1
|
Liu J, He F, Chen Z, Liu M, Xiao Y, Wang Y, Cai Y, Du J, Jin W, Liu X. Subtilisin-like protease 4 regulates cold tolerance through cell wall modification in rice. Sci Rep 2025; 15:426. [PMID: 39747628 PMCID: PMC11696678 DOI: 10.1038/s41598-024-84491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Rice is susceptible to cold temperatures, especially during the seedling stage. Despite extensive research into the cold tolerance mechanisms of rice, the number of cloned genes remains limited. Plant subtilisin-like proteases (SUBs or SBTs) are protein-hydrolyzing enzymes which play important roles in various aspects of plant growth as well as the plant response to biotic and abiotic stress. The rice SUB gene family consists of 62 members, but it is unknown whether they are involved in the response to cold stress. In this study, we observed that a loss-of-function SUB4 mutant exhibited enhanced cold tolerance at the seedling stage. The sub4 mutant seedlings exhibited improved survival rates and related physiological parameters, including relative electrolyte conductivity, chlorophyll content, malondialdehyde content, and antioxidant enzyme activity. Transcriptomic analysis revealed that differentially expressed genes responsive to cold stress in the sub4 mutants were primarily associated with metabolism and signal transduction. Notably, the majority of cold-responsive genes were associated with cell wall functions, including those related to cell wall organization, chitin catabolic processes, and oxidoreductases. Our findings suggest that SUB4 negatively regulates the cold response in rice seedlings, possibly by modifying the properties of the cell wall.
Collapse
Affiliation(s)
- Jingyan Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Fei He
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhicai Chen
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Meng Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yingni Xiao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Ying Wang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - YuMeng Cai
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jin Du
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Weiwei Jin
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xuejun Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
2
|
Tavakoli F, Hajiboland R, Haeili M, Sadeghzadeh N, Nikolic M. Effect of elevated ammonium on biotic and abiotic stress defense responses and expression of related genes in cucumber (Cucumis sativus L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109310. [PMID: 39577162 DOI: 10.1016/j.plaphy.2024.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Ammonium (NH4+) enhances plant defense mechanisms but can be phytotoxic as the sole nitrogen source. To investigate the impact of a balanced NH4+ and NO3- ratio on plant defense parameters without adverse effects, cucumber plants (Cucumis sativus L.) were grown under control (14 mM NO3- + 2 mM NH4+) and elevated level of NH4+ (eNH4+, 8 mM NO3-+ 8 mM NH4+). Plants subjected to eNH4+ showed significantly increased shoot and root biomass by about 41% and 47%, respectively. Among the antioxidant enzymes studied, ascorbate peroxidase (EC 1.11.1.11) activity was increased up to 3.3 fold in eNH4+ compared with control plants, which was associated with enhanced resistance to paraquat. Upregulation of PATHOGENESIS RELATED PROTEIN 4 (PR4) and LIPOXYGENASE 1 (LOX1), accompanied by increased concentrations of salicylic acid and nitric oxide, conferred more excellent resistance of eNH4+ plants to powdery mildew infection. However, the expression levels of ACC OXIDASE 1 (ACO1) and RESPIRATORY BURST OXIDASE HOMOLOGS B (RBOHB) were lower in eNH4+ plants, which was consistent with decreased NADPH oxidase activity and lower leaf H2O2 levels. The biosynthesis of phenolics was enhanced, whereas the activities of polymerizing enzymes and lignin deposition were reduced by half in eNH4+ plants. Besides, a significant effect on plant biomass under salt or drought stress has not been observed between control and eNH4+ plants. These results showed that different defense pathways are distinctively affected by eNH4+ treatment, and the NH4+ to NO3- ratio may play a role in fine-tuning the plant defense response.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Plant, Cell and Molecular Biology, University of Tabriz, 51666-14779, Tabriz, Iran
| | - Roghieh Hajiboland
- Department of Plant, Cell and Molecular Biology, University of Tabriz, 51666-14779, Tabriz, Iran.
| | - Mehri Haeili
- Department of Animal Biology, University of Tabriz, Tabriz, Iran
| | - Noushin Sadeghzadeh
- Department of Plant, Cell and Molecular Biology, University of Tabriz, 51666-14779, Tabriz, Iran
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Hossain MA, Roslan HA. Heterologous expression, characterisation and 3D-structural insights of GH18 chitinases derived from sago palm (Metroxylon sagu). Int J Biol Macromol 2024; 279:135533. [PMID: 39265904 DOI: 10.1016/j.ijbiomac.2024.135533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/28/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Although plants don't have chitins, they produce chitinases to protect themselves from biotic and abiotic stressors. There are two forms of chitinases found in organisms: glycosyl hydrolase 18 (GH18) and 19 (GH19) families. Plant GH19 chitinases are well known for their role in protecting against pathogens, but the roles of GH18 chitinases have not been fully elucidated. This study aimed to produce and characterise two recombinant GH18 chitinases from Metroxylon sagu. Two GH18 chitinase genes, MsChi1 and MsChi2, were identified, with nucleotide sequences of 1009 and 1308 bp, respectively. The proteins encoded by MsChi1 and MsChi2 genes were single polypeptide chains of 310 and 300 amino acids with predicted molecular masses of 31.21 and 30.15 kDa, respectively. Both cDNAs were cloned and expressed in the GS115 strain of Pichia pastoris. Recombinant MsChi1 and MsChi2 exhibited optimal activity at 60 °C with acidic pH 4.0 and 5.0, respectively. Both recombinant enzymes could hydrolyze synthetic and natural substrates (colloidal chitin). rMsChi1 preferred 4-nitrophenol N,N'-diacetyl-β-D chitobioside, while rMsChi2 preferred 4-nitrophenol N,N',N″-triacetyl-β-D chitotriose, suggesting they might function as exochitinase and endochitinase, respectively. They also demonstrated antifungal activities against tested fungi. Homology modeling indicated ASP and GLU as essential residues for proton donation and acceptance.
Collapse
Affiliation(s)
- Md Anowar Hossain
- Genetic Engineering Laboratory, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia; Plant Molecular Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Hairul Azman Roslan
- Genetic Engineering Laboratory, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| |
Collapse
|
4
|
Wang T, Wang C, Liu Y, Zou K, Guan M, Wu Y, Yue S, Hu Y, Yu H, Zhang K, Wu D, Du J. Genome-Wide Identification of the Maize Chitinase Gene Family and Analysis of Its Response to Biotic and Abiotic Stresses. Genes (Basel) 2024; 15:1327. [PMID: 39457451 PMCID: PMC11507598 DOI: 10.3390/genes15101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chitinases, enzymes belonging to the glycoside hydrolase family, play a crucial role in plant growth and stress response by hydrolyzing chitin, a natural polymer found in fungal cell walls. This study aimed to identify and analyze the maize chitinase gene family, assessing their response to various biotic and abiotic stresses to understand their potential role in plant defense mechanisms and stress tolerance. METHODS We employed bioinformatics tools to identify 43 chitinase genes in the maize B73_V5 genome. These genes were characterized for their chromosomal positions, gene and protein structures, phylogenetic relationships, functional enrichment, and collinearity. Based on previous RNA-seq data, the analysis assessed the expression patterns of these genes at different developmental stages and under multiple stress conditions. RESULTS The identified chitinase genes were unevenly distributed across maize chromosomes with a history of tandem duplications contributing to their divergence. The ZmChi protein family was predominantly hydrophilic and localized mainly in chloroplasts. Expression analysis revealed that certain chitinase genes were highly expressed at specific developmental stages and in response to various stresses, with ZmChi31 showing significant responsiveness to 11 different abiotic and biotic stresses. CONCLUSIONS This study provides new insights into the role of chitinase genes in maize stress response, establishing a theoretical framework for exploring the molecular basis of maize stress tolerance. The identification of stress-responsive chitinase genes, particularly ZmChi31, offers potential candidates for further study in enhancing maize resistance to environmental challenges.
Collapse
Affiliation(s)
- Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Changjin Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Yang Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Minghui Guan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Yutong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Shutong Yue
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Ying Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (C.W.); (K.Z.); (Y.W.); (S.Y.); (Y.H.); (H.Y.); (K.Z.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China
| |
Collapse
|
5
|
Atem JEC, Gan L, Yu W, Huang F, Wang Y, Baloch A, Nwafor CC, Barrie AU, Chen P, Zhang C. Bioinformatics and functional analysis of EDS1 genes in Brassica napus in response to Plasmodiophora brassicae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112175. [PMID: 38986913 DOI: 10.1016/j.plantsci.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Enhanced Disease Susceptibility 1 (EDS1) is a key regulator of plant-pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. In the Brassica napus genome, we identified six novel EDS1 genes, among which four were responsive to clubroot infection, a major rapeseed disease resistant to chemical control. Developing resistant cultivars is a potent and economically viable strategy to control clubroot infection. Bioinformatics analysis revealed conserved domains and structural uniformity in Bna-EDS1 homologs. Bna-EDS1 promoters harbored elements associated with diverse phytohormones and stress responses, highlighting their crucial roles in plant defense. A functional analysis was performed with Bna-EDS1 overexpression and RNAi transgenic lines. Bna-EDS1 overexpression boosted resistance to clubroot and upregulated defense-associated genes (PR1, PR2, ICS1, and CBP60), while Bna-EDS1 RNAi increased plant susceptibility, indicating suppression of the defense signaling pathway downstream of NBS-LRRs. RNA-Seq analysis identified key transcripts associated with clubroot resistance, including phenylpropanoid biosynthesis. Activation of SA regulator NPR1, defense signaling markers PR1 and PR2, and upregulation of MYC-TFs suggested that EDS1-mediated clubroot resistance potentially involves the SA pathway. Our findings underscore the pivotal role of Bna-EDS1-dependent mechanisms in resistance of B. napus to clubroot disease, and provide valuable insights for fortifying resistance against Plasmodiophora brassicae infection in rapeseed.
Collapse
Affiliation(s)
- Jalal Eldeen Chol Atem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Longcai Gan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fan Huang
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE68588, USA; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yanyan Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Amanullah Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chinedu Charles Nwafor
- Guangdong Ocean University, Zhanjiang 524088, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Alpha Umaru Barrie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria.
| |
Collapse
|
6
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
7
|
Cazares-Álvarez JE, Báez-Astorga PA, Arroyo-Becerra A, Maldonado-Mendoza IE. Genome-Wide Identification of a Maize Chitinase Gene Family and the Induction of Its Expression by Fusarium verticillioides (Sacc.) Nirenberg (1976) Infection. Genes (Basel) 2024; 15:1087. [PMID: 39202446 PMCID: PMC11353892 DOI: 10.3390/genes15081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Collapse
Affiliation(s)
- Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Paúl Alán Báez-Astorga
- CONAHCYT—Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico;
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| |
Collapse
|
8
|
Yang K, Zhou G, Chen C, Liu X, Wei L, Zhu F, Liang Z, Chen H. Joint metabolomic and transcriptomic analysis identify unique phenolic acid and flavonoid compounds associated with resistance to fusarium wilt in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1447860. [PMID: 39170788 PMCID: PMC11335689 DOI: 10.3389/fpls.2024.1447860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Introduction Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cucumerinum (Foc) is a destructive soil-borne disease in cucumber (Cucumis sativus. L). However, there remains limited knowledge on the molecular mechanisms underlying FW resistance-mediated defense responses in cucumber. Methods In this study, metabolome and transcriptome profiling were carried out for two FW resistant (NR) and susceptible (NS), near isogenic lines (NILs) before and after Foc inoculation. NILs have shown consistent and stable resistance in multiple resistance tests conducted in the greenhouse and in the laboratory. A widely targeted metabolomic analysis identified differentially accumulated metabolites (DAMs) with significantly greater NR accumulation in response to Foc infection, including many phenolic acid and flavonoid compounds from the flavonoid biosynthesis pathway. Results Transcriptome analysis identified differentially expressed genes (DEGs) between the NILs upon Foc inoculation including genes for secondary metabolite biosynthesis and transcription factor genes regulating the flavonoid biosynthesis pathway. Joint analysis of the metabolomic and transcriptomic data identified DAMs and DEGs closely associated with the biosynthesis of phenolic acid and flavonoid DAMs. The association of these compounds with NR-conferred FW resistance was exemplified by in vivo assays. These assays found two phenolic acid compounds, bis (2-ethylhexyl) phthalate and diisooctyl phthalate, as well as the flavonoid compound gallocatechin 3-O-gallate to have significant inhibitory effects on Foc growth. The antifungal effects of these three compounds represent a novel finding. Discussion Therefore, phenolic acids and flavonoids play important roles in NR mediated FW resistance breeding in cucumber.
Collapse
Affiliation(s)
- Kankan Yang
- Longping Branch, Graduated School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Geng Zhou
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chen Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaohong Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lin Wei
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Feiying Zhu
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhihuai Liang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huiming Chen
- Longping Branch, Graduated School of Hunan University, Changsha, China
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
9
|
Chen JY, Sang H, Chilvers MI, Wu CH, Chang HX. Characterization of soybean chitinase genes induced by rhizobacteria involved in the defense against Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2024; 15:1341181. [PMID: 38405589 PMCID: PMC10884886 DOI: 10.3389/fpls.2024.1341181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Rhizobacteria are capable of inducing defense responses via the expression of pathogenesis-related proteins (PR-proteins) such as chitinases, and many studies have validated the functions of plant chitinases in defense responses. Soybean (Glycine max) is an economically important crop worldwide, but the functional validation of soybean chitinase in defense responses remains limited. In this study, genome-wide characterization of soybean chitinases was conducted, and the defense contribution of three chitinases (GmChi01, GmChi02, or GmChi16) was validated in Arabidopsis transgenic lines against the soil-borne pathogen Fusarium oxysporum. Compared to the Arabidopsis Col-0 and empty vector controls, the transgenic lines with GmChi02 or GmChi16 exhibited fewer chlorosis symptoms and wilting. While GmChi02 and GmChi16 enhanced defense to F. oxysporum, GmChi02 was the only one significantly induced by Burkholderia ambifaria. The observation indicated that plant chitinases may be induced by different rhizobacteria for defense responses. The survey of 37 soybean chitinase gene expressions in response to six rhizobacteria observed diverse inducibility, where only 10 genes were significantly upregulated by at least one rhizobacterium and 9 genes did not respond to any of the rhizobacteria. Motif analysis on soybean promoters further identified not only consensus but also rhizobacterium-specific transcription factor-binding sites for the inducible chitinase genes. Collectively, these results confirmed the involvement of GmChi02 and GmChi16 in defense enhancement and highlighted the diverse inducibility of 37 soybean chitinases encountering F. oxysporum and six rhizobacteria.
Collapse
Affiliation(s)
- Jheng-Yan Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Master Program of Plant Medicine, National Taiwan University, Taipei, Taiwan
- Center of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Wang HY, Li PF, Wang Y, Chi CY, Jin XX, Ding GH. Overexpression of cucumber CYP82D47 enhances resistance to powdery mildew and Fusarium oxysporum f. sp. cucumerinum. Funct Integr Genomics 2024; 24:14. [PMID: 38236308 DOI: 10.1007/s10142-024-01287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
Cytochrome P450s are a large family of protein-encoding genes in plant genomes, many of which have not yet been comprehensively characterized. Here, a novel P450 gene, CYP82D47, was isolated and functionally characterized from cucumber (Cucumis sativus L.). Quantitative real-time reverse-transcription polymerase chain reaction analysis revealed that CYP82D47 expression was triggered by salicylic acid (SA) and ethephon (ETH). Expression analysis revealed a correlation between CYP82D47 transcript levels and plant defense responses against powdery mildew (PM) and Fusarium oxysporum f. sp. cucumerinum (Foc). Although no significant differences were observed in disease resistance between CYP82D47-RNAi and wild-type cucumber, overexpression (OE) of CYP82D47 enhanced PM and Foc resistance in cucumber. Furthermore, the expression levels of SA-related genes (PR1, PR2, PR4, and PR5) increased in CYP82D47-overexpressing plants 7 days post fungal inoculation. The levels of ETH-related genes (EIN3 and EBF2) were similarly upregulated. The observed enhanced resistance was associated with the upregulation of SA/ETH-signaling-dependent defense genes. These findings indicate the crucial role of CYP82D47 in pathogen defense in cucumber. CYP82D47-overexpressing cucumber plants exhibited heightened susceptibility to both diseases. The study results offer important insights that could aid in the development of disease-resistant cucumber cultivars and elucidate the molecular mechanisms associated with the functions of CYP82D47.
Collapse
Affiliation(s)
| | - Peng-Fei Li
- Harbin Normal University, Harbin, 150025, China
| | - Yu Wang
- Harbin Normal University, Harbin, 150025, China
| | - Chun-Yu Chi
- Harbin Normal University, Harbin, 150025, China
| | - Xiao-Xia Jin
- Harbin Normal University, Harbin, 150025, China.
| | - Guo-Hua Ding
- Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
11
|
Xuan C, Feng M, Li X, Hou Y, Wei C, Zhang X. Genome-Wide Identification and Expression Analysis of Chitinase Genes in Watermelon under Abiotic Stimuli and Fusarium oxysporum Infection. Int J Mol Sci 2024; 25:638. [PMID: 38203810 PMCID: PMC10779513 DOI: 10.3390/ijms25010638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chitinases, which catalyze the hydrolysis of chitin, the primary components of fungal cell walls, play key roles in defense responses, symbiotic associations, plant growth, and stress tolerance. In this study, 23 chitinase genes were identified in watermelon (Citrullus lanatus [Thunb.]) and classified into five classes through homology search and phylogenetic analysis. The genes with similar exon-intron structures and conserved domains were clustered into the same class. The putative cis-elements involved in the responses to phytohormone, stress, and plant development were identified in their promoter regions. A tissue-specific expression analysis showed that the ClChi genes were primarily expressed in the roots (52.17%), leaves (26.09%), and flowers (34.78%). Moreover, qRT-PCR results indicate that ClChis play multifaceted roles in the interaction between plant/environment. More ClChi members were induced by Race 2 of Fusarium oxysporum f. sp. niveum, and eight genes were expressed at higher levels on the seventh day after inoculation with Races 1 and 2, suggesting that these genes play a key role in the resistance of watermelon to Fusarium wilt. Collectively, these results improve knowledge of the chitinase gene family in watermelon species and help to elucidate the roles played by chitinases in the responses of watermelon to various stresses.
Collapse
Affiliation(s)
- Changqing Xuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Mengjiao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Yinjie Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
12
|
López-Coria M, Guzmán-Chávez F, Carvente-García R, Muñoz-Chapul D, Sánchez-Sánchez T, Arciniega-Ruíz JM, King-Díaz B, Sánchez-Nieto S. Maize plant expresses SWEET transporters differently when interacting with Trichoderma asperellum and Fusarium verticillioides, two fungi with different lifestyles. FRONTIERS IN PLANT SCIENCE 2023; 14:1253741. [PMID: 37828934 PMCID: PMC10565004 DOI: 10.3389/fpls.2023.1253741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Most Trichoderma species are beneficial fungi that promote plant growth and resistance, while Fusarium genera cause several crop damages. During the plant-fungi interaction there is a competition for sugars in both lifestyles. Here we analyzed the plant growth promotion and biocontrol activity of T. asperellum against F. verticillioides and the effect of both fungi on the expression of the maize diffusional sugar transporters, the SWEETs. The biocontrol activity was done in two ways, the first was by observing the growth capacity of both fungus in a dual culture. The second one by analyzing the infection symptoms, the chlorophyl content and the transcript levels of defense genes determined by qPCR in plants with different developmental stages primed with T. asperellum conidia and challenged with F. verticillioides. In a dual culture, T. asperellum showed antagonist activity against F. verticillioides. In the primed plants a delay in the infection disease was observed, they sustained chlorophyll content even after the infection, and displayed upregulated defense-related genes. Additionally, the T. asperellum primed plants had longer stems than the nonprimed plants. SWEETs transcript levels were analyzed by qPCR in plants primed with either fungus. Both fungi affect the transcript levels of several maize sugar transporters differently. T. asperellum increases the expression of six SWEETs on leaves and two at the roots and causes a higher exudation of sucrose, glucose, and fructose at the roots. On the contrary, F. verticillioides reduces the expression of the SWEETs on the leaves, and more severely when a more aggressive strain is in the plant. Our results suggest that the plant is able to recognize the lifestyle of the fungi and respond accordingly by changing the expression of several genes, including the SWEETs, to establish a new sugar flux.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sobeida Sánchez-Nieto
- Dpto. de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Filyushin MA, Anisimova OK, Shchennikova AV, Kochieva EZ. Genome-Wide Identification, Expression, and Response to Fusarium Infection of the SWEET Gene Family in Garlic ( Allium sativum L.). Int J Mol Sci 2023; 24:ijms24087533. [PMID: 37108694 PMCID: PMC10138969 DOI: 10.3390/ijms24087533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Proteins of the SWEET (Sugar Will Eventually be Exported Transporters) family play an important role in plant development, adaptation, and stress response by functioning as transmembrane uniporters of soluble sugars. However, the information on the SWEET family in the plants of the Allium genus, which includes many crop species, is lacking. In this study, we performed a genome-wide analysis of garlic (Allium sativum L.) and identified 27 genes putatively encoding clade I-IV SWEET proteins. The promoters of the A. sativum (As) SWEET genes contained hormone- and stress-sensitive elements associated with plant response to phytopathogens. AsSWEET genes had distinct expression patterns in garlic organs. The expression levels and dynamics of clade III AsSWEET3, AsSWEET9, and AsSWEET11 genes significantly differed between Fusarium-resistant and -susceptible garlic cultivars subjected to F. proliferatum infection, suggesting the role of these genes in the garlic defense against the pathogen. Our results provide insights into the role of SWEET sugar uniporters in A. sativum and may be useful for breeding Fusarium-resistant Allium cultivars.
Collapse
Affiliation(s)
- Mikhail A Filyushin
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Olga K Anisimova
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna V Shchennikova
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elena Z Kochieva
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
14
|
He T, Fan J, Jiao G, Liu Y, Zhang Q, Luo N, Ahmad B, Chen Q, Wen Z. Bioinformatics and Expression Analysis of the Chitinase Genes in Strawberry ( Fragaria vesca) and Functional Study of FvChi-14. PLANTS (BASEL, SWITZERLAND) 2023; 12:1543. [PMID: 37050169 PMCID: PMC10097121 DOI: 10.3390/plants12071543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Plant chitinases (EC 3.2.1.14) are pathogenesis-related (PR) proteins and are well studied in many plant species. However, little is known about the genomic organization and expression of chitinase genes in strawberries (Fragaria vesca). Here, 23 FvChi genes were identified in the genome of strawberry (F. vesca) and divided into GH18 and GH19 subfamilies based on phylogenetic relationships. A detailed bioinformatics analysis of the FvChi genes was performed, including gene physicochemical properties, chromosomal location, exon-intron distribution, domain arrangement, and subcellular localization. Twenty-two FvChi genes showed upregulation after Colletotrichum gloeosporioides infection. Following the exogenous application of SA, FvChi-3, 4, and 5 showed significant changes in expression. The ectopic expression of FvChi-14 in Arabidopsis thaliana increased resistance to C. higginsianum via controlling the SA and JA signaling pathway genes (AtPR1, AtICS1, AtPDF1.2, and AtLOX3). The FvChi-14 protein location was predicted in the cell wall or extracellular matrix. We speculate that FvChi-14 is involved in disease resistance by regulating the SA and JA signaling pathways. The findings of this study provide a theoretical reference for the functional studies of FvChi genes and new candidates for strawberry stress resistance breeding programs.
Collapse
Affiliation(s)
- Tiannan He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianshuai Fan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaozhen Jiao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qimeng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Luo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bilal Ahmad
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhifeng Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Soni T, Zhuang M, Kumar M, Balan V, Ubanwa B, Vivekanand V, Pareek N. Multifaceted production strategies and applications of glucosamine: a comprehensive review. Crit Rev Biotechnol 2023; 43:100-120. [PMID: 34923890 DOI: 10.1080/07388551.2021.2003750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.
Collapse
Affiliation(s)
- Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mengchuan Zhuang
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
16
|
Assessment of the Molecular Responses of an Ancient Angiosperm against Atypical Insect Oviposition: The Case of Hass Avocados and the Tephritid Fly Anastrepha ludens. Int J Mol Sci 2023; 24:ijms24032060. [PMID: 36768387 PMCID: PMC9916504 DOI: 10.3390/ijms24032060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Anastrepha spp. (Diptera: Tephritidae) infestations cause significant economic losses in commercial fruit production worldwide. However, some plants quickly counteract the insertion of eggs by females by generating neoplasia and hindering eclosion, as is the case for Persea americana Mill., cv. Hass (Hass avocados). We followed a combined transcriptomics/metabolomics approach to identify the molecular mechanisms triggered by Hass avocados to detect and react to the oviposition of the pestiferous Anastrepha ludens (Loew). We evaluated two conditions: fruit damaged using a sterile pin (pin) and fruit oviposited by A. ludens females (ovi). We evaluated both of the conditions in a time course experiment covering five sampling points: without treatment (day 0), 20 min after the treatment (day 1), and days 3, 6, and 9 after the treatment. We identified 288 differentially expressed genes related to the treatments. Oviposition (and possibly bacteria on the eggs' surface) induces a plant hypersensitive response (HR), triggering a chitin receptor, producing an oxidative burst, and synthesizing phytoalexins. We also observed a process of cell wall modification and polyphenols biosynthesis, which could lead to polymerization in the neoplastic tissue surrounding the eggs.
Collapse
|
17
|
Haxim Y, Kahar G, Zhang X, Si Y, Waheed A, Liu X, Wen X, Li X, Zhang D. Genome-wide characterization of the chitinase gene family in wild apple ( Malus sieversii) and domesticated apple ( Malus domestica) reveals its role in resistance to Valsa mali. FRONTIERS IN PLANT SCIENCE 2022; 13:1007936. [PMID: 36420026 PMCID: PMC9676469 DOI: 10.3389/fpls.2022.1007936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Chitinases are responsible for catalyzing the hydrolysis of chitin and contribute to plant defense against fungal pathogens by degrading fungal chitin. In this study, genome-wide identification of the chitinase gene family of wild apple (Malus sieversii) and domesticated apple (Malus domestica) was conducted, and the expression profile was analyzed in response to Valsa mali infection. A total of 36 and 47 chitinase genes belonging to the glycosyl hydrolase 18 (GH18) and 19 (GH19) families were identified in the genomes of M. sieversii and M. domestica, respectively. These genes were classified into five classes based on their phylogenetic relationships and conserved catalytic domains. The genes were randomly distributed on the chromosomes and exhibited expansion by tandem and segmental duplication. Eight of the 36 MsChi genes and 17 of the 47 MdChi genes were differentially expressed in response to V. mali inoculation. In particular, MsChi35 and its ortholog MdChi41, a class IV chitinase, were constitutively expressed at high levels in M. sieversii and domesticated apple, respectively, and may play a crucial role in the defense response against V. mali. These results improve knowledge of the chitinase gene family in apple species and provide a foundation for further studies of fungal disease prevention in apple.
Collapse
Affiliation(s)
- Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, College of Resources and Environment, Beijing, China
| | - Xuechun Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- School of Life Sciences, Xinjiang Normal University, Ürümqi, China
| | - Yu Si
- University of Chinese Academy of Sciences, College of Resources and Environment, Beijing, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| |
Collapse
|
18
|
Bartholomew ES, Xu S, Zhang Y, Yin S, Feng Z, Chen S, Sun L, Yang S, Wang Y, Liu P, Ren H, Liu X. A chitinase CsChi23 promoter polymorphism underlies cucumber resistance against Fusarium oxysporum f. sp. cucumerinum. THE NEW PHYTOLOGIST 2022; 236:1471-1486. [PMID: 36068958 DOI: 10.1111/nph.18463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), leads to widespread yield loss and quality decline in cucumber. However, the molecular mechanisms underlying Foc resistance remain poorly understood. We report the mapping and functional characterisation of CsChi23, encoding a cucumber class I chitinase with antifungal properties. We assessed sequence variations at CsChi23 and the associated defence response against Foc. We functionally characterised CsChi23 using transgenic assay and expression analysis. The mechanism regulating CsChi23 expression was assessed by genetic and molecular approaches. CsChi23 was induced by Foc infection, which led to rapid upregulation in resistant cucumber lines. Overexpressing CsChi23 enhanced fusarium wilt resistance and reduced fungal biomass accumulation, whereas silencing CsChi23 causes loss of resistance. CsHB15, a homeodomain leucine zipper (HD-Zip) III transcription factor, was found to bind to the CsChi23 promoter region and activate its expression. Furthermore, silencing of CsHB15 reduces CsChi23 expression. A single-nucleotide polymorphism variation -400 bp upstream of CsChi23 abolished the HD-Zip III binding site in a susceptible cucumber line. Collectively, our study indicates that CsChi23 is sufficient to enhance fusarium wilt resistance and reveals a novel function of an HD-Zip III transcription factor in regulating chitinase expression in cucumber defence against fusarium wilt.
Collapse
Affiliation(s)
- Ezra S Bartholomew
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuo Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaqi Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuai Yin
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhongxuan Feng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuyinq Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Songlin Yang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Heze Agricultural and Rural Bureau, No. 1021 Shuanghe Road, Mudan District, Heze City, Shandong, 274000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of National Education, Beijing, 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Beijing, 100193, China
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of National Education, Beijing, 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Beijing, 100193, China
| |
Collapse
|
19
|
Lv P, Zhang C, Xie P, Yang X, El-Sheikh MA, Hefft DI, Ahmad P, Zhao T, Bhat JA. Genome-Wide Identification and Expression Analyses of the Chitinase Gene Family in Response to White Mold and Drought Stress in Soybean (Glycine max). Life (Basel) 2022; 12:life12091340. [PMID: 36143377 PMCID: PMC9504482 DOI: 10.3390/life12091340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Chitinases are enzymes catalyzing the hydrolysis of chitin that are present on the cell wall of fungal pathogens. Here, we identified and characterized the chitinase gene family in cultivated soybean (Glycine max L.) across the whole genome. A total of 38 chitinase genes were identified in the whole genome of soybean. Phylogenetic analysis of these chitinases classified them into five separate clusters, I–V. From a broader view, the I–V classes of chitinases are basically divided into two mega-groups (X and Y), and these two big groups have evolved independently. In addition, the chitinases were unevenly and randomly distributed in 17 of the total 20 chromosomes of soybean, and the majority of these chitinase genes contained few introns (≤2). Synteny and duplication analysis showed the major role of tandem duplication in the expansion of the chitinase gene family in soybean. Promoter analysis identified multiple cis-regulatory elements involved in the biotic and abiotic stress response in the upstream regions (1.5 kb) of chitinase genes. Furthermore, qRT-PCR analysis showed that pathogenic and drought stress treatment significantly induces the up-regulation of chitinase genes belonging to specific classes at different time intervals, which further verifies their function in the plant stress response. Hence, both in silico and qRT-PCR analysis revealed the important role of the chitinases in multiple plant defense responses. However, there is a need for extensive research efforts to elucidate the detailed function of chitinase in various plant stresses. In conclusion, our investigation is a detailed and systematic report of whole genome characterization of the chitinase family in soybean.
Collapse
Affiliation(s)
- Peiyun Lv
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunting Zhang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Xie
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Yang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Daniel Ingo Hefft
- School of Chemical Engineering, Edgbaston Campus, University of Birmingham, Birmingham B15 2TT, UK
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
- Correspondence: (P.A.); (T.Z.); (J.A.B.)
| | - Tuanjie Zhao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (P.A.); (T.Z.); (J.A.B.)
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (P.A.); (T.Z.); (J.A.B.)
| |
Collapse
|
20
|
Yuan Y, Zu M, Zuo J, Li R, Tao J. What will polyethylene film mulching bring to the root-associated microbial community of Paeonia ostii? Appl Microbiol Biotechnol 2022; 106:4737-4748. [PMID: 35670852 DOI: 10.1007/s00253-022-11986-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Plastic film mulching can increase crop yield and is widely used in agricultural production, but long-term mulching could adversely affect plant growth. To investigate the related mechanism, we studied the bacterial communities in different root-associated compartments of Paeonia ostii, a perennial oil crop, under polyethylene film mulching for three years by full-length 16S rDNA sequencing technology, and measured the soil physicochemical properties and enzyme activities. We found that enzyme activities and available nutrients in the soil tended to decrease after long-term mulching. Analysis of bacterial community composition revealed that the endosphere may be another potential source of the root-associated microbiome of P. ostii, and the rhizoplane plays a selective gating role in the enrichment processes for P. ostii microbiome assembly. Long-term mulching affected the abundance of dominant bacterial communities in different root-associated compartments and reduced the bacterial richness in the endosphere, but increased bacterial interactions in each compartment, as well as between different compartments. We speculate that this is mainly related to the decrease of litter content and the serious degradation of polyethylene film after long-term mulching, which resulted in microplastics and other harmful substances entering the soil. Our study further explained the reasons for the harm of long-term film mulching on plants to guide the rational use of plastic film. KEY POINTS: •Soil enzyme activities and available nutrients decreased after long-term mulching. •Mulching affected the dominant bacterial abundance in different root-associated compartments. •Mulching increased bacterial interactions among compartments.
Collapse
Affiliation(s)
- Yingdan Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Mengting Zu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jiajia Zuo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Runze Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
21
|
He Y, Wei M, Yan Y, Yu C, Cheng S, Sun Y, Zhu X, Wei L, Wang H, Miao L. Research Advances in Genetic Mechanisms of Major Cucumber Diseases Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:862486. [PMID: 35665153 PMCID: PMC9161162 DOI: 10.3389/fpls.2022.862486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important economic vegetable crop worldwide that is susceptible to various common pathogens, including powdery mildew (PM), downy mildew (DM), and Fusarium wilt (FM). In cucumber breeding programs, identifying disease resistance and related molecular markers is generally a top priority. PM, DM, and FW are the major diseases of cucumber in China that cause severe yield losses and the genetic-based cucumber resistance against these diseases has been developed over the last decade. Still, the molecular mechanisms of cucumber disease resistance remain unclear. In this review, we summarize recent findings on the inheritance, molecular markers, and quantitative trait locus mapping of cucumber PM, DM, and FM resistance. In addition, several candidate genes, such as PM, DM, and FM resistance genes, with or without functional verification are reviewed. The data help to reveal the molecular mechanisms of cucumber disease resistance and provide exciting new opportunities for further resistance breeding.
Collapse
Affiliation(s)
- Yujin He
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Mingming Wei
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Yanyan Yan
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chao Yu
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Siqi Cheng
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yihan Sun
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang Agriculture and Forestry University, Zhuji, China
| | - Lingling Wei
- Institute of Ecological Civilization, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Huasen Wang
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Li Miao
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
22
|
Pretreatment with Chitosan Prevents Fusarium Infection and Induces the Expression of Chitinases and β-1,3-Glucanases in Garlic (Allium sativum L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fusarium infection decreases the yield of garlic (Allium sativum L.); however, the knowledge about garlic response to fungal attack is limited. Chitosan induces plant defense response to stress conditions. Here, we analyzed the effects of chitosan with low (Ch1, 39 kDa) and medium (Ch2, 135 kDa) molecular weight on Fusarium infection in garlic. Ch1 and Ch2 at concentrations 0.125–0.400 mg/mL suppressed the growth of Fusarium proliferatum cultures in vitro. Pretreatment of garlic bulbs with Ch1 or Ch2 prevented disease symptoms after F. proliferatum inoculation, while exerting early inhibitory and late stimulatory effects on chitinase and β-1,3-glucanase activities. Ch1/Ch2 treatment of garlic already infected with F. proliferatum caused transcriptional upregulation of chitinases and β-1,3-glucanases at the early stage, which was maintained at the late stage in Ch2-treated samples, but not in Ch1-treated samples, where transcriptional inhibition was observed. The stimulatory effect of Ch2 pretreatment on the expression of chitinase and endo-β-1,3-glucanase genes was stronger than that of Ch1 pretreatment, suggesting that Ch2 could be more effective than Ch1 in pre-sowing treatment of garlic bulbs. Our results provide insights into the effects of chitosan on the garlic response to Fusarium, suggesting a novel strategy to protect garlic crop against fungal infection.
Collapse
|
23
|
Characterization of the Chitinase Gene Family in Mulberry (Morus notabilis) and MnChi18 Involved in Resistance to Botrytis cinerea. Genes (Basel) 2021; 13:genes13010098. [PMID: 35052438 PMCID: PMC8774697 DOI: 10.3390/genes13010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Chitinase is a hydrolase that uses chitin as a substrate. It plays an important role in plant resistance to fungal pathogens by degrading chitin. Here, we conducted bioinformatics analysis and transcriptome data analysis of the mulberry (Morus notabilis) chitinase gene family to determine its role in the resistance to Botrytis cinerea. A total of 26 chitinase genes were identified, belonging to the GH18 and GH19 families. Among them, six chitinase genes were differentially expressed under the infection of B. cinerea. MnChi18, which significantly responded to B. cinerea, was heterologously expressed in Arabidopsis (Arabidopsis thaliana). The resistance of MnChi18 transgenic Arabidopsis to B. cinerea was significantly enhanced, and after inoculation with B. cinerea, the activity of catalase (CAT) increased and the content of malondialdehyde (MDA) decreased. This shows that overexpression of MnChi18 can protect cells from damage. In addition, our study also indicated that MnChi18 may be involved in B. cinerea resistance through other resistance-related genes. This study provides an important basis for further understanding the function of mulberry chitinase.
Collapse
|
24
|
Xu J, Zhang N, Wang K, Xian Q, Dong J, Qi X, Chen X. Chitinase Chi 2 Positively Regulates Cucumber Resistance against Fusarium oxysporum f. sp. cucumerinum. Genes (Basel) 2021; 13:62. [PMID: 35052402 PMCID: PMC8775131 DOI: 10.3390/genes13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), severely restricts cucumber growth and yield. Accumulating lines of evidence indicate that chitinases play important roles in attacking the invading fungal pathogens through catalyzing their cell wall degradation. Here, we identified the chitinase (Chi) genes in cucumber and further screened the FW-responsive genes via a comparative transcriptome analysis and found that six common genes were predominantly expressed in roots but also significantly upregulated after Foc infection. Expression verification further conformed that Chi2 and Chi14 were obviously induced by Foc as well as by hormone treatments, compared with the controls. The purified Chi2 and Chi14 proteins significantly affected the growth of Foc in vitro, compared with the controls. Knockdown of Chi2 in cucumber by virus-induced gene silencing (VIGS) increased susceptibility to FW, compared with the Chi14-silenced and control plants, and silencing of Chi2 drastically impaired gene activation in the jasmonic acid pathway, suggesting that the Chi2 gene might play positive roles in cucumber FW defense and, therefore, can provide a gene resource for developing cucumber-FW-resistance breeding programs.
Collapse
Affiliation(s)
- Jun Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ningyuan Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ke Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Qianqian Xian
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Jingping Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300192, China
| |
Collapse
|
25
|
López WR, Garcia-Jaramillo DJ, Ceballos-Aguirre N, Castaño-Zapata J, Acuña-Zornosa R, Jovel J. Transcriptional responses to Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen infection in three Colombian tomato cultivars. BMC PLANT BIOLOGY 2021; 21:412. [PMID: 34496757 PMCID: PMC8425103 DOI: 10.1186/s12870-021-03187-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/24/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Fusarium oxysporum f. sp. lycopersici (Fol) is a compendium of pathogenic and non-pathogenic fungal strains. Pathogenic strains may cause vascular wilt disease and produce considerable losses in commercial tomato plots. To gain insight into the molecular mechanisms mediating resistance to Fol in tomato, the aim of our study was to characterize the transcriptional response of three cultivars (CT1, CT2 and IAC391) to a pathogenic (Fol-pt) and a non-pathogenic (Fo-npt) strain of Fo. RESULTS All cultivars exhibited differentially expressed genes in response to each strain of the fungus at 36 h post-inoculation. For the pathogenic strain, CT1 deployed an apparent active defense response that included upregulation of WRKY transcription factors, an extracellular chitinase, and terpenoid-related genes, among others. In IAC391, differentially expressed genes included upregulated but mostly downregulated genes. Upregulated genes mapped to ethylene regulation, pathogenesis regulation and transcription regulation, while downregulated genes potentially impacted defense responses, lipid transport and metal ion binding. Finally, CT2 exhibited mostly downregulated genes upon Fol-pt infection. This included genes involved in transcription regulation, defense responses, and metal ion binding. CONCLUSIONS Results suggest that CT1 mounts a defense response against Fol-pt. IAC391 exhibits an intermediate phenotype whereby some defense response genes are activated, and others are suppressed. Finally, the transcriptional profile in the CT2 hints towards lower levels of resistance. Fo-npt also induced transcriptional changes in all cultivars, but to a lesser extent. Results of this study will support genetic breeding programs currently underway in the zone.
Collapse
Affiliation(s)
- Walter Ricardo López
- Departamento de Física y Química. Facultad de Ciencias Naturales, Universidad Nacional de Colombia sede Manizales, Manizales, Caldas, Colombia
- Graduate School of Agricultural Sciences. Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales, Caldas, Colombia
| | - Dora Janeth Garcia-Jaramillo
- Graduate School of Agricultural Sciences. Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales, Caldas, Colombia
- Departamento de Producción Agropecuaria. Facultad de Ciencias Agropecuarias, Universidad de Caldas. Manizales, Caldas, Colombia
| | - Nelson Ceballos-Aguirre
- Graduate School of Agricultural Sciences. Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales, Caldas, Colombia.
- Departamento de Producción Agropecuaria. Facultad de Ciencias Agropecuarias, Universidad de Caldas. Manizales, Caldas, Colombia.
| | - Jairo Castaño-Zapata
- Departamento de Producción Agropecuaria. Facultad de Ciencias Agropecuarias, Universidad de Caldas. Manizales, Caldas, Colombia
| | - Ricardo Acuña-Zornosa
- Graduate School of Agricultural Sciences. Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales, Caldas, Colombia
| | - Juan Jovel
- Graduate School of Agricultural Sciences. Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales, Caldas, Colombia.
- Research Office. Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
26
|
Anisimova OK, Shchennikova AV, Kochieva EZ, Filyushin MA. Pathogenesis-Related Genes of PR1, PR2, PR4, and PR5 Families Are Involved in the Response to Fusarium Infection in Garlic ( Allium sativum L.). Int J Mol Sci 2021; 22:ijms22136688. [PMID: 34206508 PMCID: PMC8268425 DOI: 10.3390/ijms22136688] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Plants of the genus Allium developed a diversity of defense mechanisms against pathogenic fungi of the genus Fusarium, including transcriptional activation of pathogenesis-related (PR) genes. However, the information on the regulation of PR factors in garlic (Allium sativum L.) is limited. In the present study, we identified AsPR genes putatively encoding PR1, PR2, PR4, and PR5 proteins in A. sativum cv. Ershuizao, which may be involved in the defense against Fusarium infection. The promoters of the AsPR1-5 genes contained jasmonic acid-, salicylic acid-, gibberellin-, abscisic acid-, auxin-, ethylene-, and stress-responsive elements associated with the response to plant parasites. The expression of AsPR1c, d, g, k, AsPR2b, AsPR5a, c (in roots), and AsPR4a(c), b, and AsPR2c (in stems and cloves) significantly differed between garlic cultivars resistant and susceptible to Fusarium rot, suggesting that it could define the PR protein-mediated protection against Fusarium infection in garlic. Our results provide insights into the role of PR factors in A. sativum and may be useful for breeding programs to increase the resistance of Allium crops to Fusarium infections.
Collapse
|
27
|
Genome-Wide Identification and Expression of Chitinase Class I Genes in Garlic ( Allium sativum L.) Cultivars Resistant and Susceptible to Fusarium proliferatum. PLANTS 2021; 10:plants10040720. [PMID: 33917252 PMCID: PMC8068077 DOI: 10.3390/plants10040720] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Vegetables of the Allium genus are prone to infection by Fusarium fungi. Chitinases of the GH19 family are pathogenesis-related proteins inhibiting fungal growth through the hydrolysis of cell wall chitin; however, the information on garlic (Allium sativum L.) chitinases is limited. In the present study, we identified seven class I chitinase genes, AsCHI1–7, in the A. sativum cv. Ershuizao genome, which may have a conserved function in the garlic defense against Fusarium attack. The AsCHI1–7 promoters contained jasmonic acid-, salicylic acid-, gibberellins-, abscisic acid-, auxin-, ethylene-, and stress-responsive elements associated with defense against pathogens. The expression of AsCHI2, AsCHI3, and AsCHI7 genes was constitutive in Fusarium-resistant and -susceptible garlic cultivars and was mostly induced at the early stage of F. proliferatum infection. In roots, AsCHI2 and AsCHI3 mRNA levels were increased in the susceptible and decreased in the resistant cultivar, whereas in cloves, AsCHI7 and AsCHI5 expression was decreased in the susceptible but increased in the resistant plants, suggesting that these genes are involved in the garlic response to Fusarium proliferatum attack. Our results provide insights into the role of chitinases in garlic and may be useful for breeding programs to increase the resistance of Allium crops to Fusarium infections.
Collapse
|
28
|
Cheng H, Shao Z, Lu C, Duan D. Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses. BMC PLANT BIOLOGY 2021; 21:87. [PMID: 33568068 PMCID: PMC7874618 DOI: 10.1186/s12870-021-02849-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nitrogen-containing polysaccharide chitin is the second most abundant biopolymer on earth and is found in the cell walls of diatoms, where it serves as a scaffold for biosilica deposition. Diatom chitin is an important source of carbon and nitrogen in the marine environment, but surprisingly little is known about basic chitinase metabolism in diatoms. RESULTS Here, we identify and fully characterize 24 chitinase genes from the model centric diatom Thalassiosira pseudonana. We demonstrate that their expression is broadly upregulated under abiotic stresses, despite the fact that chitinase activity itself remains unchanged, and we discuss several explanations for this result. We also examine the potential transcriptional complexity of the intron-rich T. pseudonana chitinase genes and provide evidence for two separate tandem duplication events during their evolution. CONCLUSIONS Given the many applications of chitin and chitin derivatives in suture production, wound healing, drug delivery, and other processes, new insight into diatom chitin metabolism has both theoretical and practical value.
Collapse
Affiliation(s)
- Haomiao Cheng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China.
| | - Chang Lu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China.
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co Ltd, Qingdao, 266400, P. R. China.
| |
Collapse
|
29
|
Yang Y, Sossah FL, Li Z, Hyde KD, Li D, Xiao S, Fu Y, Yuan X, Li Y. Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Mycogone perniciosa. Front Microbiol 2021; 11:596719. [PMID: 33505368 PMCID: PMC7829358 DOI: 10.3389/fmicb.2020.596719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Mycogone perniciosa causes wet bubble disease in Agaricus bisporus and various Agaricomycetes species. In a previous work, we identified 41 GH18 chitinase genes and other pathogenicity-related genes in the genome of M. perniciosa Hp10. Chitinases are enzymes that degrade chitin, and they have diverse functions in nutrition, morphogenesis, and pathogenesis. However, these important genes in M. perniciosa have not been fully characterized, and their functions remain unclear. Here, we performed a genome-wide analysis of M. perniciosa GH18 genes and analyzed the transcriptome profiles and GH18 expression patterns in M. perniciosa during the time course of infection in A. bisporus. Phylogenetic analysis of the 41 GH18 genes with those of 15 other species showed that the genes were clustered into three groups and eight subgroups based on their conserved domains. The GH18 genes clustered in the same group shared different gene structures but had the same protein motifs. All GH18 genes were localized in different organelles, were unevenly distributed on 11 contigs, and had orthologs in the other 13 species. Twelve duplication events were identified, and these had undergone both positive and purifying selection. The transcriptome analyses revealed that numerous genes, including transporters, cell wall degrading enzymes (CWDEs), cytochrome P450, pathogenicity-related genes, secondary metabolites, and transcription factors, were significantly upregulated at different stages of M. perniciosa Hp10 infection of A. bisporus. Twenty-three out of the 41 GH18 genes were differentially expressed. The expression patterns of the 23 GH18 genes were different and were significantly expressed from 3 days post-inoculation of M. perniciosa Hp10 in A. bisporus. Five differentially expressed GH18 genes were selected for RT-PCR and gene cloning to verify RNA-seq data accuracy. The results showed that those genes were successively expressed in different infection stages, consistent with the previous sequencing results. Our study provides a comprehensive analysis of pathogenicity-related and GH18 chitinase genes’ influence on M. perniciosa mycoparasitism of A. bisporus. Our findings may serve as a basis for further studies of M. perniciosa mycoparasitism, and the results have potential value for improving resistance in A. bisporus and developing efficient disease-management strategies to mitigate wet bubble disease.
Collapse
Affiliation(s)
- Yang Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Frederick Leo Sossah
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai' an, China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Dan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Shijun Xiao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yongping Fu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xiaohui Yuan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
30
|
Li S, Hai J, Wang Z, Deng J, Liang T, Su L, Liu D. Lilium regale Wilson WRKY2 Regulates Chitinase Gene Expression During the Response to the Root Rot Pathogen Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2021; 12:741463. [PMID: 34646290 PMCID: PMC8503523 DOI: 10.3389/fpls.2021.741463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 05/17/2023]
Abstract
Root rot, mainly caused by Fusarium oxysporum, is the most destructive disease affecting lily (Lilium spp.) production. The WRKY transcription factors (TFs) have important roles during plant immune responses. To clarify the effects of WRKY TFs on plant defense responses to pathogens, a WRKY gene (LrWRKY2) was isolated from Lilium regale Wilson, which is a wild lily species highly resistant to F. oxysporum. The expression of LrWRKY2, which encodes a nuclear protein, is induced by various hormones (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) and by F. oxysporum infection. In this study, LrWRKY2-overexpressing transgenic tobacco plants were more resistant to F. oxysporum than the wild-type plants. Moreover, the expression levels of jasmonic acid biosynthetic pathway-related genes (NtAOC, NtAOS, NtKAT, NtPACX, NtJMT, NtOPR, and NtLOX), pathogenesis-related genes (NtCHI, NtGlu2, and NtPR-1), and antioxidant stress-related superoxide dismutase genes (NtSOD, NtCu-ZnSOD, and MnSOD) were significantly up-regulated in LrWRKY2 transgenic tobacco lines. Additionally, the transient expression of a hairpin RNA targeting LrWRKY2 increased the susceptibility of L. regale scales to F. oxysporum. Furthermore, an F. oxysporum resistance gene (LrCHI2) encoding a chitinase was isolated from L. regale. An electrophoretic mobility shift assay demonstrated that LrWRKY2 can bind to the LrCHI2 promoter containing the W-box element. Yeast one-hybrid assay results suggested that LrWRKY2 can activate LrCHI2 transcription. An examination of transgenic tobacco transformed with LrWRKY2 and the LrCHI2 promoter revealed that LrWRKY2 activates the LrCHI2 promoter. Therefore, in L. regale, LrWRKY2 is an important positive regulator that contributes to plant defense responses to F. oxysporum by modulating LrCHI2 expression.
Collapse
|
31
|
Egorova AM, Wielsch N, Tarchevsky IA. Salicylate-Induced Chitinases in Pea Roots. DOKL BIOCHEM BIOPHYS 2020; 494:240-243. [PMID: 33119825 DOI: 10.1134/s1607672920050063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022]
Abstract
Three proteins induced by salicylic acid were revealed in pea roots. These proteins were identified as chitinase isozymes belonging to the glycoside hydrolases family 18. The PsCam050724 transcript encoding at least one of these isoforms was found, allowing us to determine its primary structure, which lacks the signal peptide.
Collapse
Affiliation(s)
- A M Egorova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, FRC, Kazan, Russia.
| | - N Wielsch
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - I A Tarchevsky
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, FRC, Kazan, Russia
| |
Collapse
|