1
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
2
|
Han Q, Yu Y, Liu X, Guo Y, Shi J, Xue Y, Li Y. The Role of Endothelial Cell Mitophagy in Age-Related Cardiovascular Diseases. Aging Dis 2024:AD.2024.0788. [PMID: 39122456 DOI: 10.14336/ad.2024.0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVD), and mitochondrial autophagy impairment is considered a significant physiological change associated with aging. Endothelial cells play a crucial role in maintaining vascular homeostasis and function, participating in various physiological processes such as regulating vascular tone, coagulation, angiogenesis, and inflammatory responses. As aging progresses, mitochondrial autophagy impairment in endothelial cells worsens, leading to the development of numerous cardiovascular diseases. Therefore, regulating mitochondrial autophagy in endothelial cells is vital for preventing and treating age-related cardiovascular diseases. However, there is currently a lack of systematic reviews in this area. To address this gap, we have written this review to provide new research and therapeutic strategies for managing aging and age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Fujita M, Sasada M, Iyoda T, Fukai F. Involvement of Matricellular Proteins in Cellular Senescence: Potential Therapeutic Targets for Age-Related Diseases. Int J Mol Sci 2024; 25:6591. [PMID: 38928297 PMCID: PMC11204155 DOI: 10.3390/ijms25126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Senescence is a physiological and pathological cellular program triggered by various types of cellular stress. Senescent cells exhibit multiple characteristic changes. Among them, the characteristic flattened and enlarged morphology exhibited in senescent cells is observed regardless of the stimuli causing the senescence. Several studies have provided important insights into pro-adhesive properties of cellular senescence, suggesting that cell adhesion to the extracellular matrix (ECM), which is involved in characteristic morphological changes, may play pivotal roles in cellular senescence. Matricellular proteins, a group of structurally unrelated ECM molecules that are secreted into the extracellular environment, have the unique ability to control cell adhesion to the ECM by binding to cell adhesion receptors, including integrins. Recent reports have certified that matricellular proteins are closely involved in cellular senescence. Through this biological function, matricellular proteins are thought to play important roles in the pathogenesis of age-related diseases, including fibrosis, osteoarthritis, intervertebral disc degeneration, atherosclerosis, and cancer. This review outlines recent studies on the role of matricellular proteins in inducing cellular senescence. We highlight the role of integrin-mediated signaling in inducing cellular senescence and provide new therapeutic options for age-related diseases targeting matricellular proteins and integrins.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Manabu Sasada
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
4
|
Luo C, Nakagawa M, Sumi Y, Matsushima Y, Uemura M, Honda Y, Matsumoto N. Detection of senescent cells in the mucosal healing process on type 2 diabetic rats after tooth extraction for biomaterial development. Dent Mater J 2024; 43:430-436. [PMID: 38644214 DOI: 10.4012/dmj.2023-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The delayed mucosal healing of tooth extraction sockets in diabetes has few known effective treatment strategies, and its underlying mechanism remains unknown. Senescent cells may play a pivotal role in this delay, given the well-established association between diabetes, senescent cells, and wound healing. Here, we demonstrated an increase in p21- or p16-positive senescent cells in the epithelial and connective tissues of extraction sockets in type 2 diabetic rats compared to those in control rats. Between 7 and 14 days after tooth extraction, a decrease in senescent cells and improvement in re-epithelialization failure were observed in the epithelium, while an increase in senescent cells and persistence of inflammation were observed in the connective tissue. These results suggest that cellular senescence may have been induced by diabetes and contributed to delayed mucosal healing by suppressing re-epithelization and persistent inflammation. These findings provide new targets for treatment using biomaterials, cells, and drugs.
Collapse
Affiliation(s)
- Chuyi Luo
- Department of Orthodontics, Osaka Dental University
| | | | - Yoichi Sumi
- Department of Anatomy, Osaka Dental University
| | | | | | | | | |
Collapse
|
5
|
Pan H, Lu X, Ye D, Feng Y, Wan J, Ye J. The molecular mechanism of thrombospondin family members in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1337586. [PMID: 38516004 PMCID: PMC10954798 DOI: 10.3389/fcvm.2024.1337586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases have been identified as vital factors in global morbidity and mortality in recent years. The available evidence suggests that various cytokines and pathological proteins participate in these complicated and changeable diseases. The thrombospondin (TSP) family is a series of conserved, multidomain calcium-binding glycoproteins that cause cell-matrix and cell-cell effects via interactions with other extracellular matrix components and cell surface receptors. The TSP family has five members that can be divided into two groups (Group A and Group B) based on their different structures. TSP-1, TSP-2, and TSP-4 are the most studied proteins. Among recent studies and findings, we investigated the functions of several family members, especially TSP-5. We review the basic concepts of TSPs and summarize the relevant molecular mechanisms and cell interactions in the cardiovascular system. Targeting TSPs in CVD and other diseases has a remarkable therapeutic benefit.
Collapse
Affiliation(s)
- Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
6
|
Wang D, Wei Z, Lin F, Wang Y, Liu X, Li Q, Sun L, Yang S. Protective effects of villi mesenchymal stem cells on human umbilical vein endothelial cells by inducing SPOCD1 expression in cases of gestational diabetes mellitus. Biochem Biophys Res Commun 2023; 686:149177. [PMID: 37953105 DOI: 10.1016/j.bbrc.2023.149177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is characterized by a lack of response to insulin in pregnancies, and often accompanied by severe complications. GDM is associated with structural and functional alterations, particularly endothelial dysfunction, in various tissues. This study is aimed to investigate the effect of placental mesenchymal stem cells (MSCs) on the endothelial biological function of human umbilical vein endothelial cells (HUVECs) and their molecular mechanisms. METHODS Villi mesenchymal stem cells (VMSCs) were co-cultured with HUVECs, and transcriptomic analysis of differential genes was performed in HUVECs under high-glucose induction. Lentiviral transfection was performed to construct HUVECs with stable knockdown or overexpression of SPOCD1. The immunohistochemical assays were used to detect the expression of SPOCD1 in GDM patients. TUNEL fluorescence staining was applied for detection of the HUVEC apoptosis. β galactosidase staining assay was performed to detect the cell senescence. Electron microscopy was used to detect the cell pyroptosis. qRT-PCR and western blot assays were conducted for identifying the mRNA & protein expressions of genes. RESULTS VMSCs, when co-cultured with HUVECs, could inhibit the apoptosis, pyroptosis and senescence induced by high-glucose condition in HUVECs. Transcriptomic results showed an upregulation of SPOCD1 expression induced by VMSCs in HUVECs. Overexpression of SPOCD1 inhibited high-level glucose-induced apoptosis, pyroptosis and senescence in HUVECs via the β-catenin pathway. CONCLUSION VMSCs induce β-catenin activation by upregulating the expression of SPOCD1 in HUVECs, which ultimately inhibits high-level glucose-induced apoptosis, pyroptosis and senescence in HUVECs. This observation provides potential therapeutic insight for future GDM treatment.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenying Wei
- Department of Obstetrics, The Qingdao Women and Children's Hospital, Qingdao, China
| | - Fangfei Lin
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yiqian Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaogang Liu
- Department of Obstetrics, People's Hospital of Yuxi City, Yuxi, China
| | - Qiuyi Li
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Sun
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shengmei Yang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Guo Y, Wang Y, Liu H, Jiang X, Lei S. High glucose environment induces NEDD4 deficiency that impairs angiogenesis and diabetic wound healing. J Dermatol Sci 2023; 112:148-157. [PMID: 37932175 DOI: 10.1016/j.jdermsci.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Healing of diabetic wounds, characterized by impaired angiogenesis, remains a clinical challenge. E3 ligase have been identified as potential therapeutic targets of wound healing. OBJECTIVE We assessed the role of E3 ligase NEDD4 in the context of angiogenesis and diabetic wound healing. METHODS The mRNA expression levels of NEDD4, TSP1 and VEGF were determined by real-time PCR. Western blotting was used to evaluate the protein expression of NEDD4, TSP1 and VEGF. The ubiquitination of TSP1 was evaluated by immunoprecipitation. MTT assay, wound healing assay and tube formation assay were performed to assess the proliferation, migration and angiogenic functions of endothelial cells. The epigenetic modification in the promoter of NEDD4 was confirmed using BSP assay and ChIP-qPCR assay. The role of NEDD4 in wound healing was further verified in diabetic mouse model. RESULTS NEDD4 promotes proliferation, migration and tube formation of endothelial cells. It binds to and ubiquitinates TSP1, which lead to TSP1 degradation and thus increased VEGF expression. The inhibitory effect of NEDD4 silencing on the angiogenesis ability of endothelial cells can be restored by TSP1 knockdown. NEDD4 is reduced in diabetic patients, which may due to hypermethylation of NEDD4 promoter mediated via DNMT1 under high glucose condition. Furthermore, inhibition of NEDD4 represses wound healing in diabetic mouse model. CONCLUSION NEDD4 might promote angiogenesis and wound healing by inhibiting TSP1 via ubiquitination in diabetic patients.
Collapse
Affiliation(s)
- Yu Guo
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yongjie Wang
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Haiwei Liu
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xulei Jiang
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shaorong Lei
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
8
|
Zhang Z, Li X, He J, Wang S, Wang J, Liu J, Wang Y. Molecular mechanisms of endothelial dysfunction in coronary microcirculation dysfunction. J Thromb Thrombolysis 2023; 56:388-397. [PMID: 37466848 DOI: 10.1007/s11239-023-02862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Coronary microvascular endothelial cells (CMECs) react to changes in coronary blood flow and myocardial metabolites and regulate coronary blood flow by balancing vasoconstrictors-such as endothelin-1-and the vessel dilators prostaglandin, nitric oxide, and endothelium-dependent hyperpolarizing factor. Coronary microvascular endothelial cell dysfunction is caused by several cardiovascular risk factors and chronic rheumatic diseases that impact CMEC blood flow regulation, resulting in coronary microcirculation dysfunction (CMD). The mechanisms of CMEC dysfunction are not fully understood. However, the following could be important mechanisms: the overexpression and activation of nicotinamide adenine dinucleotide phosphate oxidase (Nox), and mineralocorticoid receptors; the involvement of reactive oxygen species (ROS) caused by a decreased expression of sirtuins (SIRT3/SIRT1); forkhead box O3; and a decreased SKCA/IKCA expression in the endothelium-dependent hyperpolarizing factor electrical signal pathway. In addition, p66Shc is an adapter protein that promotes oxidative stress; although there are no studies on its involvement with cardiac microvessels, it is possible it plays an important role in CMD.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, College of Pharmacy, Jilin University, Changchun, 130000, China
| | - Jiahuan He
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Shipeng Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Jingyue Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Junqian Liu
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Yushi Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China.
| |
Collapse
|
9
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K, Adam V. Role of hypoxia in cellular senescence. Pharmacol Res 2023; 194:106841. [PMID: 37385572 DOI: 10.1016/j.phrs.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic.
| |
Collapse
|
11
|
Mohajeri MH. Nutrition and Aging. Int J Mol Sci 2023; 24:ijms24119265. [PMID: 37298216 DOI: 10.3390/ijms24119265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
This Special Issue focuses on the importance of nutritional interventions for the delay of age-related conditions [...].
Collapse
Affiliation(s)
- M Hasan Mohajeri
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
12
|
Zhao W, Shen B, Cheng Q, Zhou Y, Chen K. Roles of TSP1-CD47 signaling pathway in senescence of endothelial cells: cell cycle, inflammation and metabolism. Mol Biol Rep 2023; 50:4579-4585. [PMID: 36897523 DOI: 10.1007/s11033-023-08357-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Endothelial cells (ECs) serve as a barrier with forming a monolayer lining in the surface of vascular system. Many mature cell types are post-mitotic like neurons, but ECs have the ability to grow during angiogenesis. Vascular endothelial growth factor (VEGF) stimulates growth of vascular ECs derived from arteries, veins, and lymphatics and induces angiogenesis. Senescence of ECs is regarded as a key contributor in aging-induced vascular dysfunction via evoking increase of ECs permeability, impairment of angiogenesis and vascular repair. Several genomics and proteomics studies on ECs senescence reported changes in gene and protein expression that directly correlate with vascular systemic disorder. CD47 functions as a signaling receptor for secreted matricellular protein thrombospondin-1 (TSP1) and plays an important role in several fundamental cellular functions, including proliferation, apoptosis, inflammation, and atherosclerotic response. TSP1-CD47 signaling is upregulated with age in ECs, concurrent with suppression of key self-renewal genes. Recent studies indicate that CD47 is involved in regulation of senescence, self-renewal and inflammation. In this review, we highlight the functions of CD47 in senescent ECs, including modulation of cell cycle, mediation of inflammation and metabolism by the experimental studies, which may provide CD47 as a potential therapeutic target for aging-associated vascular dysfunction.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Quanli Cheng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyang Zhou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Kexin Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
14
|
Zhu H, Xu J, Zhao M, Luo H, Lin M, Luo Y, Li Y, He H, Wu J. Adhesive, injectable, and ROS-responsive hybrid polyvinyl alcohol (PVA) hydrogel co-delivers metformin and fibroblast growth factor 21 (FGF21) for enhanced diabetic wound repair. Front Bioeng Biotechnol 2022; 10:968078. [PMID: 36118565 PMCID: PMC9471317 DOI: 10.3389/fbioe.2022.968078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
As conventional treatments for diabetic wounds often fail to achieve rapid satisfactory healing, the development of effective strategies to accelerate diabetic wound repair is highly demanded. Herein, fibroblast growth factor 21 (FGF21) and metformin co-loaded multifunctional polyvinyl alcohol (PVA) hydrogel were fabricated for improved diabetic wound healing. The in vitro results proved that the hydrogel was adhesive and injectable, and that it could particularly scavenge reactive oxygen species (ROSs), while the in vivo data demonstrated that the hydrogel could promote angiogenesis by recruiting endothelial progenitor cells (EPCs) through upregulation of Ang-1. Both ROSs’ removal and EPCs’ recruitment finally resulted in enhanced diabetic wound healing. This work opens a strategy approach to diabetic wound management by combining biological macromolecules and small chemical molecules together using one promising environmental modulating drug delivery system.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Zhao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hangqi Luo
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minjie Lin
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Luo
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Jiang Wu,
| | - Jiang Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Jiang Wu,
| |
Collapse
|
15
|
Glycyrrhizin ameliorates vascular endothelial cell senescence by inhibiting HMGB1 in HFD/STZ-induced diabetic rats and human umbilical vein endothelial cells. Eur J Pharmacol 2022; 931:175196. [PMID: 35987259 DOI: 10.1016/j.ejphar.2022.175196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022]
Abstract
The senescence and dysfunction of vascular endothelial cells are important features of diabetic vascular disease. High mobility group box-1(HMGB1) may be involved in vascular injury in response to high glucose. Glycyrrhizin (GL) is an HMGB1 inhibitor that significantly reduces HMGB1. However, the relationship between HMGB1 and vascular ageing in diabetes is not clear, the protective mechanism of GL against vascular injury in type 2 diabetes mellitus (T2DM) is unclear too. This study aims to examine the role of HMGB1 in vascular endothelial cell senescence and the protective effects of GL on vascular aging in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic rats.After induction of diabetes, GL (150 mg/kg/d) was treated by gavage for 4 weeks. Results showed that compared with the Control group, the serum level of HMGB1 was increased in rats with type 2 diabetes, while the expression of HMGB1 mRNA and protein in the thoracic aorta was upregulated, with a decrease in endothelium-dependent vasodilation function and an increase in aging degree in the thoracic aorta. However, the above indicators were significantly improved after GL treatment. In HUVECs, we found that treated with HMGB1 (50, 100 and 200 ng/ml) for 48 h induced cells senescence and GL (50, 100 mg/L) significantly inhibited high-glucose-induced endothelial cell senescence, meanwhile GL (50, 100 mg/L) significantly inhibited the high-glucose-induced HMGB1 release and upregulated p53 expression. In conclusion, GL as an HMGB1 inhibitor, attenuates endothelium-dependent relaxation impairment and vascular ageing in an animal model of diabetes and high-glucose-induced endothelial cell senescence.
Collapse
|
16
|
Liu Y, Chen J, Liang H, Cai Y, Li X, Yan L, Zhou L, Shan L, Wang H. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res Ther 2022; 13:258. [PMID: 35715841 PMCID: PMC9205155 DOI: 10.1186/s13287-022-02927-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endothelial damage is an initial step of macro- and micro-vasculature dysfunctions in diabetic patients, accounting for a high incidence of diabetic vascular complications, such as atherosclerosis, nephropathy, retinopathy, and neuropathy. However, clinic lacks effective therapeutics targeting diabetic vascular complications. In field of regenerative medicine, mesenchymal stem cells, such as human umbilical cord-derived MSCs (hucMSCs), have great potential in treating tissue damage. METHODS To determine whether hucMSCs infusion could repair diabetic vascular endothelial damage and how it works, this study conducted in vivo experiment on streptozotocin-induced diabetic rat model to test body weight, fasting blood glucose (FBG), serum ICAM-1 and VCAM-1 levels, histopathology and immunohistochemical staining of aorta segments. In vitro experiment was further conducted to determine the effects of hucMSCs on diabetic vascular endothelial damage, applying assays of resazurin staining, MTT cell viability, wound healing, transwell migration, and matrigel tube formation on human umbilical vein endothelial cells (HUVECs). RNA sequencing (RNAseq) and molecular experiment were conducted to clarify the mechanism of hucMSCs. RESULTS The in vivo data revealed that hucMSCs partially restore the alterations of body weight, FBG, serum ICAM-1 and VCAM-1 levels, histopathology of aorta and reversed the abnormal phosphorylation of ERK in diabetic rats. By using the conditioned medium of hucMSCs (MSC-CM), the in vitro data revealed that hucMSCs improved cell viability, wound healing, migration and angiogenesis of the high glucose-damaged HUVECs through a paracrine action mode, and the altered gene expressions of IL-6, TNF-α, ICAM-1, VCAM-1, BAX, P16, P53 and ET-1 were significantly restored by MSC-CM. RNAseq incorporated with real-time PCR and Western blot results clarified that high glucose activated MAPK/ERK signaling in HUVECs, while MSC-CM reversed the abnormal phosphorylation of ERK and overexpressions of MKNK2, ERBB3, MYC and DUSP5 in MAPK/ERK signaling pathway. CONCLUSIONS HucMSCs not only ameliorated blood glucose but also protected vascular endothelium from diabetic damage, in which MAPK/ERK signaling mediated its molecular mechanism of paracrine action. Our findings provided novel knowledge of hucMSCs in the treatment of diabetes and suggested a prospective strategy for the clinical treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haowei Liang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueqin Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
17
|
Sun J, Ge X, Wang Y, Niu L, Tang L, Pan S. USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol Res 2022; 176:105962. [PMID: 34756923 DOI: 10.1016/j.phrs.2021.105962] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Acute kidney injury (AKI) is a serious complication of sepsis. This study was performed to explore the mechanism that THBS1 mediated pyroptosis by regulating the TGF-β signaling pathway in sepsis-induced AKI. METHODS Gene expression microarray related to sepsis-induced AKI was obtained from the GEO database, and the mechanism in sepsis-induced AKI was predicted by bioinformatics analysis. qRT-PCR and ELISA were performed to detect expressions of THBS1, USF2, TNF-α, IL-1β, and IL-18 in sepsis-induced AKI patients and healthy volunteers. The mouse model of sepsis-induced AKI was established, with serum creatinine, urea nitrogen, 24-h urine output measured, and renal tissue lesions observed by HE staining. The cell model of sepsis-induced AKI was cultured in vitro, with expressions of TNF-α, IL-1β, and IL-18, pyroptosis, Caspase-1 and GSDMD-N, and activation of TGF-β/Smad3 pathway detected. The upstream transcription factor USF2 was knocked down in cells to explore its effect on sepsis-induced AKI. RESULTS THBS1 and USF2 were highly expressed in patients with sepsis-induced AKI. Silencing THBS1 protected mice against sepsis-induced AKI, and significantly decreased the expressions of NLRP3, Caspase-1, GSDMD-N, IL-1β, and IL-18, increased cell viability, and decreased LDH activity, thus partially reversing the changes in cell morphology. Mechanistically, USF2 promoted oxidative stress responses by transcriptionally activating THBS1 to activate the TGF-β/Smad3/NLRP3/Caspase-1 signaling pathway and stimulate pyroptosis, and finally exacerbated sepsis-induced AKI. CONCLUSION USF2 knockdown downregulates THBS1 to inhibit the TGF-β/Smad3 signaling pathway and reduce pyroptosis and further ameliorate sepsis-induced AKI.
Collapse
Affiliation(s)
- Jian Sun
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Xiaoli Ge
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Yang Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Lei Niu
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Lujia Tang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China.
| |
Collapse
|
18
|
Zhang F, Liu Y, Wang S, Yan X, Lin Y, Chen D, Tan Q, Wu Z. Interleukin-25-Mediated-IL-17RB Upregulation Promotes Cutaneous Wound Healing in Diabetic Mice by Improving Endothelial Cell Functions. Front Immunol 2022; 13:809755. [PMID: 35126394 PMCID: PMC8810642 DOI: 10.3389/fimmu.2022.809755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic foot ulcer (DFU) frequently leads to non-traumatic amputation and finally even death. However, the mechanism of DFU is not fully understood. Interleukin 25 (IL-25), an alarmin cytokine that responds to tissue injury, has been reported to participate in tissue regeneration and maintaining glucose homeostasis. However, the role of IL-25 in diabetic wound healing remains unknown. Here, we showed that interleukin 17 receptor B (IL-17RB), the functional receptor of IL-25, was significantly inhibited in the wound skin of both diabetic patients with DFU and streptozotocin (STZ)-induced diabetic mice. Topical administration of recombinant IL-25 protein improved angiogenesis and collagen deposition in the wound bed and thus ameliorated delayed diabetic wound healing. IL-25 increased endothelial-specific CD31 expression in diabetic wounds and exogenous IL-25 protected endothelial cells from high glucose-impaired cell migration and tube formation in vitro. We further revealed that IL-25-mediated-IL-17RB signaling rescued the downregulation of Wnt/β-catenin pathway both in vivo in diabetic mice and in vitro in HUVECs and induced the phosphorylation of AKT and ERK 1/2 in HUVECs under high glucose conditions. This study defines a positive regulatory role of IL-25-mediated-IL-17RB signaling in diabetic wound healing and suggests that induction of IL-25-mediated-IL-17RB signaling may be a novel therapeutic strategy for treating poor healing diabetic wounds.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Ye Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Shiqi Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Qian Tan, ; Deyan Chen,
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Qian Tan, ; Deyan Chen,
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Qian Tan, ; Deyan Chen,
| |
Collapse
|
19
|
Shamiya Y, Ravi SP, Coyle A, Chakrabarti S, Paul A. Engineering nanoparticle therapeutics for impaired wound healing in diabetes. Drug Discov Today 2021; 27:1156-1166. [PMID: 34839040 DOI: 10.1016/j.drudis.2021.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a chronic disease characterized by increased blood glucose levels, leading to damage of the nerves blood vessels, subsequently manifesting as organ failures, wounds, or ulcerations. Wounds in patients with diabetes are further complicated because of reduced cytokine responses, infection, poor vascularization, and delayed healing processes. Surface-functionalized and bioengineered nanoparticles (NPs) have recently gained attention as emerging treatment modalities for wound healing in diabetes. Here, we review emerging therapeutic NPs to treat diabetic wounds and highlight their discrete delivery mechanisms and sites of action. We further critically assess the current challenges of these nanoengineered materials for successful clinical translation and discuss their potential for growth in the clinical marketplace.
Collapse
Affiliation(s)
- Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada; School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
20
|
A Potential Role of the CD47/SIRPalpha Axis in COVID-19 Pathogenesis. Curr Issues Mol Biol 2021; 43:1212-1225. [PMID: 34698067 PMCID: PMC8929144 DOI: 10.3390/cimb43030086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.
Collapse
|
21
|
Ballasy NN, Jadli AS, Edalat P, Kang S, Fatehi Hassanabad A, Gomes KP, Fedak PWM, Patel VB. Potential role of epicardial adipose tissue in coronary artery endothelial cell dysfunction in type 2 diabetes. FASEB J 2021; 35:e21878. [PMID: 34469050 DOI: 10.1096/fj.202100684rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022]
Abstract
Cardiovascular disease is the most prevalent cause of morbidity and mortality in diabetes. Epicardial adipose tissue (EAT) lies in direct contact with the myocardium and coronary arteries and can influence cardiac (patho) physiology through paracrine signaling pathways. This study hypothesized that the proteins released from EAT represent a critical molecular link between the diabetic state and coronary artery endothelial cell dysfunction. To simulate type 2 diabetes-associated metabolic and inflammatory status in an ex vivo tissue culture model, human EAT samples were treated with a cocktail composed of high glucose, high palmitate, and lipopolysaccharide (gplEAT) and were compared with control EAT (conEAT). Compared to conEAT, gplEAT showed a markedly increased gene expression profile of proinflammatory cytokines, corroborating EAT inflammation, a hallmark feature observed in patients with type 2 diabetes. Luminex assay of EAT-secretome identified increased release of various proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), interferon-alpha 2 (IFNA2), interleukin 1 beta (IL1B), interleukin 5 (IL5), interleukin 13 (IL13), and CCL5, among others, in response to high glucose, high palmitate, and lipopolysaccharide. Conditioned culture media was used to collect the concentrated proteins (CPs). In response to gplEAT-CPs, human coronary artery endothelial cells (HCAECs) exhibited an inflammatory endothelial cell phenotype, featuring a significantly increased gene expression of proinflammatory cytokines and cell surface expression of VCAM-1. Moreover, gplEAT-CPs severely decreased Akt-eNOS signaling, nitric oxide production, and angiogenic potential of HCAECs, when compared with conEAT-CPs. These findings indicate that EAT inflammation may play a key role in coronary artery endothelial cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Noura N Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean Kang
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ali Fatehi Hassanabad
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karina P Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Chai WF, Tang KS. Protective potential of cerium oxide nanoparticles in diabetes mellitus. J Trace Elem Med Biol 2021; 66:126742. [PMID: 33773280 DOI: 10.1016/j.jtemb.2021.126742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-communicable metabolic disease which is closely related to excessive oxidative stress after constant exposure to high plasma glucose. Although the current antidiabetic medications are effective in lowering blood glucose, these medications do not prevent or reverse the disease progression. Thus, there is a crucial need to explore new therapeutic interventions that could address this shortcoming. As cerium oxide nanoparticles (CONPs) possess antioxidant property, this agent may be used as a treatment option for the management of DM. PURPOSE This review aims to provide a critical evaluation of the pharmacological and antidiabetic effects of CONPs in cell and animal models. The roles of CONPs in attenuating DM complications are also presented in this report. METHODS We conducted a literature search in the PubMed database using the keywords "cerium oxide", "cerous oxide", "ceria", "nanoceria", and "diabetes" from inception to December 2020. The inclusion criteria were primary source articles that investigated the role of CONPs in DM and diabetic complications. RESULTS We identified 47 articles from the initial search. After the thorough screening, only 31 articles were included in this study. We found that CONPs can attenuate parameters that are related to DM and diabetic complications in various animals and cell culture models. CONCLUSION CONPs could potentially be used in the treatment of those with DM and complications caused by the disease.
Collapse
Affiliation(s)
- Wui Fang Chai
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
23
|
Xu H, Li S, Liu YS. Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Front Cell Dev Biol 2021; 9:699374. [PMID: 34262910 PMCID: PMC8273304 DOI: 10.3389/fcell.2021.699374] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
24
|
Su L, Kong X, Loo SJ, Gao Y, Kovalik JP, Su X, Ma J, Ye L. Diabetic Endothelial Cells Differentiated From Patient iPSCs Show Dysregulated Glycine Homeostasis and Senescence Associated Phenotypes. Front Cell Dev Biol 2021; 9:667252. [PMID: 34136485 PMCID: PMC8201091 DOI: 10.3389/fcell.2021.667252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cells derived cells (iPSCs) not only can be used for personalized cell transfer therapy, but also can be used for modeling diseases for drug screening and discovery in vitro. Although prior studies have characterized the function of rodent iPSCs derived endothelial cells (ECs) in diabetes or metabolic syndrome, feature phenotypes are largely unknown in hiPSC-ECs from patients with diabetes. Here, we used hiPSC lines from patients with type 2 diabetes mellitus (T2DM) and differentiated them into ECs (dia-hiPSC-ECs). We found that dia-hiPSC-ECs had disrupted glycine homeostasis, increased senescence, and impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. These signature phenotypes will be helpful to establish dia-hiPSC-ECs as models of endothelial dysfunction for understanding molecular mechanisms of disease and for identifying and testing new targets for the treatment of endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Liping Su
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Sze Jie Loo
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Yu Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jean-Paul Kovalik
- Programme in Cardiovascular & Metabolic Disorders, Duke-National University of Singapore, Singapore, Singapore
| | - Xiaofei Su
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Ye
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Scatena A, Petruzzi P, Maioli F, Lucaroni F, Ambrosone C, Ventoruzzo G, Liistro F, Tacconi D, Di Filippi M, Attempati N, Palombi L, Ercolini L, Bolognese L. Autologous Peripheral Blood Mononuclear Cells for Limb Salvage in Diabetic Foot Patients with No-Option Critical Limb Ischemia. J Clin Med 2021; 10:2213. [PMID: 34065278 PMCID: PMC8161401 DOI: 10.3390/jcm10102213] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMNCs) are reported to prevent major amputation and healing in no-option critical limb ischemia (NO-CLI). The aim of this study is to evaluate PBMNC treatment in comparison to standard treatment in NO-CLI patients with diabetic foot ulcers (DFUs). The study included 76 NO-CLI patients admitted to our centers because of CLI with DFUs. All patients were treated with the same standard care (control group), but 38 patients were also treated with autologous PBMNC implants. Major amputations, overall mortality, and number of healed patients were evaluated as the primary endpoint. Only 4 out 38 amputations (10.5%) were observed in the PBMNC group, while 15 out of 38 amputations (39.5%) were recorded in the control group (p = 0.0037). The Kaplan-Meier curves and the log-rank test results showed a significantly lower amputation rate in the PBMNCs group vs. the control group (p = 0.000). At two years follow-up, nearly 80% of the PBMNCs group was still alive vs. only 20% of the control group (p = 0.000). In the PBMNC group, 33 patients healed (86.6%) while only one patient healed in the control group (p = 0.000). PBMNCs showed a positive clinical outcome at two years follow-up in patients with DFUs and NO-CLI, significantly reducing the amputation rate and improving survival and wound healing. According to our study results, intramuscular and peri-lesional injection of autologous PBMNCs could prevent amputations in NO-CLI diabetic patients.
Collapse
Affiliation(s)
- Alessia Scatena
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy;
| | - Pasquale Petruzzi
- Interventional Radiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (P.P.); (N.A.)
| | - Filippo Maioli
- Vascular Surgery Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.M.); (G.V.); (L.E.)
| | - Francesca Lucaroni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy; (F.L.); (C.A.); (L.P.)
| | - Cristina Ambrosone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy; (F.L.); (C.A.); (L.P.)
| | - Giorgio Ventoruzzo
- Vascular Surgery Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.M.); (G.V.); (L.E.)
| | - Francesco Liistro
- Interventional Cardiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.L.); (L.B.)
| | - Danilo Tacconi
- Infectious Disease Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy;
| | - Marianna Di Filippi
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy;
| | - Nico Attempati
- Interventional Radiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (P.P.); (N.A.)
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy; (F.L.); (C.A.); (L.P.)
| | - Leonardo Ercolini
- Vascular Surgery Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.M.); (G.V.); (L.E.)
| | - Leonardo Bolognese
- Interventional Cardiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.L.); (L.B.)
| |
Collapse
|
26
|
Yu Y, Singh H, Kwon K, Tsitrin T, Petrini J, Nelson KE, Pieper R. Protein signatures from blood plasma and urine suggest changes in vascular function and IL-12 signaling in elderly with a history of chronic diseases compared with an age-matched healthy cohort. GeroScience 2021. [PMID: 32974878 DOI: 10.1007/s11357-020-00269-y/figures/10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling-associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Harinder Singh
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Keehwan Kwon
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Tamara Tsitrin
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Joann Petrini
- Western Connecticut Health Network, 24 Hospital Avenue, Danbury, CT, 06810, USA
| | - Karen E Nelson
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Rembert Pieper
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
27
|
KGF Phage Model Peptide Accelerates Cutaneous Wound Healing in a Diabetic Rat Model. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Abstract
The thrombospondin family comprises of five multifunctional glycoproteins, whose best-studied member is thrombospondin 1 (TSP1). This matricellular protein is a potent antiangiogenic agent that inhibits endothelial migration and proliferation, and induces endothelial apoptosis. Studies have demonstrated a regulatory role of TSP1 in cell migration and in activation of the latent transforming growth factor beta 1 (TGFβ1). These functions of TSP1 translate into its broad modulation of immune processes. Further, imbalances in immune regulation have been increasingly linked to pathological conditions such as obesity and diabetes mellitus. While most studies in the past have focused on the role of TSP1 in cancer and inflammation, recently published data have revealed new insights about the role of TSP1 in physiological and metabolic disorders. Here, we highlight recent findings that associate TSP1 and its receptors to obesity, diabetes, and cardiovascular diseases. TSP1 regulates nitric oxide, activates latent TGFβ1, and interacts with receptors CD36 and CD47, to play an important role in cell metabolism. Thus, TSP1 and its major receptors may be considered a potential therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Linda S. Gutierrez
- Department of Biology, Wilkes University, Wilkes Barre, PA, United States
| | | |
Collapse
|
29
|
Laiva AL, O’Brien FJ, Keogh MB. SDF-1α Gene-Activated Collagen Scaffold Restores Pro-Angiogenic Wound Healing Features in Human Diabetic Adipose-Derived Stem Cells. Biomedicines 2021; 9:biomedicines9020160. [PMID: 33562165 PMCID: PMC7914837 DOI: 10.3390/biomedicines9020160] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Non-healing diabetic foot ulcers (DFUs) can lead to leg amputation in diabetic patients. Autologous stem cell therapy holds some potential to solve this problem; however, diabetic stem cells are relatively dysfunctional and restrictive in their wound healing abilities. This study sought to explore if a novel collagen-chondroitin sulfate (coll-CS) scaffold, functionalized with polyplex nanoparticles carrying the gene encoding for stromal-derived factor-1 alpha (SDF-1α gene-activated scaffold), can enhance the regenerative functionality of human diabetic adipose-derived stem cells (ADSCs). We assessed the impact of the gene-activated scaffold on diabetic ADSCs by comparing their response against healthy ADSCs cultured on a gene-free scaffold over two weeks. Overall, we found that the gene-activated scaffold could restore the pro-angiogenic regenerative response in the human diabetic ADSCs similar to the healthy ADSCs on the gene-free scaffold. Gene and protein expression analysis revealed that the gene-activated scaffold induced the overexpression of SDF-1α in diabetic ADSCs and engaged the receptor CXCR7, causing downstream β-arrestin signaling, as effectively as the transfected healthy ADSCs. The transfected diabetic ADSCs also exhibited pro-wound healing features characterized by active matrix remodeling of the provisional fibronectin matrix and basement membrane protein collagen IV. The gene-activated scaffold also induced a controlled pro-healing response in the healthy ADSCs by disabling early developmental factors signaling while promoting the expression of tissue remodeling components. Conclusively, we show that the SDF-1α gene-activated scaffold can overcome the deficiencies associated with diabetic ADSCs, paving the way for autologous stem cell therapies combined with novel biomaterials to treat DFUs.
Collapse
Affiliation(s)
- Ashang L. Laiva
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
- Correspondence: ; Tel.: +973-17351450
| |
Collapse
|
30
|
Ting KK, Coleman P, Zhao Y, Vadas MA, Gamble JR. The aging endothelium. VASCULAR BIOLOGY 2021; 3:R35-R47. [PMID: 33880430 PMCID: PMC8052565 DOI: 10.1530/vb-20-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is now recognized as one of the hallmarks of aging. Herein, we examine current findings on senescence of the vascular endothelium and its impacts on age-related vascular diseases. Endothelial senescence can result in systemic metabolic changes, implicating senescence in chronic diseases such as diabetes, obesity and atherosclerosis. Senolytics, drugs that eliminate senescent cells, afford new therapeutic strategies for control of these chronic diseases.
Collapse
Affiliation(s)
- Ka Ka Ting
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul Coleman
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Yang Zhao
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Mathew A Vadas
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer R Gamble
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Liu Z, Hu L, Zhang T, Xu H, Li H, Yang Z, Zhou M, Smith HS, Li J, Ran J, Deng Z. PKCβ increases ROS levels leading to vascular endothelial injury in diabetic foot ulcers. Am J Transl Res 2020; 12:6409-6421. [PMID: 33194039 PMCID: PMC7653566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To explore the role and mechanism of oxidative stress injury in the diabetic foot. METHODS Immunohistochemistry and staining were used to detect changes in diabetic foot tissue, and the CCK-8 method was used to measure high glucose effect on cell viability. The DCFH-DA assay was used to detect the intracellular ROS content, and colorimetric methods were used to detect the activities of the CAT and SOD enzymes and the NO and MDA content in tissues and cells. In addition, the protein expression levels of PKCβ, p66shc, eNOS, ICAM-1 and NF-κB in tissues and cells were detected by Western blotting, and the distribution of p66shc and eNOS was observed by immunofluorescence. RESULTS The results of clinical specimens experiments showed that the DFU group exhibited disordered morphology and increased glucose metabolism, decreased activities of the enzymes CAT and SOD in tissues, and increased MDA and NO contents compared to those in the CON group. Furthermore, protein levels of the p-PKCβ, p-p66shc, ICAM-1, and p-NF-κB were increased, and eNOS protein level was decreased; these results were consistent in clinical specimens and in vitro experiments. CONCLUSIONS High glucose levels may induce oxidative stress injury in cells and tissues by activating the PKCβ-p66shc signaling pathway.
Collapse
Affiliation(s)
- Zhichuan Liu
- Department of Emergency, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing 400010, China
| | - Ling Hu
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical UniversityChongqing 400016, China
| | - Tao Zhang
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical UniversityChongqing 400016, China
| | - Hang Xu
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical UniversityChongqing 400016, China
| | - Hailin Li
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical UniversityChongqing 400016, China
| | - Zhouqian Yang
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical UniversityChongqing 400016, China
| | - Mei Zhou
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical UniversityChongqing 400016, China
| | - Hendrea Shaniqua Smith
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical UniversityChongqing 400016, China
| | - Jing Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical UniversityChongqing 400016, China
| | - Jianhua Ran
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical UniversityChongqing 400016, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing 400010, China
| |
Collapse
|
32
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
33
|
Yu Y, Singh H, Kwon K, Tsitrin T, Petrini J, Nelson KE, Pieper R. Protein signatures from blood plasma and urine suggest changes in vascular function and IL-12 signaling in elderly with a history of chronic diseases compared with an age-matched healthy cohort. GeroScience 2020; 43:593-606. [PMID: 32974878 PMCID: PMC8110643 DOI: 10.1007/s11357-020-00269-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling-associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Harinder Singh
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Keehwan Kwon
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Tamara Tsitrin
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Joann Petrini
- Western Connecticut Health Network, 24 Hospital Avenue, Danbury, CT, 06810, USA
| | - Karen E Nelson
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA.,J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Rembert Pieper
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
34
|
Cell Senescence: A Nonnegligible Cell State under Survival Stress in Pathology of Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9503562. [PMID: 32934764 PMCID: PMC7479476 DOI: 10.1155/2020/9503562] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023]
Abstract
The intervertebral disc degeneration (IDD) with increasing aging mainly manifests as low back pain (LBP) accompanied with a loss of physical ability. These pathological processes can be preliminarily interpreted as a series of changes at cellular level. In addition to cell death, disc cells enter into the stagnation with dysfunction and deteriorate tissue microenvironment in degenerative discs, which is recognized as cell senescence. During aging, many intrinsic and extrinsic factors have been proved to have strong connections with these cellular senescence phenomena. Growing evidences of these connections require us to gather up critical cues from potential risk factors to pathogenesis and relative interventions for retarding cell senescence and attenuating degenerative changes. In this paper, we try to clarify another important cell state apart from cell death in IDD and discuss senescence-associated changes in cells and extracellular microenvironment. Then, we emphasize the role of oxidative stress and epigenomic perturbations in linking risk factors to cell senescence in the onset of IDD. Further, we summarize the current interventions targeting senescent cells that may exert the benefits of antidegeneration in IDD.
Collapse
|
35
|
Zhang K, Li M, Yin L, Fu G, Liu Z. Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review). Int J Mol Med 2020; 45:1275-1293. [PMID: 32323748 PMCID: PMC7138268 DOI: 10.3892/ijmm.2020.4507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombospondin (TSP)-1 and TSP-2 are matricellular proteins in the extracellular matrix (ECM), which serve a significant role in the pathological processes of various cardiovascular diseases (CVDs). The multiple effects of TSP-1 and TSP-2 are due to their ability to interact with various ligands, such as structural components of the ECM, cytokines, cellular receptors, growth factors, proteases and other stromal cell proteins. TSP-1 and TSP-2 regulate the structure and activity of the aforementioned ligands by interacting directly or indirectly with them, thereby regulating the activity of different types of cells in response to environmental stimuli. The pathological processes of numerous CVDs are associated with the degradation and remodeling of ECM components, and with cell migration, dysfunction and apoptosis, which may be regulated by TSP-1 and TSP-2 through different mechanisms. Therefore, investigating the role of TSP-1 and TSP-2 in different CVDs and the potential signaling pathways they are associated with may provide a new perspective on potential therapies for the treatment of CVDs. In the present review, the current understanding of the roles TSP-1 and TSP-2 serve in various CVDs were summarized. In addition, the interacting ligands and the potential pathways associated with these thrombospondins in CVDs are also discussed.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Miaomiao Li
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
36
|
Galiano R, Snyder R, Mayer P, Rogers LC, Alvarez O. Focused shockwave therapy in diabetic foot ulcers: secondary endpoints of two multicentre randomised controlled trials. J Wound Care 2019; 28:383-395. [PMID: 31166864 DOI: 10.12968/jowc.2019.28.6.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The objective of this paper is to present the secondary safety and efficacy outcomes from two studies of focused extracorporeal shockwave therapy (ESWT) used adjunctively with standard care in the treatment of neuropathic diabetic foot ulcers (DFU) (1A or 2A on the University of Texas grading scheme), compared with sham treatment and standard care. METHOD We carried out two multicentre, multinational, randomised, sham-controlled, double-blinded, phase III clinical studies using standard care with adjunctive focused ESWT compared with sham treatment and standard care in patients with a DFU. DFUs that did not reduce in volume by at least 50% over two weeks' standard treatment were included. DFUs were randomised and managed with standard care and focused ESWT (pulsed acoustic cellular expression; dermaPACE System, SANUWAVE Health, Inc.) active therapy, or with standard care and sham treatment, four times over a two-week treatment phase in study 1 and up to eight times over 12 weeks in study 2. Standard care continued in both studies throughout the 12-week treatment phase. Secondary outcomes were indicators of wound closure and progression, pain, infection, amputation and recurrence, and device reliability. Efficacy-related secondary endpoints were measured at 12, 20 and 24 weeks. The studies were analysed separately and following statistical comparison to justify the method, as a pooled data set. RESULTS Wound area reduction (48.6% versus 10.7%, p=0.015, intention to treat (ITT) population with last observation carried forward (LOCF)) and perimeter reduction (46.4% versus 25.0%, p=0.022, ITT population with LOCF) were significantly greater in the active therapy group compared with the sham-treated group, respectively. The difference in time to wound closure in the pooled ITT population was significantly in favour of the active therapy group (84 days versus 112 days for 25% of subjects to reach wound closure in the active and sham-treated groups, respectively; p=0.0346). The proportion of subjects who achieved wound area reduction (WAR) from baseline at week 12 of ≥90% was significantly higher in the active therapy group. The incidence and nature of infection were consistent with previously published studies, and pain was not increased in the active therapy group. Amputation was insignificantly higher in the sham-treated group and recurrence did not differ. The ESWT device was found to be reliable. CONCLUSION The outcomes for the primary and secondary endpoints from these studies show that ESWT administered adjunctively with standard care is an effective advanced therapy for neuropathic DFUs (grade 1A and 2A) that do not respond to two weeks' standard care alone by reducing wound volume by at least 50%.
Collapse
Affiliation(s)
- Robert Galiano
- Northwestern University, Feinberg School of Medicine, Chicago, IL, US
| | | | - Perry Mayer
- The Mayer Institute, Hamilton, Ontario, Canada
| | - Lee C Rogers
- Medical Director of Amputation Prevention Centers of America
| | | | | |
Collapse
|