1
|
Palupi KD, Oktavia L, Wulansari D, Fathoni A, Praptiwi P, Rahmi D, Agusta A. Plant Endophytic Fungi: Powerful Catalytic Cells for Biotransformation of Chemical Structures of Biologically Active Compounds. Chem Biodivers 2024:e202402281. [PMID: 39714361 DOI: 10.1002/cbdv.202402281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Fungal endophytes are recognized as an essential source of bioactive compounds. Besides producing a wide variety of compounds, fungal endophytes can also facilitate a biotransformation process. In this process, endophytes act as an enzyme source to catalyze chemical reactions and modify the structures of bioactive compounds. Biotransformation offers advantages over chemical synthesis, for instance, the allowance of eco-friendly reactions and regioselective as well as stereoselective synthesis that is often difficult to achieve using chemical synthesis. This review focuses on the utilization of endophytic fungi in the biotransformation process of bioactive compounds to improve their pharmacological, pharmacokinetic, or toxicological parameters. We also discuss the future perspectives and obstacles of using the endophytic fungi-based biotransformation process.
Collapse
Affiliation(s)
- Kartika Dyah Palupi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Listiana Oktavia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dewi Wulansari
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ahmad Fathoni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Praptiwi Praptiwi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dwinna Rahmi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Andria Agusta
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
2
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Shannar A, Chou PJ, Peter R, Dave PD, Patel K, Pan Y, Xu J, Sarwar MS, Kong AN. Pharmacodynamics (PD), Pharmacokinetics (PK) and PK-PD Modeling of NRF2 Activating Dietary Phytochemicals in Cancer Prevention and in Health. CURRENT PHARMACOLOGY REPORTS 2024; 11:6. [PMID: 39649473 PMCID: PMC11618211 DOI: 10.1007/s40495-024-00388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Purpose of Review Dietary phytochemicals, bioactive compounds derived from plants, have gained increasing attention for their potential role in cancer prevention. Among these, NRF2 (nuclear factor erythroid 2-related factor 2) activating dietary phytochemicals such as curcumin, sulforaphane, ursolic acid, and cyanidin have demonstrated significant antioxidant and anti-inflammatory properties, making them promising agents in chemoprevention. This review examines the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of these dietary phytochemicals, with a focus on their NRF2-mediated effects in cancer prevention. Recent Findings Preclinical studies have highlighted the potential of these dietary phytochemicals to modulate oxidative stress and inflammation, key drivers of carcinogenesis. We explore the complexity of their PK/PD properties, influenced by factors such as bioavailability, metabolism, and drug interactions. While most of these phytochemicals follow two compartmental PK, their anti-oxidant and anti-inflammatory effects follow the indirect response (IDR) model. Furthermore, we discuss the application of physiologically based pharmacokinetic (PBPK) modeling to simulate the behavior of these compounds in humans, providing insights for clinical translation. Summary The integration of PK-PD analysis into the development of dietary phytochemical-based therapies offers a pathway to optimize dosing strategies, enhance therapeutic efficacy, and improve safety. This review underscores the importance of these compounds as part of cancer interception strategies, particularly in the early stages of cancer development, where they may offer a natural, less toxic alternative to conventional therapies. Graphical Abstract
Collapse
Affiliation(s)
- Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Parv Dushyant Dave
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Komal Patel
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yuxin Pan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jiawei Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| |
Collapse
|
4
|
Taheri D, Ghajar HA, Mirzaei A, Mashhadi R, Dougaheh SNH, Bahri RA, Khoshchehreh M, Tavoosian A, Aghamir SMK. Resveratrol enhances sensitivity of renal cell carcinoma to tivozanib: An in-vitro study. Tissue Cell 2024; 91:102584. [PMID: 39423697 DOI: 10.1016/j.tice.2024.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Since tivozanib has many side effects in the treatment of kidney cancer, we decided to use resveratrol as a bioactive molecule with anticancer and antioxidant properties to make tivozanib more effective and also reduce its side effects in kidney cancer cell line. METHOD In this in vitro study, we evaluated the effect of tivozanib, resveratrol and tivozanib- resveratrol combination therapy in ACHN cell line as representatives of human kidney cancer. The assessment includes Hoechst dye staining, scratch-wound assay, 3D spheroid, 2D colony formation assay, flow cytometric analysis of apoptosis and DNA cell cycle, real-time PCR (BAX/BCL2, E-cadherin, Snail, HIF1α, VEGFC and KLK3 genes). RESULT To determine IC50 levels, ACHN cells was exposed to different concentration of tivozanib and resveratrol. Our data indicated that IC50 values for tivozanib (0.5 μM) and resveratrol (30 μM) with MTT in a dose and time-dependent manner. Due to the efficacy of resveratrol in combination with tivozanib, we used 20 μM resveratrol, and 0.25 μM tivozanib instead of 30 μM and 0.25 μM respectively. This data was approved by flow cytometry for ACHN cell line with 38.39, 14.74 and 66.06 percent apoptosis and 8.25, 5.12 and 15.6 percent subG1 for tivozanib, resveratrol and tivozanib-resveratrol combination respectively which was as a consequence of cell cycle arrest at G1/S phase. The treatment also reduced cells' migration, fragmented nuclei, 3D spheroid and colony formation potentials in analyses. Evaluation of gene expression presented that the effect of the tivozanib and resveratrol combination in ACHN cell lines is completely different during the evaluation of apoptosis genes, BAX, P53 genes and E-Cadherin had significantly increased expression compared to single treatment groups (P < 0.01). Meanwhile, a significant decrease was observed in the expression of VEGFC and HIF1α genes in the combination group compared to the monotherapy groups (P < 0.001). CONCLUSION Considering that resveratrol can increase the apoptosis of cancer cells alone and in combination with tivozanib and prevent the proliferation of cancer cells and also reduce the side effects of tivozanib, we suggest that resveratrol as a potential bioactive molecule can be used in treatment of kidney cancer should be used in combination with tivozanib.
Collapse
Affiliation(s)
- Diana Taheri
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pathology, Isfahan Kidney Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Ali Tavoosian
- Urology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
5
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Samir B, El-Kamel A, Zahran N, Heikal L. Resveratrol-loaded invasome gel: A promising nanoformulation for treatment of skin cancer. Drug Deliv Transl Res 2024; 14:3354-3370. [PMID: 38361173 PMCID: PMC11499415 DOI: 10.1007/s13346-024-01534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Skin cancer is a widespread type of cancer representing 30% of all cancer types worldwide. Resveratrol (RSV) is an anticancer drug used for skin cancer treatment. Several limitations of RSV such as poor aqueous solubility, first-pass metabolism, and instability limit their topical use. The study aimed to develop and optimize RSV-loaded invasomes for topical administration as well as assess their efficacy in vivo. The optimized RSV-loaded invasomes showed small particle size (208.7 ± 74 nm), PDI (0.3 ± 0.03), high % entrapment efficiency (77.7 ± 6%), and negative zeta potential (-70.4 ± 10.9 mV). They showed an initial burst effect followed by controlled drug release for 24 h. RSV-loaded invasomal gel revealed the highest skin deposition percentage (65%) in ex vivo rat skin, the highest potency (low IC50 of 6.34 μg/mL), and the highest cellular uptake when tested on squamous cancerous cells (SCCs) when compared to other formulations. The antitumor effect of topical RSV-loaded invasomes was also evaluated in vivo in Ehrlich-induced mice models. The results revealed that RSV-loaded invasomal gel exhibited the smallest tumor volume with no signs of organ toxicity indicating its safety in skin cancer treatment. Upregulation of BAX and Caspase-3 gene levels and downregulation of NF-kB and BCL2 protein levels were demonstrated using RT-PCR and ELISA tests, respectively. Interestingly, the present study is the first to develop RSV-loaded invasomal gel for topical skin cancer treatment. According to our results, invasomes are considered promising lipid-based nanosystems for topical RSV delivery having high skin penetration ability and anticancer effect in the treatment of skin carcinoma.
Collapse
Affiliation(s)
- Bassant Samir
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt
| | - Amal El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt
| | - Noha Zahran
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt.
| |
Collapse
|
7
|
Vinciguerra C, Bellia L, Corbi G, Rengo S, Cannavo A. Resveratrol supplementation as a non-surgical treatment in periodontitis and related systemic conditions. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
8
|
Abdel-Monem MM, Walash MI, Kamal El-Deen A. In-Syringe Vortex-Assisted Liquid-Liquid Microextraction Based on Natural Deep Eutectic Solvent for Simultaneous Determination of the Two Anticancer Polyphenols Chrysin and Resveratrol. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39467000 DOI: 10.1002/pca.3460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
The simultaneous determination of multiple anticancer drugs in combination therapy poses a significant analytical challenge due to their complex nature and low concentrations. In this study, we propose an in-syringe vortex-assisted liquid-liquid microextraction (IS-VA-LLME), based on a green natural deep eutectic solvent (NaDES) for the simultaneous determination of two coadministered anticancer drugs (resveratrol and chrysin) prior to the HPLC-UV analysis, for the first time. The key parameters affecting the extraction efficiency, such as extraction solvent, vortex time, pH, and ionic strength were optimized. Under optimal conditions, the method demonstrates good linearity over the range of 0.05-15.0 μg/mL for RVT and 0.50-15.0 μg/mL for CHR with low limits of detection (LODs) of 16.78 and 161.60 ng/mL for RVT and CHR, respectively, confirming the high sensitivity of the method. The interday and intraday precision values, expressed as %RSDs, are below 2.0%, indicating good repeatability and reproducibility. Furthermore, the proposed method could be efficiently applied for the determination of the two drugs in human plasma and river water. The obtained results show satisfactory % recoveries (97.80%-102.04%), highlighting the accuracy and reliability of the developed method. The sustainability of the method was comprehensively evaluated using seven different tools. In conclusion, the developed IS-VA-LLME-NaDES allows for enhanced extraction efficiency, reduced extraction time, and improved recovery of the target analytes. This method holds great promise for applications in clinical and environmental research, enabling the precise quantification of these anticancer drugs in complex matrices.
Collapse
Affiliation(s)
- Maha Mohammad Abdel-Monem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed I Walash
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
El Rayess Y, Nehme N, Azzi-Achkouty S, Julien SG. Wine Phenolic Compounds: Chemistry, Functionality and Health Benefits. Antioxidants (Basel) 2024; 13:1312. [PMID: 39594454 PMCID: PMC11591289 DOI: 10.3390/antiox13111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Wine phenolic compounds, often known as polyphenols, are a diverse group of secondary bioactive compounds derived from grapes. They play a crucial role in defining the sensory characteristics, functionality, and health benefits of wine. This review explores the complex chemistry of these compounds, focusing on key classes such as flavonoids, which include flavanones, flavonols, anthocyanins, and flavan-3-ols, and non-flavonoids, such as hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes. The health benefits of wine phenolics, particularly their antioxidant and anti-inflammatory properties, are also discussed in relation to preventing and reducing the risk of non-communicable diseases (NCDs) such as cardiovascular diseases, cancers, and neurodegenerative conditions. Furthermore, this review summarized the most current data from human population-based research that investigated the bioactivity of these red wine phytochemicals with relevant health benefits for NCDs. Finally, this review proposes some perspectives for future research to better understand the bioavailability, metabolism, and long-term health effects of these compounds.
Collapse
Affiliation(s)
- Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
| | - Nancy Nehme
- Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Dekwaneh P.O. Box 446, Lebanon;
| | - Samar Azzi-Achkouty
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
| | - Sofi G. Julien
- Department of Nutrition and Food Sciences, Faculty of Art and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| |
Collapse
|
10
|
dos Santos TW, Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, Ribeiro ML. Body Composition and Senescence: Impact of Polyphenols on Aging-Associated Events. Nutrients 2024; 16:3621. [PMID: 39519454 PMCID: PMC11547493 DOI: 10.3390/nu16213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is a dynamic and progressive process characterized by the gradual accumulation of cellular damage. The continuous functional decline in the intrinsic capacity of living organisms to precisely regulate homeostasis leads to an increased susceptibility and vulnerability to diseases. Among the factors contributing to these changes, body composition-comprised of fat mass and lean mass deposits-plays a crucial role in the trajectory of a disability. Particularly, visceral and intermuscular fat deposits increase with aging and are associated with adverse health outcomes, having been linked to the pathogenesis of sarcopenia. Adipose tissue is involved in the secretion of bioactive factors that can ultimately mediate inter-organ pathology, including skeletal muscle pathology, through the induction of a pro-inflammatory profile such as a SASP, cellular senescence, and immunosenescence, among other events. Extensive research has shown that natural compounds have the ability to modulate the mechanisms associated with cellular senescence, in addition to exhibiting anti-inflammatory, antioxidant, and immunomodulatory potential, making them interesting strategies for promoting healthy aging. In this review, we will discuss how factors such as cellular senescence and the presence of a pro-inflammatory phenotype can negatively impact body composition and lead to the development of age-related diseases, as well as how the use of polyphenols can be a functional measure for restoring balance, maintaining tissue quality and composition, and promoting health.
Collapse
Affiliation(s)
- Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Fabrício de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| |
Collapse
|
11
|
Varga K, Paszternák A, Kovács V, Guczogi A, Sikur N, Patakfalvi D, Bagaméry F, Szökő É, Tábi T. Differential Cytoprotective Effect of Resveratrol and Its Derivatives: Focus on Antioxidant and Autophagy-Inducing Effects. Int J Mol Sci 2024; 25:11274. [PMID: 39457058 PMCID: PMC11509103 DOI: 10.3390/ijms252011274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Numerous beneficial effects of resveratrol were reported; however, its pharmacological profile is contradictious. Previously, we have demonstrated that resveratrol has a dose-dependent cytoprotective effect and the essential role of autophagy induction was demonstrated. Resveratrol suffers from unfavorable pharmacokinetics, hindering its clinical use. Our aim was to study the cytoprotective effect of resveratrol derivatives to better understand structure-activity relationships that may facilitate the development of compounds with better druglike characteristics. Serum-deprivation-induced caspase activation, free radical generation, mitochondrial membrane depolarization and autophagy were detected in the presence of resveratrol analogs with different oxidation states on mouse embryonal fibroblasts. Distinct cytoprotective mechanisms of the examined compounds were revealed. Monomethyl resveratrol had similar potency to resveratrol (EC50: 85.3 vs. 84.2 μM); however, autophagy induction was not essential for its cytoprotective effect. Oxyresveratrol was found to be a strong antioxidant that can induce direct cytoprotection rather than autophagy. Trimethyl-resveratrol, lacking free hydroxyl groups, induced damage that was too significant and hardly compensated by the activation of cytoprotective machineries, and caspase activation was reduced by only 24.5%. Based on our results, methylation of resveratrol reduces its antioxidant activity, while autophagy induction can still contribute to its cytoprotective effect. The introduction of an additional hydroxyl group, however, augments the antioxidant properties, inducing cytoprotection without autophagy induction.
Collapse
Affiliation(s)
- Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Alexandra Paszternák
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Virág Kovács
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Annamária Guczogi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Noémi Sikur
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Dimitrisz Patakfalvi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| |
Collapse
|
12
|
Li D, Geng D, Wang M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J 2024; 38:e70075. [PMID: 39382031 DOI: 10.1096/fj.202401409r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Autophagy is a conservative catabolic process that typically serves a cell-protective function. Under stress conditions, when the cellular environment becomes unstable, autophagy is activated as an adaptive response for self-protection. Autophagy delivers damaged cellular components to lysosomes for degradation and recycling, thereby providing essential nutrients for cell survival. However, this function of promoting cell survival under stress conditions often leads to malignant progression and chemotherapy resistance in cancer. Consequently, autophagy is considered a potential target for cancer therapy. Herein, we aim to review how natural products act as key modulators of autophagy by regulating cellular stress conditions. We revisit various stressors, including starvation, hypoxia, endoplasmic reticulum stress, and oxidative stress, and their regulatory relationship with autophagy, focusing on recent advances in ovarian cancer research. Additionally, we explore how polyphenolic compounds, flavonoids, alkaloids, terpenoids, and other natural products modulate autophagy mediated by stress responses, affecting the malignant biological behavior of cancer. Furthermore, we discuss their roles in ovarian cancer therapy. This review emphasizes the importance of natural products as valuable resources in cancer therapeutics, highlighting the need for further exploration of their potential in regulating autophagy. Moreover, it provides novel insights and potential therapeutic strategies in ovarian cancer by utilizing natural products to modulate autophagy.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Zhao T, Dong X, Zhao T, Han Z. Next-generation sequencing uncovers crucial mutated genes and potential therapeutic targets in ovarian cancer patients. Am J Transl Res 2024; 16:5990-6007. [PMID: 39544793 PMCID: PMC11558429 DOI: 10.62347/xngv7396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES Ovarian cancer is a highly lethal gynecological malignancy, often diagnosed late, resulting in high mortality. While BRCA1 and BRCA2 mutations are known risk factors, the broader genetic landscape needs comprehensive profiling to identify additional diagnostic markers or therapeutic targets. The current study aims to explore the genetic landscape of various cancer-susceptible genes in ovarian cancer patients. METHODS The genetic landscape of ovarian cancer was investigated by analyzing 27 genes via next-generation sequencing (NGS) in 50 ovarian cancer patients. RESULTS Mutations were detected in four genes: Breast Cancer 1 (BRCA1) (62%), Cyclin-Dependent Kinase 4 (CDK4) (58%), MutS Homolog 2 (MSH2) (48%), and Phosphatase and Tensin Homolog (PTEN) (22%). Pathogenic mutations were identified in BRCA1 (p.Tyr1853Ter and p.Gln1848Ter), CDK4 (p.Arg24His), and PTEN (p.Tyr29Ter), occurring in 11 patients. Interestingly, these pathogenic mutations were absent in The Cancer Genome Atlas (TCGA) dataset and the gnomAD for the Asian population, suggesting their unique presence in the Pakistani cohort. Functional assays revealed that these mutations significantly reduced the mRNA and protein expression levels of BRCA1, CDK4, and PTEN, as demonstrated by Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) and Immunohistochemistry (IHC) analyses. Receiver Operating Characteristic (ROC) curve analysis confirmed the potential of these genes as biomarkers, with downregulated expression accurately distinguishing between normal and cancerous tissues. Structural validation of mutated proteins using Ramachandran plots and Protein Structure Analysis (ProSA-web) analysis confirmed the stability of the mutations. Drug prediction and molecular docking identified Resveratrol as a potential therapeutic agent, indicating strong binding affinities with BRCA1, CDK4, and PTEN proteins. CONCLUSION These findings provide novel insights into the genetic underpinnings of ovarian cancer in the Pakistani population and suggest potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Clinical School, Sanquan College of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Xinghe Dong
- Xunxian Weixi HospitalHebi 458000, Henan, China
| | - Tianshi Zhao
- Department of Basic Medicine, Zhengzhou Health Vocational CollegeZhengzhou 450000, Henan, China
| | - Zhenghua Han
- Clinical School, Sanquan College of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| |
Collapse
|
14
|
Li X, Sha Y, Li S, Wang Z, Yang Y, Jiao T, Zhao S. Dietary resveratrol improves immunity and antioxidant defense in ewes by regulating the rumen microbiome and metabolome across different reproductive stages. Front Immunol 2024; 15:1462805. [PMID: 39464877 PMCID: PMC11502325 DOI: 10.3389/fimmu.2024.1462805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Resveratrol (Res), a natural plant antitoxin polyphenol, is widely used in animal husbandry due to its antioxidant and anti-inflammatory properties, and current research has focused on humans, sows, and female mice. This study aimed to analyze the effects of dietary Res supplementation in ewes on antioxidant activity, immune responses, hormone levels, rumen microbiota and metabolites across various reproductive stages (estrus, pregnancy, and lactation). Methods Twenty-four healthy ewe lambs (Hu sheep, 2 months old) with a similar body weight (BW) (mean: 21.79 ± 2.09 kg) were selected and randomly divided into two groups: the control group (Con) and the Res group (Res). The Res group received 10 mg/kg Res (based on BW) in addition to their basal diet. Results Res increased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) in ewes at sexual maturity (p < 0.05). Additionally, Res supplementation induced significant increases in serum glutathione peroxidase (GSH-Px), IgG, FSH, and LH levels during estrus (p < 0.05); serum IgA, IgG and IgM during pregnancy and lactation (p < 0.05); and serum LH, glucose, GSH-Px, and catalase (CAT) levels during lactation (p < 0.05). Meanwhile, serum interleukin 1β (IL-1β) (p =0.005) and cholesterol levels (p = 0.041) during the lactation stage decreased following Res supplementation. Notably, colostrum IgA, IgG, and fat concentrations were significantly higher in the Res group than in the Con group (p < 0.05). Moreover, Res altered the rumen microbiota in ewes. Specifically, the relative abundance of Prevotella (p < 0.05) during pregnancy and Rikenellaceae_RC9_gut_group (p < 0.001) during lactation were significantly increased in ewes under Res treatment. The abundance of Rikenellaceae_RC9_gut_group was positively correlated with the levels of Ig A, Ig M, E2, FSH, LH, GSH-PX, and CAT. Additionally, Res altered the activity of metabolic pathways such as progesterone-mediated oocyte maturation, the estrogen signaling pathway, ovarian steroidogenesis, and the AMPK signaling pathway, and the levels of AICAR and 2-hydroxyestradiol metabolites, both during pregnancy and lactation. Discussion There findings show that Res can improve health, antioxidant status, and immune activity throughout the reproductive cycle in ewes by regulating rumen microorganisms and metabolites.
Collapse
Affiliation(s)
- Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuyan Li
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Zhengwen Wang
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ting Jiao
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Sun Z, Guo X, Li C, Ling J, Chang A, Zhao H, Zhuo X. Exploring the therapeutic mechanisms of resveratrol for treating arecoline-induced malignant transformation in oral epithelial cells: insights into hub targets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8290-8305. [PMID: 38934557 DOI: 10.1002/jsfa.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Betel nut chewing is a significant risk factor for oral cancer due to arecoline, its primary active component. Resveratrol, a non-flavonoid polyphenol, possesses anti-cancer properties. It has been shown to inhibit arecoline-induced oral malignant cells in preliminary experiments but the underlying mechanism remains unclear. This research therefore aimed to explore the potential therapeutic targets of resveratrol in treating arecoline-induced oral cancer. METHODS Data mining identified common targets and hub targets of resveratrol in arecoline-induced oral cancer. Gene set variation analysis (GSVA) was used to score and validate the expression and clinical significance of these hub targets in head and neck cancer (HNC) tissues. Molecular docking analysis was conducted on the hub targets. The effect of resveratrol intervention on hub targets was verified by experiments. RESULTS Sixty-one common targets and 15 hub targets were identified. Hub targets were highly expressed in HNC and were associated with unfavorable prognoses. They played a role in HNC metastasis, epithelial-mesenchymal transition, and invasion. Their expression also affected immune cell infiltration and correlated negatively with sensitivity to chemotherapeutic agents such as bleomycin and docetaxel. Experiments demonstrated that resveratrol down-regulated the expression of the hub targets, inhibited their proliferation and invasion, and induced apoptosis. CONCLUSION Resveratrol inhibits the arecoline-induced malignant phenotype of oral epithelial cells by regulating the expression of some target genes, suggesting that resveratrol may be used not only as an adjuvant treatment for oral cancer, but also as an adjuvant for oral cancer prevention due to its low toxicity and high efficacy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Sun
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaopeng Guo
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Changya Li
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Rocca R, Ascrizzi S, Citriniti EL, Scionti F, Juli G, Di Martino MT, Caracciolo D, Artese A, Tagliaferri P, Tassone P, Grillone K, Alcaro S. TERRA G-quadruplex stabilization behind the anti-multiple myeloma activity: Novel insights about resveratrol pleiotropic effects. Arch Pharm (Weinheim) 2024; 357:e2400269. [PMID: 39365272 DOI: 10.1002/ardp.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 10/05/2024]
Abstract
Resveratrol (RSV) is a nutraceutical compound belonging to the nonflavonoid polyphenol family, whose antioxidants, anti-inflammatory, and antitumoral properties have been widely investigated. The ability of RSV to provide beneficial effects for neurological, cardiovascular, and cancer disorders rekindled the interest to explore the molecular mechanisms behind its pleiotropic effects, which are due to the modulation of coding and noncoding genes involved in many key biological pathways. With a computational approach, including docking studies and thermodynamics calculations followed by 200-ns-long molecular dynamics and a clustering analysis, we hypothesized the stabilizing binding between RSV and G4 structures of telomeric repeat-containing RNA (TERRA), which is a tumor-suppressive long noncoding RNAs (lncRNA) involved in the regulation of telomere maintenance. In vitro studies performed on cellular models of multiple myeloma (MM) strengthened our hypothesis by highlighting that the antiproliferative and apoptotic effect induced by the treatment with RSV is associated with an increase of TERRA transcript and with upregulation of telomeric heterochromatin markers, such as H3K27Me3 and H4K20Me3, and of the hallmark of apoptosis, cleaved-poly(ADP-ribose) polymerase-1. Our results propose innovative insights underlying the multifaceted role of RSV in MM, by pointing out the role of this natural compound in an lncRNA-mediated regulation to counteract cellular immortality.
Collapse
Affiliation(s)
- Roberta Rocca
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Francesca Scionti
- Department of Medical and Surgery Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Anna Artese
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
17
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
18
|
Livraghi V, Grossi A, Scopelliti A, Senise G, Gamboa LA, Solito S, Stivala LA, Sottile V, Savio M. Stilbene Treatment Reduces Stemness Features in Human Lung Adenocarcinoma Model. Int J Mol Sci 2024; 25:10390. [PMID: 39408719 PMCID: PMC11476666 DOI: 10.3390/ijms251910390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Lung cancer is among the most clinically challenging tumors because of its aggressive proliferation, metastasis, and the presence of cancer stem cells (CSCs). Natural bioactive substances have been used for cancer prevention, and, in particular, resveratrol (RSV), a stilbene-based compound with wide biological properties, has been proposed for chemoprevention. Its lesser-known analogue 4,4'-dihydroxy-trans-stilbene (DHS) has demonstrated superior activity both in cell-based assays and in mouse and zebrafish in vivo models. The present study analyzed the effects of DHS and RSV on A549 lung cancer cells, with a particular focus on stemness features and CSCs, isolated by sorting of the side population (SP). The results show that both stilbenes, especially DHS, strongly inhibited cell cycle progression. A reduction in the S phase was induced by DHS, whereas an increase in this phase was obtained with RSV. In addition, 50% reductions in the clonogenicity and soft agar colony formation were observed with the DHS treatment only. Finally, both stilbenes, especially DHS, reduced stemness marker expression in A549 cells and their sorted SP fraction. Spheroid formation, higher in SP cells than in the main population (MP), was significantly reduced after pretreatment with DHS, which was found to decrease SOX2 levels more than RSV. These findings indicate that stilbenes, and particularly DHS, affect stemness features of A549 cells and the SP fraction, suggesting their potential utility as anticancer agents, either alone or combined with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Vittoria Livraghi
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Alice Grossi
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Anna Scopelliti
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Giorgia Senise
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Luciano Augusto Gamboa
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Samantha Solito
- Centro Grandi Strumenti (CGS), University of Pavia, 27100 Pavia, Italy;
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Virginie Sottile
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| |
Collapse
|
19
|
Peng L, Hu XZ, Liu ZQ, Liu WK, Huang Q, Wen Y. Therapeutic potential of resveratrol through ferroptosis modulation: insights and future directions in disease therapeutics. Front Pharmacol 2024; 15:1473939. [PMID: 39386035 PMCID: PMC11461341 DOI: 10.3389/fphar.2024.1473939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Resveratrol, a naturally occurring polyphenolic compound, has captivated the scientific community with its promising therapeutic potential across a spectrum of diseases. This review explores the complex role of resveratrol in modulating ferroptosis, a newly identified form of programmed cell death, and its potential implications for managing cardiovascular and cerebrovascular disorders, cancer, and other conditions. Ferroptosis is intricately linked to the pathogenesis of diverse diseases, with resveratrol exerting multifaceted effects on this process. It mitigates ferroptosis by modulating lipid peroxidation, iron accumulation, and engaging with specific cellular receptors, thereby manifesting profound therapeutic benefits in cardiovascular and cerebrovascular conditions, as well as oncological settings. Moreover, resveratrol's capacity to either suppress or induce ferroptosis through the modulation of signaling pathways, including Sirt1 and Nrf2, unveils novel therapeutic avenues. Despite resveratrol's limited bioavailability, advancements in molecular modification and drug delivery optimization have amplified its clinical utility. Future investigations are poised to unravel the comprehensive mechanisms underpinning resveratrol's action and expand its therapeutic repertoire. We hope this review could furnish a detailed and novel insight into the exploration of resveratrol in the regulation of ferroptosis and its therapeutic prospects.
Collapse
Affiliation(s)
- Liu Peng
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Zhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Qiang Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Wen-Kai Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Gao Y, Yang Z, Bajpai AK, Wang W, Zhang L, Xia Z. Resveratrol enhances the antiliver cancer effect of cisplatin by targeting the cell membrane protein PLA2. Front Oncol 2024; 14:1453164. [PMID: 39381045 PMCID: PMC11458693 DOI: 10.3389/fonc.2024.1453164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Background In this study, we aimed to explore the mechanism by which resveratrol promotes cisplatin-induced death of HepG2 cells and to provide a potential strategy for resveratrol in the treatment of cancer. Methods HepG2 cells were exposed to a range of drug concentrations for 24 h: resveratrol (2.5 μg/mL [10.95 μM], 5 μg/mL [21.91 μM], 10 μg/mL [43.81 μM], 20 μg/mL [87.62 μM], 40 μg/mL [175.25 μM], and 80 μg/mL [350.50 μM]), cisplatin (0.625 μg/mL [2.08 μM], 1.25 μg/mL [4.17 μM], 2.5 μg/mL [8.33 μM], 4.5 μg/mL [15.00 μM], and 10 μg/mL [33.33 μM]), 24 μg/mL (105.15 μM) resveratrol + 9 μg/mL (30.00 μM) cisplatin, and 12 μg/mL (52.57 μM) resveratrol + 4.5 μg/mL (15.00 μM) cisplatin. The interaction of two drugs was evaluated by coefficient of drug interaction (CDI), which was based on the Pharmacological Additivity model. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect the effect of different concentrations of drugs on cell viability, while transcriptome sequencing was used to identify pathways associated with higher gene enrichment. Synchrotron radiation FTIR microspectroscopy experiments and data analysis were conducted to obtain detailed spectral information. The second-derivative spectra were calculated using the Savitzky-Golay algorithm. Single-cell infrared spectral absorption matrices were constructed to analyze the spectral characteristics of individual cells. The Euclidean distance between cells was calculated to assess their spectral similarity. The cell-to-cell Euclidean distance was computed to evaluate the spatial relationships between cells. The target protein of resveratrol was verified by performing a Western blot analysis. Results After 24 h of treatment with resveratrol, HepG2 cell growth was inhibited in a dose-dependent manner. Resveratrol promotes cisplatin-induced HepG2 cell death through membrane-related pathways. It also significantly changes the membrane components of HepG2 cells. Additionally, resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2. Conclusion Resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2 and promotes cisplatin-induced HepG2 cell death. The combination of cisplatin and resveratrol can play a synergistic therapeutic effect on HepG2 cells.
Collapse
Affiliation(s)
- Yu Gao
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhanyi Yang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenben Wang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liyuan Zhang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhenhong Xia
- Department of Pharmacy, Binzhou Medical University, Yantai, China
- Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
21
|
Pawłowski W, Caban M, Lewandowska U. Cancer Prevention and Treatment with Polyphenols: Type IV Collagenase-Mediated Mechanisms. Cancers (Basel) 2024; 16:3193. [PMID: 39335164 PMCID: PMC11430265 DOI: 10.3390/cancers16183193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Polyphenols are natural compounds found in many plants and their products. Their high structural diversity bestows upon them a range of anti-inflammatory, anti-oxidant, proapoptotic, anti-angiogenic, and anti-metastatic properties, and a growing body of research indicates that a polyphenol-rich diet can inhibit cancer development in humans. Polyphenolic compounds may modulate the expression, secretion, or activity of compounds that play a significant role in carcinogenesis, including type IV collagenases, such as matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), by suppressing cellular signaling pathways such as nuclear factor-kappa B. These enzymes are responsible for the degradation of the extracellular matrix, thus promoting the progression of cancer. This review discusses the current state of knowledge concerning the anti-cancer activity of polyphenols, particularly curcumin, resveratrol, epigallocatechin-3-gallate, genistein, and quercetin, with a specific focus on their anti-invasive and anti-metastatic potential, based on the most recent in vitro and in vivo studies. It appears that polyphenols may be valuable options for the chemoprevention and treatment of cancer via the inhibition of MMP-2 and MMP-9 and the suppression of signaling pathways regulating their expression and activity.
Collapse
Affiliation(s)
| | | | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.P.); (M.C.)
| |
Collapse
|
22
|
Thaklaewphan P, Wikan N, Potikanond S, Nimlamool W. Oxyresveratrol Enhances the Anti-Cancer Effect of Cisplatin against Epithelial Ovarian Cancer Cells through Suppressing the Activation of Protein Kinase B (AKT). Biomolecules 2024; 14:1140. [PMID: 39334906 PMCID: PMC11430010 DOI: 10.3390/biom14091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Epithelial ovarian carcinoma poses a significant challenge due to its resistance to chemotherapy and propensity for metastasis, thereby reducing the effectiveness of conventional treatments. Hence, the identification of novel compounds capable of augmenting the anti-cancer efficacy of platinum-based chemotherapy is imperative. Oxyresveratrol (OXY), a derivative of resveratrol, has been demonstrated to possess antiproliferative and apoptosis-inducing effects across various cancer cell lines. Notably, OXY appears to exert its effects by inhibiting the PI3K/AKT/mTOR signaling pathway. However, the synergistic potential of OXY in combination with cisplatin against epithelial ovarian cancer has not yet been elucidated. The current study investigated the synergistic effects of OXY and cisplatin on the ovarian cancer cell lines SKOV3 and TOV21G. We found that OXY significantly enhanced cisplatin's ability to reduce cell viability, induce apoptosis, induce cell cycle arrest, and increase the proportion of cells in the sub-G1 phase. Furthermore, OXY treatment alone dose-dependently inhibited the production of anti-apoptotic proteins including Mcl-1, Bcl-xL, and XIAP under EGF activation. Mechanistically, OXY suppressed the PI3K/AKT/mTOR signaling pathway by reducing phosphorylated AKT, while having no discernible effect on the MAPK pathway. These findings highlight OXY's potential to enhance ovarian cancer cell sensitivity to chemotherapy, suggesting its development as a pharmaceutical adjunct for clinical use in combination therapies.
Collapse
Affiliation(s)
- Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (N.W.); (S.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (N.W.); (S.P.)
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (N.W.); (S.P.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (N.W.); (S.P.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
23
|
Fakhri S, Moradi SZ, Moradi SY, Piri S, Shiri Varnamkhasti B, Piri S, Khirehgesh MR, Bishayee A, Casarcia N, Bishayee A. Phytochemicals regulate cancer metabolism through modulation of the AMPK/PGC-1α signaling pathway. BMC Cancer 2024; 24:1079. [PMID: 39223494 PMCID: PMC11368033 DOI: 10.1186/s12885-024-12715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways. METHODS The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review. RESULTS In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Yahya Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sarina Piri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | | | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
24
|
Zingue S, Fotsing Fongang YS, Ossomba ER, Tatsinda V, Silihe KK, Mbou WD, Fogang B, Essomba R, Chouna JR, Njamen D, Ayong L. Oligandrin from Croton oligandrus (Euphorbiaceae) exhibits anti-breast cancer activity through immune-boosting mechanisms: In vitro and in vivo study. Heliyon 2024; 10:e35000. [PMID: 39166076 PMCID: PMC11334813 DOI: 10.1016/j.heliyon.2024.e35000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
Aim Recent developments in cancer research indicate that cancer is a manifestation of immune system dysfunction. Many natural anticancer agents developed recently possess immune-modulatory properties. In our ongoing pursuit of anticancer alternatives, we evaluated the immune-modulatory potential of oligandrin, an ent-pimarane type diterpenoid from Croton oligatrus. Methods we assessed on Breast cancer patients' peripheral blood mononuclear cells (PBMCs) were isolated to assess the effect of oligandrin (0.5, 1, 10, 100, 200 mg/mL) in vitro using the Ficoll-histopaque density centrifugation method. The parameters that were assessed included, PBMC viability and cytokine (IL-6, IL-12, IL-10, EGF, TNF-α, INF-γ) production. In vivo, we chemically induced breast cancer using DMBA (50 mg/kg BW) in Wistar rats, then treated them with oligandrin (1 mg/kg BW) or standards (tamoxifen 3.3 mg/kg; letrozole 1 mg/kg) for 20 weeks. The parameters that were evaluated included, tumor burden, volume, incidence, histopathology, antioxidant, and inflammatory status. Results Oligandrin (1, 10, 100 and 200 μg/mL) significantly increased (p < 0.05) PBMC cell number 24 h after incubation. In vivo, it induced 62.5 % tumor incidence reduction compared to DMBA rats (100 %). Oligandrin significantly protected (p < 0.001) rats against increased tumor burden, mass and volume, which was accompanied by a significant antioxidant effect [increment of GSH (p < 0.01) and SOD (p < 0.001)]. Oligandrin prevented high-grade adenocarcinomas according to SBR stratification and significantly reduced pro-inflammatory cytokine levels (IL-6, IL-12) while increasing anti-inflammatory cytokine levels (INF-γ). Conclusion Oligandrin is reported for the first time to protect against breast cancer onset and this effect seems to be at least in part attributable to its immune-boosting capacity.
Collapse
Affiliation(s)
- Stéphane Zingue
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
| | | | - Eric Roger Ossomba
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
| | - Vanneck Tatsinda
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Kevine Kamga Silihe
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
| | - William Defo Mbou
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
| | - Balotin Fogang
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
- Malaria Research Unit, Centre Pasteur, Yaoundé, Cameroon
| | - René Essomba
- Department of Microbiology, Parasitology, Hematology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
| | - Jean Rodolphe Chouna
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur, Yaoundé, Cameroon
| |
Collapse
|
25
|
Jiang Y, Li Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients 2024; 16:2644. [PMID: 39203781 PMCID: PMC11356826 DOI: 10.3390/nu16162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths among women. The escalating incidence of BC underscores the necessity of multi-level treatment. BC is a complex and heterogeneous disease involving many genetic, lifestyle, and environmental factors. Growing evidence suggests that nutrition intervention is an evolving effective prevention and treatment strategy for BC. In addition, the human microbiota, particularly the gut microbiota, is now widely recognized as a significant player contributing to health or disease status. It is also associated with the risk and development of BC. This review will focus on nutrition intervention in BC, including dietary patterns, bioactive compounds, and nutrients that affect BC prevention and therapeutic responses in both animal and human studies. Additionally, this paper examines the impacts of these nutrition interventions on modulating the composition and functionality of the gut microbiome, highlighting the microbiome-mediated mechanisms in BC. The combination treatment of nutrition factors and microbes is also discussed. Insights from this review paper emphasize the necessity of comprehensive BC management that focuses on the nutrition-microbiome axis.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
26
|
Vicente IST, de Moura FBC, Rozolen JM, dos Anjos DS, Sobral RA, Alves CEF. Analysis of VEGFR-2 and PDGFR-β expression in canine splenic hemangiosarcoma to identify drug repositioning candidates. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e001524. [PMID: 39131208 PMCID: PMC11315467 DOI: 10.29374/2527-2179.bjvm001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024] Open
Abstract
Splenic tumors are very common in dogs, and canine hemangiosarcoma (HSA) is one of the most important malignant splenic tumors. Surgery followed by chemotherapy (anthracycline-based protocols) is recommended for treating canine HSA; however, patients still do not achieve long-term survival. Therefore, this research aimed to assess vascular endothelial growth factor receptor-2 (VEGFR-2) and platelet-derived growth factor receptor-β (PDGFR-β) gene expression in formalin-fixed tissues, evaluate the quality of mRNA for quantitative polymerase chain reaction (qPCR) analysis and identify drug repositioning candidates based on VEGFR-2 and PDGFR-β. qPCR analysis identified the relative expression of heterogeneous VEGFR-2 and PDGFR-β, with samples showing no transcripts or very low expression and those with higher relative quantification for both genes. We then used immunohistochemistry to correlate the relative quantification of VEGFR-2 and PDGFR-β transcripts with respective higher protein expression to validate our results. In the next step, we evaluated drug repositioning candidates and identified small molecule inhibitors (i.e. sorafenib) and natural compounds (curcumin and resveratrol) with the ability to block VEGFR-2 and PDGFR-β genes. Overall, our results indicated that VEGFR-2 and PDGFR-β expression is highly variable among canine HSA samples and different drugs can block the expression of both genes. Therefore, a personalized approach could be useful for selecting anti-VEGFR-2 and PDGFR-β therapies and both genes are potential candidates for future oncological panels.
Collapse
Affiliation(s)
| | - Fernanda Barthelson Carvalho de Moura
- Veterinarian, Departamento de Cirurgia Veterinária e Reprodução Animal, Escola de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo (UNESP), Botucatu, SP, Brazil
| | - Juliana Moreira Rozolen
- Veterinarian, MSc., Departamento de Cirurgia Veterinária e Reprodução Animal, Escola de Medicina Veterinária e Zootecnia, UNESP, Botucatu, SP, Brazil
| | - Denner Santos dos Anjos
- Veterinarian, DSc., Departamento de Cirurgia Veterinária e Reprodução Animal, Escola de Medicina Veterinária e Zootecnia, UNESP, Botucatu, SP, Brazil
| | | | - Carlos Eduardo Fonseca Alves
- Veterinarian, DSc., VetPrecision Laboratory, Botucatu, SP, Brazil
- Veterinarian, DSc., Departamento de Cirurgia Veterinária e Reprodução Animal, Escola de Medicina Veterinária e Zootecnia, UNESP, Botucatu, SP, Brazil
- Veterinarian, DSc., Instituto de Oncologia Veterinária (IOVET), São Paulo, SP, Brazil
| |
Collapse
|
27
|
Aboregela AM. Approaches based on natural products and miRNAs in pituitary adenomas: unveiling therapeutic intervention. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03347-6. [PMID: 39102032 DOI: 10.1007/s00210-024-03347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Pituitary adenomas (PAs) are tumors originating in the pituitary gland, a small gland located at the base of the brain. They are the most common type of pituitary tumor, affecting approximately 1 in 10 people over their lifetime. Common symptoms include headaches, vision problems, hormonal imbalances, and weight changes. Treatment options depend on the type and size of the adenoma and may consist of medication, surgery, radiation therapy, or a combination. PAs are typically benign and slow-growing, but they can cause significant health issues if left untreated. Proper diagnosis and management by an experienced multidisciplinary team is important for achieving the best outcomes. Natural compounds like celastrol, curcumin, quercetin, apigenin, resveratrol, epigallocatechin gallate (EGCG), and genistein have shown the ability to inhibit cell growth, promote cell death, and suppress hormone activity in pituitary tumor cells, suggesting their potential as alternative or complementary treatments for PAs. MicroRNAs (miRNAs) are a kind of tiny RNA molecules that do not code for proteins and have a vital function in controlling gene expression. These 21-23 nucleotide-long molecules regulate gene expression by binding to complementary sequences in mRNA molecules, leading to mRNA degradation. miRNAs participate in a wide range of biological activities, including apoptosis, metastasis, differentiation, and proliferation. The research indicates that miRNAs play a crucial role in the pathogenesis, therapeutic approaches, diagnosis, and prognosis of PAs. This review article will provide a comprehensive analysis of the current understanding of the efficacy of naturally derived anti-cancer agents in the treatment of PAs. Furthermore, the study provides a comprehensive assessment of the miRNAs in PAs, their role in the development of PAs, and their potential application in the treatment of the condition.
Collapse
Affiliation(s)
- Adel Mohamed Aboregela
- Anatomy Department, College of Medicine, University of Bisha, P.O Box 551, Bisha, 61922, Saudi Arabia.
| |
Collapse
|
28
|
Chatterjee P, Karn R, Emerson. I A, Banerjee S. Deciphering the Chemotherapeutic Role of the Aryl Hydrocarbon Receptor Antagonist Resveratrol against the High-Penetrance Genes of Triple-Negative Breast Cancer. ACS OMEGA 2024; 9:30350-30363. [PMID: 39035954 PMCID: PMC11256332 DOI: 10.1021/acsomega.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
In addition to several other malignancies, the ligand-activated aryl hydrocarbon receptor (AhR) signaling pathway has been found to enhance the risk of triple-negative breast cancer (TNBC). Many natural compounds of pharmaceutical importance are identified as antagonistic exogenous ligands of AhR. The expressional lack of hormone receptors coupled with adverse prognosis leads to the absence of molecular-targeted therapy in TNBC. Hence, discovering low-cost therapeutic alternatives involving the identification of effective biomarkers is an urgent necessity. This study investigates the binding mechanism of resveratrol, a dietary exogenous AhR ligand against the high-penetrance genes in TNBC, viz., PALB2, TP53, PTEN, STK11, BRCA1, and BRCA2. Post-pharmacokinetic evaluation, molecular docking revealed the binding energy scores of resveratrol against the six TNBC high-penetrance receptors. The results obtained from docking were confirmed by molecular dynamics simulation including principal component analysis, calculation of total interaction energy, and free-energy landscape computation. PALB2 emerged as a promising therapeutic receptor of resveratrol. Furthermore, the PALB2-resveratrol binding dynamics were evaluated against olaparib, an FDA-approved standardized TNBC inhibitor. Our study reveals comparatively better chemistry of PALB2-resveratrol than PALB2-olaparib. Considering the current surge in the discovery of precision medicine in biomarker-based cancer therapeutics, this study proposes PALB2-resveratrol as a unique drug-receptor combination thus awaiting validation through in vitro studies.
Collapse
Affiliation(s)
| | | | - Arnold Emerson. I
- School of BioSciences and
Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of BioSciences and
Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
29
|
Rahman MA, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Gupta RD, Jalouli M, Parvez MAK, Shaikh MH, Hoque Apu E, Harrath AH, Moon S, Kim B. Advancements in Utilizing Natural Compounds for Modulating Autophagy in Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Cells 2024; 13:1186. [PMID: 39056768 PMCID: PMC11274515 DOI: 10.3390/cells13141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy, an intrinsic catabolic mechanism that eliminates misfolded proteins, dysfunctional organelles, and lipid droplets, plays a vital function in energy balance and cytoplasmic quality control, in addition to maintaining cellular homeostasis. Liver cancer such as hepatocellular carcinoma (HCC) is one of the most common causes of cancer deaths globally and shows resistance to several anticancer drugs. Despite the rising incidence and poor prognosis of malignant HCC, the underlying molecular mechanisms driving this aggressive cancer remain unclear. Several natural compounds, such as phytochemicals of dietary and non-dietary origin, affect hepatocarcinogenesis signaling pathways in vitro and in vivo, which may help prevent and treat HCC cells. Current HCC cells treatments include chemotherapy, radiation, and surgery. However, these standard therapies have substantial side effects, and combination therapy enhances side effects for an acceptable therapeutic benefit. Therefore, there is a need to develop treatment strategies for HCC cells that are more efficacious and have fewer adverse effects. Multiple genetic and epigenetic factors are responsible for the HCC cells to become resistant to standard treatment. Autophagy contributes to maintain cellular homeostasis, which activates autophagy for biosynthesis and mitochondrial regulation and recycling. Therefore, modifying autophagic signaling would present a promising opportunity to identify novel therapies to treat HCC cells resistant to current standard treatments. This comprehensive review illustrates how natural compounds demonstrate their anti-hepatocellular carcinoma function through autophagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - S M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology & Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | | | - Mushfiq H. Shaikh
- Department of Otolaryngology-Head & Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
30
|
Mao C, Gong L, Kang W. Effect and mechanism of resveratrol on ferroptosis mediated by p53/SLC7A11 in oral squamous cell carcinoma. BMC Oral Health 2024; 24:773. [PMID: 38987730 PMCID: PMC11238462 DOI: 10.1186/s12903-024-04395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE Resveratrol (Res) is a natural phytoestrogen with antitumor activity. This study sought to investigate the role of Res in ferroptosis in oral squamous cell carcinoma (OSCC). METHODS Normal human oral keratinocyte (HOK)/oral OSCC (CAL-27/SCC-9) cell lines were treated with different doses of Res. Res toxicity was determined by MTT assay, with half maximal inhibitory concentration values of Res on CAL-27 and SCC-9 cells calculated. Cell viability/colony formation efficiency/migration/invasion/cycle were assessed by CCK-8/colony formation assay/transwell assay/flow cytometry. The expression of p53 protein in the nucleus and cytoplasm, glutathione peroxidase 4 (GPX4) expression, and SLC7A11 messenger RNA (mRNA) and protein expression levels were determined by Western blot and RT-qPCR. Fe2+ content, reactive oxygen species (ROS) level, reduced glutathione (GSH), and lactate dehydrogenase (LDH) release were assessed. RESULTS Medium- to low-dose Res had no toxic effect on HOK cells, while high-dose Res markedly reduced HOK cell viability. Res significantly suppressed the viability of OSCC cells (CAL-27 and SCC-9). Res inhibited OSCC cell colony formation/migration/invasion, and induced G1 phase arrest. Res caused the translocation of p53 protein to the nucleus, obviously increased Fe2+ content, ROS level and LDH release, decreased GSH content and GPX4 protein expression, and induced ferroptosis. Down-regulation of p53 partially reversed the inhibitory effects of Res on CAL-27 cell malignant behaviors. Res inhibited SLC7A11 transcription by promoting p53 entry into the nucleus. SLC7A11 overexpression negated the the regulatory effects of p53 knockout on the role of Res in OSCC cell malignant behaviors and ferroptosis. CONCLUSION Res accelerated ferroptosis and inhibited malignant behaviors in OSCC cells by regulating p53/SLC7A11.
Collapse
Affiliation(s)
- Chen Mao
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China.
| | - Liqiang Gong
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China
| | - Wenming Kang
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China
| |
Collapse
|
31
|
Trautmann D, Suazo F, Torres K, Simón L. Antitumor Effects of Resveratrol Opposing Mechanisms of Helicobacter pylori in Gastric Cancer. Nutrients 2024; 16:2141. [PMID: 38999888 PMCID: PMC11243391 DOI: 10.3390/nu16132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Gastric cancer is an aggressive and multifactorial disease. Helicobacter pylori (H. pylori) is identified as a significant etiological factor in gastric cancer. Although only a fraction of patients infected with H. pylori progresses to gastric cancer, bacterial infection is critical in the pathology and development of this malignancy. The pathogenic mechanisms of this bacterium involve the disruption of the gastric epithelial barrier and the induction of chronic inflammation, oxidative stress, angiogenesis and metastasis. Adherence molecules, virulence (CagA and VacA) and colonization (urease) factors are important in its pathogenicity. On the other hand, resveratrol is a natural polyphenol with anti-inflammatory and antioxidant properties. Resveratrol also inhibits cancer cell proliferation and angiogenesis, suggesting a role as a potential therapeutic agent against cancer. This review explores resveratrol as an alternative cancer treatment, particularly against H. pylori-induced gastric cancer, due to its ability to mitigate the pathogenic effects induced by bacterial infection. Resveratrol has shown efficacy in reducing the proliferation of gastric cancer cells in vitro and in vivo. Moreover, the synergistic effects of resveratrol with chemotherapy and radiotherapy underline its therapeutic potential. However, further research is needed to fully describe its efficacy and safety in treating gastric cancer.
Collapse
Affiliation(s)
- Daniela Trautmann
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Francesca Suazo
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Keila Torres
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| |
Collapse
|
32
|
Afshari AR, Sanati M, Ahmadi SS, Kesharwani P, Sahebkar A. Harnessing the capacity of phytochemicals to enhance immune checkpoint inhibitor therapy of cancers: A focus on brain malignancies. Cancer Lett 2024; 593:216955. [PMID: 38750720 DOI: 10.1016/j.canlet.2024.216955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Brain cancers, particularly glioblastoma multiforme (GBM), are challenging health issues with frequent unmet aspects. Today, discovering safe and effective therapeutic modalities for brain tumors is among the top research interests. Immunotherapy is an emerging area of investigation in cancer treatment. Since immune checkpoints play fundamental roles in repressing anti-cancer immunity, diverse immune checkpoint inhibitors (ICIs) have been developed, and some monoclonal antibodies have been approved clinically for particular cancers; nevertheless, there are significant concerns regarding their efficacy and safety in brain tumors. Among the various tools to modify the immune checkpoints, phytochemicals show good effectiveness and excellent safety, making them suitable candidates for developing better ICIs. Phytochemicals regulate multiple immunological checkpoint-related signaling pathways in cancer biology; however, their efficacy for clinical cancer immunotherapy remains to be established. Here, we discussed the involvement of immune checkpoints in cancer pathology and summarized recent advancements in applying phytochemicals in modulating immune checkpoints in brain tumors to highlight the state-of-the-art and give constructive prospects for future research.
Collapse
Affiliation(s)
- Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Zhang X, Huang C, Hou Y, Jiang S, Zhang Y, Wang S, Chen J, Lai J, Wu L, Duan H, He S, Liu X, Yu S, Cai Y. Research progress on the role and mechanism of Sirtuin family in doxorubicin cardiotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155673. [PMID: 38677274 DOI: 10.1016/j.phymed.2024.155673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is a widely utilized anthracycline chemotherapy drug in cancer treatment, yet its efficacy is hindered by both short-term and long-term cardiotoxicity. Although oxidative stress, inflammation and mitochondrial dysfunction are established factors in DOX-induced cardiotoxicity, the precise molecular pathways remain elusive. Further exploration of the pathogenesis and identification of novel molecular targets are imperative. Recent studies have implicated the Sirtuins family in various physiological and pathological processes, suggesting their potential in ameliorating DOX-induced cardiotoxicity. Moreover, research on Sirtuins has discovered small-molecule compounds or medicinal plants with regulatory effects, representing a notable advancement in preventing and treating DOX-induced cardiac injury. PURPOSE In this review, we delve into the pathogenesis of DOX-induced cardiotoxicity and explore the therapeutic effects of Sirtuins in mitigating this condition, along with the associated molecular mechanisms. Furthermore, we delineate the roles and mechanisms of small-molecule regulators of Sirtuins in the prevention and treatment of DOX-induced cardiotoxicity. STUDY-DESIGN/METHODS Data for this review were sourced from various scientific databases (such as Web of Science, PubMed and Science Direct) up to March 2024. Search terms included "Sirtuins," "DOX-induced cardiotoxicity," "DOX," "Sirtuins regulators," "histone deacetylation," among others, as well as several combinations thereof. RESULTS Members of the Sirtuins family regulate both the onset and progression of DOX-induced cardiotoxicity through anti-inflammatory, antioxidative stress and anti-apoptotic mechanisms, as well as by maintaining mitochondrial stability. Moreover, natural plant-derived active compounds such as Resveratrol (RES), curcumin, berberine, along with synthetic small-molecule compounds like EX527, modulate the expression and activity of Sirtuins. CONCLUSION The therapeutic role of the Sirtuins family in mitigating DOX-induced cardiotoxicity represents a potential molecular target. However, further research is urgently needed to elucidate the relevant molecular mechanisms and to assess the safety and biological activity of Sirtuins regulators. This review offers an in-depth understanding of the therapeutic role of the Sirtuins family in mitigating DOX-induced cardiotoxicity, providing a preliminary basis for the clinical application of Sirtuins regulators in this condition.
Collapse
Affiliation(s)
- Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shisheng Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shulin Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Qingyuan 511500, China
| | - Jiamin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianmei Lai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lifeng Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huiying Duan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuwen He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinyi Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
34
|
Kaźmierczak T, Męczarska K, Lachowicz-Wiśniewska S, Cyboran-Mikołajczyk S, Oszmiański J, Bonarska-Kujawa D. Protective Effect of Polyphenolic Extracts from Hippophae rhamnoides L. and Reynoutria japonica Houtt. on Erythrocyte Membrane. Molecules 2024; 29:3090. [PMID: 38999046 PMCID: PMC11243633 DOI: 10.3390/molecules29133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Sea buckthorn and Japanese knotweed are known in many traditional medicine systems to be a great source of bioactive substances. This research aims to compare the bioactivity and protective effects of the phenolic extracts of leaves from sea buckthorn and roots and leaves from the Japanese knotweed on erythrocytes. The polyphenol composition of the extract was analyzed using UPLC-PDA-ESI-MS/MS. The extracts' toxicity and impact on the erythrocytes' osmotic fragility were measured spectrophotometrically. The antioxidant activity was determined based on the inhibition of oxidation of erythrocytes and their membrane induced by 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH),measured spectrophotometrically and using fluorimetry. To find the possible mechanism of the extracts' action, extract-modified cells were observed under a microscope, and the potential localization of the extract's phytochemical composition was checked using fluorescent probes. The results showed that the used extracts are not toxic to erythrocytes, increase their osmotic resistance, and successfully protect them against free radicals. Extract components localize on the outer part of the membrane, where they can scavenge the free radicals from the environment. Altogether, the presented extracts can greatly protect living organisms against free radicals and can be used to support the treatment of diseases caused by excess free radicals.
Collapse
Affiliation(s)
- Teresa Kaźmierczak
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| | | | - Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| | - Jan Oszmiański
- Departament of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-630 Wroclaw, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| |
Collapse
|
35
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Gynotoxic Effects of Chemotherapy and Potential Protective Mechanisms. Cancers (Basel) 2024; 16:2288. [PMID: 38927992 PMCID: PMC11202309 DOI: 10.3390/cancers16122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy is one of the leading cancer treatments. Unfortunately, its use can contribute to several side effects, including gynotoxic effects in women. Ovarian reserve suppression and estrogen deficiency result in reduced quality of life for cancer patients and are frequently the cause of infertility and early menopause. Classic alkylating cytostatics are among the most toxic chemotherapeutics in this regard. They cause DNA damage in ovarian follicles and the cells they contain, and they can also induce oxidative stress or affect numerous signaling pathways. In vitro tests, animal models, and a few studies among women have investigated the effects of various agents on the protection of the ovarian reserve during classic chemotherapy. In this review article, we focused on the possible beneficial effects of selected hormones (anti-Müllerian hormone, ghrelin, luteinizing hormone, melatonin), agents affecting the activity of apoptotic pathways and modulating gene expression (C1P, S1P, microRNA), and several natural (quercetin, rapamycin, resveratrol) and synthetic compounds (bortezomib, dexrazoxane, goserelin, gonadoliberin analogs, imatinib, metformin, tamoxifen) in preventing gynotoxic effects induced by commonly used cytostatics. The presented line of research appears to provide a promising strategy for protecting and/or improving the ovarian reserve in the studied group of cancer patients. However, well-designed clinical trials are needed to unequivocally assess the effects of these agents on improving hormonal function and fertility in women treated with ovotoxic anticancer drugs.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
36
|
Fedele P, Santoro AN, Pini F, Pellegrino M, Polito G, De Luca MC, Pignatelli A, Tancredi M, Lagattolla V, Anglani A, Guarini C, Pinto A, Bracciale P. Immunonutrition, Metabolism, and Programmed Cell Death in Lung Cancer: Translating Bench to Bedside. BIOLOGY 2024; 13:409. [PMID: 38927289 PMCID: PMC11201027 DOI: 10.3390/biology13060409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Lung cancer presents significant therapeutic challenges, motivating the exploration of novel treatment strategies. Programmed cell death (PCD) mechanisms, encompassing apoptosis, autophagy, and programmed necrosis, are pivotal in lung cancer pathogenesis and the treatment response. Dysregulation of these pathways contributes to tumor progression and therapy resistance. Immunonutrition, employing specific nutrients to modulate immune function, and metabolic reprogramming, a hallmark of cancer cells, offer promising avenues for intervention. Nutritional interventions, such as omega-3 fatty acids, exert modulatory effects on PCD pathways in cancer cells, while targeting metabolic pathways implicated in apoptosis regulation represents a compelling therapeutic approach. Clinical evidence supports the role of immunonutritional interventions, including omega-3 fatty acids, in augmenting PCD and enhancing treatment outcomes in patients with lung cancer. Furthermore, synthetic analogs of natural compounds, such as resveratrol, demonstrate promising anticancer properties by modulating apoptotic signaling pathways. This review underscores the convergence of immunonutrition, metabolism, and PCD pathways in lung cancer biology, emphasizing the potential for therapeutic exploration in this complex disease. Further elucidation of the specific molecular mechanisms governing these interactions is imperative for translating these findings into clinical practice and improving lung cancer management.
Collapse
Affiliation(s)
- Palma Fedele
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
| | - Anna Natalizia Santoro
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
| | - Francesca Pini
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
| | | | - Giuseppe Polito
- Nuclear Medicine Unit, Antonio Perrino Hospital, 72100 Brindisi, Italy;
| | | | | | - Michele Tancredi
- Radiology Unit, Antonio Perrino Hospital, 72100 Brindisi, Italy;
| | | | - Alessandro Anglani
- Radiology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy;
| | - Chiara Guarini
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
| | - Antonello Pinto
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
- Course in Development and Production of Biotechnological Drugs, Faculty of Pharmaceutical Science, University of Milan, 20122 Milano, Italy
| | | |
Collapse
|
37
|
Amirkhosravi A, Mehrabani M, Fooladi S, Norouzmahani ME, Vasei S, Mir Y, Malekoladi Z, Faramarz S, Nematollahi MH, Mehrabani M. Rheum khorasanicum. Hydroalcoholic root extract induces cell death in human colorectal adenocarcinoma: An in vitro and in silico study. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:685-697. [PMID: 38408722 DOI: 10.1016/j.pharma.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Colorectal cancer (CRC) is the second greatest cause of cancer-related death in the world and chemotherapy, as an important part of CRC treatment, has some drawbacks, including systemic toxicity. Therefore, it is crucial to discover new and more effective CRC treatment plans. Rheum khorasanicum (R. khorasanicum) is a medicinal plant with high flavonoids, stilbenes, and anthraquinone contents, so it can be a potential source of antioxidants and can be used for therapeutic purposes and trigger apoptosis in cancer cells. In this study, we investigated the effects of hydroalcoholic root extract of R. khorasanicum treatment on inducing mitochondrial apoptosis of HT-29 and Caco-2 human colorectal adenocarcinoma cells. Firstly, the total phenolic and flavonoid content was determined. Then, the cytotoxic effects of R. khorasanicum on cells of three different types, including HT-29 and Caco-2 colon cancer cells as well as normal 3T3 cells were assessed using the MTT assay. To investigate the characteristics of cellular death, flow cytometry, and western blotting were performed. The results of this study indicated considerable phenolic (356.4±9.4 GAE/gDW) and flavonoid (934.55±17.1 QE/gDW) contents in R. khorasanicum. MTT assay's finding indicated that 100, 60, and 30μg/mL concentrations of R. khorasanicum reduce cell viability in HT-29 and Caco-2 cell lines significantly (P<0.05). It has been also revealed that R. khorasanicum extract induces apoptosis rather than necrosis in these cell lines. Moreover, Bcl-2 expression was significantly reduced in both HT-29 and Caco-2 cell lines, while Bax and cleaved caspase-3 expression soared considerably in the groups under R. khorasanicum treatment (P<0.05). In conclusion, our findings have suggested that high phenol and flavonoid contents of R. khorasanicum root extract possibly play an important role in cell cytotoxicity and apoptosis induction in HT-29 and Caco-2 colon cancer cells.
Collapse
Affiliation(s)
- Arian Amirkhosravi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mehrnaz Mehrabani
- Centre de recherche en physiologie, institut de neuropharmacologie, université des sciences médicales de Kerman, Kerman, Iran
| | - Saba Fooladi
- Yale Cardiovascular Research Center, section de médecine cardiovasculaire, département de médecine interne, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mohammad-Erfan Norouzmahani
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Saeedeh Vasei
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran
| | - Yousof Mir
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Zahra Malekoladi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| | - Mitra Mehrabani
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| |
Collapse
|
38
|
Faraji S, Moosavi SA, Neshasteh-Riz A, Cheraghi S, Mayahi MSc S. Radioprotective Effect of Resveratrol, Crocin, and Their Combination on Cytogenetic Alterations in Human Lymphocytes. J Biomed Phys Eng 2024; 14:255-266. [PMID: 39027705 PMCID: PMC11252554 DOI: 10.31661/jbpe.v0i0.2109-1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 07/20/2024]
Abstract
Background High-dose radiation altering the genetic material in patients' bone marrow cells can lead to hematopoietic radiation syndrome. Accordingly, the presence of radiation protections agents is critical to preventing these adverse effects. Objective This study aimed to evaluate the radioprotection of the exclusive or combination effect of resveratrol and crocin extracts at various concentrations on irradiated human lymphocytes. Material and Methods In this experimental study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to evaluate the cell viability in pre-treatment with resveratrol, crocin, or a combination of both, using a concentration range of 5 to 4800 μM / ml in 24 h. The chromosomal aberration test was employed to determine the aberration frequency in 48 h. This study was performed on human peripheral blood lymphocytes treated with 2 Gy radiation and reliability of measurements performed by the triplicate repeat. Results MTT results showed that the groups treated with either resveratrol or crocin at concentrations of 5 to 4800 µM had no significant reduction in cell viability. The cytogenetic analysis of irradiated lymphocytes with 2 Gy X-rays revealed a reduction in the frequency of dicentric chromosomes in all treated groups in contrast with the control group. The most significant reduction occurred in those treated with a single agent at the concentration of 100 µM and a combined drug at the concentration of 50 µM. Conclusion The combination of resveratrol and crocin is considered a potential radioprotector and prophylactic for patients before radiation therapy.
Collapse
Affiliation(s)
- Shahab Faraji
- Department of Radiation Sciences, Faculty of Paramedicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Akbar Moosavi
- Department of Laboratory Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Neshasteh-Riz
- Department of Radiation Sciences, Faculty of Paramedicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Susan Cheraghi
- Department of Radiation Sciences, Faculty of Paramedicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sara Mayahi MSc
- Department of Radiation Sciences, Faculty of Paramedicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Shaban NZ, Hegazy WA, Abu-Serie MM, Talaat IM, Awad OM, Habashy NH. Seedless black Vitis vinifera polyphenols suppress hepatocellular carcinoma in vitro and in vivo by targeting apoptosis, cancer stem cells, and proliferation. Biomed Pharmacother 2024; 175:116638. [PMID: 38688169 DOI: 10.1016/j.biopha.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor and one of the most challenging cancers to treat. Here, we evaluated the in vitro and in vivo ameliorating impacts of seedless black Vitis vinifera (VV) polyphenols on HCC. Following the preparation of the VV crude extract (VVCE) from seedless VV (pulp and skin), three fractions (VVF1, VVF2, and VVF3) were prepared. The anticancer potencies of the prepared fractions, compared to 5-FU, were assessed against HepG2 and Huh7 cells. In addition, the effects of these fractions on p-dimethylaminoazobenzene-induced HCC in mice were evaluated. The predicted impacts of selected phenolic constituents of VV fractions on the activity of essential HCC-associated enzymes (NADPH oxidase "NADPH-NOX2", histone deacetylase 1 "HDAC1", and sepiapterin reductase "SepR") were analyzed using molecular docking. The results showed that VVCE and its fractions induced apoptosis and collapsed CD133+ stem cells in the studied cancer cell lines with an efficiency greater than 5-FU. VVF1 and VVF2 exhibited the most effective anticancer fractions in vitro; therefore, we evaluated their influences in mice. VVF1 and VVF2 improved liver morphology and function, induced apoptosis, and lowered the fold expression of various crucial genes that regulate cancer stem cells and other vital pathways for HCC progression. For most of the examined parameters, VVF1 and VVF2 had higher potency than 5-FU, and VVF1 showed more efficiency than VVF2. The selected phenolic compounds displayed competitive inhibitory action on NADPH-NOX2, HDAC1, and SepR. In conclusion, these findings declare that VV polyphenolic fractions, particularly VVF1, could be promising safe anti-HCC agents.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Walaa A Hegazy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Iman M Talaat
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Clinical Sciences Department, College of Medicine, University of Sharjah, United Arab Emirates.
| | - Olfat M Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
40
|
Elbadawi M, Efferth T. In Vivo and Clinical Studies of Natural Products Targeting the Hallmarks of Cancer. Handb Exp Pharmacol 2024. [PMID: 38797749 DOI: 10.1007/164_2024_716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite more than 200 approved anticancer agents, cancer remains a leading cause of death worldwide due to disease complexity, tumour heterogeneity, drug toxicity, and the emergence of drug resistance. Accordingly, the development of chemotherapeutic agents with higher efficacy, a better safety profile, and the capability of bypassing drug resistance would be a cornerstone in cancer therapy. Natural products have played a pivotal role in the field of drug discovery, especially for the pharmacotherapy of cancer, infectious, and chronic diseases. Owing to their distinctive structures and multiple mechanistic activities, natural products and their derivatives have been utilized for decades in cancer treatment protocols. In this review, we delve into the potential of natural products as anticancer agents by targeting cancer's hallmarks, including sustained proliferative signalling, evading growth suppression, resisting apoptosis and cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. We highlight the molecular mechanisms of some natural products, in vivo studies, and promising clinical trials. This review emphasizes the significance of natural products in fighting cancer and the need for further studies to uncover their fully therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
41
|
Sahu RK, Tandon S, Singh S, Das BC, Hedau ST. Methyl CpG binding protein MBD2 has a regulatory role on the BRCA1 gene expression and its modulation by resveratrol in ER+, PR+ & triple-negative breast cancer cells. BMC Cancer 2024; 24:566. [PMID: 38711004 PMCID: PMC11071212 DOI: 10.1186/s12885-024-12274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.
Collapse
Affiliation(s)
- Ram Krishna Sahu
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India
| | | | - Shalini Singh
- Division of Clinical Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Suresh T Hedau
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
42
|
Rao R, Mohammed C, Alschuler L, Pomeranz Krummel DA, Sengupta S. Phytochemical Modulation of Ion Channels in Oncologic Symptomatology and Treatment. Cancers (Basel) 2024; 16:1786. [PMID: 38730738 PMCID: PMC11083444 DOI: 10.3390/cancers16091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
Modern chemotherapies offer a broad approach to cancer treatment but eliminate both cancer and non-cancer cells indiscriminately and, thus, are associated with a host of side effects. Advances in precision oncology have brought about new targeted therapeutics, albeit mostly limited to a subset of patients with an actionable mutation. They too come with side effects and, ultimately, 'self-resistance' to the treatment. There is recent interest in the modulation of ion channels, transmembrane proteins that regulate the flow of electrically charged molecules in and out of cells, as an approach to aid treatment of cancer. Phytochemicals have been shown to act on ion channels with high specificity regardless of the tumor's genetic profile. This paper explores the use of phytochemicals in cancer symptom management and treatment.
Collapse
Affiliation(s)
- Rohan Rao
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Caroline Mohammed
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Lise Alschuler
- Andrew Weil Center for Integrative Medicine, University of Arizona College of Medicine, Tucson, AZ 85719, USA
| | - Daniel A. Pomeranz Krummel
- Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Soma Sengupta
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
43
|
Liu Y, Yao Y, Zhang Y, Xu C, Yang T, Qu M, Lu B, Song X, Pan X, Zhou W, Cui X. Identification of prognostic stemness-related genes in kidney renal papillary cell carcinoma. BMC Med Genomics 2024; 17:121. [PMID: 38702698 PMCID: PMC11067181 DOI: 10.1186/s12920-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Kidney renal papillary cell carcinoma (KIRP) is the second most prevalent malignant cancer originating from the renal epithelium. Nowadays, cancer stem cells and stemness-related genes (SRGs) are revealed to play important roles in the carcinogenesis and metastasis of various tumors. Consequently, we aim to investigate the underlying mechanisms of SRGs in KIRP. METHODS RNA-seq profiles of 141 KIRP samples were downloaded from the TCGA database, based on which we calculated the mRNA expression-based stemness index (mRNAsi). Next, we selected the differentially expressed genes (DEGs) between low- and high-mRNAsi groups. Then, we utilized weighted gene correlation network analysis (WGCNA) and univariate Cox analysis to identify prognostic SRGs. Afterwards, SRGs were included in the multivariate Cox regression analysis to establish a prognostic model. In addition, a regulatory network was constructed by Pearson correlation analysis, incorporating key genes, upstream transcription factors (TFs), and downstream signaling pathways. Finally, we used Connectivity map analysis to identify the potential inhibitors. RESULTS In total, 1124 genes were characterized as DEGs between low- and high-RNAsi groups. Based on six prognostic SRGs (CCKBR, GPR50, GDNF, SPOCK3, KC877982.1, and MYO15A), a prediction model was established with an area under curve of 0.861. Furthermore, among the TFs, genes, and signaling pathways that had significant correlations, the CBX2-ASPH-Notch signaling pathway was the most significantly correlated. Finally, resveratrol might be a potential inhibitor for KIRP. CONCLUSIONS We suggested that CBX2 could regulate ASPH through activation of the Notch signaling pathway, which might be correlated with the carcinogenesis, development, and unfavorable prognosis of KIRP.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Yu Zhang
- Tongji University School of Medicine, Shanghai, 200092, China
| | - Chengdang Xu
- Tongji University School of Medicine, Shanghai, 200092, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Mingyu Qu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Xu Song
- Department of Urology, Shanghai Seventh People's Hospital, Shanghai, Shandong, 200137, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China.
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
44
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
45
|
Joma N, Bielawski P, Saini A, Kakkar A, Maysinger D. Nanocarriers for natural polyphenol senotherapeutics. Aging Cell 2024; 23:e14178. [PMID: 38685568 PMCID: PMC11113259 DOI: 10.1111/acel.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Senescence is a heterogenous and dynamic process in which various cell types undergo cell-cycle arrest due to cellular stressors. While senescence has been implicated in aging and many human pathologies, therapeutic interventions remain inadequate due to the absence of a comprehensive set of biomarkers in a context-dependent manner. Polyphenols have been investigated as senotherapeutics in both preclinical and clinical settings. However, their use is hindered by limited stability, toxicity, modest bioavailability, and often inadequate concentration at target sites. To address these limitations, nanocarriers such as polymer nanoparticles and lipid vesicles can be utilized to enhance the efficacy of senolytic polyphenols. Focusing on widely studied senolytic agents-specifically fisetin, quercetin, and resveratrol-we provide concise summaries of their physical and chemical properties, along with an overview of preclinical and clinical findings. We also highlight common signaling pathways and potential toxicities associated with these agents. Addressing challenges linked to nanocarriers, we present examples of senotherapeutic delivery to various cell types, both with and without nanocarriers. Finally, continued research and development of senolytic agents and nanocarriers are encouraged to reduce the undesirable effects of senescence on different cell types and organs. This review underscores the need for establishing reliable sets of senescence biomarkers that could assist in evaluating the effectiveness of current and future senotherapeutic candidates and nanocarriers.
Collapse
Affiliation(s)
- Natali Joma
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealQuebecCanada
| | | | - Anjali Saini
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | - Ashok Kakkar
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
46
|
Salla M, Karaki N, El Kaderi B, Ayoub AJ, Younes S, Abou Chahla MN, Baksh S, El Khatib S. Enhancing the Bioavailability of Resveratrol: Combine It, Derivatize It, or Encapsulate It? Pharmaceutics 2024; 16:569. [PMID: 38675230 PMCID: PMC11053528 DOI: 10.3390/pharmaceutics16040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Overcoming the limited bioavailability and extensive metabolism of effective in vitro drugs remains a challenge that limits the translation of promising drugs into clinical trials. Resveratrol, despite its well-reported therapeutic benefits, is not metabolically stable and thus has not been utilized as an effective clinical drug. This is because it needs to be consumed in large amounts to overcome the burdens of bioavailability and conversion into less effective metabolites. Herein, we summarize the more relevant approaches to modify resveratrol, aiming to increase its biological and therapeutic efficacy. We discuss combination therapies, derivatization, and the use of resveratrol nanoparticles. Interestingly, the combination of resveratrol with established chemotherapeutic drugs has shown promising therapeutic effects on colon cancer (with oxaliplatin), liver cancer (with cisplatin, 5-FU), and gastric cancer (with doxorubicin). On the other hand, derivatizing resveratrol, including hydroxylation, amination, amidation, imidation, methoxylation, prenylation, halogenation, glycosylation, and oligomerization, differentially modifies its bioavailability and could be used for preferential therapeutic outcomes. Moreover, the encapsulation of resveratrol allows its trapping within different forms of shells for targeted therapy. Depending on the nanoparticle used, it can enhance its solubility and absorption, increasing its bioavailability and efficacy. These include polymers, metals, solid lipids, and other nanoparticles that have shown promising preclinical results, adding more "hype" to the research on resveratrol. This review provides a platform to compare the different approaches to allow directed research into better treatment options with resveratrol.
Collapse
Affiliation(s)
- Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Nadine Karaki
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Chemistry and Biochemistry, Faculty of Arts and Sciences, Lebanese University, Zahlé 1801, Lebanon
| | - Belal El Kaderi
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Abeer J. Ayoub
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon;
- INSPECT-LB (National Institute of Public Health, Clinical Epidemiology and Toxicology-Lebanon (INSPECT-LB)), Beirut 1103, Lebanon
| | - Maya N. Abou Chahla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Shairaz Baksh
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada;
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| | - Sami El Khatib
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
47
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
48
|
Elsaman T, Ahmad I, Eltayib EM, Suliman Mohamed M, Yusuf O, Saeed M, Patel H, Mohamed MA. Flavonostilbenes natural hybrids from Rhamnoneuron balansae as potential antitumors targeting ALDH1A1: molecular docking, ADMET, MM-GBSA calculations and molecular dynamics studies. J Biomol Struct Dyn 2024; 42:3249-3266. [PMID: 37261483 DOI: 10.1080/07391102.2023.2218936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Several studies have linked Cancer stem cells (CSCs) to cancer resistance development to chemotherapy and radiotherapy. ALDH1A1 is a key enzyme that regulates the gene expression of CSCs and creates an immunosuppressive tumor microenvironment. It was reported that quercetin and resveratrol were among the inhibitors of ALDH1A1. In early 2022, it was reported that new 11 flavonostilbenes (rhamnoneuronal D-N) were isolated from Rhamnoneuron balansae as potential antiaging natural products. Rhamnoneuronal H (5) could be envisioned as a natural hybrid of quercetin and resveratrol. It was therefore hypothesized that 5 and its analogous isolates rhamnoneuronal D-G (1-4) and rhamnoneuronal I-N (6-11) would have potential ALDH1A1 inhibitory activity. To this end, all isolates were subjected to molecular docking, MM-GBSA, ADMET, and molecular dynamics simulations studies to assess their potential as new leads for cancer treatment targeting ALDH1A1. In silico findings revealed that natural hybrid 5 has a similar binding affinity, judged by MM-GBSA, to the ALDH1A1 active site when compared to the co-crystalized ligand (-64.71 kcal/mole and -64.12 kcal/mole, respectively). Despite having lesser affinity than that of the co-crystalized ligand, the rest of the flavonostilbenes, except 2-4, displayed better binding affinities (-37.55 kcal/mole to -58.6 kcal/mole) in comparison to either resveratrol (-34.44 kcal/mole) or quercetin (-36.48 kcal/mole). Molecular dynamic simulations showed that the natural hybrids 1, 5-11 are of satisfactory stability up to 100 ns. ADMET outcomes indicate that these hybrids displayed acceptable properties and hence could represent an ideal starting point for the development of potent ALDH1A1 inhibitors for cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Osman Yusuf
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Neelain University, Khartoum, Sudan
| | | | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| |
Collapse
|
49
|
Fu Q, Lu Z, Chang Y, Jin T, Zhang M. Bibliometric and visualized analysis of resveratrol in anticancer investigations. Food Sci Nutr 2024; 12:2223-2239. [PMID: 38628201 PMCID: PMC11016421 DOI: 10.1002/fsn3.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
A growing number of publications have shown that resveratrol has anticancer effects and has become a hotspot in cancer research. The purpose of this study is to analyze the academic results and research trends in resveratrol within the field of anticancer and to predict the future trends in this field. We conducted a literature search for resveratrol in anticancer research from 2003 to 2022 using the Science Citation Index Expanded of the Web of Science Core Collection. The visualization software was used to perform the bibliometric analysis. A total of 1463 publications from 2003 to 2022 were retrieved. China had the highest number of publications. Taipei Medical University became the research institution with the largest number of publications worldwide. The journals with the highest output and co-citation frequency were Molecules and Cancer Research. Levenson, Anait S and Jaeger, Walter published the largest number of papers. Jang, MS was the most co-cited author. Timeline View shows trends and relationship between research topics over time and suggests that the emerging frontier of resveratrol in anticancer may be "resveratrol induces apoptosis." As more and more evidence shows the important role of resveratrol in anticancer, further research on its mechanisms and target discovery may become a major direction for future research. The bibliometric analysis findings of this study will significantly contribute to scholars' comprehensive understanding of the anticancer effects and mechanisms of action of resveratrol, aiding in delineating research hotspots and frontier directions within this field, thereby providing guidance for future investigations.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Zhongqi Lu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Ying Chang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Meihua Zhang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| |
Collapse
|
50
|
Adico MDW, Bayala B, Bunay J, Baron S, Simpore J, Lobaccaro JMA. Contribution of Sub-Saharan African medicinal plants to cancer research: Scientific basis 2013-2023. Pharmacol Res 2024; 202:107138. [PMID: 38467241 DOI: 10.1016/j.phrs.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Cancer incidence and mortality rates are increasing worldwide. Cancer treatment remains a real challenge for African countries, especially in sub-Saharan Africa where funding and resources are very limited. High costs, side effects and drug resistance associated with cancer treatment have encouraged scientists to invest in research into new herbal cancer drugs. In order to identify potential anticancer plants for drug development, this review aims to collect and summarize anticancer activities (in vitro/in vivo) and molecular mechanisms of sub-Saharan African medicinal plant extracts against cancer cell lines. Scientific databases such as ScienceDirect, Google Scholar and PubMed were used to search for research articles published from January 2013 to May 2023 on anticancer medicinal plants in sub-Saharan Africa. The data were analyzed to highlight the cytotoxicity and molecular mechanisms of action of these listed plants. A total of 85 research papers covering 204 medicinal plant species were selected for this review. These plants come from 57 families, the most dominant being the plants of the family Amaryllidaceae (16), Fabaceae (14), Annonaceae (10), Asteraceae (10). Plant extracts exert their anticancer activity mainly by inducing apoptosis and stopping the cell cycle of cancer cells. Several plant extracts from sub-Saharan Africa therefore have strong potential for the search for original anticancer phytochemicals. Chemoproteomics, multi-omics, genetic editing technology (CRISPR/Cas9), combined therapies and artificial intelligence tools are cutting edge emerging technologies that facilitate the discovery and structural understanding of anticancer molecules of medicinal plants, reveal their direct targets, explore their therapeutic uses and molecular bases.
Collapse
Affiliation(s)
- Marc D W Adico
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Département de Biochimie-Microbiologie, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 216, Ouagadougou 01, Burkina Faso
| | - Bagora Bayala
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Département de Biochimie-Microbiologie, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 216, Ouagadougou 01, Burkina Faso; Institut Génétique, Reproduction & Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, et Centre de Recherche en Nutrition Humaine Auvergne, 28, Place Henri Dunant, BP38, Clermont-Ferrand F63001, France; Ecole Normale Supérieure, BP 376, Koudougou, Burkina Faso.
| | - Julio Bunay
- Institut Génétique, Reproduction & Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, et Centre de Recherche en Nutrition Humaine Auvergne, 28, Place Henri Dunant, BP38, Clermont-Ferrand F63001, France
| | - Silvère Baron
- Institut Génétique, Reproduction & Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, et Centre de Recherche en Nutrition Humaine Auvergne, 28, Place Henri Dunant, BP38, Clermont-Ferrand F63001, France
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Département de Biochimie-Microbiologie, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 216, Ouagadougou 01, Burkina Faso
| | - Jean-Marc A Lobaccaro
- Institut Génétique, Reproduction & Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, et Centre de Recherche en Nutrition Humaine Auvergne, 28, Place Henri Dunant, BP38, Clermont-Ferrand F63001, France.
| |
Collapse
|