1
|
Huang J, Feng Y, Shi Y, Shao W, Li G, Chen G, Li Y, Yang Z, Yao Z. Telomeres and telomerase in Sarcoma disease and therapy. Int J Med Sci 2024; 21:2065-2080. [PMID: 39239547 PMCID: PMC11373546 DOI: 10.7150/ijms.97485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Sarcoma is a rare tumor derived from the mesenchymal tissue and mainly found in children and adolescents. The outcome for patients with sarcoma is relatively poor compared with that for many other solid malignant tumors. Sarcomas have a highly heterogeneous pathogenesis, histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations are frequently observed in sarcomas. The telomere maintenance mechanism (TMM) has recently been considered as a prognostic factor for patients with sarcomas, and alternative lengthening of telomeres (ALT) positivity has been correlated with poor outcomes in patients with several types of sarcomas. Therefore, telomeres and telomerases may be useful targets for treating sarcomas. This review aims to provide an overview of telomere and telomerase biology in sarcomas.
Collapse
Affiliation(s)
- Jin Huang
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - YangJing Shi
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Weilin Shao
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Genshan Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Gangxian Chen
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Ying Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| |
Collapse
|
2
|
Wang QL, Gong C, Meng XY, Fu M, Yang H, Zhou F, Wu Q, Zhou Y. TPP1 is associated with risk of advanced precursors and cervical cancer survival. PLoS One 2024; 19:e0298118. [PMID: 38722833 PMCID: PMC11081309 DOI: 10.1371/journal.pone.0298118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/16/2024] [Indexed: 05/13/2024] Open
Abstract
It is unclear how telomere-binding protein TPP1 interacts with human telomerase reverse transcriptase (hTERT) and influences cervical cancer development and progression. This study included all eligible 156 cervical cancers diagnosed during 2003-2008 and followed up through 2014, 102 cervical intraepithelial neoplasia (CIN) patients, and 16 participants with normal cervix identified at the same period. Correlation of expression of TPP1 and hTERT in these lesions was assessed using Kappa statistics. TPP1 was knocked down by siRNA in three cervical cancer cell lines. We assessed mRNA expression using quantitative real-time polymerase chain reaction and protein expression using tissue microarray-based immunohistochemical staining. We further analyzed the impact of TPP1 expression on the overall survival of cervical cancer patients by calculating the hazard ratio (HR) with 95% confidence intervals (CIs) using the multivariable-adjusted Cox regression model. Compared to the normal cervix, high TPP1expression was significantly associated with CIN 3 and cervical cancers (P<0.001 for both). Expressions of TPP1 and hTERT were highly correlated in CIN 3 (Kappa statistics = 0.50, P = 0.005), squamous cell carcinoma (Kappa statistics = 0.22, P = 0.011), and adenocarcinoma/adenosquamous carcinoma (Kappa statistics = 0.77, P = 0.001). Mechanistically, knockdown of TPP1 inhibited the expression of hTERT in both mRNA and protein levels. High expression of TPP1 (HR = 2.61, 95% CI 1.23-5.51) and co-high expression of TPP1 and hTERT (HR = 2.38, 95% CI 1.28-4.43) were independently associated with worse survival in cervical cancer patients. TPP1 and hTERT expression was correlated and high expression of TPP1 was associated with high risk of CIN 3 and cervical cancer and could predict a worse survival in cervical cancer.
Collapse
Affiliation(s)
- Qiao-Li Wang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Caifeng Gong
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang-Yu Meng
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| |
Collapse
|
3
|
Lv M, Ren J, Wang E. Topological effect of an intramolecular split G-quadruplex on thioflavin T binding and fluorescence light-up. Chem Sci 2024; 15:4519-4528. [PMID: 38516084 PMCID: PMC10952102 DOI: 10.1039/d3sc06862e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/04/2024] [Indexed: 03/23/2024] Open
Abstract
In this work, the topological effect on binding interaction between a G-quadruplex and thioflavin T (ThT) ligand was systematically investigated on a platform of an intramolecular split G-quadruplex (Intra-SG). Distinct fluorescence changes from ThT were presented in the presence of distinct split modes of Intra-SG structures and an intriguing phenomenon of target-induced fluorescence light-up occurred for split modes 2 : 10, 5 : 7 and 8 : 4. It was validated that hybridization between the Intra-SG spacer and target did not unfold the G-quadruplex, but facilitated the ThT binding. Moreover, the 3' guanine-rich fragment of Intra-SG was very susceptible to topology variation produced by the bound target strand. Additionally, a bioanalytical method was developed for ultrasensitive gene detection, confirming the utility of the ThT/Intra-SG complex as a universal signal transducer. It is believed that the results and disclosed rules will inspire researchers to develop many new DNA-based signal transducers in the future.
Collapse
Affiliation(s)
- Mengmeng Lv
- College of Chemistry, Jilin University Changchun Jilin 130012 China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Erkang Wang
- College of Chemistry, Jilin University Changchun Jilin 130012 China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
4
|
Fang T, Zhang Z, Ren K, Zou L. Genetically determined telomere length as a risk factor for hematological malignancies: evidence from Mendelian randomization analysis. Aging (Albany NY) 2024; 16:4684-4698. [PMID: 38451181 PMCID: PMC10968690 DOI: 10.18632/aging.205625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Over the past years, the exact correlation between telomere length and hematological malignancies was still not fully understood. METHODS We performed a two-sample Mendelian randomization study to investigate the causal relationship between telomere length and hematological malignancies. We selected genetic instruments associated with telomere length. The genetic associations for lymphoid and hematopoietic malignant neoplasms were obtained from the most recent publicly accessible FinnGen study R9 data. Inverse variant weighted (IVW) analysis was adopted as the primary method, and we also performed the weighted-median method and the MR-Egger, and MRPRESSO methods as sensitive analysis. RESULTS Significant associations have been observed between telomere length and primary lymphoid (IVW: OR = 1.52, P = 2.11 × 10-6), Hodgkin lymphoma (IVW: OR = 1.64, P = 0.014), non-Hodgkin lymphoma (IVW: OR = 1.70, P = 0.002), B-cell lymphoma (IVW: OR = 1.57, P = 0.015), non-follicular lymphoma (IVW: OR = 1.58, P = 1.7 × 10-3), mantle cell lymphoma (IVW: OR = 3.13, P = 0.003), lymphoid leukemia (IVW: OR = 2.56, P = 5.92E-09), acute lymphocytic leukemia (IVW: OR = 2.65, P = 0.021) and chronic lymphocytic leukemia (IVW: OR = 2.80, P = 8.21 × 10-6), along with multiple myeloma (IVW: OR = 1.85, P = 0.016). CONCLUSION This MR study found a significant association between telomere length and a wide range of hematopoietic malignancies. But no substantial impact of lymphoma and hematopoietic malignancies on telomere length has been detected.
Collapse
Affiliation(s)
- Tian Fang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihao Zhang
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kexing Ren
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Baddam SR, Kalagara S, Kuna K, Enaganti S. Recent advancements and theranostics strategies in glioblastoma therapy. Biomed Mater 2023; 18:052007. [PMID: 37582381 DOI: 10.1088/1748-605x/acf0ab] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and lethal malignant brain tumor, and it is challenging to cure with surgery and treatment. The prevention of permanent brain damage and tumor invasion, which is the ultimate cause of recurrence, are major obstacles in GBM treatment. Besides, emerging treatment modalities and newer genetic findings are helping to understand and manage GBM in patients. Accordingly, researchers are focusing on advanced nanomaterials-based strategies for tackling the various problems associated with GBM. In this context, researchers explored novel strategies with various alternative treatment approaches such as early detection techniques and theranostics approaches. In this review, we have emphasized the recent advancement of GBM cellular models and their roles in designing GBM therapeutics. We have added a special emphasis on the novel genetic and drug target findings as well as strategies for early detection. Besides, we have discussed various theranostic approaches such as hyperthermia therapy, phototherapy and image-guided therapy. Approaches utilized for targeted drug delivery to the GBM were also discussed. This article also describes the recentin vivo, in vitroandex vivoadvances using innovative theranostic approaches.
Collapse
Affiliation(s)
- Sudhakar Reddy Baddam
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute,Worcester,MA 01655, United States of America
| | - Sudhakar Kalagara
- Department of Chemistry and Biochemistry,University of the Texas at El Paso, 500 W University Ave,El Paso,TX 79968, United States of America
| | - Krishna Kuna
- Department of Chemistry,University College of Science, Saifabad, Osmania University, Hyderabad,Telangana,India
| | - Sreenivas Enaganti
- Department of Bioinformatics, Averinbiotech Laboratories,208, 2nd Floor, Windsor Plaza, Nallakunta, Hyderabad, Telangana,India
| |
Collapse
|
6
|
Pauleck S, Sinnott JA, Zheng YL, Gadalla SM, Viskochil R, Haaland B, Cawthon RM, Hoffmeister A, Hardikar S. Association of Telomere Length with Colorectal Cancer Risk and Prognosis: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:1159. [PMID: 36831502 PMCID: PMC9954736 DOI: 10.3390/cancers15041159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
(1) Background: Colorectal cancer risk and survival have previously been associated with telomere length in peripheral blood leukocytes and tumor tissue. A systematic review and meta-analysis of the literature was conducted. The PubMed, Embase, and Web of Science databases were searched through March 2022. (2) Methods: Relevant studies were identified through database searching following PRISMA guidelines. Risk estimates were extracted from identified studies; meta-analyses were conducted using random effects models. (3) Results: Fourteen studies were identified (eight on risk; six on survival) through systematic review. While no association was observed between circulating leukocyte telomere length and the risk of colorectal cancer [overall OR (95% CI) = 1.01 (0.82-1.24)], a worse survival for those with shorter telomeres in leukocytes and longer telomeres in tumor tissues was observed [Quartile1/Quartile2-4 overall HR (95% CI) = 1.41 (0.26-7.59) and 0.82 (0.69-0.98), respectively]. (4) Conclusions: Although there was no association with colorectal cancer risk, a poorer survival was observed among those with shorter leukocyte telomere length. Future larger studies evaluating a potentially non-linear relationship between telomeres and colorectal cancer are needed.
Collapse
Affiliation(s)
- Svenja Pauleck
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Medical Department II, Division of Gastroenterology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Jennifer A. Sinnott
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| | - Yun-Ling Zheng
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shahinaz M. Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Richard Viskochil
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Benjamin Haaland
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Richard M. Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84108, USA
| | - Albrecht Hoffmeister
- Medical Department II, Division of Gastroenterology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Sheetal Hardikar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Nasiri L, Vaez-Mahdavi MR, Hassanpour H, Ghazanfari T, Kaboudanian Ardestani S, Askari N, Mohseni Majd MA, Rahimlou B. Increased serum lipofuscin associated with leukocyte telomere shortening in veterans: a possible role for sulfur mustard exposure in delayed-onset accelerated cellular senescence. Int Immunopharmacol 2023; 114:109549. [PMID: 36508921 DOI: 10.1016/j.intimp.2022.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sulfur mustard (SM) is a toxic gas that causes chronic inflammation and oxidative stress leading to cell senescence. This study aimed to evaluate two indicators of biological aging (i.e., serum lipofuscin level and leukocyte telomere length) and assess their relationship based on the severity of SM exposure in the long term. METHODS The study was performed on two groups of male participants. 1) SM-exposed group (exposed to SM once in 1987), 73 volunteers. 2) Non-exposed group, 16 healthy volunteers. The SM-exposed group was categorized into three subgroups based on the severity of SM exposure and body damage (asymptom, mild, and severe). The blood sample was prepared from members of each group. The serum lipofuscin, TGF-β, malondialdehyde (MDA), c-reactive protein (CRP), and leukocyte telomere length (TL) were measured in all participants. RESULTS The MDA level was increased in the SM-exposed group (mean = 39.6 µM, SD = 16.5) compared to the non-exposed group (mean = 21.1 µM, SD = 10.3) (P < 0.05). The CRP level was also increased in the SM-exposed group (mean = 5.12 mg/l, SD = 3.36) compared to the non-exposed group (mean = 3.51 mg/l, SD = 1.21), while the TGF-β level was decreased (P < 0.05) in the SM-exposed group (mean = 52.6 pg/ml, SD = 18.7) compared to the non-exposed group (mean = 68.9 pg/ml, SD = 13.8). The relative TL was shorter in the SM-exposed group (mean = 0.40, SD = 0.28) than in the non-exposed group (mean = 2.25, SD = 1.41) (P < 0.05). The lipofuscin level was higher in the total SM-exposed group (mean = 1.44 ng/ml, SD = 0.685) than in the non-exposed group (mean = 0.88 ng/ml, SD = 0.449) (P < 0.05). The MDA and CRP levels were increased in the SM-exposed subgroups of asymptom, mild, and severe than the non-exposed group, while TGF-β level and TL were decreased in those subgroups. The lipofuscin level was higher in the SM-exposed subgroups of mild and severe than in the non-exposed group. The regression analysis determined a negative correlation between lipofuscin level and TL. The lipofuscin/TL ratio was higher in the total SM-exposed group (mean = 6.36, SD = 5.342) than in the non-exposed group (mean = 0.51, SD=0.389). This ratio was also higher in the SM-exposed subgroups of asymptom, mild, and severe than in the non-exposed group. The lipofuscin/TL ratio did not differ between mild and severe subgroups. CONCLUSION The delayed toxicity of SM is associated with chronic oxidative stress, continuous inflammatory stimulation, increased lipofuscin, and telomere shortening. Future studies are needed to verify the suitability of serum lipofuscin to telomere length ratio in determining the severity of SM toxicity.
Collapse
Affiliation(s)
- Leila Nasiri
- Department of Health Equity, Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Mohammad-Reza Vaez-Mahdavi
- Department of Health Equity, Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Physiology, Medical Faculty, Shahed University, Tehran, Iran.
| | - Hossein Hassanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Sussan Kaboudanian Ardestani
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Nayere Askari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of biology, Faculty of Basic Sciences, Shahid Bahonar University, Kerman, Iran
| | | | - Bahman Rahimlou
- Department of Immunology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
8
|
Bleiler M, Cyr A, Wright DL, Giardina C. Incorporation of 53BP1 into phase-separated bodies in cancer cells during aberrant mitosis. J Cell Sci 2023; 136:jcs260027. [PMID: 36606487 PMCID: PMC10112977 DOI: 10.1242/jcs.260027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/25/2022] [Indexed: 01/07/2023] Open
Abstract
53BP1 (also known as TP53BP1) is a key mediator of the non-homologous end joining (NHEJ) DNA repair pathway, which is the primary repair pathway in interphase cells. However, the mitotic functions of 53BP1 are less well understood. Here, we describe 53BP1 mitotic stress bodies (MSBs) formed in cancer cell lines in response to delayed mitosis. These bodies displayed liquid-liquid phase separation characteristics, were close to centromeres, and included lamin A/C and the DNA repair protein RIF1. After release from mitotic arrest, 53BP1 MSBs decreased in number and moved away from the chromatin. Using GFP fusion constructs, we found that the 53BP1 oligomerization domain region was required for MSB formation, and that inclusion of the 53BP1 N terminus increased MSB size. Exogenous expression of 53BP1 did not increase MSB size or number but did increase levels of MSB-free 53BP1. This was associated with slower mitotic progression, elevated levels of DNA damage and increased apoptosis, which is consistent with MSBs suppressing a mitotic surveillance by 53BP1 through sequestration. The 53BP1 MSBs, which were also found spontaneously in a subset of normally dividing cancer cells but not in non-transformed cells (ARPE-19), might facilitate the survival of cancer cells following aberrant mitoses. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marina Bleiler
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Aiyana Cyr
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Lauriola A, Davalli P, Marverti G, Caporali A, Mai S, D’Arca D. Telomere Dysfunction Is Associated with Altered DNA Organization in Trichoplein/Tchp/Mitostatin (TpMs) Depleted Cells. Biomedicines 2022; 10:biomedicines10071602. [PMID: 35884905 PMCID: PMC9312488 DOI: 10.3390/biomedicines10071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, we highlighted a novel role for the protein Trichoplein/TCHP/Mitostatin (TpMs), both as mitotic checkpoint regulator and guardian of chromosomal stability. TpMs-depleted cells show numerical and structural chromosome alterations that lead to genomic instability. This condition is a major driving force in malignant transformation as it allows for the cells acquiring new functional capabilities to proliferate and disseminate. Here, the effect of TpMs depletion was investigated in different TpMs-depleted cell lines by means of 3D imaging and 3D Structured illumination Microscopy. We show that TpMs depletion causes alterations in the 3D architecture of telomeres in colon cancer HCT116 cells. These findings are consistent with chromosome alterations that lead to genomic instability. Furthermore, TpMs depletion changes the spatial arrangement of chromosomes and other nuclear components. Modified nuclear architecture and organization potentially induce variations that precede the onset of genomic instability and are considered as markers of malignant transformation. Our present observations connect the tumor suppression ability of TpMs with its novel functions in maintaining the proper chromosomal segregation as well as the proper telomere and nuclear architecture. Further investigations will investigate the connection between alterations in telomeres and nuclear architecture with the progression of human tumors with the aim of developing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Pierpaola Davalli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (P.D.); (G.M.)
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (P.D.); (G.M.)
| | - Andrea Caporali
- The Queen’s Medical Research Institute, BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH10 4AH, UK;
| | - Sabine Mai
- CancerCare Manitoba Research Institute, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: (S.M.); (D.D.); Tel.: +1-204-272-3174 (S.M.); +39-059-205-5610 (D.D.)
| | - Domenico D’Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (P.D.); (G.M.)
- Correspondence: (S.M.); (D.D.); Tel.: +1-204-272-3174 (S.M.); +39-059-205-5610 (D.D.)
| |
Collapse
|
10
|
Association of Relative Telomere Length and Risk of High Human Papillomavirus Load in Cervical Epithelial Cells. Balkan J Med Genet 2022; 24:65-70. [PMID: 36249518 PMCID: PMC9524175 DOI: 10.2478/bjmg-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Importunate high-risk HPV (HR-HPV) infection is the most common trigger for the cervical carcinogenesis process. In this respect, the presence of cancer can be imputed to telomere lengthening or shortening. This paper explores the possible correlation between relative telomere length and viral load in two groups of women, namely: those with high-risk HPV infection and those who do not have this infection. Thus, samples comprising of 50 women in each group were evaluated for this research. The Amplisens HPV HCR screen-titre-FRT PCR kite was employed for quantitative analysis. Relative telomere length was quantified by real-time PCR. In each of the two HPV load groups, there was no correlation between age and telomere length. Telomere shortening was found in the cervical cell samples of women with high HPV loads, compared with women in the control group. Telomere shortening is associated with elevated HPV loads.
Collapse
|
11
|
Pan-cancer analysis reveals that CTC1-STN1-TEN1 (CST) complex may have a key position in oncology. Cancer Genet 2022; 262-263:80-90. [DOI: 10.1016/j.cancergen.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 01/30/2022] [Indexed: 12/14/2022]
|
12
|
Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol 2022; 39:85-110. [PMID: 35362847 PMCID: PMC10042769 DOI: 10.1007/s10565-022-09710-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
Worldwide, more than 200 million people are estimated to be exposed to unsafe levels of arsenic. Chronic exposure to unsafe levels of groundwater arsenic is responsible for multiple human disorders, including dermal, cardiovascular, neurological, pulmonary, renal, and metabolic conditions. Consumption of rice and seafood (where high levels of arsenic are accumulated) is also responsible for human exposure to arsenic. The toxicity of arsenic compounds varies greatly and may depend on their chemical form, solubility, and concentration. Surprisingly, synthetic organoarsenicals are extremely toxic molecules which created interest in their development as chemical warfare agents (CWAs) during World War I (WWI). Among these CWAs, adamsite, Clark I, Clark II, and lewisite are of critical importance, as stockpiles of these agents still exist worldwide. In addition, unused WWII weaponized arsenicals discarded in water bodies or buried in many parts of the world continue to pose a serious threat to the environment and human health. Metabolic inhibition, oxidative stress, genotoxicity, and epigenetic alterations including micro-RNA-dependent regulation are some of the underlying mechanisms of arsenic toxicity. Mechanistic understanding of the toxicity of organoarsenicals is also critical for the development of effective therapeutic interventions. This review provides comprehensive details and a critical assessment of recently published data on various chemical forms of arsenic, their exposure, and implications on human and environmental health.
Collapse
Affiliation(s)
- Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Ritesh Srivastava
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, School of Optometry, Birmingham, AL, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
13
|
Yoshioka KI, Kusumoto-Matsuo R, Matsuno Y, Ishiai M. Genomic Instability and Cancer Risk Associated with Erroneous DNA Repair. Int J Mol Sci 2021; 22:12254. [PMID: 34830134 PMCID: PMC8625880 DOI: 10.3390/ijms222212254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Many cancers develop as a consequence of genomic instability, which induces genomic rearrangements and nucleotide mutations. Failure to correct DNA damage in DNA repair defective cells, such as in BRCA1 and BRCA2 mutated backgrounds, is directly associated with increased cancer risk. Genomic rearrangement is generally a consequence of erroneous repair of DNA double-strand breaks (DSBs), though paradoxically, many cancers develop in the absence of DNA repair defects. DNA repair systems are essential for cell survival, and in cancers deficient in one repair pathway, other pathways can become upregulated. In this review, we examine the current literature on genomic alterations in cancer cells and the association between these alterations and DNA repair pathway inactivation and upregulation.
Collapse
Affiliation(s)
- Ken-ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
| | - Rika Kusumoto-Matsuo
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masamichi Ishiai
- Central Radioisotope Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
14
|
Cavalcante SG, Pereira BJA, Lerario AM, Sola PR, Oba-Shinjo SM, Marie SKN. The chromatin remodeler complex ATRX-DAXX-H3.3 and telomere length in meningiomas. Clin Neurol Neurosurg 2021; 210:106962. [PMID: 34624827 DOI: 10.1016/j.clineuro.2021.106962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
ATRX-DAXX-H3.3 chromatin remodeler complex is a well known epigenetic factor responsible for the heterochromatin maintenance and control. ATRX is an important nucleosome controller, especially in tandem repeat regions, and DAXX is a multi-function protein with particular role in histone H3.3 deposition due to its chaperone characteristic. Abnormalities in this complex have been associated with telomere dysfunction and consequently with activation of alternative lengthening of telomeres mechanism, genomic instability, and tumor progression in different types of cancer. However, the characterization of this complex is still incomplete in meningioma. We analyzed ATRX, DAXX and H3.3 expressions and the telomere length in a cohort of meningioma of different malignant grades. We observed ATRX upregulation at gene and protein levels in grade II/III meningiomas. A low variability of telomere length was observed in meningiomas across different ages and malignant grades, in contrast to the shortening of telomere length with aging in normal controls.
Collapse
Affiliation(s)
- Stella G Cavalcante
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| | - Benedito J A Pereira
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Brehm Tower, Suite 5100, SPC 5714, 1000 Wall Street, Ann Arbor, MI 48109, USA.
| | - Paula R Sola
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| | - Sueli M Oba-Shinjo
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Blasiak J, Szczepańska J, Sobczuk A, Fila M, Pawlowska E. RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair. Int J Mol Sci 2021; 22:11440. [PMID: 34768871 PMCID: PMC8583789 DOI: 10.3390/ijms222111440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Replication timing (RT) is a cellular program to coordinate initiation of DNA replication in all origins within the genome. RIF1 (replication timing regulatory factor 1) is a master regulator of RT in human cells. This role of RIF1 is associated with binding G4-quadruplexes and changes in 3D chromatin that may suppress origin activation over a long distance. Many effects of RIF1 in fork reactivation and DNA double-strand (DSB) repair (DSBR) are underlined by its interaction with TP53BP1 (tumor protein p53 binding protein). In G1, RIF1 acts antagonistically to BRCA1 (BRCA1 DNA repair associated), suppressing end resection and homologous recombination repair (HRR) and promoting non-homologous end joining (NHEJ), contributing to DSBR pathway choice. RIF1 is an important element of intra-S-checkpoints to recover damaged replication fork with the involvement of HRR. High-resolution microscopic studies show that RIF1 cooperates with TP53BP1 to preserve 3D structure and epigenetic markers of genomic loci disrupted by DSBs. Apart from TP53BP1, RIF1 interact with many other proteins, including proteins involved in DNA damage response, cell cycle regulation, and chromatin remodeling. As impaired RT, DSBR and fork reactivation are associated with genomic instability, a hallmark of malignant transformation, RIF1 has a diagnostic, prognostic, and therapeutic potential in cancer. Further studies may reveal other aspects of common regulation of RT, DSBR, and fork reactivation by RIF1.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Szczepańska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| |
Collapse
|
16
|
Agapito G, Cannataro M. Using BioPAX-Parser (BiP) to enrich lists of genes or proteins with pathway data. BMC Bioinformatics 2021; 22:376. [PMID: 34592927 PMCID: PMC8482563 DOI: 10.1186/s12859-021-04297-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pathway enrichment analysis (PEA) is a well-established methodology for interpreting a list of genes and proteins of interest related to a condition under investigation. This paper aims to extend our previous work in which we introduced a preliminary comparative analysis of pathway enrichment analysis tools. We extended the earlier work by providing more case studies, comparing BiP enrichment performance with other well-known PEA software tools. METHODS PEA uses pathway information to discover connections between a list of genes and proteins as well as biological mechanisms, helping researchers to overcome the problem of explaining biological entity lists of interest disconnected from the biological context. RESULTS We compared the results of BiP with some existing pathway enrichment analysis tools comprising Centrality-based Pathway Enrichment, pathDIP, and Signaling Pathway Impact Analysis, considering three cancer types (colorectal, endometrial, and thyroid), for a total of six datasets (that is, two datasets per cancer type) obtained from the The Cancer Genome Atlas and Gene Expression Omnibus databases. We measured the similarities between the overlap of the enrichment results obtained using each couple of cancer datasets related to the same cancer. CONCLUSION As a result, BiP identified some well-known pathways related to the investigated cancer type, validated by the available literature. We also used the Jaccard and meet-min indices to evaluate the stability and the similarity between the enrichment results obtained from each couple of cancer datasets. The obtained results show that BiP provides more stable enrichment results than other tools.
Collapse
Affiliation(s)
- Giuseppe Agapito
- Department of Legal, Economic and Social Sciences, University "Magna Graecia", Catanzaro, Italy. .,Data Analytics Research Center, University "Magna Graecia", Catanzaro, Italy.
| | - Mario Cannataro
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy. .,Data Analytics Research Center, University "Magna Graecia", Catanzaro, Italy.
| |
Collapse
|
17
|
Mechanism of Human Telomerase Reverse Transcriptase ( hTERT) Regulation and Clinical Impacts in Leukemia. Genes (Basel) 2021; 12:genes12081188. [PMID: 34440361 PMCID: PMC8392866 DOI: 10.3390/genes12081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.
Collapse
|
18
|
Khodadadi E, Mir SM, Memar MY, Sadeghi H, Kashiri M, Faeghiniya M, Jamalpoor Z, Sheikh Arabi M. Shelterin complex at telomeres: Roles in cancers. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Cai J, Qi H, Yao K, Yao Y, Jing D, Liao W, Zhao Z. Non-Coding RNAs Steering the Senescence-Related Progress, Properties, and Application of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650431. [PMID: 33816501 PMCID: PMC8017203 DOI: 10.3389/fcell.2021.650431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
The thirst to postpone and even reverse aging progress has never been quenched after all these decades. Unequivocally, mesenchymal stem cells (MSCs), with extraordinary abilities such as self-renewal and multi-directional differentiation, deserve the limelight in this topic. Though having several affable clinical traits, MSCs going through senescence would, on one hand, contribute to age-related diseases and, on the other hand, lead to compromised or even counterproductive therapeutical outcomes. Notably, increasing evidence suggests that non-coding RNAs (ncRNAs) could invigorate various regulatory processes. With even a slight dip or an uptick of expression, ncRNAs would make a dent in or even overturn cellular fate. Thereby, a systematic illustration of ncRNAs identified so far to steer MSCs during senescence is axiomatically an urgent need. In this review, we introduce the general properties and mechanisms of senescence and its relationship with MSCs and illustrate the ncRNAs playing a role in the cellular senescence of MSCs. It is then followed by the elucidation of ncRNAs embodied in extracellular vesicles connecting senescent MSCs with other cells and diversified processes in and beyond the skeletal system. Last, we provide a glimpse into the clinical methodologies of ncRNA-based therapies in MSC-related fields. Hopefully, the intricate relationship between senescence and MSCs will be revealed one day and our work could be a crucial stepping-stone toward that future.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, Osaka Dental University, Hirakata, Japan
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Kulbay M, Bernier-Parker N, Bernier J. The role of the DFF40/CAD endonuclease in genomic stability. Apoptosis 2021; 26:9-23. [PMID: 33387146 DOI: 10.1007/s10495-020-01649-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
Maintenance of genomic stability in cells is primordial for cellular integrity and protection against tumor progression. Many factors such as ultraviolet light, oxidative stress, exposure to chemical reagents, particularly mutagens and radiation, can alter the integrity of the genome. Thus, human cells are equipped with many mechanisms that prevent these irreversible lesions in the genome, as DNA repair pathways, cell cycle checkpoints, and telomeric function. These mechanisms activate cellular apoptosis to maintain DNA stability. Emerging studies have proposed a new protein in the maintenance of genomic stability: the DNA fragmentation factor (DFF). The DFF40 is an endonuclease responsible of the oligonucleosomal fragmentation of the DNA during apoptosis. The lack of DFF in renal carcinoma cells induces apoptosis without oligonucleosomal fragmentation, which poses a threat to genetic information transfer between cancerous and healthy cells. In this review, we expose the link between the DFF and genomic instability as the source of disease development.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier-Santé-Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montreal, QC, Canada
| | - Nathan Bernier-Parker
- Toronto Animal Health Partners Emergency and Specialty Hospital, 1 Scarsdale Road, North York, ON, M3B 2R2, Canada
| | - Jacques Bernier
- INRS - Centre Armand-Frappier-Santé-Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
21
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Ligands of G-quadruplex nucleic acids. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Akter F, Simon B, de Boer NL, Redjal N, Wakimoto H, Shah K. Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochim Biophys Acta Rev Cancer 2021; 1875:188458. [PMID: 33148506 PMCID: PMC7856042 DOI: 10.1016/j.bbcan.2020.188458] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
Primary brain tumors are a heterogeneous group of malignancies that originate in cells of the central nervous system. A variety of models tractable for preclinical studies have been developed to recapitulate human brain tumors, allowing us to understand the underlying pathobiology and explore potential treatments. However, many promising therapeutic strategies identified using preclinical models have shown limited efficacy or failed at the clinical trial stage. The inability to develop therapeutic strategies that significantly improve survival rates in patients highlight the compelling need to revisit the design of currently available animal models and explore the use of new models that allow us to bridge the gap between promising preclinical findings and clinical translation. In this review, we discuss current strategies used to model glioblastoma, the most malignant brain tumor in adults and highlight the shortcomings of specific models that must be circumvented for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Farhana Akter
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Brennan Simon
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Nadine Leonie de Boer
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Navid Redjal
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Hiroaki Wakimoto
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
23
|
Ebeid DE, Khalafalla FG, Broughton KM, Monsanto MM, Esquer CY, Sacchi V, Hariharan N, Korski KI, Moshref M, Emathinger J, Cottage CT, Quijada PJ, Nguyen JH, Alvarez R, Völkers M, Konstandin MH, Wang BJ, Firouzi F, Navarrete JM, Gude NA, Goumans MJ, Sussman MA. Pim1 maintains telomere length in mouse cardiomyocytes by inhibiting TGFβ signalling. Cardiovasc Res 2021; 117:201-211. [PMID: 32176281 PMCID: PMC7797214 DOI: 10.1093/cvr/cvaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
AIMS Telomere attrition in cardiomyocytes is associated with decreased contractility, cellular senescence, and up-regulation of proapoptotic transcription factors. Pim1 is a cardioprotective kinase that antagonizes the aging phenotype of cardiomyocytes and delays cellular senescence by maintaining telomere length, but the mechanism remains unknown. Another pathway responsible for regulating telomere length is the transforming growth factor beta (TGFβ) signalling pathway where inhibiting TGFβ signalling maintains telomere length. The relationship between Pim1 and TGFβ has not been explored. This study delineates the mechanism of telomere length regulation by the interplay between Pim1 and components of TGFβ signalling pathways in proliferating A549 cells and post-mitotic cardiomyocytes. METHODS AND RESULTS Telomere length was maintained by lentiviral-mediated overexpression of PIM1 and inhibition of TGFβ signalling in A549 cells. Telomere length maintenance was further demonstrated in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1 and by pharmacological inhibition of TGFβ signalling. Mechanistically, Pim1 inhibited phosphorylation of Smad2, preventing its translocation into the nucleus and repressing expression of TGFβ pathway genes. CONCLUSION Pim1 maintains telomere lengths in cardiomyocytes by inhibiting phosphorylation of the TGFβ pathway downstream effectors Smad2 and Smad3, which prevents repression of telomerase reverse transcriptase. Findings from this study demonstrate a novel mechanism of telomere length maintenance and provide a potential target for preserving cardiac function.
Collapse
Affiliation(s)
- David E Ebeid
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Farid G Khalafalla
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Kathleen M Broughton
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Megan M Monsanto
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Carolina Y Esquer
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Veronica Sacchi
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Nirmala Hariharan
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Kelli I Korski
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Maryam Moshref
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Jacqueline Emathinger
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Christopher T Cottage
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Pearl J Quijada
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Jonathan H Nguyen
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Roberto Alvarez
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mirko Völkers
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mathias H Konstandin
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Bingyan J Wang
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Fareheh Firouzi
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Julian M Navarrete
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Natalie A Gude
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Marie-Jose Goumans
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
24
|
Meier‐Menches SM, Neuditschko B, Zappe K, Schaier M, Gerner MC, Schmetterer KG, Del Favero G, Bonsignore R, Cichna‐Markl M, Koellensperger G, Casini A, Gerner C. An Organometallic Gold(I) Bis-N-Heterocyclic Carbene Complex with Multimodal Activity in Ovarian Cancer Cells. Chemistry 2020; 26:15528-15537. [PMID: 32902006 PMCID: PMC7756355 DOI: 10.1002/chem.202003495] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 02/06/2023]
Abstract
The organometallic AuI bis-N-heterocyclic carbene complex [Au(9-methylcaffeine-8-ylidene)2 ]+ (AuTMX2 ) was previously shown to selectively and potently stabilise telomeric DNA G-quadruplex (G4) structures. This study sheds light on the molecular reactivity and mode of action of AuTMX2 in the cellular context using mass spectrometry-based methods, including shotgun proteomics in A2780 ovarian cancer cells. In contrast to other metal-based anticancer agents, this organogold compound is less prone to form coordinative bonds with biological nucleophiles and is expected to exert its drug effects mainly by non-covalent interactions. Global protein expression changes of treated cancer cells revealed a multimodal mode of action of AuTMX2 by alterations in the nucleolus, telomeres, actin stress-fibres and stress-responses, which were further supported by pharmacological assays, fluorescence microscopy and cellular accumulation experiments. Proteomic data are available via ProteomeXchange with identifier PXD020560.
Collapse
Affiliation(s)
- Samuel M. Meier‐Menches
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Benjamin Neuditschko
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
| | - Katja Zappe
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Martin Schaier
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Marlene C. Gerner
- Department of Laboratory MedicineMedical University of ViennaWaehringer Guertel 18–201090ViennaAustria
| | - Klaus G. Schmetterer
- Department of Laboratory MedicineMedical University of ViennaWaehringer Guertel 18–201090ViennaAustria
| | - Giorgia Del Favero
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Core Facility Multimodal ImagingFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Riccardo Bonsignore
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485747GarchingGermany
| | - Margit Cichna‐Markl
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Gunda Koellensperger
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Angela Casini
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485747GarchingGermany
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Core Facility Multimodal ImagingFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 381090ViennaAustria
| |
Collapse
|
25
|
Three-Dimensional Nuclear Telomere Profiling as a Biomarker for Recurrence in Oligodendrogliomas: A Pilot Study. Int J Mol Sci 2020; 21:ijms21228539. [PMID: 33198352 PMCID: PMC7696868 DOI: 10.3390/ijms21228539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mechanisms of recurrence in oligodendrogliomas are poorly understood. Recurrence might be driven by telomere dysfunction-mediated genomic instability. In a pilot study, we investigated ten patients with oligodendrogliomas at the time of diagnosis (first surgery) and after recurrence (second surgery) using three-dimensional nuclear telomere analysis performed with quantitative software TeloView® (Telo Genomics Corp, Toronto, Ontario, Canada). 1p/19q deletion status of each patient was determined by fluorescent in situ hybridization on touch preparation slides. We found that a very specific 3D telomeric profile was associated with two pathways of recurrence in oligodendrogliomas independent of their 1p/19q status: a first group of 8 patients displayed significantly different 3D telomere profiles between both surgeries (p < 0.0001). Their recurrence happened at a mean of 231.375 ± 117.42 days and a median time to progression (TTP) of 239 days, a period defined as short-term recurrence; and a second group of three patients displayed identical 3D telomere profiles between both surgery samples (p > 0.05). Their recurrence happened at a mean of 960.666 ± 86.19 days and a median TTP of 930 days, a period defined as long-term recurrence. Our results suggest a potential link between nuclear telomere architecture and telomere dysfunction with time to recurrence in oligodendrogliomas, independently of the 1p/19q status.
Collapse
|
26
|
Impact of circadian disruption on health; SIRT1 and Telomeres. DNA Repair (Amst) 2020; 96:102993. [PMID: 33038659 DOI: 10.1016/j.dnarep.2020.102993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Circadian clock is a biochemical oscillator in organisms that regulates the circadian rhythm of numerous genes over 24 h. The circadian clock is involved in telomere homeostasis by regulating the diurnal rhythms of telomerase activity, TERT mRNA level, TERRA expression, and telomeric heterochromatin formation. Particularly, CLOCK and BMAL1 deficiency contribute to telomere shortening by preventing rhythmic telomerase activity and TERRA expression, respectively. Telomere shortening increases the number of senescent cells with impaired circadian rhythms. In return, telomerase reconstitution improves impaired circadian rhythms of senescent cells. SIRT1 that is an NAD+-dependent deacetylase positively regulates circadian clock and telomere homeostasis. SIRT1 contributes to the circadian clock by mediating CLOCK/BMAL1 complex formation, BMAL1 transcription and PER2 disruption. On the other hand, SIRT1 ensures telomere homeostasis by inducing telomerase and shelterin protein expression and regulating telomere heterochromatin formation. SIRT1 inhibition leads to both circadian clock and telomeres dysfunction that inhibit its activity. In light of this current evidence, we could suggest that the BMAL1/CLOCK complex regulates the telomere homeostasis in SIRT1 dependent manner, and also telomere dysfunction inhibits circadian clock function by suppressing SIRT1 activity to induce age-related diseases. We consider that increasing SIRT1 activity can prevent age-related diseases and help healthy aging by protecting telomere integrity and circadian clock function for individuals subjected to circadian rhythm disruption such as shift works, individuals with sleep disorders, and in the elderly population.
Collapse
|
27
|
Essentiality of CTNNB1 in Malignant Transformation of Human Embryonic Stem Cells under Long-Term Suboptimal Conditions. Stem Cells Int 2020; 2020:5823676. [PMID: 33029148 PMCID: PMC7532415 DOI: 10.1155/2020/5823676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Human embryonic stem cells (hESCs) gradually accumulate abnormal karyotypes during long-term suboptimal culture, which hinder their application in regenerative medicine. Previous studies demonstrated that the activation of CTNNB1 might be implicated in this process. Hence, the hESC line with stably silenced CTNNB1 was established to further explore the role of CTNNB1 in the malignant transformation of hESCs. It was shown to play a vital role in the maintenance of the physiological properties of stem cells, such as proliferation, migration, differentiation, and telomere regulation. Furthermore, the malignant transformation of hESCs was induced by continuous exposure to 0.001 μg/ml mitomycin C (MMC). The results showed that CTNNB1 and its target genes, including proto-oncogenes CCND1 and C-MYC, were aberrantly upregulated in hESCs after MMC treatment. Moreover, the high expression of CTNNB1 accelerated cell transition from G0/G1 phase to the S phase and stimulated the growth of cells containing breakage-fusion-bridge (BFB) cycles. Conversely, CTNNB1 silencing inhibited these effects and triggered a survival crisis. The current data indicated that CTNNB1 is intimately associated with the physiological properties of stem cells; however, the aberrant expression of CTNNB1 is involved in the malignant transformation of hESCs, which might advance the process by facilitating telomere-related unstable cell proliferation. Thus, the aberrant CTNNB1 level might serve as a potential biomarker for detecting the malignant transformation of hESCs.
Collapse
|
28
|
Hussien MT, Shaban S, Temerik DF, Helal SR, Mosad E, Elgammal S, Mostafa A, Hassan E, Ibrahim A. Impact of DAXX and ATRX expression on telomere length and prognosis of breast cancer patients. J Egypt Natl Canc Inst 2020; 32:34. [PMID: 32856116 DOI: 10.1186/s43046-020-00045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomere stability is one of the hallmarks of cancer that promotes cellular longevity, the accumulation of genetic alterations, and tumorigenesis. The loss of death domain-associated protein (DAXX) and α-thalassemia/mental retardation X-linked protein (ATRX) plays a role in telomere lengthening and stability. This study aims to evaluate the prognostic significance of telomere length (TL) and its association with DAXX and ATRX proteins in breast cancer (BC). Our study used the FISH technique to detect peptide nucleic acid (PNA) in the peripheral blood cells of a cohort of BC patients (n = 220) and a control group of apparently healthy individuals (n = 100). Expression of DAXX and ATRX proteins was evaluated using immunohistochemistry (IHC) in all BC tissues. RESULTS Patients with a shorter TL had worse disease-free survival (DFS) and overall survival (OS). There were significant associations between shorter TL and advanced disease stages, lymph node metastasis, and positive HER2/neu expression. DAXX protein expression was significantly correlated with TL. Lower DAXX expression was significantly with shorter DFS. CONCLUSION Assessing TL can be used as a worthy prognostic indicator in BC patients. Specifically, short TL had a poor impact on the prognosis of BC patients. Low DAXX expression is associated with poor outcomes in BC. Further mechanistic studies are warranted to reveal the underlying mechanisms of these associations.
Collapse
Affiliation(s)
- Marwa T Hussien
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Shimaa Shaban
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Doaa F Temerik
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Shaaban R Helal
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Mosad
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Sahar Elgammal
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer Mostafa
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Eman Hassan
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Abeer Ibrahim
- Department of Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
29
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
30
|
Morais M, Dias F, Resende T, Nogueira I, Oliveira J, Maurício J, Teixeira AL, Medeiros R. Leukocyte telomere length and hTERT genetic polymorphism rs2735940 influence the renal cell carcinoma clinical outcome. Future Oncol 2020; 16:1245-1255. [PMID: 32422075 DOI: 10.2217/fon-2019-0795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Analysis of the genetic hTERT-1327 C>T (rs2735940) influence on leukocyte telomere length (LTL) and tumor development, progression and overall survival in renal cell carcinoma (RCC) patients. Materials & methods: Using leukocyte DNA of RCC patients and healthy individuals, LTL measurement and allelic discrimination of rs2735940 was performed by real-time PCR. Results: RCC patients showed shorter LTL than healthy individuals and LTL increased with clinical stage. CC+TC genotypes healthy carriers' presented shorter LTL. However, no statistical association between the different genotypes and RCC risk. Nevertheless, CC homozygous presented a reduced time to disease progression and a lower overall survival. The use of hTERT-1327 single nucleotide polymorphism information increased the capacity to predict risk for RCC progression. Conclusion: In fact, in healthy individuals, hTERT-1327 CC+TC genotypes were associated with shorter LTL, and this single nucleotide polymorphism was associated with time to disease progression, being a promising potential prognosis biomarker to be used in the future.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Research, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal.,ICBAS, Abel Salazar Institute for The Biomedical Sciences, University of Porto, Portugal
| | - Francisca Dias
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,ICBAS, Abel Salazar Institute for The Biomedical Sciences, University of Porto, Portugal
| | - Telma Resende
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Inês Nogueira
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Research, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana L Teixeira
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Research, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça de 9 de Abril 349, 4249-004 Porto, Portugal
| |
Collapse
|
31
|
van Senten JR, Fan TS, Siderius M, Smit MJ. Viral G protein-coupled receptors as modulators of cancer hallmarks. Pharmacol Res 2020; 156:104804. [PMID: 32278040 DOI: 10.1016/j.phrs.2020.104804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Herpesviruses encode transmembrane G protein-coupled receptors (GPCRs), which share structural homology to human chemokine receptors. These viral GPCRs include KSHV-encoded ORF74, EBV-encoded BILF1, and HCMV-encoded US28, UL33, UL78 and US27. Viral GPCRs hijack various signaling pathways and cellular networks, including pathways involved in the so-called cancer hallmarks as defined by Hanahan and Weinberg. These hallmarks describe cellular characteristics crucial for transformation and tumor progression. The cancer hallmarks involve growth factor-independent proliferation, angiogenesis, avoidance of apoptosis, invasion and metastasis, metabolic reprogramming, genetic instability and immune evasion amongst others. The role of beta herpesviruses modulating these cancer hallmarks is clearly highlighted by the proliferative and pro-angiogenic phenotype associated with KSHV infection which is largely ascribed to the ORF74-mediated modulation of signaling networks in host cells. For HCMV and Epstein-Bar encoded GPCRs, oncomodulatory effects have been described which contribute to the cancer hallmarks, thereby enhancing oncogenic development. In this review, we describe the main signaling pathways controlling the hallmarks of cancer which are affected by the betaherpesvirus encoded GPCRs. Most prominent among these involve the JAK-STAT, PI(3)K-AKT, NFkB and MAPK signaling nodes. These insights are important to effectively target these viral GPCRs and their signaling networks in betaherpesvirus-associated malignancies.
Collapse
Affiliation(s)
- Jeffrey R van Senten
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Tian Shu Fan
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Zhang JM, Zou L. Alternative lengthening of telomeres: from molecular mechanisms to therapeutic outlooks. Cell Biosci 2020; 10:30. [PMID: 32175073 PMCID: PMC7063710 DOI: 10.1186/s13578-020-00391-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/23/2020] [Indexed: 02/06/2023] Open
Abstract
To escape replicative senescence, cancer cells have to overcome telomere attrition during DNA replication. Most of cancers rely on telomerase to extend and maintain telomeres, but 4-11% of cancers use a homologous recombination-based pathway called alternative lengthening of telomeres (ALT). ALT is prevalent in cancers from the mesenchymal origin and usually associates with poor clinical outcome. Given its critical role in protecting telomeres and genomic integrity in tumor cells, ALT is an Achilles heel of tumors and an attractive target for cancer therapy. Here, we review the recent progress in the mechanistic studies of ALT, and discuss the emerging therapeutic strategies to target ALT-positive cancers.
Collapse
Affiliation(s)
- Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129 USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129 USA.,2Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
33
|
Morais M, Dias F, Teixeira AL, Medeiros R. Telomere Length in Renal Cell Carcinoma: The Jekyll and Hyde Biomarker of Ageing of the Kidney. Cancer Manag Res 2020; 12:1669-1679. [PMID: 32184670 PMCID: PMC7064280 DOI: 10.2147/cmar.s211225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022] Open
Abstract
Renal cell carcinoma (RCC) is a heterogeneous group of cancers where the clear cell (ccRCC) is the most common and the most lethal. The absence of accurate diagnostic and follow-up biomarkers along with the time-limited response to therapies may explain the lethality and shows the necessity of new sensitive and specific biomarkers. One of the most studied molecules are the telomeres: specialized ribonucleoprotein structures that keep the structural integrity of the genome. Among other features, telomere length (TL) has been widely studied in several tumor models regarding its biomarker potential, due to the easy detection and quantification. The scope of this review was to analyze all the information about this parameter in RCC. There was some disparity in the results of the studies, since some pointed to an association between short TL and risk or poor outcome of RCC; others between long TL and RCC outcome and some did not find any association. We propose some epidemiological and biological explanations to these differences. The telomeres may play a dual role during RCC carcinogenesis in the early stages, short telomeres may increase RCC risk and in late carcinogenesis, long telomeres seem to be associated with tumor prognosis. However, the controversy of the results along with the lack of specificity are some problems that need to be clarified for the usage of TL as a prognostic biomarker.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
- Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto4200-172, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
- Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto4200-172, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, Porto4200-319, Portugal
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto4249-004, Portugal
| |
Collapse
|
34
|
Rossi M, Gorospe M. Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. Trends Mol Med 2020; 26:422-433. [PMID: 32277935 DOI: 10.1016/j.molmed.2020.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Aging is a universal and time-dependent biological decline associated with progressive deterioration of cells, tissues, and organs. Age-related decay can eventually lead to pathology such as cardiovascular and neurodegenerative diseases, cancer, and diabetes. A prominent molecular process underlying aging is the progressive shortening of telomeres, the structures that protect the ends of chromosomes, eventually triggering cellular senescence. Noncoding (nc)RNAs are emerging as major regulators of telomere length homeostasis. In this review, we describe the impact of ncRNAs on telomere function and discuss their implications in senescence and age-related diseases. We discuss emerging therapeutic strategies targeting telomere-regulatory ncRNAs in aging pathology.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| |
Collapse
|
35
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
36
|
Bhattacharjee P, Das A, Giri AK, Bhattacharjee P. Epigenetic regulations in alternative telomere lengthening: Understanding the mechanistic insight in arsenic-induced skin cancer patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135388. [PMID: 31837846 DOI: 10.1016/j.scitotenv.2019.135388] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Telomere integrity is considered to be one of the primary mechanisms during malignant transformation. Arsenic, a group 1 carcinogenic metalloid, has been reported to cause telomere lengthening in a telomerase-independent manner. Recent studies suggest a significant role for epigenetic modifications in regulating telomeric length and integrity. Here, we have explored the role of epigenetic deregulation in alternative lengthening of telomeres (ALT) in arsenic-exposed skin cancer tissues and corresponding non-tumor tissues. The relative telomere length (RTL) was analyzed by qRT-PCR using 2-ΔΔCt method. The subtelomeric methylation pattern of the four chromosomes (7q, 18p, 21q and XpYp) were analysed by Methylation Specific PCR (MSP) in 40 pairs of arsenic exposed skin cancer tissues and its corresponding control. The role of constitutive heterochromatin histone marks in the regulation of telomere length (TL) was analyzed by targeted ELISA. A 2-fold increase of relative telomere length in 85% of the arsenic-induced skin cancer tissues was observed. Among the four chromosomes, subtelomere of XpYp was found to be hypermethylated (p < 0.001) whereas 18p was hypomethylated (p < 0.01). Additionally, the level of H4K20me3, a heterochromatic mark was found to be significantly down-regulated (p < 0.0003), and inversely correlated with telomere length indicating loss of heterochromatinization of telomeric DNA. These observations highlight the novel role of epigenetic regulation in the maintenance of constitutive heterochromatin structure at telomere. Alteration in subtelomeric DNA methylation patterns and depletion of H4K20me3 might lead to loss of heterochromatinization resulting in arsenic-induced telomeric elongation. We provide novel data indicating possible alternative determinants of telomere elongation through epigenetic modifications during arsenic-induced skin carcinogenesis which could be used as early 'epimarkers' in the near future. The findings provide new insights about the mechanism of arsenic-induced carcinogenesis.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
37
|
Kit OI, Gvaldin DY, Trifanov VS, Kolesnikov EN, Timoshkina NN. Molecular-Genetic Features of Pancreatic Neuroendocrine Tumors. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Ding X, Cheng J, Pang Q, Wei X, Zhang X, Wang P, Yuan Z, Qian D. BIBR1532, a Selective Telomerase Inhibitor, Enhances Radiosensitivity of Non-Small Cell Lung Cancer Through Increasing Telomere Dysfunction and ATM/CHK1 Inhibition. Int J Radiat Oncol Biol Phys 2019; 105:861-874. [PMID: 31419512 DOI: 10.1016/j.ijrobp.2019.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Telomerase is reactivated in non-small cell lung cancer (NSCLC), and it increases cell resistance to irradiation through protecting damaged telomeres and enhancing DNA damage repair. We investigated the radiosensitizing effect of BIBR1532, a highly selective telomerase inhibitor, and its corresponding mechanism in NSCLC. METHODS AND MATERIALS Cell proliferation, telomerase activity, and telomere dysfunction-induced foci were measured with CCK-8 assay, real-time fluorescent quantitative polymerase chain reaction, and immunofluorescence. The effect of BIBR1532 on the response of NSCLC cells to radiation was analyzed using clonogenic survival and xenograft tumor assays. Cell death and cell senescence induced by BIBR1532 or ionizing radiation (IR), or both, were detected with western blotting, flow cytometry, and senescence-association β-galactosidase staining assay. RESULTS We observed dose-dependent direct cytotoxicity of BIBR1532 at relatively high concentrations in NSCLC cells. Low concentrations of BIBR1532 did not appear toxic to NSCLC cells; however, they substantially increased the therapeutic efficacy of IR in vitro by enhancing IR-induced apoptosis, senescence, and mitotic catastrophe. Moreover, in a mouse xenograft model, BIBR1532 treatment synergized with IR at nontoxic dose levels promoted the antitumor efficacy of IR without toxicity to hematologic and internal organs. Mechanistically, lower concentrations of BIBR1532 effectively inhibited telomerase activity and increased IR-induced telomere dysfunction, resulting in disruption of chromosomal stability and inhibition of the ATM/CHK1 (ataxia-telangiectasia-mutated/Checkpoint kinase 1) pathway, which impaired DNA damage repair. CONCLUSIONS Our findings demonstrate that disturbances in telomerase function by nontoxic dose levels of BIBR1532 effectively enhance the radiosensitivity of NSCLC cells. This finding provides a rationale for the clinical assessment of BIBR1532 as a radiosensitizer.
Collapse
Affiliation(s)
- Xiaofeng Ding
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingjing Cheng
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Radiation Oncology, First Affiliated Hospital of USTC(University of Science and Technology of China), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingsong Pang
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoying Wei
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Ximei Zhang
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Dong Qian
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Radiation Oncology, First Affiliated Hospital of USTC(University of Science and Technology of China), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
39
|
Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochem Med (Zagreb) 2019; 29:030501. [PMID: 31379458 PMCID: PMC6610675 DOI: 10.11613/bm.2019.030501] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
The complex process of biological aging, as an intrinsic feature of living beings, is the result of genetic and, to a greater extent, environmental factors and time. For many of the changes taking place in the body during aging, three factors are important: inflammation, immune aging and senescence (cellular aging, biological aging). Senescence is an irreversible form of long-term cell-cycle arrest, caused by excessive intracellular or extracellular stress or damage. The purpose of this cell-cycles arrest is to limit the proliferation of damaged cells, to eliminate accumulated harmful factors and to disable potential malignant cell transformation. As the biological age does not have to be in accordance with the chronological age, it is important to find specific hallmarks and biomarkers that could objectively determine the rate of age of a person. These biomarkers might be a valuable measure of physiological, i.e. biological age. Biomarkers should meet several criteria. For example, they have to predict the rate of aging, monitor a basic process that underlies the aging process, be able to be tested repeatedly without harming the person. In addition, biomarkers have to be indicators of biological processes, pathogenic processes or pharmacological responses to therapeutic intervention. It is considered that the telomere length is the weak biomarker (with poor predictive accuracy), and there is currently no reliable biomarker that meets all the necessary criteria.
Collapse
Affiliation(s)
- Slavica Dodig
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivana Čepelak
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivan Pavić
- Department of Pulmonology, Allergology and Immunology, Children’s Hospital Zagreb; School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
40
|
Roy S, Roy S, Kar M, Chakraborty A, Kumar A, Delogu F, Asthana S, Hande MP, Banerjee B. Combined treatment with cisplatin and the tankyrase inhibitor XAV-939 increases cytotoxicity, abrogates cancer-stem-like cell phenotype and increases chemosensitivity of head-and-neck squamous-cell carcinoma cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:503084. [DOI: 10.1016/j.mrgentox.2019.503084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
|
41
|
Meier-Menches SM, Aikman B, Döllerer D, Klooster WT, Coles SJ, Santi N, Luk L, Casini A, Bonsignore R. Comparative biological evaluation and G-quadruplex interaction studies of two new families of organometallic gold(I) complexes featuring N-heterocyclic carbene and alkynyl ligands. J Inorg Biochem 2019; 202:110844. [PMID: 31739113 DOI: 10.1016/j.jinorgbio.2019.110844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/24/2022]
Abstract
Experimental organometallic gold(I) compounds hold promise for anticancer therapy. This study reports the synthesis of two novel families of gold(I) complexes, including N1-substituted bis-N-heterocyclic carbene (NHC) complexes of general formula [Au(N1-TBM)2]BF4 (N1-TBM = N1-substituted 9-methyltheobromin-8-ylidene) and mixed gold(I) NHC-alkynyl complexes, [Au(N1-TBM)alkynyl]. The compounds were fully characterised for their structure and stability in aqueous environment and in the presence of N-acetyl cysteine by nuclear magnetic resonance (NMR) spectroscopy. The structures of bis(1-ethyl-3,7,9-trimethylxanthin-8-ylidene)gold(I), (4-ethynylpyridine)(1,9-dimethyltheobromine-8-ylidene)gold(I) and of (2,8-Diethyl-10-(4-ethynylphenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine)(1,3,7,9-tetramethylxanthin-8-ylidene)gold(I) were also confirmed by X-ray diffraction analysis. The compounds were studied for their properties as DNA G-quadruplex (G4 s) stabilizers by fluorescence resonance energy transfer (FRET) DNA melting. Only the cationic [Au(N1-TBM)2]BF4 family showed moderate G4 stabilization properties with respect to the previously reported benchmark compound [Au(9-methylcaffein-8-ylidene)2]+ (AuTMX2). However, the compounds also showed marked selectivity for binding to G4 structures with respect to duplex DNA in competition experiments. For selected complexes, the interactions with G4 s were also confirmed by circular dichroism (CD) studies. Furthermore, the gold(I) complexes were assessed for their antiproliferative effects in human cancer cells in vitro, displaying moderate activity. Of note, among the mixed gold(I) NHC-alkynyl compounds, one features a fluorescent boron-dipyrromethene (BODIPY) moiety which allowed determining its uptake into the cytoplasm of cancer cells by fluorescence microscopy.
Collapse
Affiliation(s)
- Samuel M Meier-Menches
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF103AT, United Kingdom
| | - Brech Aikman
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF103AT, United Kingdom
| | - Daniel Döllerer
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF103AT, United Kingdom
| | - Wim T Klooster
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Simon J Coles
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Nicolò Santi
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF103AT, United Kingdom
| | - Louis Luk
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF103AT, United Kingdom
| | - Angela Casini
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF103AT, United Kingdom; Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany.
| | - Riccardo Bonsignore
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF103AT, United Kingdom.
| |
Collapse
|
42
|
The protective function of non-coding DNA in DNA damage accumulation with age and its roles in age-related diseases. Biogerontology 2019; 20:741-761. [PMID: 31473864 DOI: 10.1007/s10522-019-09832-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
Aging is a progressive decline of physiological function in tissue and organ accompanying both accumulation of DNA damage and reduction of non-coding DNA. Peripheral non-coding DNA/heterochromatin has been proposed to protect the genome and centrally-located protein-coding sequences in soma and male germ cells against radiation and the invasion of exogenous nucleic acids. Therefore, this review summarizes the reduction of non-coding DNA/heterochromatin (including telomeric DNA and rDNA) and DNA damage accumulation during normal physiological aging and in various aging-related diseases. Based on analysis of data, it is found that DNA damage accumulation is roughly negatively correlated with the reduction of non-coding DNA and therefore speculated that DNA damage accumulation is likely due to the reduction of non-coding DNA protection in genome defense during aging. Therefore, it is proposed here that means to increase the total amount of non-coding DNA and/or heterochromatin prior to the onset of these diseases could potentially better protect the genome and protein-coding DNA, reduce the incidence of aging-related diseases, and thus lead to better health during aging.
Collapse
|
43
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
44
|
Wang W, Zhang H, Duan X, Feng X, Wang T, Wang P, Ding M, Zhou X, Liu S, Li L, Liu J, Tang L, Niu X, Zhang Y, Li G, Yao W, Yang Y. Association of genetic polymorphisms of miR-145 gene with telomere length in omethoate-exposed workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:82-88. [PMID: 30684755 DOI: 10.1016/j.ecoenv.2019.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 05/25/2023]
Abstract
Omethoate, an organophosphorous pesticide, causes a variety of health effects, especially the damage of chromosome DNA. The aim of the study was to assess the correlation between polymorphisms of encoding miRNA genes and telomere length in omethoate-exposure workers. 180 workers with more than 8 years omethoate-exposure and 115 healthy controls were recruited in the study. Genotyping for the selected single nucleotide polymorphisms loci were performed using the flight mass spectrometry. Real-time fluorescent quantitative polymerase chain reaction(PCR) method was applied to determine the relative telomere length(RTL) in human peripheral blood leukocytes DNA. After adjusting the covariate of affecting RTL, covariance analysis showed that the female was significantly longer than that of the male in control group(P < 0.046). For the miR-145 rs353291 locus, this study showed that RTL of mutation homozygous AG+GG individuals was longer than that of wild homozygous AA in the exposure group (P = 0.039). In the control group, RTL with wild homozygous TT genotype in miR-30a rs2222722 polymorphism locus was longer than that of the mutation homozygous CC genotype (P = 0.038). After multiple linear regression analysis, the independent variables of entering into the model were omethoate-exposure (b = 0.562, P < 0.001), miR-145 rs353291 (AG+GG) (b = 0.205, P = 0.010). The prolongation of relative telomere length in omethoate exposed workers was associated with AG+GG genotypes in rs353291 polymorphism of encoding miR-145 gene.
Collapse
Affiliation(s)
- Wei Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Feng
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tuanwei Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingcui Ding
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoshan Zhou
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suxiang Liu
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Lei Li
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Junling Liu
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Lixia Tang
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Xinhua Niu
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Yuhong Zhang
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Guoyu Li
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Wu Yao
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
45
|
Huda N, Xu Y, Bates AM, Rankin DA, Kannan N, Gilley D. Onset of Telomere Dysfunction and Fusions in Human Ovarian Carcinoma. Cells 2019; 8:E414. [PMID: 31060240 PMCID: PMC6562548 DOI: 10.3390/cells8050414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Telomere dysfunction has been strongly implicated in the initiation of genomic instability and is suspected to be an early event in the carcinogenesis of human solid tumors. Recent findings have established the presence of telomere fusions in human breast and prostate malignancies; however, the onset of this genomic instability mechanism during progression of other solid cancers is not well understood. Herein, we explored telomere dynamics in patient-derived epithelial ovarian cancers (OC), a malignancy characterized by multiple distinct subtypes, extensive molecular heterogeneity, and widespread genomic instability. We discovered a high frequency of telomere fusions in ovarian tumor tissues; however, limited telomere fusions were detected in normal adjacent tissues or benign ovarian samples. In addition, we found relatively high levels of both telomerase activity and hTERT expression, along with anaphase bridges in tumor tissues, which were notably absent in adjacent normal ovarian tissues and benign lesions. These results suggest that telomere dysfunction may occur early in ovarian carcinogenesis and, importantly, that it may play a critical role in the initiation and progression of the disease. Recognizing telomere dysfunction as a pervasive feature of this heterogeneous malignancy may facilitate the future development of novel diagnostic tools and improved methods of disease monitoring and treatment.
Collapse
Affiliation(s)
- Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Alison M Bates
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Deborah A Rankin
- Department of Chemistry and Applied Biological Science, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| | - Nagarajan Kannan
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.
| | - David Gilley
- Department of Chemistry and Applied Biological Science, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| |
Collapse
|
46
|
Telomere shortening in blood leukocytes of patients with posttraumatic stress disorder. J Psychiatr Res 2019; 111:83-88. [PMID: 30685566 DOI: 10.1016/j.jpsychires.2019.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 01/09/2023]
Abstract
Telomeres are protective fragments on chromosome ends involved in maintaining genome stability, preventing chromosomal fusions, regulation of cell division. It was shown that telomere attrition rate is accelerated in age-related diseases, as well as in response to physiological and psychosocial stress. The aim of this study was to evaluate relative leukocyte telomere length (LTL) in patients with post traumatic stress disorder (PTSD), as well as to investigate association of functional SNPs of telomerase TERC and TERT genes with LTL and PTSD. The relative LTL was measured by multiplex quantitative PCR method; genotyping of TERC rs12696304, TERT rs7726159 and rs2736100 was performed by PCR with sequence specific primers. Comparison of LTL in diseased and healthy subjects showed that PTSD patients had shorter average LTL than controls. Also, the frequency and the carriage rate of the TERT rs2736100*T allele was higher in PTSD patients compared to controls. Overall our results are in line with previous research in different populations. Furthermore, we have demonstrated that rs2736100 of TERT gene was significantly associated with PTSD and the minor allele of this polymorphism may be considered as a risk factor for PTSD in the Armenian population.
Collapse
|
47
|
Baek JH, Son H, Jeong YH, Park SW, Kim HJ. Chronological Aging Standard Curves of Telomere Length and Mitochondrial DNA Copy Number in Twelve Tissues of C57BL/6 Male Mouse. Cells 2019; 8:cells8030247. [PMID: 30875959 PMCID: PMC6468494 DOI: 10.3390/cells8030247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
The changes in telomere length and mitochondrial DNA copy number (mtDNAcn) are considered to be aging markers. However, many studies have provided contradictory or only fragmentary information about changes of these markers in animal models, due to inaccurate analysis methods and a lack of objective aging standards. To establish chronological aging standards for these two markers, we analyzed telomere length and mtDNAcn in 12 tissues-leukocytes, prefrontal cortex, hippocampus, pituitary gland, adrenal gland, retina, aorta, liver, kidney, spleen, skeletal muscle, and skin-from a commonly used rodent model, C57BL/6 male mice aged 2⁻24 months. It was found that at least one of the markers changed age-dependently in all tissues. In the leukocytes, hippocampus, retina, and skeletal muscle, both markers changed age-dependently. As a practical application, the aging marker changes were analyzed after chronic immobilization stress (CIS) to see whether CIS accelerated aging or not. The degree of tissue-aging was calculated using each standard curve and found that CIS accelerated aging in a tissue-specific manner. Therefore, it is expected that researchers can use our standard curves to objectively estimate tissue-specific aging accelerating effects of experimental conditions for least 12 tissues in C57BL/6 male mice.
Collapse
Affiliation(s)
- Ji Hyeong Baek
- Department of Anatomy and Convergence Medical Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
- Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju 52727, Korea.
| | - Hyeonwi Son
- Department of Anatomy and Convergence Medical Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
- Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju 52727, Korea.
| | - Young-Hoon Jeong
- Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju 52727, Korea.
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Cardiovascular Center, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea.
| | - Sang Won Park
- Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju 52727, Korea.
- Department of Pharmacology and Convergence Medical Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
- Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju 52727, Korea.
| |
Collapse
|
48
|
Oliveira BS, Pirkle CM, Zunzunegui MV, Batistuzzo de Medeiros SR, Thomasini RL, Guerra RO. Leukocyte Telomere Length and Chronic Conditions in Older Women of Northeast Brazil: A Cross-Sectional Study. Cells 2018; 7:cells7110193. [PMID: 30400186 PMCID: PMC6262387 DOI: 10.3390/cells7110193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
This study assessed whether telomere length is related to chronic conditions, cardiovascular risk factors, and inflammation in women aged 65 to 74 from Northeast Brazil. Participants were selected from two sources, a representative sample of the International Mobility in Aging Study (n = 57) and a convenience sample (n = 49) recruited at senior centers. Leukocyte telomere length was measured by quantitative polymerase chain reaction from blood samples in 83 women. Natural log-transformed telomere/single copy gene ratio was used as the dependent variable in the analysis. Blood analyses included inflammatory markers (high-sensitivity C-reactive protein and interleukin-6), total, low-density lipoprotein and high-density lipoprotein cholesterol, triglycerides, glucose and glycosylated hemoglobin. Self-rated health, chronic conditions, cardiovascular risk factors and inflammatory markers were not associated with telomere length. No significant independent association was found between telomere length and anthropometric measures or blood markers, even after adjusting for age, education and adverse childhood events among these older women in Northeast Brazil. Our results did not confirm the hypothesis that chronic conditions, cardiovascular risk factors or inflammation are associated with shorter telomere length in these women who have exceptional survival relative to the life expectancy of their birth cohort.
Collapse
Affiliation(s)
- Bruna Silva Oliveira
- Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59078970, Brazil.
| | - Catherine M Pirkle
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Maria Victoria Zunzunegui
- Département de Médecine sociale et préventive, École de santé publique, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada.
| | | | - Ronaldo Luis Thomasini
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Núcleo de Estudos de Patologias Inflamatórias e Infecciosas (NEPii) and Faculdade de Medicina de Diamantina-FAMED, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais 39100000, Brazil.
| | - Ricardo Oliveira Guerra
- Campus Universitário Natal, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59078970, Brazil.
| |
Collapse
|
49
|
Jokhun DS, Shang Y, Shivashankar GV. Actin Dynamics Couples Extracellular Signals to the Mobility and Molecular Stability of Telomeres. Biophys J 2018; 115:1166-1179. [PMID: 30224051 PMCID: PMC6170704 DOI: 10.1016/j.bpj.2018.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/24/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
Genome regulatory programs such as telomere functioning require extracellular signals to be transmitted from the microenvironment to the nucleus and chromatin. Although the cytoskeleton has been shown to directly transmit stresses, we show that the intrinsically dynamic nature of the actin cytoskeleton is important in relaying extracellular signals to telomeres. Interestingly, this mechanical pathway not only transmits physical stimuli but also chemical stimuli. The cytoskeletal network continuously reorganizes and applies dynamic forces on the nucleus and feeds into the regulation of telomere dynamics. We further found that distal telomeres are mechanically coupled in a length- and timescale-dependent manner and identified nesprin 2G as well as lamin A/C as being essential to regulate their translational dynamics. Finally, we demonstrated that such mechanotransduction events impinge on the binding dynamics of critical telomere binding proteins. Our results highlight an overarching physical pathway that regulates positional and molecular stability of telomeres.
Collapse
Affiliation(s)
| | - Yuqing Shang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Molecular Oncology, Italian Foundation for Cancer Research, Milan, Italy.
| |
Collapse
|
50
|
Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol 2018; 53:139-155. [PMID: 30081228 DOI: 10.1016/j.semcancer.2018.08.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
A small subpopulation of cells within the bulk of tumors share features with somatic stem cells, in that, they are capable of self-renewal, they differentiate, and are highly resistant to conventional therapy. These cells have been referred to as cancer stem cells (CSCs). Recent reports support the central importance of a cancer stem cell-like niche that appears to help foster the generation and maintenance of CSCs. In response to signals provided by this microenvironment, CSCs express the tumorigenic characteristics that can drive tumor metastasis by the induction of epithelial-mesenchymal-transition (EMT) that in turn fosters the migration and recolonization of the cells as secondary tumors within metastatic niches. We summarize here recent advances in cancer stem cell research including the characterization of their genetic and epigenetic features, metabolic specialities, and crosstalk with aging-associated processes. Potential strategies for targeting CSCs, and their niche, by regulating CSCs plasticity, or therapeutic sensitivity is discussed. Finally, it is hoped that new strategies and related therapeutic approaches as outlined here may help prevent the formation of the metastatic niche, as well as counter tumor progression and metastatic growth.
Collapse
|