1
|
Gettings JV, Mohammad Alizadeh Chafjiri F, Patel AA, Shorvon S, Goodkin HP, Loddenkemper T. Diagnosis and management of status epilepticus: improving the status quo. Lancet Neurol 2025; 24:65-76. [PMID: 39637874 DOI: 10.1016/s1474-4422(24)00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024]
Abstract
Status epilepticus is a common neurological emergency that is characterised by prolonged or recurrent seizures without recovery between episodes and associated with substantial morbidity and mortality. Prompt recognition and targeted therapy can reduce the risk of complications and death associated with status epilepticus, thereby improving outcomes. The most recent International League Against Epilepsy definition considers two important timepoints in status epilepticus: first, when the seizure does not self-terminate; and second, when the seizure can have long-term consequences, including neuronal injury. Recent advances in our understanding of the pathophysiology of status epilepticus indicate that changes in neurotransmission as status epilepticus progresses can increase excitatory seizure-facilitating and decrease inhibitory seizure-terminating mechanisms at a cellular level. Effective clinical management requires rapid initiation of supportive measures, assessment of the cause of the seizure, and first-line treatment with benzodiazepines. If status epilepticus continues, management should entail second-line and third-line treatment agents, supportive EEG monitoring, and admission to an intensive care unit. Future research to study early seizure detection, rescue protocols and medications, rapid treatment escalation, and integration of fundamental scientific and clinical evidence into clinical practice could shorten seizure duration and reduce associated complications. Furthermore, improved recognition, education, and treatment in patients who are at risk might help to prevent status epilepticus, particularly for patients living in low-income and middle-income countries.
Collapse
Affiliation(s)
- Jennifer V Gettings
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Fatemeh Mohammad Alizadeh Chafjiri
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Guilan University of Medical Sciences, Rasht, Iran
| | - Archana A Patel
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; University Teaching Hospitals Children's Hospital, Lusaka, Zambia
| | - Simon Shorvon
- University College London, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Howard P Goodkin
- Department of Neurology and Paediatrics, UVA Health, Charlottesville, VA, USA
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Zhai Y, Yuan Y, Cui Y, Wang X, Zhou H, Teng Q, Wang H, Sun B, Sun H, Tang J. Suppression of PINK1 autophosphorylation attenuates pilocarpine-induced seizures and neuronal injury in rats. Brain Res Bull 2024; 219:111117. [PMID: 39522561 DOI: 10.1016/j.brainresbull.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PTEN-induced kinase 1 (PINK1) autophosphorylation triggers the PINK1/Parkin pathway, which is the main mitophagic pathway in the mammalian nervous system. In the present study, we aimed to mechanistically explore the role of PINK1 in pilocarpine-induced status epilepticus (SE) in Sprague-Dawley rats. Evidence from immunohistochemistry, western blotting, biochemical assays, and behavioral testing showed that pilocarpine-induced SE led to increased levels of PINK1 phosphorylation, mitophagy, mitochondrial oxidative stress, neuronal damage and learning and memory deficits. Using shRNA interference to suppress the expression of translocase outer mitochondrial membrane 7, a positive regulator of PINK1 autophosphorylation, lowered the increased levels of phosphorylated PINK1 following pilocarpine administration. It also reduced the levels of mitophagy, mitochondrial oxidative stress and neuronal damage, and attenuated seizure severity and cognitive deficits. In contrast, suppressing the expression of overlapping with the m-AAA protease 1 homolog, a negative regulator of PINK1 autophosphorylation, led to higher levels of phosphorylated PINK1 following pilocarpine administration. It also led to more serious mitophagy, neuronal damage, as well as worsened seizure severity and cognitive deficits. Our results indicate that PINK1 autophosphorylation plays a vital role in epileptic seizures and neuronal injury by mediating mitophagy. Regulating PINK1 autophosphorylation may change the adverse consequences of epilepsy, and may be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xiaoqian Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hua Zhou
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Teng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hongjin Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Bohan Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Jianhua Tang
- Affiliated Yantai Mountain Hospital, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
3
|
Cheng Y, Huang P, Zou Q, Tian H, Cheng Q, Ding H. Nicotinamide mononucleotide alleviates seizures via modulating SIRT1-PGC-1α mediated mitochondrial fusion and fission. J Neurochem 2024; 168:3962-3981. [PMID: 38194959 DOI: 10.1111/jnc.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Both human and animal experiments have demonstrated that energy metabolism dysfunction in neurons after seizures is associated with an imbalance in mitochondrial fusion/fission dynamics. Effective neuronal mitochondrial dynamics regulation strategies remain elusive. Nicotinamide mononucleotide (NMN) can ameliorate mitochondrial functional and oxidative stress in age-related diseases. But whether NMN improves mitochondrial energy metabolism to exert anti-epileptic effects is unclear. This study aims to clarify if NMN can protect neurons from pentylenetetrazole (PTZ) or Mg2+-free-induced mitochondrial disorder and apoptosis via animal and cell models. We established a continuous 30-day PTZ (37 mg/kg) intraperitoneal injection-induced epileptic mouse model and a cell model induced by Mg2+-free solution incubation to explore the neuroprotective effects of NMN. We found that NMN treatment significantly reduced the seizure intensity of PTZ-induced epileptic mice, improved their learning and memory ability, and enhanced their motor activity and exploration desire. At the same time, in vitro and in vivo experiments showed that NMN can inhibit neuronal apoptosis and improve the mitochondrial energy metabolism function of neurons. In addition, NMN down-regulated the expression of mitochondrial fission proteins (Drp1 and Fis1) and promoted the expression of mitochondrial fusion proteins (Mfn1 and Mfn2) by activating the SIRT1-PGC-1α pathway, thereby inhibiting PTZ or Mg2+-free extracellular solution-induced mitochondrial dysfunction, cell apoptosis, and oxidative stress. However, combined intervention of SIRT1 inhibitor, Selisistat, and PGC-1α inhibitor, SR-18292, eliminated the regulatory effect of NMN pre-treatment on mitochondrial fusion and fission proteins and apoptosis-related proteins. Therefore, NMN intervention may be a new potential treatment for cognitive impairment and behavioral disorders induced by epilepsy, and targeting the SIRT1-PGC-1α pathway may be a promising therapeutic strategy for seizures.
Collapse
Affiliation(s)
- Yahong Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Puxin Huang
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P.R. China
| | - Qixian Zou
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P.R. China
| | - Hui Tian
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Qingzhou Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Hong Ding
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
4
|
Nazarizadeh S, Ghotbeddin Z, Ghafouri S, Sarkaki A. The protective effect of DMI on hippocampus EEG, behavioral and biochemical parameters in hypoxia-induced seizure on neonatal period. PLoS One 2024; 19:e0309240. [PMID: 39495759 PMCID: PMC11534219 DOI: 10.1371/journal.pone.0309240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/07/2024] [Indexed: 11/06/2024] Open
Abstract
Hypoxia-Induced Neonatal Seizure (HINS) is a prevalent type of seizure in infants caused by hypoxic conditions, which can lead to an increased risk of epilepsy, learning disabilities, and cognitive impairments later in life. This study focuses on examining the effects of dimethyl itaconate (DMI) on cognition, motor coordination, and anxiety-like behavior in male rats that have experienced HINS. 42 male Wistar newborn rats (PND10) were randomly divided into six groups (n = 7). 1) Control (Vehicle only); received DMI solvent (0.1ml) without applying hypoxia. 2-3) DMI; receiving (20 and 50 mg/kg; i.p). 4) HINS; they were placed in a hypoxia chamber with 7% oxygen and 93% nitrogen concentration for 15 minutes. 5-6) DMI+HINS; received DMI (20 and 50 mg/kg; i.p) 24h before hypoxia. Behavioral tests including; Novel object recognition test, Rotarod, Parallel bar, Open field and elevated plus maze (EPM); started at age 45 after birth. After behavioral tests, the hippocampal CA1 region local EEG was recorded in all groups. Then the brain hippocampus tissue was isolated and the amount of MDA, SOD, NO, and Thiol was measured by ELISA method. Data showed that the administration of DMI improved motor symptoms, anxiety-like behaviors, and cognition in HINS rats (p<0.05). EEG power in the HINS group decreased significantly compared to other experimental groups (p<0.05). Biochemical observations showed that DMI significantly reduced oxidative stress and inflammation in the hippocampal tissue of HINS rats (p<0.05). Increased hippocampal oxidative stress and inflammation can be effective in the occurrence of behavioral disorders observed in HINS rats. While DMI improved these behavioral impairments by reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shadi Nazarizadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Samireh Ghafouri
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Bierhansl L, Gola L, Narayanan V, Dik A, Meuth SG, Wiendl H, Kovac S. Neuronal Mitochondrial Calcium Uniporter (MCU) Deficiency Is Neuroprotective in Hyperexcitability by Modulation of Metabolic Pathways and ROS Balance. Mol Neurobiol 2024; 61:9529-9538. [PMID: 38652352 PMCID: PMC11496325 DOI: 10.1007/s12035-024-04148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Epilepsy is one of the most common neurological disorders in the world. Common epileptic drugs generally affect ion channels or neurotransmitters and prevent the emergence of seizures. However, up to a third of the patients suffer from drug-resistant epilepsy, and there is an urgent need to develop new therapeutic strategies that go beyond acute antiepileptic (antiseizure) therapies towards therapeutics that also might have effects on chronic epilepsy comorbidities such as cognitive decline and depression. The mitochondrial calcium uniporter (MCU) mediates rapid mitochondrial Ca2+ transport through the inner mitochondrial membrane. Ca2+ influx is essential for mitochondrial functions, but longer elevations of intracellular Ca2+ levels are closely associated with seizure-induced neuronal damage, which are underlying mechanisms of cognitive decline and depression. Using neuronal-specific MCU knockout mice (MCU-/-ΔN), we demonstrate that neuronal MCU deficiency reduced hippocampal excitability in vivo. Furthermore, in vitro analyses of hippocampal glioneuronal cells reveal no change in total Ca2+ levels but differences in intracellular Ca2+ handling. MCU-/-ΔN reduces ROS production, declines metabolic fluxes, and consequently prevents glioneuronal cell death. This effect was also observed under pathological conditions, such as the low magnesium culture model of seizure-like activity or excitotoxic glutamate stimulation, whereby MCU-/-ΔN reduces ROS levels and suppresses Ca2+ overload seen in WT cells. This study highlights the importance of MCU at the interface of Ca2+ handling and metabolism as a mediator of stress-related mitochondrial dysfunction, which indicates the modulation of MCU as a potential target for future antiepileptogenic therapy.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lukas Gola
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Venu Narayanan
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
6
|
Xie Y, Zhang W, Peng T, Wang X, Lian X, He J, Wang C, Xie N. TBC1D15-regulated mitochondria-lysosome membrane contact exerts neuroprotective effects by alleviating mitochondrial calcium overload in seizure. Sci Rep 2024; 14:23782. [PMID: 39390030 PMCID: PMC11467349 DOI: 10.1038/s41598-024-74388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Mitochondrial calcium overload plays an important role in the neurological insults in seizure. The Rab7 GTPase-activating protein, Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15), is involved in the regulation of mitochondrial calcium dynamics by mediating mitochondria-lysosome membrane contact. However, whether TBC1D15-regulated mitochondria-lysosome membrane contact and mitochondrial calcium participate in neuronal injury in seizure is unclear. We aimed to investigate the effect of TBC1D15-regulated mitochondria-lysosome membrane contact on epileptiform discharge-induced neuronal damage and further explore the underlying mechanism. Lentiviral vectors (Lv) infection and stereotaxic adeno-associated virus (AAV) injection were used to regulate TBC1D15 expression before establishing in vitro epileptiform discharge and in vivo status epilepticus (SE) models. TBC1D15's effect on inter-organellar interactions, mitochondrial calcium levels and neuronal injury in seizure was evaluated. The results showed that abnormalities in mitochondria-lysosome membrane contact, mitochondrial calcium overload, mitochondrial dysfunction, increased levels of reactive oxygen species, and prominent neuronal damage were partly relieved by TBC1D15 overexpression, whereas TBC1D15 knockdown markedly deteriorated these phenomena. Further examination revealed that epileptiform discharge-induced mitochondrial calcium overload in primary hippocampal neurons was closely associated with abnormal mitochondria-lysosome membrane contact. This study highlights the crucial role played by TBC1D15-regulated mitochondria-lysosome membrane contact in epileptiform discharge-induced neuronal injury by alleviating mitochondrial calcium overload.
Collapse
Affiliation(s)
- Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wanwan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyi Wang
- Institutes of Biological and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaolei Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiao He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cui Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Badawi GA, Shokr MM, Elshazly SM, Zaki HF, Mohamed AF. "Sigma-1 receptor modulation by clemastine highlights its repurposing as neuroprotective agent against seizures and cognitive deficits in PTZ-kindled rats". Eur J Pharmacol 2024; 980:176851. [PMID: 39084454 DOI: 10.1016/j.ejphar.2024.176851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurrent spontaneous seizures alongside other neurological comorbidities. Cognitive impairment is the most frequent comorbidity secondary to progressive neurologic changes in epilepsy. Sigma 1 receptors (σ1 receptors) are involved in the neuroprotection and pathophysiology of both conditions and targeting these receptors may have the potential to modulate both seizures and comorbidities. The current research demonstrated the effect of clemastine (10 mg/kg, P.O.), a non-selective σ1 receptor agonist, on pentylenetetrazol (PTZ) (35 mg/kg, i.p., every 48 h for 14 doses)-kindling rats by acting on σ1 receptors through its anti-inflammatory/antioxidant capacity. Clemastine and phenytoin (30 mg/kg, P.O.) or their combination were given once daily. Clemastine treatment showed a significant effect on neurochemical, behavioural, and histopathological analyses through modulation of σ1 receptors. It protected the kindling animals from seizures and attenuated their cognitive impairment in the Morris water maze test by reversing the PTZ hippocampal neuroinflammation/oxidative stress state through a significant increase in inositol-requiring enzyme 1 (IRE1), x-box binding protein 1 (XBP1), along with a reduction of total reactive oxygen species (TROS) and amyloid beta protein (Aβ). The involvement of σ1 receptors in the protective effects of clemastine was confirmed by their abrogation when utilizing NE-100, a selective σ1 receptor antagonist. In light of our findings, modulating σ1 receptors emerges as a compelling therapeutic strategy for epilepsy and its associated cognitive impairments. The significant neuroprotective effects observed with clemastine underscore the potential of σ1 receptor-targeted treatments to address both the primary symptoms and comorbidities of neurological disorders.
Collapse
Affiliation(s)
- Ghada A Badawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt
| | - Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Shimaa M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| |
Collapse
|
8
|
Xie W, Koppula S, Kale MB, Ali LS, Wankhede NL, Umare MD, Upaganlawar AB, Abdeen A, Ebrahim EE, El-Sherbiny M, Behl T, Shen B, Singla RK. Unraveling the nexus of age, epilepsy, and mitochondria: exploring the dynamics of cellular energy and excitability. Front Pharmacol 2024; 15:1469053. [PMID: 39309002 PMCID: PMC11413492 DOI: 10.3389/fphar.2024.1469053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Epilepsy, a complex neurological condition marked by recurring seizures, is increasingly recognized for its intricate relationship with mitochondria, the cellular powerhouses responsible for energy production and calcium regulation. This review offers an in-depth examination of the interplay between epilepsy, mitochondrial function, and aging. Many factors might account for the correlation between epilepsy and aging. Mitochondria, integral to cellular energy dynamics and neuronal excitability, perform a critical role in the pathophysiology of epilepsy. The mechanisms linking epilepsy and mitochondria are multifaceted, involving mitochondrial dysfunction, reactive oxygen species (ROS), and mitochondrial dynamics. Mitochondrial dysfunction can trigger seizures by compromising ATP production, increasing glutamate release, and altering ion channel function. ROS, natural byproducts of mitochondrial respiration, contribute to oxidative stress and neuroinflammation, critical factors in epileptogenesis. Mitochondrial dynamics govern fusion and fission processes, influence seizure threshold and calcium buffering, and impact seizure propagation. Energy demands during seizures highlight the critical role of mitochondrial ATP generation in maintaining neuronal membrane potential. Mitochondrial calcium handling dynamically modulates neuronal excitability, affecting synaptic transmission and action potential generation. Dysregulated mitochondrial calcium handling is a hallmark of epilepsy, contributing to excitotoxicity. Epigenetic modifications in epilepsy influence mitochondrial function through histone modifications, DNA methylation, and non-coding RNA expression. Potential therapeutic avenues targeting mitochondria in epilepsy include mitochondria-targeted antioxidants, ketogenic diets, and metabolic therapies. The review concludes by outlining future directions in epilepsy research, emphasizing integrative approaches, advancements in mitochondrial research, and ethical considerations. Mitochondria emerge as central players in the complex narrative of epilepsy, offering profound insights and therapeutic potential for this challenging neurological disorder.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Republic of Korea
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Mohit D. Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Elturabi E. Ebrahim
- Medical-Surgical Nursing Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
9
|
Fyke Z, Johansson R, Scott AI, Wiley D, Chelsky D, Zak JD, Al Nakouzi N, Koster KP, Yoshii A. Reduction of neuroinflammation and seizures in a mouse model of CLN1 batten disease using the small molecule enzyme mimetic, N-Tert-butyl hydroxylamine. Mol Genet Metab 2024; 143:108537. [PMID: 39033629 PMCID: PMC11473239 DOI: 10.1016/j.ymgme.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Infantile neuronal ceroid lipofuscinosis (CLN1 Batten Disease) is a devastating pediatric lysosomal storage disease caused by pathogenic variants in the CLN1 gene, which encodes the depalmitoylation enzyme, palmitoyl-protein thioesterase 1 (PPT1). CLN1 patients present with visual deterioration, psychomotor dysfunction, and recurrent seizures until neurodegeneration results in death, typically before fifteen years of age. Histopathological features of CLN1 include aggregation of lysosomal autofluorescent storage material (AFSM), as well as profound gliosis. The current management of CLN1 is relegated to palliative care. Here, we examine the therapeutic potential of a small molecule PPT1 mimetic, N-tert-butyl hydroxylamine (NtBuHA), in a Cln1-/- mouse model. Treatment with NtBuHA reduced AFSM accumulation both in vitro and in vivo. Importantly, NtBuHA treatment in Cln1-/- mice reduced neuroinflammation, mitigated epileptic episodes, and normalized motor function. Live cell imaging of Cln1-/- primary cortical neurons treated with NtBuHA partially rescued aberrant synaptic calcium dynamics, suggesting a potential mechanism contributing to the therapeutic effects of NtBuHA in vivo. Taken together, our findings provide supporting evidence for NtBuHA as a potential treatment for CLN1 Batten Disease.
Collapse
Affiliation(s)
- Zach Fyke
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rachel Johansson
- School of Medicine, University of California Davis, Sacramento, CA, United States of America; Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Anna I Scott
- Circumvent Pharmaceuticals, Portland, OR, United States of America; Department of Laboratories, Seattle Children's Hospital, Seattle, WA, United States of America
| | - Devin Wiley
- Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Daniel Chelsky
- Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Psychology University of Illinois at Chicago, Chicago, IL, United States of America
| | - Nader Al Nakouzi
- Circumvent Pharmaceuticals, Portland, OR, United States of America.
| | - Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Neurobiology, University of Chicago, Chicago, IL, United States of America.
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
10
|
Zhang Y, Shen J, Su H, Lin C. Association between composite dietary antioxidant index and epilepsy in American population: a cross-sectional study from NHANES. BMC Public Health 2024; 24:2240. [PMID: 39154181 PMCID: PMC11330070 DOI: 10.1186/s12889-024-19794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Epilepsy is a major global health challenge, affecting approximately 50 million people across the globe and resulting in significant economic impacts on individuals and society. Oxidative stress is implicated in the pathogenesis of epilepsy, highlighting the potential of antioxidant-rich dietary patterns in offering preventive and protective benefits by mitigating oxidative stress. The Composite Dietary Antioxidant Index (CDAI) provides a measure for assessing dietary antioxidant intake, yet its link to epilepsy remains unexplored. METHODS Our analysis utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning 2013 to 2018, including 20,180 screened participants. Weighted logistic regression models were employed to examine the association between the CDAI and epilepsy prevalence. Non-linear associations were explored through restricted cubic splines (RCS), and the relationships between individual antioxidant components within the CDAI and epilepsy were also assessed. RESULTS After adjusting for potential confounders, a negative association between the CDAI and epilepsy was suggested (OR = 0.991; p = 0.087, 95% CI [0.819,1.014]). Stratification of CDAI into quartiles revealed a significantly reduced risk of epilepsy in higher CDAI quartiles (Q3 and Q4) compared to the lowest quartile (Q1) (Q3: OR = 0.419; p = 0.030, 95% CI [0.192, 0.914]; Q4: OR = 0.421; p = 0.004, 95% CI [0.239, 0.742]), with a significant trend observed across quartiles (p for trend = 0.013). RCS analysis suggested a nonlinear association between CDAI levels and epilepsy (non-linear p = 0.049), which, however, was not statistically significant after full adjustment (non-linear p = 0.103). Additionally, significant negative correlations with epilepsy were observed for vitamin A and zinc (Vitamin A: OR = 0.999; p = 0.012, 95% CI [0.998, 1.000]; Zinc: OR = 0.931; p = 0.042, 95% CI [0.869, 0.997]). CONCLUSIONS Our research indicates a correlation where higher CDAI levels correspond to a reduced risk of epilepsy. Therefore, embracing a diet rich in antioxidants could be beneficial in preventing epilepsy. This finding holds considerable potential for shaping future strategies in both epilepsy prevention and treatment.
Collapse
Affiliation(s)
- Yuhao Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hao Su
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Lin
- Department of Teaching and Research Section of Internal Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Harkins J, Langston J, Keith ZM, Munoz C, Acon-Chen C, Shih TM. Learning and memory function preserved by delayed A 1 adenosine receptor agonist treatment following soman intoxication in rats and a humanized esterase mouse model. Neuropharmacology 2024; 253:109983. [PMID: 38704023 PMCID: PMC11132435 DOI: 10.1016/j.neuropharm.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Exposure to organophosphorus compounds, such as soman (GD), cause widespread toxic effects, sustained status epilepticus, neuropathology, and death. The A1 adenosine receptor agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), when given 1 min after GD exposure, provides neuroprotection and prevents behavioral impairments. Here, we tested the ability of ENBA at delayed treatment times to improve behavioral outcomes via a two-way active avoidance task in two male animal models, each consisting of saline and GD exposure groups. In a rat model, animals received medical treatments (atropine sulfate [A], 2-PAM [P], and midazolam [MDZ]) or AP + MDZ + ENBA at 15 or 30 min after seizure onset and were subjected to behavioral testing for up to 14 days. In a human acetylcholinesterase knock-in serum carboxylesterase knock-out mouse model, animals received AP, AP + MDZ, AP + ENBA, or AP + MDZ + ENBA at 15 min post seizure onset and were subjected to the behavioral task on days 7 and 14. In rats, the GD/AP + MDZ + ENBA group recovered to saline-exposed avoidance levels while the GD/AP + MDZ group did not. In mice, in comparison with GD/AP + MDZ group, the GD/AP + MDZ + ENBA showed decreases in escape latency, response latency, and pre-session crossings, as well as increases in avoidances. In both models, only ENBA-treated groups showed control level inter-trial interval crossings by day 14. Our findings suggest that ENBA, alone and as an adjunct to medical treatments, can improve behavioral and cognitive outcomes when given at delayed time points after GD intoxication.
Collapse
Affiliation(s)
- Joshua Harkins
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010-5400, USA.
| | - Jeffrey Langston
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010-5400, USA.
| | - Zora-Maya Keith
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010-5400, USA.
| | - Crystal Munoz
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010-5400, USA.
| | - Cindy Acon-Chen
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010-5400, USA.
| | - Tsung-Ming Shih
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010-5400, USA.
| |
Collapse
|
12
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
13
|
Popova EY, Kawasawa YI, Leung M, Barnstable CJ. Temporal changes in mouse hippocampus transcriptome after pilocarpine-induced seizures. Front Neurosci 2024; 18:1384805. [PMID: 39040630 PMCID: PMC11260795 DOI: 10.3389/fnins.2024.1384805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Status epilepticus (SE) is a seizure lasting more than 5 min that can have lethal consequences or lead to various neurological disorders, including epilepsy. Using a pilocarpine-induced SE model in mice we investigated temporal changes in the hippocampal transcriptome. Methods We performed mRNA-seq and microRNA-seq analyses at various times after drug treatment. Results At 1 h after the start of seizures, hippocampal cells upregulated transcription of immediate early genes and genes involved in the IGF-1, ERK/MAPK and RNA-PolII/transcription pathways. At 8 h, we observed changes in the expression of genes associated with oxidative stress, overall transcription downregulation, particularly for genes related to mitochondrial structure and function, initiation of a stress response through regulation of ribosome and translation/EIF2 signaling, and upregulation of an inflammatory response. During the middle of the latent period, 36 h, we identified upregulation of membrane components, cholesterol synthesis enzymes, channels, and extracellular matrix (ECM), as well as an increased inflammatory response. At the end of the latent period, 120 h, most changes in expression were in genes involved in ion transport, membrane channels, and synapses. Notably, we also elucidated the involvement of novel pathways, such as cholesterol biosynthesis pathways, iron/BMP/ferroptosis pathways, and circadian rhythms signaling in SE and epileptogenesis. Discussion These temporal changes in metabolic reactions indicate an immediate response to injury followed by recovery and regeneration. CREB was identified as the main upstream regulator. Overall, our data provide new insights into molecular functions and cellular processes involved at different stages of seizures and offer potential avenues for effective therapeutic strategies.
Collapse
Affiliation(s)
- Evgenya Y. Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Ming Leung
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| |
Collapse
|
14
|
Karadenizli Taşkin S, Şahin D, Dede F, Ünal Halbutoğullari ZS, Sarihan M, Kurnaz Özbek S, Özsoy ÖD, Kasap M, Yazir Y, Ateş N. Endoplasmic reticulum stress produced by Thapsigargin affects the occurrence of spike-wave discharge by modulating unfolded protein response pathways and activating immune responses in a dose-dependent manner. Eur J Pharmacol 2024; 974:176613. [PMID: 38670446 DOI: 10.1016/j.ejphar.2024.176613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
The Endoplasmic Reticulum (ER) is associated with many cellular functions, from post-transcriptional modifications to the proper folding of proteins, and disruption of these functions causes ER stress. Although the relationship between epileptic seizures and ER stress has been reported, the contribution of ER stress pathways to epileptogenesis is still unclear. This study aimed to investigate the possible effects of ER stress-related molecular pathways modulated by mild- and high-dose Thapsigargin (Tg) on absence epileptic activity, CACNA1H and immune responses in WAG/Rij rats. For this purpose, rats were divided into four groups; mild-dose (20 ng) Tg, high-dose (200 ng) Tg, saline, and DMSO and drugs administered intracerebroventriculary. EEG activity was recorded for 1 h and 24 h after drug administration following the baseline recording. In cortex and thalamus tissues, GRP78, ERp57, GAD153 protein changes (Western Blot), Eif2ak3, XBP-1, ATF6, CACNA1H mRNA expressions (RT-PCR), NF-κB and TNF-α levels (ELISA) were measured. Mild-dose-Tg administration resulted in increased spike-wave discharge (SWD) activity at the 24th hour compared to administration of saline, and high-dose-Tg and it also significantly increased the amount of GRP78 protein, the expression of Eif2ak3, XBP-1, and CACNA1H mRNA in the thalamus tissue. In contrast, high-dose-Tg administration suppressed SWD activity and significantly increased XBP-1 and ATF6 mRNA expression in the thalamus, and increased NF-κB and TNF-α levels. In conclusion, our findings indicate that Tg affects SWD occurrence by modulating the unfolded protein response pathway and activating inflammatory processes in a dose-dependent manner.
Collapse
Affiliation(s)
| | - Deniz Şahin
- Physiology Department, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Fazilet Dede
- Physiology Department, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | | | - Mehmet Sarihan
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Sema Kurnaz Özbek
- Department of Histology and Embryology, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Özgür Doğa Özsoy
- Department of Biochemistry, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Murat Kasap
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Yusufhan Yazir
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Nurbay Ateş
- Physiology Department, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| |
Collapse
|
15
|
Milewski K, Orzeł-Gajowik K, Zielińska M. Mitochondrial Changes in Rat Brain Endothelial Cells Associated with Hepatic Encephalopathy: Relation to the Blood-Brain Barrier Dysfunction. Neurochem Res 2024; 49:1489-1504. [PMID: 35917006 PMCID: PMC11106209 DOI: 10.1007/s11064-022-03698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/17/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022]
Abstract
The mechanisms underlying cerebral vascular dysfunction and edema during hepatic encephalopathy (HE) are unclear. Blood-brain barrier (BBB) impairment, resulting from increased vascular permeability, has been reported in acute and chronic HE. Mitochondrial dysfunction is a well-documented result of HE mainly affecting astrocytes, but much less so in the BBB-forming endothelial cells. Here we review literature reports and own experimental data obtained in HE models emphasizing alterations in mitochondrial dynamics and function as a possible contributor to the status of brain endothelial cell mitochondria in HE. Own studies on the expression of the mitochondrial fusion-fission controlling genes rendered HE animal model-dependent effects: increase of mitochondrial fusion controlling genes opa1, mfn1 in cerebral vessels in ammonium acetate-induced hyperammonemia, but a decrease of the two former genes and increase of fis1 in vessels in thioacetamide-induced HE. In endothelial cell line (RBE4) after 24 h ammonia and/or TNFα treatment, conditions mimicking crucial aspects of HE in vivo, we observed altered expression of mitochondrial fission/fusion genes: a decrease of opa1, mfn1, and, increase of the fission related fis1 gene. The effect in vitro was paralleled by the generation of reactive oxygen species, decreased total antioxidant capacity, decreased mitochondrial membrane potential, as well as increased permeability of RBE4 cell monolayer to fluorescein isothiocyanate dextran. Electron microscopy documented enlarged mitochondria in the brain endothelial cells of rats in both in vivo models. Collectively, the here observed alterations of cerebral endothelial mitochondria are indicative of their fission, and decreased potential of endothelial mitochondria are likely to contribute to BBB dysfunction in HE.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| | - Karolina Orzeł-Gajowik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
16
|
Romagnolo A, Dematteis G, Scheper M, Luinenburg MJ, Mühlebner A, Van Hecke W, Manfredi M, De Giorgis V, Reano S, Filigheddu N, Bortolotto V, Tapella L, Anink JJ, François L, Dedeurwaerdere S, Mills JD, Genazzani AA, Lim D, Aronica E. Astroglial calcium signaling and homeostasis in tuberous sclerosis complex. Acta Neuropathol 2024; 147:48. [PMID: 38418708 PMCID: PMC10901927 DOI: 10.1007/s00401-024-02711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by the development of benign tumors in various organs, including the brain, and is often accompanied by epilepsy, neurodevelopmental comorbidities including intellectual disability and autism. A key hallmark of TSC is the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway, which induces alterations in cortical development and metabolic processes in astrocytes, among other cellular functions. These changes could modulate seizure susceptibility, contributing to the progression of epilepsy and its associated comorbidities. Epilepsy is characterized by dysregulation of calcium (Ca2+) channels and intracellular Ca2+ dynamics. These factors contribute to hyperexcitability, disrupted synaptogenesis, and altered synchronization of neuronal networks, all of which contribute to seizure activity. This study investigates the intricate interplay between altered Ca2+ dynamics, mTOR pathway dysregulation, and cellular metabolism in astrocytes. The transcriptional profile of TSC patients revealed significant alterations in pathways associated with cellular respiration, ER and mitochondria, and Ca2+ regulation. TSC astrocytes exhibited lack of responsiveness to various stimuli, compromised oxygen consumption rate and reserve respiratory capacity underscoring their reduced capacity to react to environmental changes or cellular stress. Furthermore, our study revealed significant reduction of store operated calcium entry (SOCE) along with strong decrease of basal mitochondrial Ca2+ concentration and Ca2+ influx in TSC astrocytes. In addition, we observed alteration in mitochondrial membrane potential, characterized by increased depolarization in TSC astrocytes. Lastly, we provide initial evidence of structural abnormalities in mitochondria within TSC patient-derived astrocytes, suggesting a potential link between disrupted Ca2+ signaling and mitochondrial dysfunction. Our findings underscore the complexity of the relationship between Ca2+ signaling, mitochondria dynamics, apoptosis, and mTOR hyperactivation. Further exploration is required to shed light on the pathophysiology of TSC and on TSC associated neuropsychiatric disorders offering further potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Alessia Romagnolo
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Mirte Scheper
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark J Luinenburg
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim Van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcello Manfredi
- Center on Autoimmune and Allergic Diseases (CAAD), UPO, Novara, Italy
- Department of Translational Medicine, UPO, Novara, Italy
| | - Veronica De Giorgis
- Center on Autoimmune and Allergic Diseases (CAAD), UPO, Novara, Italy
- Department of Translational Medicine, UPO, Novara, Italy
| | - Simone Reano
- Center on Autoimmune and Allergic Diseases (CAAD), UPO, Novara, Italy
| | | | - Valeria Bortolotto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Liesbeth François
- Neurosciences Therapeutic Area, UCB Pharma, Braine-L'Alleud, Belgium
| | | | - James D Mills
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
17
|
Jakovljević D, Nikolić M, Jovanović V, Vidonja Uzelac T, Nikolić-Kokić A, Novaković E, Miljević Č, Milovanović M, Blagojević D. Influence of Long-Term Anti-Seizure Medications on Redox Parameters in Human Blood. Pharmaceuticals (Basel) 2024; 17:130. [PMID: 38256963 PMCID: PMC10818330 DOI: 10.3390/ph17010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Epilepsy is a chronic brain disease affecting millions of people worldwide, but little is known about the impact of anti-seizure medications on redox homeostasis. METHODS This study aimed to compare the effects of the long-term use of oral anti-seizure medications in monotherapy (lamotrigine, carbamazepine, and valproate) on antioxidant enzymes: superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, haemoglobin, and methaemoglobin content in erythrocytes, and concentrations of total proteins and thiols, nitrites, lipid peroxides and total glutathione in the plasma of epilepsy patients and drug-naïve patients. RESULTS The results showed that lamotrigine therapy led to lower superoxide dismutase activity (p < 0.005) and lower concentrations of total thiols (p < 0.01) and lipid peroxides (p < 0.01) compared to controls. On the other hand, therapy with carbamazepine increased nitrite levels (p < 0.01) but reduced superoxide dismutase activity (p < 0.005). In the valproate group, only a decrease in catalase activity was observed (p < 0.005). Canonical discriminant analysis showed that the composition of antioxidant enzymes in erythrocytes was different for both the lamotrigine and carbamazepine groups, while the controls were separated from all others. CONCLUSIONS Monotherapy with anti-seizure medications discretely alters redox homeostasis, followed by distinct relationships between antioxidant components.
Collapse
Affiliation(s)
- Danijel Jakovljević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (D.J.); (M.N.); (V.J.)
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| | - Milan Nikolić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (D.J.); (M.N.); (V.J.)
| | - Vesna Jovanović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (D.J.); (M.N.); (V.J.)
| | - Teodora Vidonja Uzelac
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| | - Emilija Novaković
- Clinic for Mental Disorders “Dr. Laza Lazarević”, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Priština, 38220 Kosovska Mitrovica, Serbia
| | - Čedo Miljević
- Outpatient Department, Institute of Mental Health, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Maja Milovanović
- Department for Epilepsy and Clinical Neurophysiology, Institute of Mental Health, Faculty for Special Education and Rehabilitation, University of Belgrade, 11000 Belgrade, Serbia;
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| |
Collapse
|
18
|
Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med 2024; 22:4. [PMID: 38167027 PMCID: PMC10762857 DOI: 10.1186/s12967-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.
Collapse
Affiliation(s)
- Li Yuhan
- Epilepsy Research Center, Münster University, Münster, Germany
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster, Germany.
- Department of Neurosurgery, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Mazandarani M, Lashkarbolouk N, Ejtahed HS, Qorbani M. Does the ketogenic diet improve neurological disorders by influencing gut microbiota? A systematic review. Nutr J 2023; 22:61. [PMID: 37981693 PMCID: PMC10658738 DOI: 10.1186/s12937-023-00893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The aim of this systematic review is to evaluate the changes in gut microbiota (GM) induced by the Ketogenic Diets (KD) as a potential underlying mechanism in the improvement of neurological diseases. METHODS A comprehensive search was conducted on three electronic databases, including PubMed/Medline, Web of Science, and Scopus until December 2022. The inclusion criteria were studies that described any changes in GM after consuming KD in neurological patients. Full text of studies such as clinical trials and cohorts were added. The quality assessment of cohort studies was conducted using the Newcastle-Ottawa Quality Assessment Scale and for the clinical trials using the Cochrane Collaboration tool. The search, screening, and data extraction were performed by two researchers independently. RESULTS Thirteen studies examining the effects of the KD on the GM in neurological patients were included. Studies have shown that KD improves clinical outcomes by reducing disease severity and recurrence rates. An increase in Proteobacteria phylum, Escherichia, Bacteroides, Prevotella, Faecalibacterium, Lachnospira, Agaricus, and Mrakia genera and a reduction in Firmicutes, and Actinobacteria phyla, Eubacterium, Cronobacter, Saccharomyces, Claviceps, Akkermansia and Dialister genera were reported after KD. Studies showed a reduction in concentrations of fecal short-chain fatty acids and branched-chain fatty acids and an increase in beta Hydroxybutyrate, trimethylamine N-oxide, and N-acetylserotonin levels after KD. CONCLUSION The KD prescribed in neurological patients has effectively altered the GM composition and GM-derived metabolites.
Collapse
Affiliation(s)
- Mahdi Mazandarani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Narges Lashkarbolouk
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Liang Y, Zhao L, Dai C, Liu G, Zhong Y, Liu H, Mo L, Tan C, Liu X, Chen L. Epileptiform Discharges Reduce Neuronal ATP Production by Inhibiting F0F1-ATP Synthase Activity via A Zinc-α2-Glycoprotein-Dependent Mechanism. Mol Neurobiol 2023; 60:6627-6641. [PMID: 37468739 DOI: 10.1007/s12035-023-03508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Neuronal energy metabolism dysfunction, especially adenosine triphosphate (ATP) supply decrease, is observed in epilepsy and associated with epileptogenesis and prognosis. Zinc-α2-glycoprotein (ZAG) is known as an important modulator of energy metabolism and involved in neuronal glucose metabolism, fatty acid metabolism, and ketogenesis impairment in seizures, but its effect on neuronal ATP synthesis in seizures and the specific mechanism are unclear. In this study, we verified the localization of ZAG in primary cultured neuronal mitochondria by using double-labeling immunofluorescence, immune electron microscopy, and western blot. ZAG level in neuronal mitochondria was modulated by lentiviruses and detected by western blot. The F0F1-ATP synthase activity, ATP level, and acetyl-CoA level were measured. The binding between ZAG and F0F1-ATP synthase was determined by coimmunoprecipitation. We found that both ZAG and F0F1-ATP synthase existed in neuronal mitochondria, and there was mutual binding between them. Epileptiform discharge-induced decrease of mitochondrial ZAG level was reversed by ZAG overexpression. Epileptiform discharge or ZAG knockdown decreased F0F1-ATP synthase activity and ATP level in neurons, which were reversed by ZAG overexpression, while overexpression of ZAG along only increased F0F1-ATP synthase activity but not increased ATP level. Meanwhile, neither epileptiform discharges nor changes of ZAG level can alter the acetyl-CoA level. Moreover, epileptiform discharge did not alter F0F1-ATP synthase level. In conclusion, epileptiform discharge-induced ZAG decrease in neuronal mitochondria is correlated to F0F1-ATP synthase activity inhibition, which may possibly lead to ATP supply impairments. ZAG may be a potential therapeutic target for treating neuronal energy metabolism dysfunction in seizures with further researches.
Collapse
Affiliation(s)
- Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
21
|
Madhamanchi K, Madhamanchi P, Jayalakshmi S, Panigrahi M, Patil A, Phanithi PB. Dopamine and Glutamate Crosstalk Worsen the Seizure Outcome in TLE-HS Patients. Mol Neurobiol 2023; 60:4952-4965. [PMID: 37209264 DOI: 10.1007/s12035-023-03361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
Temporal lobe epilepsy (TLE), accompanied by hippocampal sclerosis (HS), is the most common form of drug-resistant epilepsy (DRE). Nearly 20% of the patients showed seizure recurrence even after surgery, and the reasons are yet to be understood. Dysregulation of neurotransmitters is evident during seizures, which can induce excitotoxicity. The present study focused on understanding the molecular changes associated with Dopamine (DA) and glutamate signaling and their possible impact on the persistence of excitotoxicity and seizure recurrence in patients with drug-resistant TLE-HS who underwent surgery. According to the International League against Epilepsy (ILAE) suggested classification for seizure outcomes, the patients (n = 26) were classified as class 1 (no seizures) and class 2 (persistent seizures) using the latest post-surgery follow-up data to understand the prevalent molecular changes in seizure-free and seizure-recurrence patient groups. Our study uses thioflavin T assay, western blot analysis, immunofluorescence assays, and fluorescence resonance energy transfer (FRET) assays. We have observed a substantial increase in the DA and glutamate receptors that promote excitotoxicity. Patients who had seizure recurrence showed a significant increase in (pNR2B, p < 0.009; and pGluR1, p < 0.01), protein phosphatase1γ (PP1γ; p < 0.009), protein kinase A (PKAc; p < 0.001) and dopamine-cAMP regulated phospho protein32 (pDARPP32T34; p < 0.009) which are critical for long-term potentiation (LTP), excitotoxicity compared to seizure-free patients and controls. A significant increase in D1R downstream kinases like PKA (p < 0.001), pCAMKII (p < 0.009), and Fyn (p < 0.001) was observed in patient samples compared to controls. Anti-epileptic DA receptor D2R was found to be decreased in ILAE class 2 (p < 0.02) compared to class 1. Since upregulation of DA and glutamate signaling supports LTP and excitotoxicity, we believe it could impact seizure recurrence. Further studies about the impact of DA and glutamate signaling on the distribution of PP1γ at postsynaptic density and synaptic strength could help us understand the seizure microenvironment in patients. Dopamine, Glutamate signal crosstalk. Diagram representing the PP1γ regulation by NMDAR negative feedback inhibition signaling (green circle-left) and D1R signal (red circle-middle) domination over PP1γ though increased PKA, pDARPP32T34, and supports pGluR1, pNR2B in seizure recurrent patients. D1R-D2R hetero dimer activation (red circle-right) increases cellular Ca2+ and pCAMKIIα activation. All these events lead to calcium overload in HS patients and excitotoxicity, particularly in patients experiencing recurrent seizures.
Collapse
Affiliation(s)
- Kishore Madhamanchi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Pradeep Madhamanchi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Govt. Degree College for Men's, Srikakulam District, Andhra Pradesh, 532001, India
| | - Sita Jayalakshmi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Manas Panigrahi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Anuja Patil
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
22
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
23
|
de Melo AD, Freire VAF, Diogo ÍL, Santos HDL, Barbosa LA, de Carvalho LED. Antioxidant Therapy Reduces Oxidative Stress, Restores Na,K-ATPase Function and Induces Neuroprotection in Rodent Models of Seizure and Epilepsy: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2023; 12:1397. [PMID: 37507936 PMCID: PMC10376594 DOI: 10.3390/antiox12071397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/30/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by epileptic seizures resulting from neuronal hyperexcitability, which may be related to failures in Na,K-ATPase activity and oxidative stress participation. We conducted this study to investigate the impact of antioxidant therapy on oxidative stress, Na,K-ATPase activity, seizure factors, and mortality in rodent seizure/epilepsy models induced by pentylenetetrazol (PTZ), pilocarpine (PILO), and kainic acid (KA). After screening 561 records in the MEDLINE, EMBASE, Web of Science, Science Direct, and Scopus databases, 22 were included in the systematic review following the PRISMA guidelines. The meta-analysis included 14 studies and showed that in epileptic animals there was an increase in the oxidizing agents nitric oxide (NO) and malondialdehyde (MDA), with a reduction in endogenous antioxidants reduced glutathione (GSH) and superoxide dismutase (SO). The Na,K-ATPase activity was reduced in all areas evaluated. Antioxidant therapy reversed all of these parameters altered by seizure or epilepsy induction. In addition, there was a percentage decrease in the number of seizures and mortality, and a meta-analysis showed a longer seizure latency in animals using antioxidant therapy. Thus, this study suggests that the use of antioxidants promotes neuroprotective effects and mitigates the effects of epilepsy. The protocol was registered in the Prospective Register of Systematic Reviews (PROSPERO) CRD42022356960.
Collapse
Affiliation(s)
- Anderson Dutra de Melo
- Departamento de Ciências e Linguagens, Instituto Federal de Minas Gerais, Bambui 38900-000, Minas Gerais, Brazil
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | - Victor Antonio Ferreira Freire
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | - Ítalo Leonardo Diogo
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | - Hérica de Lima Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João Del Rei, Divinopolis 35501-296, Minas Gerais, Brazil
| | | |
Collapse
|
24
|
Alraddadi EA, Khojah AM, Alamri FF, Kecheck HK, Altaf WF, Khouqeer Y. Potential role of creatine as an anticonvulsant agent: evidence from preclinical studies. Front Neurosci 2023; 17:1201971. [PMID: 37456992 PMCID: PMC10339234 DOI: 10.3389/fnins.2023.1201971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders affecting people of all ages representing a significant social and public health burden. Current therapeutic options for epilepsy are not effective in a significant proportion of patients suggesting a need for identifying novel targets for the development of more effective therapeutics. There is growing evidence from animal and human studies suggesting a role of impaired brain energy metabolism and mitochondrial dysfunction in the development of epilepsy. Candidate compounds with the potential to target brain energetics have promising future in the management of epilepsy and other related neurological disorders. Creatine is a naturally occurring organic compound that serves as an energy buffer and energy shuttle in tissues, such as brain and skeletal muscle, that exhibit dynamic energy requirements. In this review, applications of creatine supplements in neurological conditions in which mitochondrial dysfunction is a central component in its pathology will be discussed. Currently, limited evidence mainly from preclinical animal studies suggest anticonvulsant properties of creatine; however, the exact mechanism remain to be elucidated. Future work should involve larger clinical trials of creatine used as an add-on therapy, followed by large clinical trials of creatine as monotherapy.
Collapse
Affiliation(s)
- Eman A. Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman M. Khojah
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Faisal F. Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Husun K. Kecheck
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Wid F. Altaf
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Yousef Khouqeer
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
26
|
Carvalho-Rosa JD, Rodrigues NC, Silva-Cruz A, Vaz SH, Cunha-Reis D. Epileptiform activity influences theta-burst induced LTP in the adult hippocampus: a role for synaptic lipid raft disruption in early metaplasticity? Front Cell Neurosci 2023; 17:1117697. [PMID: 37228704 PMCID: PMC10203237 DOI: 10.3389/fncel.2023.1117697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023] Open
Abstract
Non-epileptic seizures are identified as a common epileptogenic trigger. Early metaplasticity following seizures may contribute to epileptogenesis by abnormally altering synaptic strength and homeostatic plasticity. We now studied how in vitro epileptiform activity (EA) triggers early changes in CA1 long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in rat hippocampal slices and the involvement of lipid rafts in these early metaplasticity events. Two forms of EA were induced: (1) interictal-like EA evoked by Mg2+ withdrawal and K+ elevation to 6 mM in the superfusion medium or (2) ictal-like EA induced by bicuculline (10 μM). Both EA patterns induced and LTP-like effect on CA1 synaptic transmission prior to LTP induction. LTP induced 30 min post EA was impaired, an effect more pronounced after ictal-like EA. LTP recovered to control levels 60 min post interictal-like EA but was still impaired 60 min after ictal-like EA. The synaptic molecular events underlying this altered LTP were investigated 30 min post EA in synaptosomes isolated from these slices. EA enhanced AMPA GluA1 Ser831 phosphorylation but decreased Ser845 phosphorylation and the GluA1/GluA2 ratio. Flotillin-1 and caveolin-1 were markedly decreased concomitantly with a marked increase in gephyrin levels and a less prominent increase in PSD-95. Altogether, EA differentially influences hippocampal CA1 LTP thorough regulation of GluA1/GluA2 levels and AMPA GluA1 phosphorylation suggesting that altered LTP post-seizures is a relevant target for antiepileptogenic therapies. In addition, this metaplasticity is also associated with marked alterations in classic and synaptic lipid raft markers, suggesting these may also constitute promising targets in epileptogenesis prevention.
Collapse
Affiliation(s)
- José D. Carvalho-Rosa
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nádia C. Rodrigues
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Armando Silva-Cruz
- BioISI–Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H. Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
27
|
Bilister Egilmez C, Azak Pazarlar B, Erdogan MA, Erbas O. N-acetyl cysteine: A new look at its effect on PTZ-induced convulsions. Epilepsy Res 2023; 193:107144. [PMID: 37116249 DOI: 10.1016/j.eplepsyres.2023.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION/AIM Epilepsy is widely investigated as a common neurological disease requiring pharmacologically effective agents. N-acetyl cysteine (NAC), has become a remarkable molecule with its role in both antioxidant and glutaminergic modulation. There are many points and processes waiting to be revealed regarding the role of NAC in epilepsy. MATERIALS AND METHODS Pentylenetetrazole (PTZ) was administered to induce seizures in a total number of 48 Sprague-Dawley rats. 35 mg/kg PTZ dose as a sub-convulsive dose was administered to 24 animals to monitor EEG changes, while 70 mg/kg PTZ dose which was a convulsive dose was administered to 24 animals to determine seizure-related behavioral changes with the Racine's scale. 30 min before the seizure-induced procedure, NAC was administered at doses of 300 and 600 mg/kg as pretreatment to investigate anti-seizure and anti-oxidative effects. The spike percentage, the stage of convulsion, and the onset time of the first myoclonic jerk were evaluated to determine the anti-seizure effect. Furthermore, its effect on oxidative stress was determined by measuring both malondialdehyde (MDA) level and superoxide dismutase (SOD) enzyme activity. RESULTS There was a dose-dependent reduction in the seizure stage and prolonged onset time of the first myoclonic jerk in rats with NAC pretreatment. EEG recordings resulted in a dose-dependent decrease in spike percentages. Moreover, the same dose-dependent changes were observed in oxidative stress biomarkers, both 300 mg/kg NAC and 600 mg/kg decreased MDA levels and ameliorated SOD activity. CONCLUSION We can report that 300 mg/kg and 600 mg/kg doses of NAC are promising with their reducing effect on convulsions and have a beneficial effect by preventing oxidative stress. In addition, NAC has been also determined that this effect is dose-dependent. Detailed and comparative studies are needed on the convulsion-reducing effect of NAC in epilepsy.
Collapse
Affiliation(s)
- Cansu Bilister Egilmez
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Burcu Azak Pazarlar
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Oytun Erbas
- Faculty of Medicine, Department of Physiology, Bilim University, Istanbul, Turkey
| |
Collapse
|
28
|
Zhang SN, Li HM, Liu Q, Li XZ, Yang WD, Zhou Y. Eucommiae Folium and Active Compounds Protect Against Mitochondrial Dysfunction-Calcium Overload in Epileptic Hippocampal Neurons Through the Hypertrophic Cardiomyopathy Pathway. Neurochem Res 2023:10.1007/s11064-023-03937-5. [PMID: 37067737 DOI: 10.1007/s11064-023-03937-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Epilepsy is a chronic brain disease and often occurs suddenly for no reason. Eucommiae folium (EF), an edible herb, can be used in the treatment of various kinds of brain diseases in clinic. From the perspective of safety and efficacy, EF is especially suitable for the treatment of chronic brain diseases. With the help of biolabels, this study was aimed to explore the value and feasibility of EF in the treatment of epilepsy. Proteomics and metabolomics were used to explore the biolabels of EF intervention in brain tissues. Bioinformatics was then applied to topologically analyze its neuroprotective effects and mechanisms and material basis based on biolabels, which were validated in an animal model. The biolabel-led research revealed that EF may exert the therapeutic potential to treat brain diseases through the interaction between multiple compounds and multiple targets, among which its therapeutic potential for epilepsy is particularly prominent. In the pentylenetetrazole-induction model, EF and four active compounds (oleamide, catechol, chlorogenic acid, and kaempferol) protected epileptic hippocampal neurons (Nissl and FJB staining) against mitochondrial dysfunction (MYH6, MYL3, and MYBPC3, etc.) and calcium overload (TNNI3, TNNC1, and TNNT2, etc.) through the hypertrophic cardiomyopathy pathway. This study provides new evidence and insights for the neuroprotective effects of EF, in which four active compounds may be potential drug candidates for the treatment of epilepsy.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China
| | - Hong-Mei Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China.
| | - Wu-de Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China.
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China.
| |
Collapse
|
29
|
Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front Cell Dev Biol 2023; 11:1094356. [PMID: 36760367 PMCID: PMC9902777 DOI: 10.3389/fcell.2023.1094356] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Grant C. Walters
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Yuriy M. Usachev
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
30
|
Holton K. The potential role of dietary intervention for the treatment of neuroinflammation. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:239-266. [DOI: 10.1016/b978-0-323-85841-0.00022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
32
|
Zavala-Tecuapetla C, Luna-Munguia H, López-Meraz ML, Cuellar-Herrera M. Advances and Challenges of Cannabidiol as an Anti-Seizure Strategy: Preclinical Evidence. Int J Mol Sci 2022; 23:ijms232416181. [PMID: 36555823 PMCID: PMC9783044 DOI: 10.3390/ijms232416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The use of Cannabis for medicinal purposes has been documented since ancient times, where one of its principal cannabinoids extracted from Cannabis sativa, cannabidiol (CBD), has emerged over the last few years as a promising molecule with anti-seizure potential. Here, we present an overview of recent literature pointing out CBD's pharmacological profile (solubility, metabolism, drug-drug interactions, etc.,), CBD's interactions with multiple molecular targets as well as advances in preclinical research concerning its anti-seizure effect on both acute seizure models and chronic models of epilepsy. We also highlight the recent attention that has been given to other natural cannabinoids and to synthetic derivatives of CBD as possible compounds with therapeutic anti-seizure potential. All the scientific research reviewed here encourages to continue to investigate the probable therapeutic efficacy of CBD and its related compounds not only in epilepsy but also and specially in drug-resistant epilepsy, since there is a dire need for new and effective drugs to treat this disease.
Collapse
Affiliation(s)
- Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico
- Correspondence:
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa 91190, Mexico
| | - Manola Cuellar-Herrera
- Epilepsy Clinic, Hospital General de México Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, Mexico City 06720, Mexico
| |
Collapse
|
33
|
Zhu L, Chen D, Lin X, Liu L. Gene expression profile for different susceptibilities to sound stimulation: a comparative study on brainstems between two inbred laboratory mouse strains. BMC Genomics 2022; 23:783. [PMID: 36451107 PMCID: PMC9710100 DOI: 10.1186/s12864-022-09016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND DBA/1 mice have a higher susceptibility to generalized audiogenic seizures (AGSz) and seizure-induced respiratory arrest (S-IRA) than C57/BL6 mice. The gene expression profile might be potentially related to this difference. This study aimed to investigate the susceptibility difference in AGSz and S-IRA between DBA/1 and C57BL/6 mice by profiling long noncoding RNAs (lncRNAs) and mRNA expression. METHODS We compared lncRNAs and mRNAs from the brainstem of the two strains with Arraystar Mouse lncRNA Microarray V3.0 (Arraystar, Rockville, MD). Gene Ontology (GO) and pathway analyses were performed to determine the potentially related biological functions and pathways based on differentially expressed mRNAs. qRT-PCR was carried out to validate the results. RESULTS A total of 897 lncRNAs and 438 mRNAs were differentially expressed (fold change ≥2, P < 0.05), of which 192 lncRNAs were upregulated and 705 lncRNAs were downregulated. A total of 138 mRNAs were upregulated, and 300 mRNAs were downregulated. In terms of specific mRNAs, Htr5b, Gabra2, Hspa1b and Gfra1 may be related to AGSz or S-IRA. Additionally, lncRNA Neat1 may participate in the difference in susceptibility. GO and pathway analyses suggested that TGF-β signaling, metabolic process and MHC protein complex could be involved in these differences. Coexpression analysis identified 9 differentially expressed antisense lncRNAs and 115 long intergenic noncoding RNAs (lincRNAs), and 2010012P19Rik and its adjacent RNA Tnfsf12-Tnfsf13 may have participated in S-IRA by regulating sympathetic neuron function. The results of the qRT-PCR of five selected lncRNAs (AK038711, Gm11762, 1500004A13Rik, AA388235 and Neat1) and four selected mRNAs (Hspa1b, Htr5b, Gabra2 and Gfra1) were consistent with those obtained by microarray. CONCLUSION We concluded that TGF-β signaling and metabolic process may contribute to the differential sensitivity to AGSz and S-IRA. Among mRNAs, Htr5b, Gabra2, Hspa1b and Gfra1 could potentially influence the susceptibility. LncRNA Neat1 and 2010012P19Rik may also contribute to the different response to sound stimulation. Further studies should be carried out to explore the underlying functions and mechanisms of differentially expressed RNAs.
Collapse
Affiliation(s)
- Lina Zhu
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, Chengdu, 610041 Sichuan China
| | - Deng Chen
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, Chengdu, 610041 Sichuan China
| | - Xin Lin
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, Chengdu, 610041 Sichuan China
| | - Ling Liu
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, Chengdu, 610041 Sichuan China
| |
Collapse
|
34
|
Lee SH, Choi BY, Kho AR, Hong DK, Kang BS, Park MK, Lee SH, Choi HC, Song HK, Suh SW. Combined Treatment of Dichloroacetic Acid and Pyruvate Increased Neuronal Survival after Seizure. Nutrients 2022; 14:4804. [PMID: 36432491 PMCID: PMC9698956 DOI: 10.3390/nu14224804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
During seizure activity, glucose and Adenosine triphosphate (ATP) levels are significantly decreased in the brain, which is a contributing factor to seizure-induced neuronal death. Dichloroacetic acid (DCA) has been shown to prevent cell death. DCA is also known to be involved in adenosine triphosphate (ATP) production by activating pyruvate dehydrogenase (PDH), a gatekeeper of glucose oxidation, as a pyruvate dehydrogenase kinase (PDK) inhibitor. To confirm these findings, in this study, rats were given a per oral (P.O.) injection of DCA (100 mg/kg) with pyruvate (50 mg/kg) once per day for 1 week starting 2 h after the onset of seizures induced by pilocarpine administration. Neuronal death and oxidative stress were assessed 1 week after seizure to determine if the combined treatment of pyruvate and DCA increased neuronal survival and reduced oxidative damage in the hippocampus. We found that the combined treatment of pyruvate and DCA showed protective effects against seizure-associated hippocampal neuronal cell death compared to the vehicle-treated group. Treatment with combined pyruvate and DCA after seizure may have a therapeutic effect by increasing the proportion of pyruvate converted to ATP. Thus, the current research demonstrates that the combined treatment of pyruvate and DCA may have therapeutic potential in seizure-induced neuronal death.
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
- Institute of Sports Science, Hallym University, Chuncheon 24252, Korea
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Si Hyun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hui Chul Choi
- College of Medicine, Neurology, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| | - Hong Ki Song
- College of Medicine, Neurology, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
35
|
Azilinon M, Makhalova J, Zaaraoui W, Medina Villalon S, Viout P, Roussel T, El Mendili MM, Ridley B, Ranjeva J, Bartolomei F, Jirsa V, Guye M. Combining sodium MRI, proton MR spectroscopic imaging, and intracerebral EEG in epilepsy. Hum Brain Mapp 2022; 44:825-840. [PMID: 36217746 PMCID: PMC9842896 DOI: 10.1002/hbm.26102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 01/25/2023] Open
Abstract
Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. We combined sodium MRI (23 Na MRI) and 1 H-MR Spectroscopic Imaging (1 H-MRSI), assessing changes within epileptogenic networks in comparison with electrophysiologically normal networks as defined by stereotactic EEG (SEEG) recordings analysis. We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7 T (23 Na-MRI) and a 3D echo-planar spectroscopic imaging sequence at 3 T (1 H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated 23 Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T2 * decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho), and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls. Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients' propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients' regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ. Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Julia Makhalova
- APHM, Timone Hospital, CEMEREMMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Patrick Viout
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Tangi Roussel
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Mohamed M. El Mendili
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Jean‐Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| |
Collapse
|
36
|
Xu XX, Shi RX, Fu Y, Wang JL, Tong X, Zhang SQ, Wang N, Li MX, Tong Y, Wang W, He M, Liu BY, Chen GL, Guo F. Neuronal nitric oxide synthase/reactive oxygen species pathway is involved in apoptosis and pyroptosis in epilepsy. Neural Regen Res 2022; 18:1277-1285. [PMID: 36453412 PMCID: PMC9838157 DOI: 10.4103/1673-5374.357906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Dysfunction of neuronal nitric oxide synthase contributes to neurotoxicity, which triggers cell death in various neuropathological diseases, including epilepsy. Studies have shown that inhibition of neuronal nitric oxide synthase activity increases the epilepsy threshold, that is, has an anticonvulsant effect. However, the exact role and potential mechanism of neuronal nitric oxide synthase in seizures are still unclear. In this study, we performed RNA sequencing, functional enrichment analysis, and weighted gene coexpression network analysis of the hippocampus of tremor rats, a rat model of genetic epilepsy. We found damaged hippocampal mitochondria and abnormal succinate dehydrogenase level and Na+-K+-ATPase activity. In addition, we used a pilocarpine-induced N2a cell model to mimic epileptic injury. After application of neuronal nitric oxide synthase inhibitor 7-nitroindazole, changes in malondialdehyde, lactate dehydrogenase and superoxide dismutase, which are associated with oxidative stress, were reversed, and the increase in reactive oxygen species level was reversed by 7-nitroindazole or reactive oxygen species inhibitor N-acetylcysteine. Application of 7-nitroindazole or N-acetylcysteine downregulated the expression of caspase-3 and cytochrome c and reversed the apoptosis of epileptic cells. Furthermore, 7-nitroindazole or N-acetylcysteine downregulated the abnormally high expression of NLRP3, gasdermin-D, interleukin-1β and interleukin-18. This indicated that 7-nitroindazole and N-acetylcysteine each reversed epileptic cell death. Taken together, our findings suggest that the neuronal nitric oxide synthase/reactive oxygen species pathway is involved in pyroptosis of epileptic cells, and inhibiting neuronal nitric oxide synthase activity or its induced oxidative stress may play a neuroprotective role in epilepsy.
Collapse
Affiliation(s)
- Xiao-Xue Xu
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China,Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Rui-Xue Shi
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Yu Fu
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Jia-Lu Wang
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin Tong
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Shi-Qi Zhang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Mei-Xuan Li
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Yu Tong
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Miao He
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Bing-Yang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| |
Collapse
|
37
|
Saadi A, Sandouka S, Grad E, Singh PK, Shekh-Ahmad T. Spatial, temporal, and cell-type-specific expression of NADPH Oxidase isoforms following seizure models in rats. Free Radic Biol Med 2022; 190:158-168. [PMID: 35964838 DOI: 10.1016/j.freeradbiomed.2022.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
The NADPH Oxidase (NOX) enzymes are key producers of reactive oxygen species (ROS) and consist of seven different isoforms, distributed across the tissues and cell types. The increasing level of ROS induces oxidative stress playing a crucial role in neuronal death and the development of epilepsy. Recently, NOX2 was reported as a primary source of ROS production, activated by NMDA receptor, a crucial marker of epilepsy development. Here, we demonstrate spatial, temporal, and cellular expression of NOX2 and NOX4 complexes in in-vitro and in-vivo seizure models. We showed that the expression of NOX2 and NOX4 was increased in the initial 24 h following a brief seizure induced by pentylenetetrazol. Interestingly, while this elevated level returns to baseline 48 h following seizure in the cortex, in the hippocampus these levels remain elevated up to one week following the seizure. Moreover, we showed that 1- and 2- weeks following status epilepticus (SE), expression of NOX2 and NOX4 remains significantly elevated both in the cortex and the hippocampus. Furthermore, in in-vitro seizure model, NOX2 and NOX4 isoforms were overexpressed in neurons and astrocytes following seizures. These results suggest that NOX2 and NOX4 in the brain have a transient response to seizures, and these responses temporally vary depending on, seizure duration, brain region (cortex or hippocampus), and cell types.
Collapse
Affiliation(s)
- Aseel Saadi
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Sereen Sandouka
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Etty Grad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Prince Kumar Singh
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
38
|
Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med 2022:10.1007/s12017-022-08724-z. [PMID: 35951285 DOI: 10.1007/s12017-022-08724-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Quercetin is a polyphenolic bioactive compound highly enriched in dietary fruits, vegetables, nuts, and berries. Quercetin and its derivatives like rutin and hyperoside are known for their beneficial effects in various neurological conditions including epilepsy. The clinical studies of quercetin and its derivatives in relation to epilepsy are limited. This review provides the evidence of most recent knowledge of anticonvulsant properties of quercetin and its derivatives on preclinical studies. Additionally, the studies demonstrating antiseizure potential of various plants extracts enriched with quercetin and its derivatives has been included in this review. Herein, we have also discussed neuroprotective effect of these bioactive compound and presented underlying mechanisms responsible for anticonvulsant properties in brief. Finally, limitations of quercetin and its derivatives as antiseizure compounds as well as possible strategies to enhance efficacy have also been discussed.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Tyagi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyam Sunder Rabidas
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
39
|
Research progress on oxidative stress regulating different types of neuronal death caused by epileptic seizures. Neurol Sci 2022; 43:6279-6298. [DOI: 10.1007/s10072-022-06302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
|
40
|
Bayrak G, Turkyilmaz IB, Yanardag R. The protective effect of vitamin U on pentylenetetrazole-induced brain damage in rats. J Biochem Mol Toxicol 2022; 36:e23169. [PMID: 35833322 DOI: 10.1002/jbt.23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022]
Abstract
Pentylenetetrazole (PTZ) is preferred for experimental epilepsy induction. PTZ damages brain and other organs by elevating oxidative substances. Vitamin U (Vit U) is sulfur derivative substance that proved to be an excellent antioxidant. The current study was intended to determine the protective role of Vit U on PTZ-induced brain damage. Male Sprague-Dawley rats were separated into four groups. The Control group (Group I), was given saline for 7 days intraperitoneally (i.p); Vit U (Group II) was given as 50 mg/kg/day for 7 days by gavage; PTZ was injected into animals (Group III) at a single dose of 60 mg/kg, by i.p; PTZ + Vit U group (Group IV) was administered PTZ and Vit U in same dose and time as aforementioned. After the experiment was terminated, brain tissues were taken for the preparation of homogenates. In the PTZ group, glutathione and lipid peroxidation levels, alkaline phosphatase, myeloperoxidase, xanthine oxidase, acetylcholine esterase, antioxidant enzyme activities, total oxidant status, oxidative stress index, reactive oxygen species, and nitric oxide levels were increased. However, total antioxidant capacity was decreased in the PTZ group. Vit U ameliorated these effects in the PTZ-induced brain damage. Consequently, we can suggest that Vit U protected brain tissue via its antioxidant feature against PTZ kindling epilepsy.
Collapse
Affiliation(s)
- Gamze Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| |
Collapse
|
41
|
Rzayev E, Amanvermez R, Gün S, Tiryaki ES, Arslan G. 4-Phenylbutyric Acid Plus Valproic Acid Exhibits the Therapeutic and Neuroprotective Effects in Acute Seizures Induced by Pentylenetetrazole. Neurochem Res 2022; 47:3104-3113. [PMID: 35764848 DOI: 10.1007/s11064-022-03662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Endoplasmic reticulum (ER) stress and apoptosis are implicated in the pathogenesis of epilepsy. Here we examine the effects of valproic acid (VA) plus 4-phenylbutyric acid (4-PBA) on abnormal electrical brain activity, ER stress and apoptosis in acute seizures induced by pentylenetetrazole (PTZ). Forty male rats were randomly divided into five groups, each consisting of 8 rats as follows: Sham, PTZ, VA+PTZ, 4-PBA+PTZ, and VA plus 4-PBA+PTZ. The treated groups received VA, 4-PBA and VA plus 4-PBA by intraperitoneal application for 7 days prior to PTZ-induced seizure. On the 8th day, acute epileptic seizures were induced by PTZ (50 mg/kg, i.p.) injection, except for the sham group. Then, the seizure stage was observed and ECoG activities were recorded during the 30 min. At 24th post seizures, the hippocampus and blood samples were collected for biochemical and histopathological examinations. Administration of VA plus 4-PBA prior to PTZ-induced seizures significantly decreased seizure stage, the duration of generalized tonic-clonic seizure and the total number of spikes as increased the latency to the first myoclonic jerk when compared to the PTZ group. 4-PBA suppressed the increased levels of ER stress markers GRP78 and CHOP in the hippocampus. VA plus 4-PBA treatment before seizures significantly inhibited PTZ-induced elevations of apoptosis-related indicators caspase-3 and caspase-12, and significantly reduced the number of histopathological lesions of the hippocampus region at 24th post seizures. These findings suggest that administration of VA plus 4-PBA prior to PTZ-induced seizures may be involved in the neuroprotective potential of these agents for seizures.
Collapse
Affiliation(s)
- Emil Rzayev
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Atakum, 55139, Samsun, Turkey
| | - Ramazan Amanvermez
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Atakum, 55139, Samsun, Turkey.
| | - Seda Gün
- Department of Medical Pathology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Emre S Tiryaki
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
42
|
Levy KA, Weisz ED, Jongens TA. Loss of neurexin-1 in Drosophila melanogaster results in altered energy metabolism and increased seizure susceptibility. Hum Mol Genet 2022; 31:3422-3438. [PMID: 35617143 PMCID: PMC9558836 DOI: 10.1093/hmg/ddac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Although autism is typically characterized by differences in language, social interaction and restrictive, repetitive behaviors, it is becoming more well known in the field that alterations in energy metabolism and mitochondrial function are comorbid disorders in autism. The synaptic cell adhesion molecule, neurexin-1 (NRXN1), has previously been implicated in autism, and here we show that in Drosophila melanogaster, the homologue of NRXN1, called Nrx-1, regulates energy metabolism and nutrient homeostasis. First, we show that Nrx-1-null flies exhibit decreased resistance to nutrient deprivation and heat stress compared to controls. Additionally, Nrx-1 mutants exhibit a significantly altered metabolic profile characterized by decreased lipid and carbohydrate stores. Nrx-1-null Drosophila also exhibit diminished levels of nicotinamide adenine dinucleotide (NAD+), an important coenzyme in major energy metabolism pathways. Moreover, loss of Nrx-1 resulted in striking abnormalities in mitochondrial morphology in the flight muscle of Nrx-1-null Drosophila and impaired flight ability in these flies. Further, following a mechanical shock Nrx-1-null flies exhibited seizure-like activity, a phenotype previously linked to defects in mitochondrial metabolism and a common symptom of patients with NRXN1 deletions. The current studies indicate a novel role for NRXN1 in the regulation of energy metabolism and uncover a clinically relevant seizure phenotype in Drosophila lacking Nrx-1.
Collapse
Affiliation(s)
- Kyra A Levy
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.,Autism Spectrum Program of Excellence, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eliana D Weisz
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Autism Spectrum Program of Excellence, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas A Jongens
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Autism Spectrum Program of Excellence, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Kim JE, Lee DS, Kim TH, Kang TC. CDDO-Me Attenuates CA1 Neuronal Death by Facilitating RalBP1-Mediated Mitochondrial Fission and 4-HNE Efflux in the Rat Hippocampus Following Status Epilepticus. Antioxidants (Basel) 2022; 11:985. [PMID: 35624848 PMCID: PMC9137584 DOI: 10.3390/antiox11050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Ras-related protein Ral-A (RalA)-binding protein 1 (RalBP1, also known as Ral-interacting protein of 76 kDa (RLIP76) or Ral-interacting protein 1 (RLIP1 or RIP1)) is involved in the efflux of 4-hydroxynonenal (4-HNE, an end product of lipid peroxidation), as well as mitochondrial fission. In the present study, we found that 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) attenuated CA1 neuronal death and aberrant mitochondrial elongations in these neurons coupled with enhanced RalBP1 expression and reduced 4-HNE levels following status epilepticus (SE). RalBP1 knockdown did not affect mitochondrial dynamics and CA1 neuronal death under physiological and post-SE conditions. Following SE, however, cotreatment of RalBP1 siRNA diminished the effect of CDDO-Me on 4-HNE levels, mitochondrial hyperfusion in CA1 neurons, and CA1 neuronal death. These findings indicate that CDDO-Me may ameliorate CA1 neuronal death by facilitating RalBP1-mediated 4-HNE efflux and mitochondrial fission following SE. Therefore, our findings suggest that increased RalBP1 expression/activity may be one of the considerable targets to protect neurons from SE.
Collapse
Affiliation(s)
| | | | | | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (T.-H.K.)
| |
Collapse
|
44
|
Liu KM, Huang Y, Wan PP, Lu YH, Zhou N, Li JJ, Yu CY, Chou JJ, Zhang L, Zhang C, Qiang YY, Zhang R, Guo L. Ursolic Acid Protects Neurons in Temporal Lobe Epilepsy and Cognitive Impairment by Repressing Inflammation and Oxidation. Front Pharmacol 2022; 13:877898. [PMID: 35677445 PMCID: PMC9169096 DOI: 10.3389/fphar.2022.877898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is characterized as an impaired ability of learning and memory with periodic and unpredictable seizures. Status epilepticus (SE) is one of the main causes of TLE. Neuroinflammation and oxidative stress are directly involved in epileptogenesis and neurodegeneration, promoting chronic epilepsy and cognitive deficit. Previous studies have shown that ursolic acid (UA) represses inflammation and oxidative stress, contributing to neuroprotection. Herein, we demonstrated that UA treatment alleviated seizure behavior and cognitive impairment induced by epilepsy. Moreover, UA treatment rescued hippocampal neuronal damage, aberrant neurogenesis, and ectopic migration, which are commonly accompanied by epilepsy occurrence. Our study also demonstrated that UA treatment remarkably suppressed the SE-induced neuroinflammation, evidenced by activated microglial cells and decreased inflammation factors, including TNF-α and IL-1β. Likewise, the expression levels of oxidative stress damage markers and oxidative phosphorylation (OXPHOS) enzyme complexes of mitochondria were also remarkably downregulated following the UA treatment, suggesting that UA suppressed the damage caused by the high oxidative stress and the defect mitochondrial function induced by SE. Furthermore, UA treatment attenuated GABAergic interneuron loss. In summary, our study clarified the notable anti-seizure and neuroprotective properties of UA in pilocarpine-induced epileptic rats, which is mainly achieved by abilities of anti-inflammation and anti-oxidation. Our study indicates the potential advantage of UA application in ameliorating epileptic sequelae.
Collapse
Affiliation(s)
- Kun-mei Liu
- Department of Microbiology and Biochemical Pharmacy, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
- Medical Science Research Institution of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
- *Correspondence: Kun-mei Liu, ; Le Guo,
| | - Yue Huang
- Department of Microbiology and Biochemical Pharmacy, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Pan-pan Wan
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Yun-hua Lu
- College of Life Sciences, Huzhou University, Huzhou, China
| | - Ning Zhou
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Juan-juan Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Chun-yang Yu
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Jin-jiang Chou
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Yuan-yuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Rui Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- *Correspondence: Kun-mei Liu, ; Le Guo,
| |
Collapse
|
45
|
Wang D, Liu Y, Zhao D, Jin M, Li L, Ni H. Plppr5 gene inactivation causes a more severe neurological phenotype and abnormal mitochondrial homeostasis in a mouse model of juvenile seizure. Epilepsy Res 2022; 183:106944. [DOI: 10.1016/j.eplepsyres.2022.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
|
46
|
Unifying mechanism behind the onset of acquired epilepsy. Trends Pharmacol Sci 2021; 43:87-96. [PMID: 34887128 DOI: 10.1016/j.tips.2021.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Acquired epilepsy (AE) can result from a number of brain insults and neurological diseases with wide etiological diversity sharing one common outcome of brain epileptiform activity. This implies that despite their disparity, all these initiating pathologies affect the same fundamental brain functions underlying network excitability. Identifying such mechanisms and their availability as therapeutic targets would help develop an effective strategy for epileptogenesis prevention. In this opinion article, we propose that the vicious cycle of NADPH oxidase (NOX)-mediated oxidative stress and glucose hypometabolism is the underlying cause of AE, as available data reveal a critical role for both pathologies in epileptogenesis and the process of seizure initiation. Altogether, here we present a novel view on the mechanisms behind the onset of AE and identify therapeutic targets for potential clinical applications.
Collapse
|
47
|
Hypoxia and the Kynurenine Pathway: Implications and Therapeutic Prospects in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5522981. [PMID: 34804368 PMCID: PMC8598363 DOI: 10.1155/2021/5522981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (NDs) like Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease predominantly pose a significant socioeconomic burden. Characterized by progressive neural dysfunction coupled with motor or intellectual impairment, the pathogenesis of ND may result from contributions of certain environmental and molecular factors. One such condition is hypoxia, characterized by reduced organ/tissue exposure to oxygen. Reduced oxygen supply often occurs during the pathogenesis of ND and the aging process. Despite the well-established relationship between these two conditions (i.e., hypoxia and ND), the underlying molecular events or mechanisms connecting hypoxia to ND remain ill-defined. However, the relatedness may stem from the protective or deleterious effects of the transcription factor, hypoxia-inducible factor 1-alpha (HIF-1α). The upregulation of HIF-1α occurs in the pathogenesis of most NDs. The dual function of HIF-1α in acting as a "killer factor" or a "protective factor" depends on the prevailing local cellular condition. The kynurenine pathway is a metabolic pathway involved in the oxidative breakdown of tryptophan. It is essential in neurotransmission and immune function and, like hypoxia, associated with ND. Thus, a good understanding of factors, including hypoxia (i.e., the biochemical implication of HIF-1α) and kynurenine pathway activation in NDs, focusing on Alzheimer's disease could prove beneficial to new therapeutic approaches for this disease, thus the aim of this review.
Collapse
|
48
|
The Protective Role of E-64d in Hippocampal Excitotoxic Neuronal Injury Induced by Glutamate in HT22 Hippocampal Neuronal Cells. Neural Plast 2021; 2021:7174287. [PMID: 34721570 PMCID: PMC8550833 DOI: 10.1155/2021/7174287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Epilepsy is the most common childhood neurologic disorder. Status epilepticus (SE), which refers to continuous epileptic seizures, occurs more frequently in children than in adults, and approximately 40–50% of all cases occur in children under 2 years of age. Conventional antiepileptic drugs currently used in clinical practice have a number of adverse side effects. Drug-resistant epilepsy (DRE) can progressively develop in children with persistent SE, necessitating the development of novel therapeutic drugs. During SE, the persistent activation of neurons leads to decreased glutamate clearance with corresponding glutamate accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Our previous study demonstrated that after developmental seizures in rats, E-64d exerts a neuroprotective effect on the seizure-induced brain damage by modulating lipid metabolism enzymes, especially ApoE and ApoJ/clusterin. In this study, we investigated the impact and mechanisms of E-64d administration on neuronal excitotoxicity. To test our hypothesis that E-64d confers neuroprotective effects by regulating autophagy and mitochondrial pathway activity, we simulated neuronal excitotoxicity in vitro using an immortalized hippocampal neuron cell line (HT22). We found that E-64d improved cell viability while reducing oxidative stress and neuronal apoptosis. In addition, E-64d treatment regulated mitochondrial pathway activity and inhibited chaperone-mediated autophagy in HT22 cells. Our findings indicate that E-64d may alleviate glutamate-induced damage via regulation of mitochondrial fission and apoptosis, as well as inhibition of chaperone-mediated autophagy. Thus, E-64d may be a promising therapeutic treatment for hippocampal injury associated with SE.
Collapse
|
49
|
Lee WJ, Moon J, Lim JA, Jeon D, Yoo JS, Park DK, Han D, Lee ST, Jung KH, Park KI, Lee SK, Chu K. Proteins related to ictogenesis and seizure clustering in chronic epilepsy. Sci Rep 2021; 11:21508. [PMID: 34728717 PMCID: PMC8563854 DOI: 10.1038/s41598-021-00956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Seizure clustering is a common phenomenon in epilepsy. Protein expression profiles during a seizure cluster might reflect the pathomechanism underlying ictogenesis. We performed proteomic analyses to identify proteins with a specific temporal expression pattern in cluster phases and to demonstrate their potential pathomechanistic role. Pilocarpine epilepsy model mice with confirmed cluster pattern of spontaneous recurrent seizures by long-term video-electroencpehalography were sacrificed at the onset, peak, or end of a seizure cluster or in the seizure-free period. Proteomic analysis was performed in the hippocampus and the cortex. Differentially expressed proteins (DEPs) were identified and classified according to their temporal expression pattern. Among the five hippocampal (HC)-DEP classes, HC-class 1 (66 DEPs) represented disrupted cell homeostasis due to clustered seizures, HC-class 2 (63 DEPs) cluster-onset downregulated processes, HC-class 3 (42 DEPs) cluster-onset upregulated processes, and HC-class 4 (103 DEPs) consequences of clustered seizures. Especially, DEPs in HC-class 3 were hippocampus-specific and involved in axonogenesis, synaptic vesicle assembly, and neuronal projection, indicating their pathomechanistic roles in ictogenesis. Key proteins in HC-class 3 were highly interconnected and abundantly involved in those biological processes. This study described the seizure cluster-associated spatiotemporal regulation of protein expression. HC-class 3 provides insights regarding ictogenesis-related processes.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Ah Lim
- Department of Neurology, Cham Joeun Hospital, Gwangju, South Korea
| | - Daejong Jeon
- Advanced Neural Technologies, Seoul, South Korea
| | - Jung-Suk Yoo
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Dong-Kyu Park
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea.
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
50
|
D'Imperio S, Monasky MM, Micaglio E, Ciconte G, Anastasia L, Pappone C. Brugada Syndrome: Warning of a Systemic Condition? Front Cardiovasc Med 2021; 8:771349. [PMID: 34722688 PMCID: PMC8553994 DOI: 10.3389/fcvm.2021.771349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a hereditary disorder, characterized by a specific electrocardiogram pattern and highly related to an increased risk of sudden cardiac death. BrS has been associated with other cardiac and non-cardiac pathologies, probably because of protein expression shared by the heart and other tissue types. In fact, the most commonly found mutated gene in BrS, SCN5A, is expressed throughout nearly the entire body. Consistent with this, large meals and alcohol consumption can trigger arrhythmic events in patients with BrS, suggesting a role for organs involved in the digestive and metabolic pathways. Ajmaline, a drug used to diagnose BrS, can have side effects on non-cardiac tissues, such as the liver, further supporting the idea of a role for organs involved in the digestive and metabolic pathways in BrS. The BrS electrocardiogram (ECG) sign has been associated with neural, digestive, and metabolic pathways, and potential biomarkers for BrS have been found in the serum or plasma. Here, we review the known associations between BrS and various organ systems, and demonstrate support for the hypothesis that BrS is not only a cardiac disorder, but rather a systemic one that affects virtually the whole body. Any time that the BrS ECG sign is found, it should be considered not a single disease, but rather the final step in any number of pathways that ultimately threaten the patient's life. A multi-omics approach would be appropriate to study this syndrome, including genetics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics, resulting eventually in a biomarker for BrS and the ability to diagnose this syndrome using a minimally invasive blood test, avoiding the risk associated with ajmaline testing.
Collapse
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|