1
|
Bukhdruker S, Melnikov I, Baeken C, Balandin T, Gordeliy V. Crystallographic insights into lipid-membrane protein interactions in microbial rhodopsins. Front Mol Biosci 2024; 11:1503709. [PMID: 39606035 PMCID: PMC11599742 DOI: 10.3389/fmolb.2024.1503709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The primary goal of our work is to provide structural insights into the influence of the hydrophobic lipid environment on the membrane proteins (MPs) structure and function. Our work will not cover the well-studied hydrophobic mismatch between the lipid bilayer and MPs. Instead, we will focus on the less-studied direct molecular interactions of lipids with the hydrophobic surfaces of MPs. To visualize the first layer of amphiphiles surrounding MPs and analyze their interaction with the proteins, we use the available highest-quality crystallographic structures of microbial rhodopsins. The results of the structure-based analysis allowed us to formulate the hypothetical concept of the role of the nearest layer of the lipids as an integral part of the MPs that are important for their structure and function. We then discuss how the lipid-MPs interaction is influenced by exogenous hydrophobic molecules, noble gases, which can compete with lipids for the surface of MPs and can be used in the systematic approach to verify the proposed concept experimentally. Finally, we raise the problems of currently available structural data that should be overcome to obtain a more profound picture of the lipid-MP interactions.
Collapse
Affiliation(s)
- S. Bukhdruker
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - I. Melnikov
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - C. Baeken
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - T. Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - V. Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| |
Collapse
|
2
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
3
|
Wanes D, Al Aoua S, Shammas H, Walters F, Das AM, Rizk S, Naim HY. Rosa canina L. Methanol Extract and Its Component Rutin Reduce Cholesterol More Efficiently than Miglustat in Niemann-Pick C Fibroblasts. Int J Mol Sci 2024; 25:11361. [PMID: 39518914 PMCID: PMC11547104 DOI: 10.3390/ijms252111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disorder where 95% of the cases are caused by mutations in the Niemann-Pick C1 (NPC1) gene. Loss of function in NPC1 mutants trigger the accumulation of cholesterol in late endo-lysosomes and lysosomal dysfunction. The current study examined the potential of polyphenol-rich methanol extracts from Rosa canina L. (RCME) and two of its components, rutin and quercitrin, to enhance protein trafficking of NPC1 and restore cholesterol levels in fibroblasts derived from NPC patients, in comparison with miglustat, a drug approved in Europe for NPC treatment. Interestingly, RCME improved the trafficking of the compound heterozygous mutant NPC1I1061T/P887L, homozygous mutant NPC1R1266Q, and heterozygous mutant NPC1N1156S between the endoplasmic reticulum and the Golgi and significantly reduced the levels of cellular cholesterol in the cell lines examined. Miglustat did not affect the trafficking of the three NPC1 mutants individually nor in combination with RCME. Markedly, rutin and quercitrin exerted their effects on cholesterol, but not in the trafficking pathway of NPC1, indicating that other components in RCME are implicated in regulating the trafficking of NPC1 mutants. By virtue of its dual function in targeting the trafficking of mutants of NPC1 as well as the cholesterol contents, RCME is more beneficial than available drugs that target substrate reduction and should be therefore considered in further studies for its feasibility as a therapeutic agent for NPC patients.
Collapse
Affiliation(s)
- Dalanda Wanes
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (D.W.); (S.A.A.); (H.S.); (F.W.)
| | - Sherin Al Aoua
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (D.W.); (S.A.A.); (H.S.); (F.W.)
| | - Hadeel Shammas
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (D.W.); (S.A.A.); (H.S.); (F.W.)
- Department of Paediatrics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany;
| | - Friederike Walters
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (D.W.); (S.A.A.); (H.S.); (F.W.)
| | - Anibh M. Das
- Department of Paediatrics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany;
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Hassan Y. Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (D.W.); (S.A.A.); (H.S.); (F.W.)
| |
Collapse
|
4
|
The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
|
5
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Tanaka Y, Tanabe E, Nonaka Y, Uemura M, Tajima T, Ochiai K. Ionophore Antibiotics Inhibit Type II Feline Coronavirus Proliferation In Vitro. Viruses 2022; 14:v14081734. [PMID: 36016355 PMCID: PMC9415497 DOI: 10.3390/v14081734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
Feline coronaviruses (FCoVs) infect cats worldwide and cause severe systemic diseases, such as feline infectious peritonitis (FIP). FIP has a high mortality rate, and drugs approved by the Food and Drug Administration have been ineffective for the treatment of FIP. Investigating host factors and the functions required for FCoV replication is necessary to develop effective drugs for the treatment of FIP. FCoV utilizes an endosomal trafficking system for cellular entry after binding between the viral spike (S) protein and its receptor. The cellular enzymes that cleave the S protein of FCoV to release the viral genome into the cytosol require an acidic pH optimized in the endosomes by regulating cellular ion concentrations. Ionophore antibiotics are compounds that form complexes with alkali ions to alter the endosomal pH conditions. This study shows that ionophore antibiotics, including valinomycin, salinomycin, and nigericin, inhibit FCoV proliferation in vitro in a dose-dependent manner. These results suggest that ionophore antibiotics should be investigated further as potential broad-spectrum anti-FCoV agents.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
- Research Center for Animal Life Science, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
- Correspondence: ; Tel.: +81-422-31-4151
| | - Eri Tanabe
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Yuki Nonaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Mitsuki Uemura
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Tsuyoshi Tajima
- Department of Veterinary Pharmacology, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
- Research Center for Animal Life Science, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| |
Collapse
|
7
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
8
|
Ortega-Gonzalez P, Taylor G, Jangra RK, Tenorio R, Fernandez de Castro I, Mainou BA, Orchard RC, Wilen CB, Brigleb PH, Sojati J, Chandran K, Sachse M, Risco C, Dermody TS. Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis. PLoS Pathog 2022; 18:e1010322. [PMID: 35263388 PMCID: PMC8906592 DOI: 10.1371/journal.ppat.1010322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-β-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.
Collapse
Affiliation(s)
- Paula Ortega-Gonzalez
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
- PhD Program in Molecular Biosciences, Autonoma de Madrid University, Madrid, Spain
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gwen Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Isabel Fernandez de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Bernardo A. Mainou
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pamela H. Brigleb
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Martin Sachse
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Cariati I, Masuelli L, Bei R, Tancredi V, Frank C, D’Arcangelo G. Neurodegeneration in Niemann-Pick Type C Disease: An Updated Review on Pharmacological and Non-Pharmacological Approaches to Counteract Brain and Cognitive Impairment. Int J Mol Sci 2021; 22:ijms22126600. [PMID: 34202978 PMCID: PMC8234817 DOI: 10.3390/ijms22126600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Niemann–Pick type C (NPC) disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol in the late endo-lysosomal system of cells. Progressive neurological deterioration and the onset of symptoms, such as ataxia, seizures, cognitive decline, and severe dementia, are pathognomonic features of the disease. In addition, different pathological similarities, including degeneration of hippocampal and cortical neurons, hyperphosphorylated tau, and neurofibrillary tangle formation, have been identified between NPC disease and other neurodegenerative pathologies. However, the underlying pathophysiological mechanisms are not yet well understood, and even a real cure to counteract neurodegeneration has not been identified. Therefore, the combination of current pharmacological therapies, represented by miglustat and cyclodextrin, and non-pharmacological approaches, such as physical exercise and appropriate diet, could represent a strategy to improve the quality of life of NPC patients. Based on this evidence, in our review we focused on the neurodegenerative aspects of NPC disease, summarizing the current knowledge on the molecular and biochemical mechanisms responsible for cognitive impairment, and suggesting physical exercise and nutritional treatments as additional non-pharmacologic approaches to reduce the progression and neurodegenerative course of NPC disease.
Collapse
Affiliation(s)
- Ida Cariati
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
10
|
Khan N, Chen X, Geiger JD. Role of Endolysosomes in Severe Acute Respiratory Syndrome Coronavirus-2 Infection and Coronavirus Disease 2019 Pathogenesis: Implications for Potential Treatments. Front Pharmacol 2020; 11:595888. [PMID: 33324224 PMCID: PMC7723437 DOI: 10.3389/fphar.2020.595888] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an enveloped, single-stranded RNA virus. Humans infected with SARS-CoV-2 develop a disease known as coronavirus disease 2019 (COVID-19) with symptoms and consequences including acute respiratory distress syndrome (ARDS), cardiovascular disorders, and death. SARS-CoV-2 appears to infect cells by first binding viral spike proteins with host protein angiotensin-converting enzyme 2 (ACE2) receptors; the virus is endocytosed following priming by transmembrane protease serine 2 (TMPRSS2). The process of virus entry into endosomes and its release from endolysosomes are key features of enveloped viruses. Thus, it is important to focus attention on the role of endolysosomes in SARS-CoV-2 infection. Indeed, coronaviruses are now known to hijack endocytic machinery to enter cells such that they can deliver their genome at replication sites without initiating host detection and immunological responses. Hence, endolysosomes might be good targets for developing therapeutic strategies against coronaviruses. Here, we focus attention on the involvement of endolysosomes in SARS-CoV-2 infection and COVID-19 pathogenesis. Further, we explore endolysosome-based therapeutic strategies to restrict SARS-CoV-2 infection and COVID-19 pathogenesis.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
11
|
Yoon HJ, Jeong H, Lee HH, Jang S. Molecular dynamics study with mutation shows that N-terminal domain structural re-orientation in Niemann-Pick type C1 is required for proper alignment of cholesterol transport. J Neurochem 2020; 156:967-978. [PMID: 32880929 PMCID: PMC7461377 DOI: 10.1111/jnc.15150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022]
Abstract
The lysosomal membrane protein Niemann‐Pick type C1 (NPC1) and Niemann‐Pick type C2 (NPC2) are main players of cholesterol control in the lysosome and it is known that the mutation on these proteins leads to the cholesterol trafficking‐related neurodegenerative disease, which is called the NPC disease. The mutation R518W or R518Q on the NPC1 is one of the type of disease‐related mutation that causes cholesterol transports to be cut in half, which results in the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment of the cell. Even though there has been significant progress with understanding the cholesterol transport by NPC1 in combination with NPC2, especially after the structural determination of the full‐length NPC1 in 2016, many details such as the interaction of the full‐length NPC1 with the NPC2, the molecular motions responsible for the cholesterol transport during and after this interaction, and the structure and the function relations of many mutations are still not well understood. In this study, we report the extensive molecular dynamics simulations in order to gain insight into the structure and the dynamics of NPC1 lumenal domain for the cholesterol transport and the disease behind the mutation (R518W). It was found that the mutation induces a structural shift of the N‐terminal domain, toward the loop region in the middle lumenal domain, which is believed to play a central role in the interaction with NPC2 protein, so the interaction with the NPC2 protein might be less favorable compared to the wild NPC1. Also, the simulation indicates the possible re‐orientation of the N‐terminal domain with both the wild and the R518W‐mutated NPC1 after receiving the cholesterol from the NPC2 that align to form an internal tunnel, which is a possible pose for further action in cholesterol trafficking. We believe the current study can provide a better understanding of the cholesterol transport by NPC1 especially the role of NTD of NPC1 in combination with NPC2 interactions.
Collapse
Affiliation(s)
- Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyunah Jeong
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Newton J, Palladino END, Weigel C, Maceyka M, Gräler MH, Senkal CE, Enriz RD, Marvanova P, Jampilek J, Lima S, Milstien S, Spiegel S. Targeting defective sphingosine kinase 1 in Niemann-Pick type C disease with an activator mitigates cholesterol accumulation. J Biol Chem 2020; 295:9121-9133. [PMID: 32385114 PMCID: PMC7335787 DOI: 10.1074/jbc.ra120.012659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder arising from mutations in the cholesterol-trafficking protein NPC1 (95%) or NPC2 (5%). These mutations result in accumulation of low-density lipoprotein-derived cholesterol in late endosomes/lysosomes, disruption of endocytic trafficking, and stalled autophagic flux. Additionally, NPC disease results in sphingolipid accumulation, yet it is unique among the sphingolipidoses because of the absence of mutations in the enzymes responsible for sphingolipid degradation. In this work, we examined the cause for sphingosine and sphingolipid accumulation in multiple cellular models of NPC disease and observed that the activity of sphingosine kinase 1 (SphK1), one of the two isoenzymes that phosphorylate sphingoid bases, was markedly reduced in both NPC1 mutant and NPC1 knockout cells. Conversely, SphK1 inhibition with the isotype-specific inhibitor SK1-I in WT cells induced accumulation of cholesterol and reduced cholesterol esterification. Of note, a novel SphK1 activator (SK1-A) that we have characterized decreased sphingoid base and complex sphingolipid accumulation and ameliorated autophagic defects in both NPC1 mutant and NPC1 knockout cells. Remarkably, in these cells, SK1-A also reduced cholesterol accumulation and increased cholesterol ester formation. Our results indicate that a SphK1 activator rescues aberrant cholesterol and sphingolipid storage and trafficking in NPC1 mutant cells. These observations highlight a previously unknown link between SphK1 activity, NPC1, and cholesterol trafficking and metabolism.
Collapse
Affiliation(s)
- Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| | - Elisa N D Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena, Germany
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ricardo D Enriz
- Facultad de Quimica, Bioquimica, y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-CONICET), San Luis, Argentina
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Santiago Lima
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
13
|
Saha P, Shumate JL, Caldwell JG, Elghobashi-Meinhardt N, Lu A, Zhang L, Olsson NE, Elias JE, Pfeffer SR. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins. eLife 2020; 9:e57089. [PMID: 32410728 PMCID: PMC7228765 DOI: 10.7554/elife.57089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/25/2020] [Indexed: 01/17/2023] Open
Abstract
Transport of LDL-derived cholesterol from lysosomes into the cytoplasm requires NPC1 protein; NPC1L1 mediates uptake of dietary cholesterol. We introduced single disulfide bonds into NPC1 and NPC1L1 to explore the importance of inter-domain dynamics in cholesterol transport. Using a sensitive method to monitor lysosomal cholesterol efflux, we found that NPC1's N-terminal domain need not release from the rest of the protein for efficient cholesterol export. Either introducing single disulfide bonds to constrain lumenal/extracellular domains or shortening a cytoplasmic loop abolishes transport activity by both NPC1 and NPC1L1. The widely prescribed cholesterol uptake inhibitor, ezetimibe, blocks NPC1L1; we show that residues that lie at the interface between NPC1L1's three extracellular domains comprise the drug's binding site. These data support a model in which cholesterol passes through the cores of NPC1/NPC1L1 proteins; concerted movement of various domains is needed for transfer and ezetimibe blocks transport by binding to multiple domains simultaneously.
Collapse
Affiliation(s)
- Piyali Saha
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Justin L Shumate
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Jenna G Caldwell
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | | | - Albert Lu
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | | | - Niclas E Olsson
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | | | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
14
|
Santoni G, Maggi F, Amantini C, Marinelli O, Nabissi M, Morelli MB. Pathophysiological Role of Transient Receptor Potential Mucolipin Channel 1 in Calcium-Mediated Stress-Induced Neurodegenerative Diseases. Front Physiol 2020; 11:251. [PMID: 32265740 PMCID: PMC7105868 DOI: 10.3389/fphys.2020.00251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Mucolipins (TRPML) are endosome/lysosome Ca2+ permeable channels belonging to the family of transient receptor potential channels. In mammals, there are three TRPML proteins, TRPML1, 2, and 3, encoded by MCOLN1-3 genes. Among these channels, TRPML1 is a reactive oxygen species sensor localized on the lysosomal membrane that is able to control intracellular oxidative stress due to the activation of the autophagic process. Moreover, genetic or pharmacological inhibition of the TRPML1 channel stimulates oxidative stress signaling pathways. Experimental data suggest that elevated levels of reactive species play a role in several neurological disorders. There is a need to gain better understanding of the molecular mechanisms behind these neurodegenerative diseases, considering that the main sources of free radicals are mitochondria, that mitochondria/endoplasmic reticulum and lysosomes are coupled, and that growing evidence links neurodegenerative diseases to the gain or loss of function of proteins related to lysosome homeostasis. This review examines the significant roles played by the TRPML1 channel in the alterations of calcium signaling responsible for stress-mediated neurodegenerative disorders and its potential as a new therapeutic target for ameliorating neurodegeneration in our ever-aging population.
Collapse
Affiliation(s)
- Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Maggi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
15
|
Hetmańczyk-Sawicka K, Iwanicka-Nowicka R, Fogtman A, Cieśla J, Włodarski P, Żyżyńska-Granica B, Filocamo M, Dardis A, Peruzzo P, Bednarska-Makaruk M, Koblowska M, Ługowska A. Changes in global gene expression indicate disordered autophagy, apoptosis and inflammatory processes and downregulation of cytoskeletal signalling and neuronal development in patients with Niemann-Pick C disease. Neurogenetics 2020; 21:105-119. [PMID: 31927669 DOI: 10.1007/s10048-019-00600-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022]
Abstract
Changes in gene expression profiles were investigated in 23 patients with Niemann-Pick C1 disease (NPC). cDNA expression microarrays with subsequent validation by qRT-PCR were used. Comparison of NPC to control samples revealed upregulation of genes involved in inflammation (MMP3, THBS4), cytokine signalling (MMP3), extracellular matrix degradation (MMP3, CTSK), autophagy and apoptosis (CTSK, GPNMB, PTGIS), immune response (AKR1C3, RCAN2, PTGIS) and processes of neuronal development (RCAN2). Downregulated genes were associated with cytoskeletal signalling (ACTG2, CNN1); inflammation and oxidative stress (CNN1); inhibition of cell proliferation, migration and differentiation; ERK-MAPK pathway (COL4A1, COL4A2, CPA4); cell adhesion (IGFBP7); autophagy and apoptosis (CDH2, IGFBP7, COL4A2); neuronal function and development (CSRP1); and extracellular matrix stability (PLOD2). When comparing NPC and Gaucher patients together versus controls, upregulation of SERPINB2 and IL13RA2 and downregulation of CSRP1 and CNN1 were characteristic. Notably, in NPC patients, the expression of PTGIS is upregulated while the expression of PLOD2 is downregulated when compared to Gaucher patients or controls and potentially could serve to differentiate these patients. Interestingly, in NPC patients with (i) jaundice, splenomegaly and cognitive impairment/psychomotor delay-the expression of ACTG2 was especially downregulated; (ii) ataxia-the expression of ACTG2 and IGFBP5 was especially downregulated; and (iii) VSGP, dysarthria, dysphagia and epilepsy-the expression of AKR1C3 was especially upregulated while the expression of ACTG2 was downregulated. These results indicate disordered apoptosis, autophagy and cytoskeleton remodelling as well as upregulation of immune response and inflammation to play an important role in the pathogenesis of NPC in humans.
Collapse
Affiliation(s)
| | - Roksana Iwanicka-Nowicka
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Włodarski
- Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Żyżyńska-Granica
- Department of Biochemistry, Second Faculty of Medicine with the English Division and the Physiotherapy Division, Medical University of Warsaw, Warsaw, Poland
| | - Mirella Filocamo
- Laboratorio di Genetica Molecolare e Biobanche, Istituto G. Gaslini, L.go G. Gaslini, 16147, Genoa, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Department of Laboratory Medicine, Academic Hospital "Santa Maria della Misericordia" Udine, Udine, Italy
| | - Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, Department of Laboratory Medicine, Academic Hospital "Santa Maria della Misericordia" Udine, Udine, Italy
| | | | - Marta Koblowska
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
16
|
Wheeler S, Sillence DJ. Niemann-Pick type C disease: cellular pathology and pharmacotherapy. J Neurochem 2019; 153:674-692. [PMID: 31608980 DOI: 10.1111/jnc.14895] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C disease (NPCD) was first described in 1914 and affects approximately 1 in 150 000 live births. It is characterized clinically by diverse symptoms affecting liver, spleen, motor control, and brain; premature death invariably results. Its molecular origins were traced, as late as 1997, to a protein of late endosomes and lysosomes which was named NPC1. Mutation or absence of this protein leads to accumulation of cholesterol in these organelles. In this review, we focus on the intracellular events that drive the pathology of this disease. We first introduce endocytosis, a much-studied area of dysfunction in NPCD cells, and survey the various ways in which this process malfunctions. We briefly consider autophagy before attempting to map the more complex pathways by which lysosomal cholesterol storage leads to protein misregulation, mitochondrial dysfunction, and cell death. We then briefly introduce the metabolic pathways of sphingolipids (as these emerge as key species for treatment) and critically examine the various treatment approaches that have been attempted to date.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| |
Collapse
|
17
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
18
|
Wheeler S, Haberkant P, Bhardwaj M, Tongue P, Ferraz MJ, Halter D, Sprong H, Schmid R, Aerts JM, Sullo N, Sillence DJ. Cytosolic glucosylceramide regulates endolysosomal function in Niemann-Pick type C disease. Neurobiol Dis 2019; 127:242-252. [DOI: 10.1016/j.nbd.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
|
19
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|