectin and Dementia: From Risk Factors to Pathophysiology. Front Aging Neurosci 2020; 11:356. [PMID: 31969813 PMCID: PMC6960116 DOI: 10.3389/fnagi.2019.00356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
With the aging population, dementia is becoming one of the most serious and troublesome global public health issues. Numerous studies have been seeking for effective strategies to delay or block its progression, but with little success. In recent years, adiponectin (APN) as one of the most abundant and multifunctional adipocytokines related to anti-inflammation, regulating glycogen metabolism and inhibiting insulin resistance (IR) and anti-atherosclerosis, has attracted widespread attention. In this article, we summarize recent studies that have contributed to a better understanding of the extent to which APN influences the risks of developing dementia as well as its pathophysiological progression. In addition, some controversial results interlinked with its effects on cognitive dysfunction diseases will be critically discussed. Ultimately, we aim to gain a novel insight into the pleiotropic effects of APN levels in circulation and suggest potential therapeutic target and future research strategies.
Collapse
Affiliation(s)
- RuiJuan Chen
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Shu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Adiponectin Reverses the Hypothalamic Microglial Inflammation during Short-Term Exposure to Fat-Rich Diet. Int J Mol Sci 2019; 20:ijms20225738. [PMID: 31731705 PMCID: PMC6888062 DOI: 10.3390/ijms20225738] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/29/2022] Open
Abstract
Adiponectin, an adipokine derived from the adipose tissue, manifests anti-inflammatory effects in the metabolically active organs and is, therefore, beneficial in various metabolic diseases associated with inflammation. However, the role of adiponectin in alleviating the hypothalamic inflammation connected to the pathogenesis of obesity has not yet been clearly interrogated. Here, we identified that the systemic administration of adiponectin suppresses the activation of microglia and thereby reverses the hypothalamic inflammation during short-term exposure to a high-fat diet. Additionally, we show that adiponectin induces anti-inflammatory effects in the microglial cell line subjected to an exogenous treatment with a saturated free fatty acid. In conclusion, the current study suggests that adiponectin suppresses the saturated free fatty acid-triggered the hypothalamic inflammation by modulating the microglial activation and thus maintains energy homeostasis.
Collapse
|
44
|
Uranga RM, Keller JN. The Complex Interactions Between Obesity, Metabolism and the Brain. Front Neurosci 2019; 13:513. [PMID: 31178685 PMCID: PMC6542999 DOI: 10.3389/fnins.2019.00513] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity is increasing at unprecedented levels globally, and the overall impact of obesity on the various organ systems of the body is only beginning to be fully appreciated. Because of the myriad of direct and indirect effects of obesity causing dysfunction of multiple tissues and organs, it is likely that there will be heterogeneity in the presentation of obesity effects in any given population. Taken together, these realities make it increasingly difficult to understand the complex interplay between obesity effects on different organs, including the brain. The focus of this review is to provide a comprehensive view of metabolic disturbances present in obesity, their direct and indirect effects on the different organ systems of the body, and to discuss the interaction of these effects in the context of brain aging and the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Romina María Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jeffrey Neil Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| |
Collapse
|
45
|
Raghavan R, Fallin MD, Hong X, Wang G, Ji Y, Stuart EA, Paige D, Wang X. Cord and Early Childhood Plasma Adiponectin Levels and Autism Risk: A Prospective Birth Cohort Study. J Autism Dev Disord 2019; 49:173-184. [PMID: 30043356 DOI: 10.1007/s10803-018-3688-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Emerging research suggests that adiponectin, a cytokine produced by adipose tissue, may be implicated in ASD. In this prospective birth cohort study (n = 847), we assessed the association between cord, early childhood plasma adiponectin and the risk of developing ASD. ASD was defined based on ICD codes of physician diagnosis. Cord adiponectin levels were inversely associated with ASD risk (aOR 0.50; 95% CI 0.33, 0.77), independent of preterm birth, early childhood adiponectin and other known ASD risk factors. Early childhood adiponectin, assessed prior to ASD diagnosis, was associated with lower risk of ASD, which attenuated after adjusting for cord adiponectin, indicating the relative importance of cord adiponectin in ASD risk. Further research is warranted to confirm our findings and elucidate biological mechanisms.
Collapse
Affiliation(s)
- Ramkripa Raghavan
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities & Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Elizabeth A Stuart
- Wendy Klag Center for Autism and Developmental Disabilities & Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA.,Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - David Paige
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA. .,Department of Pediatrics, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| |
Collapse
|
46
|
Forny-Germano L, De Felice FG, Vieira MNDN. The Role of Leptin and Adiponectin in Obesity-Associated Cognitive Decline and Alzheimer's Disease. Front Neurosci 2019; 12:1027. [PMID: 30692905 PMCID: PMC6340072 DOI: 10.3389/fnins.2018.01027] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between adipose tissue and central nervous system (CNS) underlies the increased risk of obese people to develop brain diseases such as cognitive and mood disorders. Detailed mechanisms for how peripheral changes caused by adipose tissue accumulation in obesity impact the CNS to cause brain dysfunction are poorly understood. Adipokines are a large group of substances secreted by the white adipose tissue to regulate a wide range of homeostatic processes including, but not limited to, energy metabolism and immunity. Obesity is characterized by a generalized change in the levels of circulating adipokines due to abnormal accumulation and dysfunction of adipose tissue. Altered adipokine levels underlie complications of obesity as well as the increased risk for the development of obesity-related comorbidities such as type 2 diabetes, cardiovascular and neurodegenerative diseases. Here, we review the literature for the role of adipokines as key mediators of the communication between periphery and CNS in health and disease. We will focus on the actions of leptin and adiponectin, two of the most abundant and well studied adipokines, in the brain, with particular emphasis on how altered signaling of these adipokines in obesity may lead to cognitive dysfunction and augmented risk for Alzheimer's disease. A better understanding of adipokine biology in brain disorders may prove of major relevance to diagnostic, prevention and therapy.
Collapse
Affiliation(s)
- Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Centre for Neuroscience Studies, Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | | |
Collapse
|
47
|
Li N, Arbuckle TE, Muckle G, Lanphear BP, Boivin M, Chen A, Dodds L, Fraser WD, Ouellet E, Séguin JR, Velez MP, Yolton K, Braun JM. Associations of cord blood leptin and adiponectin with children's cognitive abilities. Psychoneuroendocrinology 2019; 99:257-264. [PMID: 30390444 PMCID: PMC6239208 DOI: 10.1016/j.psyneuen.2018.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
Background Adipocytokines may play a role in fetal programming of neurodevelopment. We aimed to investigate the associations between cord blood adipocytokine concentrations and children's intelligence test scores. Methods We used data from two ongoing pregnancy cohorts in North America: the Maternal-Infant Research on Environmental Chemicals (MIREC, n = 429) and Health Outcomes and Measures of the Environment (HOME, n = 183) Studies. Umbilical cord blood adipocytokine concentrations were measured using enzyme-linked immunosorbent assays. We assessed children's Intelligence Quotient (IQ) and its components using the Wechsler Preschool and Primary Scales of Intelligence-III or Wechsler Intelligence Scale for Children-IV. We used linear regression and linear mixed models to estimate associations between log2-transformed adipocytokine concentrations and children's IQ after adjusting for sociodemographic, perinatal, and child factors. Results After adjusting for covariates, cord blood adiponectin was positively associated with children's full-scale IQ scores at age 3 years in the MIREC Study (β = 1.4, 95% confidence interval [CI]: 0.2, 2.5) and at ages 5 and 8 years in the HOME Study (β = 1.7, CI: -0.1, 3.5). Adiponectin was positively associated with performance IQ in both studies (MIREC: β = 2.0, CI: 0.7, 3.3; HOME: β = 2.2, CI: 0.5, 3.9). Adiponectin was positively associated with working memory composite scores at age 8 in the HOME Study (β = 3.1, CI: 1.0, 5.2). Leptin was not associated with children's IQ in either study. Conclusions Cord blood adiponectin was associated with higher full-scale and performance IQ and working memory composite scores in children. Future studies are needed to explore the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Nan Li
- Department of Epidemiology, Brown University, Providence, RI, United States.
| | - Tye E Arbuckle
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Gina Muckle
- School of Psychology, Laval University, Ville de Québec, Québec, Canada
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada; Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Michel Boivin
- School of Psychology, Laval University, Ville de Québec, Québec, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Linda Dodds
- Perinatal Epidemiology Research Unit, IWK Health Center, Halifax, Canada
| | - William D Fraser
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Mother and Child University Hospital Center, Montreal, Québec, Canada; Centre de recherche du CHUS (CHU de Sherbrooke), University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Emmanuel Ouellet
- CHU de Québec-Université Laval Research Center, Ville de Québec, Québec, Canada
| | - Jean R Séguin
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Mother and Child University Hospital Center, Montreal, Québec, Canada; Department of Psychiatry, University of Montréal, Montréal, Québec, Canada
| | - Maria P Velez
- Department of Obstetrics and Gynecology, Queen's University, Kingston, Ontario, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, United States
| |
Collapse
|
48
|
Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin. Mol Neurobiol 2018; 56:3024-3037. [PMID: 30076527 DOI: 10.1007/s12035-018-1271-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Obese individuals exhibit altered circulating levels of adipokines, the proteins secreted by adipose tissue to mediate tissue cross-talk and regulate appetite and energy expenditure. The effect of adipokines on neuronal glucose metabolism, however, remains largely unknown. Two adipokines produced in adipose tissue, adiponectin and resistin, can gain access to the central nervous system (CNS), and their levels in the cerebrospinal fluid (CSF) are altered in obesity. We hypothesized that dysregulated adipokines in the CNS may underlie the reported link between obesity and higher risk of neurological disorders like Alzheimer's disease (AD), by affecting glucose metabolism in hippocampal neurons. Using cultured primary rat hippocampal neurons and mouse hippocampus slices, we show that recombinant adiponectin and resistin, at a concentration found in the CSF, have opposing effects on glucose metabolism. Adiponectin enhanced glucose uptake, glycolytic rate, and ATP production through an AMP-activated protein kinase (AMPK)-dependent mechanism; inhibiting AMPK abrogated the effects of adiponectin on glucose uptake and utilization. In contrast, resistin reduced glucose uptake, glycolytic rate, and ATP production, in part, by inhibiting hexokinase (HK) activity in hippocampal neurons. These data suggest that altered CNS levels of adipokines in the context of obesity may impact glucose metabolism in hippocampal neurons, brain region involved in learning and memory functions.
Collapse
|
49
|
Dai Z, Zhang Y, Ye H, Zhang G, Jin H, Chen Z, Yao Y, Tian X, Zhou J, Li P, Liang X, Xie H, Ge S, Zhang Z. Adiponectin is valuable in the diagnosis of acute heart failure with renal insufficiency. Exp Ther Med 2018; 16:2725-2734. [PMID: 30210613 DOI: 10.3892/etm.2018.6511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/27/2018] [Indexed: 01/06/2023] Open
Abstract
Acute heart failure (AHF) is a major public health issue due to its high incidence and poor prognosis; thus, efficient and timely diagnosis is critical for improving the prognosis and lowering the mortality rate. Amino-terminal pro-brain natriuretic peptide (NT-proBNP) is widely used in the diagnosis of AHF; however, its efficacy is controversial in diagnosing AHF with renal insufficiency. There were numerous studies reporting the association of adiponectin (ADPN) and heart diseases. Therefore, the present study aimed to investigate whether ADPN is helpful in identifying AHF with renal insufficiency. A total of 407 participants (218 AHF patients and 189 controls) were enrolled into the current study. The plasma levels of ADPN and NT-proBNP were measured using a sandwich enzyme-linked immunosorbent assay and an electrochemiluminescence immunoassay, respectively. In addition, these levels were compared among the various New York Health Association classes, as well as the ischemic and non-ischemic AHF cases. The correlation between the two biomarkers and the renal function was analyzed by Spearman's correlation, while the diagnostic efficiency of ADPN and NT-proBNP was evaluated in AHF patients with and without renal insufficiency. The results revealed that NT-proBNP exhibited a higher diagnostic efficiency as compared with ADPN in patients without renal insufficiency [area under the receiver operating characteristic curve (AUC), 0.905 vs. 0.775]. By contrast, the ADPN presented a better diagnostic value in comparison with NT-proBNP in AHF with renal insufficiency (AUC, 0.872 vs. 0.828). Therefore, a combination of these two biomarkers may provide an excellent efficacy in the diagnosis of AHF with renal insufficiency (AUC, 0.904; sensitivity, 71.2%; specificity, 98.3%). In conclusion, ADPN is a valuable biomarker for diagnosing AHF, particularly in patients with impaired renal function.
Collapse
Affiliation(s)
- Zhang Dai
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Yan Zhang
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Huiming Ye
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361002, P.R. China.,Department of Clinical Laboratory, Xiamen Maternal and Child Health Hospital, Teaching Hospital of Medical College Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Guoqiang Zhang
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Hongwei Jin
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Ziming Chen
- Department of Reagent Research, Xiamen Innovax Biotech Co., Ltd., Xiamen, Fujian 361022, P.R. China
| | - Yihui Yao
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Xuebing Tian
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital, Medical College Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Jianfeng Zhou
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Peihua Li
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Xianming Liang
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Huabing Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital, Medical College Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361002, P.R. China
| | - Zhongying Zhang
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361001, P.R. China.,State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361002, P.R. China.,Department of Clinical Laboratory, Zhongshan Teaching Hospital, Fujian Medical University, Xiamen, Fujian 361001, P.R. China
| |
Collapse
|
50
|
Weight loss is associated with rapid striatal dopaminergic degeneration in Parkinson's disease. Parkinsonism Relat Disord 2018; 51:67-72. [DOI: 10.1016/j.parkreldis.2018.02.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
|