1
|
Dejgaard TF, Frandsen CS, Kielgast U, Størling J, Overgaard AJ, Svane MS, Olsen MH, Thorsteinsson B, Andersen HU, Krarup T, Holst JJ, Madsbad S. Liraglutide enhances insulin secretion and prolongs the remission period in adults with newly diagnosed type 1 diabetes (the NewLira study): A randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2024; 26:4905-4915. [PMID: 39192527 DOI: 10.1111/dom.15889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
AIM To test the effect of the glucagon-like peptide-1 receptor agonist, liraglutide, on residual beta-cell function in adults with newly diagnosed type 1 diabetes. MATERIALS AND METHODS In a multicentre, double-blind, parallel-group trial, adults with newly diagnosed type 1 diabetes and stimulated C-peptide of more than 0.2 nmol/L were randomized (1:1) to 1.8-mg liraglutide (Victoza) or placebo once daily for 52 weeks with 6 weeks of follow-up with only insulin treatment. The primary endpoint was the between-group difference in C-peptide area under the curve (AUC) following a liquid mixed-meal test after 52 weeks of treatment. RESULTS Sixty-eight individuals were randomized. After 52 weeks, the 4-hour AUC C-peptide response was maintained with liraglutide, but decreased with placebo (P = .002). Six weeks after end-of-treatment, C-peptide AUCs were similar for liraglutide and placebo. The average required total daily insulin dose decreased from 0.30 to 0.23 units/kg/day with liraglutide, but increased from 0.29 to 0.43 units/kg/day in the placebo group at week 52 (P < .001). Time without the need for insulin treatment was observed in 13 versus two patients and lasted for 22 weeks (from 3 to 52 weeks) versus 6 weeks (from 4 to 8 weeks) on average for liraglutide and placebo, respectively. Patients treated with liraglutide had fewer episodes of hypoglycaemia compared with placebo-treated patients. The adverse events with liraglutide were predominantly gastrointestinal and transient. CONCLUSIONS Treatment with liraglutide improves residual beta-cell function and reduces the dose of insulin during the first year after diagnosis. Beta-cell function was similar at 6 weeks postliraglutide treatment.
Collapse
Affiliation(s)
- Thomas F Dejgaard
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Endocrinology and Nephrology, Copenhagen University Hospital Nordsjaelland, Hilleroed, Denmark
| | - Christian S Frandsen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Urd Kielgast
- Department of Endocrinology, Copenhagen University Hospital Zealand, Koege, Denmark
| | - Joachim Størling
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Markus Harboe Olsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Birger Thorsteinsson
- Department of Endocrinology and Nephrology, Copenhagen University Hospital Nordsjaelland, Hilleroed, Denmark
| | | | - Thure Krarup
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
2
|
Svensson CH, Fabricius TW, Verhulst CEM, Kristensen PL, Tack CJ, Heller SR, Amiel SA, McCrimmon RJ, Evans M, Holst JJ, de Galan BE, Pedersen-Bjergaard U. Association between recent exposure to continuous glucose monitoring-recorded hypoglycaemia and counterregulatory and symptom responses to subsequent controlled hypoglycaemia in people with type 1 diabetes. Diabetes Obes Metab 2024; 26:3213-3222. [PMID: 38774963 DOI: 10.1111/dom.15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 07/10/2024]
Abstract
AIM Experimental hypoglycaemia blunts the counterregulatory hormone and symptom responses to a subsequent episode of hypoglycaemia. In this study, we aimed to assess the associations between antecedent exposure and continuous glucose monitoring (CGM)-recorded hypoglycaemia during a 1-week period and the counterregulatory responses to subsequent experimental hypoglycaemia in people with type 1 diabetes. MATERIALS AND METHODS Forty-two people with type 1 diabetes (20 females, mean ± SD glycated haemoglobin 7.8% ± 1.0%, diabetes duration median (interquartile range) 22.0 (10.5-34.9) years, 29 CGM users, and 19 with impaired awareness of hypoglycaemia) wore an open intermittently scanned CGM for 1 week to detect hypoglycaemic exposure before a standardized hyperinsulinaemic-hypoglycaemic [2.8 ± 0.1 mmol/L (50.2 ± 2.3 mg/dl)] glucose clamp. Symptom responses and counterregulatory hormones were measured during the clamp. The study is part of the HypoRESOLVE project. RESULTS CGM-recorded hypoglycaemia in the week before the clamp was negatively associated with adrenaline response [β -0.09, 95% CI (-0.16, -0.02) nmol/L, p = .014], after adjusting for CGM use, awareness of hypoglycaemia, glycated haemoglobin and total daily insulin dose. This was driven by level 2 hypoglycaemia [<3.0 mmol/L (54 mg/dl)] [β -0.21, 95% CI (-0.41, -0.01) nmol/L, p = .034]. CGM-recorded hypoglycaemia was negatively associated with total, autonomic, and neuroglycopenic symptom responses, but these associations were lost after adjusting for potential confounders. CONCLUSIONS Recent exposure to CGM-detected hypoglycaemia was independently associated with an attenuated adrenaline response to experimental hypoglycaemia in people with type 1 diabetes.
Collapse
Affiliation(s)
- Cecilie H Svensson
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
| | - Therese W Fabricius
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
| | - Clementine E M Verhulst
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter L Kristensen
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Simon R Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Stephanie A Amiel
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Mark Evans
- Welcome/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Horie I, Abiru N. Advances in clinical research on glucagon. Diabetol Int 2024; 15:353-361. [PMID: 39101175 PMCID: PMC11291794 DOI: 10.1007/s13340-024-00705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 08/06/2024]
Abstract
We are now celebrating the 100th anniversary of the discovery of an important pancreatic hormone, glucagon. Glucagon is historically described as a diabetogenic hormone elevating glucose levels via increases in insulin resistance and hepatic gluconeogenesis. The more recently identified actions of glucagon include not only its pathophysiologic effects on glucose metabolism but also its significant roles in amino-acid metabolism in the liver. The possibility that abnormalities in α-cells' secretion of glucagon in metabolic disorders are a compensatory adaptation for the maintenance of metabolic homeostasis is another current issue. However, the clinical research concerning glucagon has been considerably behind the advances in basic research due to the lack of suitable methodology for obtaining precise measurements of plasma glucagon levels in humans. The precise physiology of glucagon secretory dynamics in individuals with metabolic dysfunction (including diabetes) has been clarified since the development in 2014 of a quantitative measurement technique for glucagon. In this review, we summarize the advances in the clinical research concerning glucagon, including those of our studies and the relevant literature.
Collapse
Affiliation(s)
- Ichiro Horie
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
- Medical Health Examination Center, Midori Clinic, 32-20 Joei-Machi, Nagasaki, 852-8034 Japan
| |
Collapse
|
4
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
5
|
Fabricius TW, Verhulst CEM, Kristensen PL, Holst JJ, Tack CJ, McCrimmon RJ, Heller SR, Evans ML, de Galan BE, Pedersen-Bjergaard U. Counterregulatory hormone and symptom responses to hypoglycaemia in people with type 1 diabetes, insulin-treated type 2 diabetes or without diabetes: the Hypo-RESOLVE hypoglycaemic clamp study. Acta Diabetol 2024; 61:623-633. [PMID: 38376580 PMCID: PMC11055751 DOI: 10.1007/s00592-024-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/13/2024] [Indexed: 02/21/2024]
Abstract
AIM The sympathetic nervous and hormonal counterregulatory responses to hypoglycaemia differ between people with type 1 and type 2 diabetes and may change along the course of diabetes, but have not been directly compared. We aimed to compare counterregulatory hormone and symptom responses to hypoglycaemia between people with type 1 diabetes, insulin-treated type 2 diabetes and controls without diabetes, using a standardised hyperinsulinaemic-hypoglycaemic clamp. MATERIALS We included 47 people with type 1 diabetes, 15 with insulin-treated type 2 diabetes, and 32 controls without diabetes. Controls were matched according to age and sex to the people with type 1 diabetes or with type 2 diabetes. All participants underwent a hyperinsulinaemic-euglycaemic-(5.2 ± 0.4 mmol/L)-hypoglycaemic-(2.8 ± 0.13 mmol/L)-clamp. RESULTS The glucagon response was lower in people with type 1 diabetes (9.4 ± 0.8 pmol/L, 8.0 [7.0-10.0]) compared to type 2 diabetes (23.7 ± 3.7 pmol/L, 18.0 [12.0-28.0], p < 0.001) and controls (30.6 ± 4.7, 25.5 [17.8-35.8] pmol/L, p < 0.001). The adrenaline response was lower in type 1 diabetes (1.7 ± 0.2, 1.6 [1.3-5.2] nmol/L) compared to type 2 diabetes (3.4 ± 0.7, 2.6 [1.3-5.2] nmol/L, p = 0.001) and controls (2.7 ± 0.4, 2.8 [1.4-3.9] nmol/L, p = 0.012). Growth hormone was lower in people with type 2 diabetes than in type 1 diabetes, at baseline (3.4 ± 1.6 vs 7.7 ± 1.3 mU/L, p = 0.042) and during hypoglycaemia (24.7 ± 7.1 vs 62.4 ± 5.8 mU/L, p = 0.001). People with 1 diabetes had lower overall symptom responses than people with type 2 diabetes (45.3 ± 2.7 vs 58.7 ± 6.4, p = 0.018), driven by a lower neuroglycopenic score (27.4 ± 1.8 vs 36.7 ± 4.2, p = 0.012). CONCLUSION Acute counterregulatory hormone and symptom responses to experimental hypoglycaemia are lower in people with type 1 diabetes than in those with long-standing insulin-treated type 2 diabetes and controls.
Collapse
Affiliation(s)
- Therese W Fabricius
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark.
| | - Clementine E M Verhulst
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter L Kristensen
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rory J McCrimmon
- Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Simon R Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Mark L Evans
- Welcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Maastricht UMC+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Ulrik Pedersen-Bjergaard
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Zilstorff DB, Richter MM, Hannibal J, Jørgensen HL, Sennels HP, Wewer Albrechtsen NJ. Secretion of glucagon, GLP-1 and GIP may be affected by circadian rhythm in healthy males. BMC Endocr Disord 2024; 24:38. [PMID: 38481208 PMCID: PMC10938734 DOI: 10.1186/s12902-024-01566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Glucagon is secreted from pancreatic alpha cells in response to low blood glucose and increases hepatic glucose production. Furthermore, glucagon enhances hepatic protein and lipid metabolism during a mixed meal. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from gut endocrine cells during meals and control glucose homeostasis by potentiating insulin secretion and inhibiting food intake. Both glucose homeostasis and food intake have been reported to be affected by circadian rhythms and vice versa. In this study, we investigated whether the secretion of glucagon, GLP-1 and GIP was affected by circadian rhythms. METHODS A total of 24 healthy men with regular sleep schedules were examined for 24 h at the hospital ward with 15 h of wakefulness and 9 h of sleep. Food intake was standardized, and blood samples were obtained every third hour. Plasma concentrations of glucagon, GLP-1 and GIP were measured, and data were analyzed by rhythmometric statistical methods. Available data on plasma glucose and plasma C-peptide were also included. RESULTS Plasma concentrations of glucagon, GLP-1, GIP, C-peptide and glucose fluctuated with a diurnal 24-h rhythm, with the highest levels during the day and the lowest levels during the night: glucagon (p < 0.0001, peak time 18:26 h), GLP-1 (p < 0.0001, peak time 17:28 h), GIP (p < 0.0001, peak time 18:01 h), C-peptide (p < 0.0001, peak time 17.59 h), and glucose (p < 0.0001, peak time 23:26 h). As expected, we found significant correlations between plasma concentrations of C-peptide and GLP-1 and GIP but did not find correlations between glucose concentrations and concentrations of glucagon, GLP-1 and GIP. CONCLUSIONS Our results demonstrate that under meal conditions that are similar to that of many free-living individuals, plasma concentrations of glucagon, GLP-1 and GIP were observed to be higher during daytime and evening than overnight. These findings underpin disturbed circadian rhythm as a potential risk factor for diabetes and obesity. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06166368. Registered 12 December 2023.
Collapse
Affiliation(s)
- Dorte B Zilstorff
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik L Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
| | - Henriette P Sennels
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark.
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Verhulst CEM, van Heck JIP, Fabricius TW, Stienstra R, Teerenstra S, McCrimmon RJ, Tack CJ, Pedersen-Bjergaard U, de Galan BE. The impact of prior exposure to hypoglycaemia on the inflammatory response to a subsequent hypoglycaemic episode. Cardiovasc Diabetol 2024; 23:55. [PMID: 38331900 PMCID: PMC10854178 DOI: 10.1186/s12933-023-02095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Hypoglycaemia has been shown to induce a systemic pro-inflammatory response, which may be driven, in part, by the adrenaline response. Prior exposure to hypoglycaemia attenuates counterregulatory hormone responses to subsequent hypoglycaemia, but whether this effect can be extrapolated to the pro-inflammatory response is unclear. Therefore, we investigated the effect of antecedent hypoglycaemia on inflammatory responses to subsequent hypoglycaemia in humans. METHODS Healthy participants (n = 32) were recruited and randomised to two 2-h episodes of either hypoglycaemia or normoglycaemia on day 1, followed by a hyperinsulinaemic hypoglycaemic (2.8 ± 0.1 mmol/L) glucose clamp on day 2. During normoglycaemia and hypoglycaemia, and after 24 h, 72 h and 1 week, blood was drawn to determine circulating immune cell composition, phenotype and function, and 93 circulating inflammatory proteins including hs-CRP. RESULTS In the group undergoing antecedent hypoglycaemia, the adrenaline response to next-day hypoglycaemia was lower compared to the control group (1.45 ± 1.24 vs 2.68 ± 1.41 nmol/l). In both groups, day 2 hypoglycaemia increased absolute numbers of circulating immune cells, of which lymphocytes and monocytes remained elevated for the whole week. Also, the proportion of pro-inflammatory CD16+-monocytes increased during hypoglycaemia. After ex vivo stimulation, monocytes released more TNF-α and IL-1β, and less IL-10 in response to hypoglycaemia, whereas levels of 19 circulating inflammatory proteins, including hs-CRP, increased for up to 1 week after the hypoglycaemic event. Most of the inflammatory responses were similar in the two groups, except the persistent pro-inflammatory protein changes were partly blunted in the group exposed to antecedent hypoglycaemia. We did not find a correlation between the adrenaline response and the inflammatory responses during hypoglycaemia. CONCLUSION Hypoglycaemia induces an acute and persistent pro-inflammatory response at multiple levels that occurs largely, but not completely, independent of prior exposure to hypoglycaemia. Clinical Trial information Clinicaltrials.gov no. NCT03976271 (registered 5 June 2019).
Collapse
Affiliation(s)
- Clementine E M Verhulst
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Julia I P van Heck
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Therese W Fabricius
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Steven Teerenstra
- Section Biostatistics, Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Hillerød, Denmark
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre, MUMC+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Narayanan N, Sahoo J, Kamalanathan S, Sagili H, Zachariah B, Naik D, Roy A, Merugu C. Insulin Sensitivity, Islet Cell Function, and Incretin Axis in Pregnant Women With and Without Gestational Diabetes Mellitus. Indian J Endocrinol Metab 2024; 28:71-79. [PMID: 38533283 PMCID: PMC10962776 DOI: 10.4103/ijem.ijem_7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/29/2023] [Accepted: 09/04/2023] [Indexed: 03/28/2024] Open
Abstract
Introduction The aim of this study was to compare insulin sensitivity, islet cell function, and incretin axes in pregnant subjects with GDM and normal healthy controls. Methods Pregnant women at 24 to 28 weeks of gestation were subjected to a 75 g oral glucose tolerance test (OGTT). Samples for glucose, insulin, glucagon, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) were collected at 0, 30, 60, and 120 min during the OGTT. The Matsuda index (MI) and insulin secretion and sensitivity index-2 (ISSI-2) were assessed. The glucagon suppression index (GSI) was calculated along with the area under the curve (AUC) for glucose, insulin, glucagon, GLP-1, and GIP. Results A total of 48 pregnant women (25 GDM and 23 controls) were finally analysed. The MI and ISSI-2 were low in the GDM group [4.31 vs. 5.42; P = 0.04], [1.99 vs. 3.18, P ≤ 0.01] respectively). Total AUCglucagon was higher in the GDM group (7411.7 vs. 6320.1, P = 0.02). GSI30 was significantly lower in the GDM group (-62.6 vs. -24.7, P = 0.03). Fasting GLP-1 levels were low in GDM women (17.3 vs. 22.2, P = 0.04). The total AUCGLP-1 positively correlated with total GSI in the GDM group. Conclusion Asian-Indian GDM women have high insulin insensitivity, islet cell dysfunction, and low fasting GLP-1. Incretin axis dysfunction plays a potential role in their islet cell dysfunction.
Collapse
Affiliation(s)
- Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Haritha Sagili
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Bobby Zachariah
- Department of Biochemistry, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Ayan Roy
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chandhana Merugu
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
9
|
Rasmussen C, Richter MM, Jensen NJ, Heinz N, Hartmann B, Holst JJ, Kjeldsen SAS, Wewer Albrechtsen NJ. Preanalytical impact on the accuracy of measurements of glucagon, GLP-1 and GIP in clinical trials. Scand J Clin Lab Invest 2023; 83:591-598. [PMID: 38127365 DOI: 10.1080/00365513.2023.2294470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Plasma concentrations of glucagon, GLP-1 and GIP are reported in numerous clinical trials as outcome measures but preanalytical guidelines are lacking. We addressed the impact of commonly used blood containers in metabolic research on measurements of glucagon, GLP-1 and GIP in humans. METHODS Seventeen overweight individuals were subjected to an overnight fast followed by an intravenous infusion of amino acids to stimulate hormonal secretion. Blood was sampled into five containers: EDTA-coated tubes supplemented with DMSO (control), a neprilysin inhibitor, aprotinin (a kallikrein inhibitor) or a DPP-4 inhibitor, and P800 tubes. Plasma was kept on ice before and after centrifugation and stored at -80 Celsius until batch analysis using validated sandwich ELISAs or radioimmunoassays (RIA). RESULTS Measures of fasting plasma glucagon did not depend on sampling containers, whether measured by ELISA or RIA. Amino acid-induced hyperglucagonemia was numerically higher when blood was collected into P800 tubes or tubes with aprotinin. The use of p800 tubes resulted in higher concentrations of GLP-1 by RIA compared to control tubes but not for measurements with sandwich ELISA. Plasma concentrations of GIP measured by ELISA were higher in control tubes and negatively affected by P800 and the addition of aprotinin. CONCLUSIONS The choice of blood containers impacts on measurements of plasma concentrations of glucagon, GLP-1 and GIP, and based on this study, we recommend using EDTA-coated tubes without protease inhibitors or P800 tubes for measurements of glucagon, GLP-1 and GIP in clinical trials.
Collapse
Affiliation(s)
- Christine Rasmussen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole J Jensen
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Niklas Heinz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Al-Sabah S, Jamal MH, Al-Khaledi G, Dsouza C, AlOtaibi F, Al-Ali W, Cherian P, Al-Khairi I, Ali H, Abu-Farha M, Abubaker J, Al-Mulla F. Increased Glucagon Immunoreactivity in a Rat Model of Diet-induced Obesity following Sleeve Gastrectomy. Med Princ Pract 2023; 32:000533746. [PMID: 37634505 PMCID: PMC10659591 DOI: 10.1159/000533746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE Bariatric surgery is currently the most effective treatment for obesity, and procedures such as Roux-en Y gastric bypass and sleeve gastrectomy (SG) also result in rapid improvements in insulin sensitivity and glucose tolerance. In addition, these procedures cause changes in the secretion of various gut-derived hormones. The role these hormones play in the mechanism of the beneficial effects of bariatric surgery is still debated, but nonetheless, their importance provides inspiration for novel obesity-targeted pharmacotherapies. METHODS Male Sprague Dawley rats were fed either regular chow or a cafeteria diet to induce obesity. A sub-group of the obese animals then underwent either sham surgery or SG. RESULTS Following a 4-week recovery period, SG rats weighed significantly less than obese or sham-operated rats. Improvements in glucose tolerance and insulin sensitivity also occurred in the SG group, but these were not always statistically significant. We measured the intracellular lipid content of liver samples and found that obese rats showed signs of non-alcoholic fatty liver disease, which were significantly ameliorated by SG. There were significantly higher glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) responses to a standard mixed meal in the SG group, as well as paradoxically higher glucagon secretion. CONCLUSION These data highlight the need for more specific anti-glucagon antibodies to characterize the changes in proglucagon-derived peptide concentrations that occur following SG. Further studies are required to determine whether these peptides contribute to the therapeutic effects of SG.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mohammad H. Jamal
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
- Department of Organ Transplant, College of Medicine, Kuwait City, Kuwait
| | - Ghanim Al-Khaledi
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Carol Dsouza
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fatemah AlOtaibi
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hamad Ali
- Department of Medical Laboratory Sciences, College of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
11
|
Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, Dean ED, Campbell JE, Bloom SR, Tan TMM, Knop FK, Müller TD. 100 years of glucagon and 100 more. Diabetologia 2023; 66:1378-1394. [PMID: 37367959 DOI: 10.1007/s00125-023-05947-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
The peptide hormone glucagon, discovered in late 1922, is secreted from pancreatic alpha cells and is an essential regulator of metabolic homeostasis. This review summarises experiences since the discovery of glucagon regarding basic and clinical aspects of this hormone and speculations on the future directions for glucagon biology and glucagon-based therapies. The review was based on the international glucagon conference, entitled 'A hundred years with glucagon and a hundred more', held in Copenhagen, Denmark, in November 2022. The scientific and therapeutic focus of glucagon biology has mainly been related to its role in diabetes. In type 1 diabetes, the glucose-raising properties of glucagon have been leveraged to therapeutically restore hypoglycaemia. The hyperglucagonaemia evident in type 2 diabetes has been proposed to contribute to hyperglycaemia, raising questions regarding underlying mechanism and the importance of this in the pathogenesis of diabetes. Mimicry experiments of glucagon signalling have fuelled the development of several pharmacological compounds including glucagon receptor (GCGR) antagonists, GCGR agonists and, more recently, dual and triple receptor agonists combining glucagon and incretin hormone receptor agonism. From these studies and from earlier observations in extreme cases of either glucagon deficiency or excess secretion, the physiological role of glucagon has expanded to also involve hepatic protein and lipid metabolism. The interplay between the pancreas and the liver, known as the liver-alpha cell axis, reflects the importance of glucagon for glucose, amino acid and lipid metabolism. In individuals with diabetes and fatty liver diseases, glucagon's hepatic actions may be partly impaired resulting in elevated levels of glucagonotropic amino acids, dyslipidaemia and hyperglucagonaemia, reflecting a new, so far largely unexplored pathophysiological phenomenon termed 'glucagon resistance'. Importantly, the hyperglucagonaemia as part of glucagon resistance may result in increased hepatic glucose production and hyperglycaemia. Emerging glucagon-based therapies show a beneficial impact on weight loss and fatty liver diseases and this has sparked a renewed interest in glucagon biology to enable further pharmacological pursuits.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Filip K Knop
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
12
|
Nguyen VL, Tuckwell P, Ireland A, Fitzpatrick M. A liquid chromatography tandem mass spectrometry method for plasma glucagon. Anal Biochem 2023; 675:115229. [PMID: 37393974 DOI: 10.1016/j.ab.2023.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Glucagon is a peptide involved in controlling the body's blood glucose levels. The majority of analytical methods used for its quantitation are based on immunoassays that suffer from cross-reactivity with other peptides. For accurate routine analysis a liquid chromatography tandem mass spectrometry (LC-MSMS) was developed. Glucagon was extracted from plasma samples by a combination of protein precipitation using ethanol and mixed anion exchange solid phase extraction. Linearity for glucagon was above 0.99 (r2) up to a concentration range of 771 ng/L with a lower limit of quantification established at 19 ng/L. Precision of the method was below 9% (coefficient of variation). Recovery was 93%. Correlations with the existing immunoassay displayed a significant negative bias.
Collapse
Affiliation(s)
- Van Long Nguyen
- NSW Health Pathology, Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia; Natural and Gentle Edge Company, Emu Plains, NSW, 2750, Australia.
| | - Phillip Tuckwell
- NSW Health Pathology, Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia; Natural and Gentle Edge Company, Emu Plains, NSW, 2750, Australia
| | - Andrea Ireland
- NSW Health Pathology, Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Michael Fitzpatrick
- NSW Health Pathology, Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| |
Collapse
|
13
|
Hædersdal S, Andersen A, Knop FK, Vilsbøll T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol 2023; 19:321-335. [PMID: 36932176 DOI: 10.1038/s41574-023-00817-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
Insulin and glucagon exert opposing effects on glucose metabolism and, consequently, pancreatic islet β-cells and α-cells are considered functional antagonists. The intra-islet hypothesis has previously dominated the understanding of glucagon secretion, stating that insulin acts to inhibit the release of glucagon. By contrast, glucagon is a potent stimulator of insulin secretion and has been used to test β-cell function. Over the past decade, α-cells have received increasing attention due to their ability to stimulate insulin secretion from neighbouring β-cells, and α-cell-β-cell crosstalk has proven central for glucose homeostasis in vivo. Glucagon is not only the counter-regulatory hormone to insulin in glucose metabolism but also glucagon secretion is more susceptible to changes in the plasma concentration of certain amino acids than to changes in plasma concentrations of glucose. Thus, the actions of glucagon also include a central role in amino acid turnover and hepatic fat oxidation. This Review provides insights into glucagon secretion, with a focus on the local paracrine actions on glucagon and the importance of α-cell-β-cell crosstalk. We focus on dysregulated glucagon secretion in obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus. Lastly, the future potential of targeting hyperglucagonaemia and applying dual and triple receptor agonists with glucagon receptor-activating properties in combination with incretin hormone receptor agonism is discussed.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Holst JJ. Glucagon 100 years. Important, but still enigmatic. Peptides 2023; 161:170942. [PMID: 36626940 DOI: 10.1016/j.peptides.2023.170942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Glucagon was discovered in 1923 as a contaminant of early insulin preparations, and its hormonal status was not established until its structure was established in the 1950 s and when the first radioimmunoassay was developed by Roger Unger, providing information about its secretion. Its role in hepatic glucose production was soon established and it was proposed as an essential factor in diabetic hyperglycemia. However, even today a number of issues remain unsolved. For instance, the assays for glucagon are not straightforward, although the development of sandwich ELISAs allowed reasonably accurate measurements also in rodents. The tools for evaluation of glucagon physiology include pancreatectomy, but studies in both humans and experimental animals pointed towards extrapancreatic sources of glucagon. It was demonstrated that glucagon receptor knockout animals do not develop diabetes upon destruction of their beta cells with streptozotocin. However, in patients with type 1 diabetes, glucagon antagonists do not normalize glucose levels; but antagonists do lower glucose levels in patients with in type 2 diabetes. Recent studies in animals and humans have confirmed the essential role of glucagon in glucose metabolism, but have suggested that it may be at least equally important for amino acid and lipid metabolism. In spite of the 100 years, glucagon research is very much alive.
Collapse
Affiliation(s)
- Jens Juul Holst
- NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
15
|
Abstract
Plasma glucose is tightly regulated via the secretion of the two glucose-regulating hormones insulin and glucagon. Situated next to the insulin-secreting β-cells, the α-cells produce and secrete glucagon-one of the body's few blood glucose-increasing hormones. Diabetes is a bihormonal disorder, resulting from both inadequate insulin secretion and dysregulation of glucagon. The year 2023 marks the 100th anniversary of the discovery of glucagon, making it particularly timely to highlight the roles of this systemic metabolic messenger in health and disease.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Metabolic Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Gothenburg, Sweden.
| |
Collapse
|
16
|
Holst JJ. Glucagon and other proglucagon-derived peptides in the pathogenesis of obesity. Front Nutr 2022; 9:964406. [PMID: 35990325 PMCID: PMC9386348 DOI: 10.3389/fnut.2022.964406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Because of differential processing of the hormone precursor, proglucagon, numerous peptide products are released from the pancreatic alpha cells and the intestinal L-cells in which the (pro)glucagon gene is expressed. Of particular interest in relation to obesity are glucagon from the pancreas and oxyntomodulin and GLP-1 from the gut, all of which inhibit food intake, but the other products are also briefly discussed, because knowledge about these is required for selection and evaluation of the methods for measurement of the hormones. The distal intestinal L-cells also secrete the appetite-inhibiting hormone PYY. Characteristics of the secretion of the pancreatic and intestinal products are described, and causes of the hypersecretion of glucagon in obesity and type 2 diabetes are discussed. In contrast, the secretion of the products of the L-cells is generally impaired in obesity, raising questions about their role in the development of obesity. It is concluded that the impairment probably is secondary to obesity, but the lower plasma levels may contribute to the development.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NovoNordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Rokamp KZ, Holst JJ, Olsen NV, Dela F, Secher NH, Juul A, Faber J, Wiberg S, Thorsteinsson B, Pedersen-Bjergaard U. Impact of Polymorphism in the β2-Receptor Gene on Metabolic Responses to Repeated Hypoglycemia in Healthy Humans. J Clin Endocrinol Metab 2022; 107:e3194-e3205. [PMID: 35552407 DOI: 10.1210/clinem/dgac297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The Arg16 variant in the β2-receptor gene is associated with increased risk of severe hypoglycemia in subjects with type 1 diabetes mellitus. OBJECTIVE We hypothesized that the Arg16 variant is associated with decreased metabolic and symptomatic responses to recurrent hypoglycemia. METHODS Twenty-five healthy male subjects selected according to ADRB2 genotype and being homozygous for either Arg16 (AA; n = 13) or Gly16 (GG; n = 12) participated in 2 consecutive trial days with 3 periods of hypoglycemia (H1-H3) induced by a hyperinsulinemic hypoglycemic clamp. The main outcome measure was mean glucose infusion rate (GIR) during H1-H3. RESULTS During H1-H3, there was no difference between AA or GG subjects in GIR, counter-regulatory hormones (glucagon, epinephrine, cortisol, growth hormone), or substrate levels of lactate, glycerol, and free fatty acids (FFAs), and no differences in symptom response score or cognitive performance (trail making test, Stroop test). At H3, lactate response was reduced in both genotype groups, but AA subjects had decreased response (mean ± standard error of the mean of area under the curve) of glycerol (-13.1 ± 3.8 μmol L-1 hours; P = .0052), FFA (-30.2 ± 11.1 μmol L-1 hours; P = .021), and β-hydroxybutyrate (-0.008 ± 0.003 mmol L-1 hour; P = .027), while in GG subjects alanine response was increased (negative response values) (-53.9 ± 20.6 μmol L-1 hour; P = .024). CONCLUSION There was no difference in GIR between genotype groups, but secondary outcomes suggest a downregulation of the lipolytic and β-hydroxybutyrate responses to recurrent hypoglycemia in AA subjects, in contrast to the responses in GG subjects.
Collapse
Affiliation(s)
- Kim Zillo Rokamp
- Endocrine Section, Department of Endocrinology and Nephrology, Copenhagen University Hospital, Nordsjællands Hospital, Hillerød, Denmark
- Department of Anaesthesia, Zealand University Hospital, Køge, Denmark
- Department of Neuroanaesthesia, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Departments of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Niels V Olsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Biomedical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Niels H Secher
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Departments of Anaesthesia, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Faber
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Sebastian Wiberg
- Department of Anaesthesia, Zealand University Hospital, Køge, Denmark
| | - Birger Thorsteinsson
- Endocrine Section, Department of Endocrinology and Nephrology, Copenhagen University Hospital, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Pedersen-Bjergaard
- Endocrine Section, Department of Endocrinology and Nephrology, Copenhagen University Hospital, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Perakakis N, Kokkinos A, Angelidi AM, Tsilingiris D, Gavrieli A, Yannakoulia M, Tentolouris N, Mantzoros CS. Changes in circulating levels of five proglucagon-derived peptides in response to intravenous or oral administration of glucose and lipids and in response to a mixed-meal in subjects with normal weight, overweight, and obesity. Clin Nutr 2022; 41:1969-1976. [PMID: 35961260 DOI: 10.1016/j.clnu.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
|
19
|
Assessment of Two Different Glucagon Assays in Healthy Individuals and Type 1 and Type 2 Diabetes Patients. Biomolecules 2022; 12:biom12030466. [PMID: 35327658 PMCID: PMC8946514 DOI: 10.3390/biom12030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Methods for glucagon analysis suffered in the past from lack of specificity and a narrow sensitivity range, which has led to inaccurate results and to the suggestion that type 1 diabetes (T1D) and type 2 diabetes (T2D) patients have elevated fasting glucagon levels. However, the availability of more specific and more sensitive methods to detect intact glucagon has shown that actual glucagon levels are lower than previously assumed. This study aimed to characterize fasting plasma glucagon levels in healthy individuals and T1D and T2D patients with two different glucagon assays. The study included 20 healthy individuals, 20 T1D and 20 T2D patients. Blood was collected under fasting conditions. A double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) and a conventional radioimmunoassay (RIA) were used. A significant difference in fasting glucagon levels between healthy individuals and T2D was observed by ELISA, but not by RIA. ELISA also yielded lower glucagon levels in healthy individuals than in T1D and T2D patients which RIA did not. RIA produced significantly (p = 0.0001) higher overall median glucagon values than ELISA in a pooled analysis. These results underline the notion that the choice of selective laboratory methods is highly relevant for mechanistic endocrine research.
Collapse
|
20
|
Chai S, Zhang R, Zhang Y, Carr RD, Zheng Y, Rajpathak S, Ji L. Effect of dipeptidyl peptidase-4 inhibitors on postprandial glucagon level in patients with type 2 diabetes mellitus: A systemic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:994944. [PMID: 36313782 PMCID: PMC9597445 DOI: 10.3389/fendo.2022.994944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Hyperglucagonemia occurs in the pathogenesis of type 2 diabetes mellitus (T2DM). In this meta-analysis, we summarized the effects of DPP4 inhibitors on glucagon levels in patients with T2DM. MATERIALS AND METHODS Randomized controlled trials (RCTs) comparing the influence of DPP4 inhibitors on circulating glucagon levels with placebo or other oral antidiabetic drugs (OADs) in patients with T2DM were identified by searches of Medline (PubMed), Embase (Ovid), and CENTER (Cochrane Library). Only studies reporting changes in glucagon level presented as total area under the curve (AUCglucagon) using a meal or oral glucose tolerance test were included. Results were combined using a random-effects model that incorporated potential heterogeneity among the included studies. RESULTS A total of 36 RCTs with moderate to high quality were included. Overall, the numbers of T2DM patients included for the meta-analyses comparing DPP4 inhibitors with placebo and other OADs were 4266 and 1652, respectively. Compared to placebo, DPP4 inhibitors significantly reduced circulating glucagon levels (standard mean difference [SMD]: -0.32, 95% CI: -0.40 to -0.24, P<0.001; I2 = 28%). Analysis of subgroups revealed that study characteristics had no significant effect on results, such as study design (parallel group or crossover), number of patients, mean patient age, proportion of men, baseline HbA1c, duration of diabetes, background therapy, treatment duration, or methods for glucagon measurement (all P for subgroup differences >0.05). Moreover, DPP4 inhibitors significantly reduced glucagon levels compared to other OADs (SMD: -0.35, 95% CI: -0.53 to -0.16, P<0.001; I2 = 66%), and the reduction in glucagon was greater in comparison with insulin secretagogues than in comparison with non-insulin secretagogues (P for subgroup difference =0.03). SYSTEMATIC REVIEW REGISTRATION https://inplasy.com/, identifier INPLASY202280104. CONCLUSIONS DPP4 inhibitors are effective at reducing the circulating postprandial glucagon level in T2DM patients.
Collapse
Affiliation(s)
- Shangyu Chai
- Merck Research Laboratories (MRL) Global Medical Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Ruya Zhang
- Merck Research Laboratories (MRL) Global Medical Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Ye Zhang
- Merck Research Laboratories (MRL) Global Medical Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Richard David Carr
- Hatter Cardiovascular Institute, University College London, UK and Ulster University, Coleraine, United Kingdom
| | - Yiman Zheng
- Merck Research Laboratories (MRL) Global Medical Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Swapnil Rajpathak
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, United States
| | - Linong Ji
- Department of Endocrinology, People’s Hospital of Peking University, Beijing, China
- *Correspondence: Linong Ji,
| |
Collapse
|
21
|
Knol MGE, Kramers BJ, Gansevoort RT, van Gastel MDA. The association of glucagon with disease severity and progression in patients with autosomal dominant polycystic kidney disease: an observational cohort study. Clin Kidney J 2021; 14:2582-2590. [PMID: 34950469 PMCID: PMC8690142 DOI: 10.1093/ckj/sfab112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mammalian target of rapamycin (mTOR) inhibitors and ketogenesis have been shown to ameliorate disease progression in experimental autosomal dominant polycystic kidney disease (ADPKD). Glucagon is known to lower mTOR activity and stimulate ketogenesis. We hypothesized that in ADPKD patients, higher endogenous glucagon is associated with less disease severity and progression. Methods Data were analysed from 664 Dutch ADPKD patients participating in the Developing Intervention Strategies to Halt Progression of ADPKD observational cohort, including patients >18 years of age with an estimated glomerular filtration rate (eGFR) ≥15 mL/min/1.73 m2 and excluding patients with concomitant diseases or medication use that may impact the natural course of ADPKD. The association between glucagon and disease severity and progression was tested using multivariate linear regression and mixed modelling, respectively. Results The median glucagon concentration was 5.0 pmol/L [interquartile range (IQR) 3.4-7.2) and differed significantly between females and males [4.3 pmol/L (IQR 2.9-6.0) and 6.6 (4.5-9.5), P < 0.001, respectively]. Intrasubject stability of glucagon in 30 patients showed a strong correlation (Pearson's correlation coefficient 0.893; P < 0.001). Moreover, glucagon showed significant associations with known determinants (sex, body mass index and copeptin; all P < 0.01) and known downstream effects (glucose, haemoglobin A1c and cholesterol; all P < 0.05), suggesting that glucagon was measured reliably. Cross-sectionally, glucagon was associated with eGFR and height-adjusted total kidney volume, but in the opposite direction of our hypothesis, and these lost significance after adjustment for confounders. Glucagon was not associated with an annual decline in kidney function or growth in kidney volume. Conclusions These data do not provide evidence for a role of endogenous glucagon as a protective hormone in ADPKD. Intervention studies are needed to determine the relation between glucagon and ADPKD.
Collapse
Affiliation(s)
- Martine G E Knol
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J Kramers
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maatje D A van Gastel
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Wewer Albrechtsen NJ, Kjeldsen SAS, Jensen NJ, Rungby J, Veedfald S, Bojsen-Møller KN, Dirksen C, Jensen CZ, Martinussen C, Madsbad S, Holst JJ. On measurements of glucagon secretion in healthy, obese, and Roux-en-Y gastric bypass operated individuals using sandwich ELISA. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 82:75-83. [PMID: 34935574 DOI: 10.1080/00365513.2021.2016943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucagon is a key regulator of metabolism and is used in the diagnostic of neuroendocrine tumors. Accurate measurement of glucagon requires both extreme sensitivity and specificity since several peptides are derived from the same proglucagon precursor encoding part of the glucagon sequence and given that glucagon circulates in picomolar concentrations. A sandwich ELISA was recently developed and extensively evaluated; however, this method may not be accurate when measuring glucagon in patients with an enhanced production of proglucagon-derived peptides as seen after Roux-en-Y gastric bypass (RYGB). To overcome this, a modified version of the ELISA was developed. In this study, we evaluate an unmodified and a modified version of the ELISA in healthy individuals, individuals with obesity, and finally in two cohorts of patients following RYGB surgery using different nutrient stimuli to assess glucagon dynamics. Finally, in vitro spike-in recoveries using native glucagon and proglucagon-derived peptides were performed in buffer and in plasma. Our data support that both versions of the ELISA accurately capture endogenous and exogenous glucagon in healthy individuals and in individuals with obesity. However, the unmodified version of the assay may overestimate glucagon levels in patients following RYGB in line with minimal but consistent cross-reactivity to oxyntomodulin and glicentin that both are 50-fold increased after RYGB. Importantly, we did not find any changes between the two protocols at fasted conditions and therefore diagnostics of glucagonomas is not affected by the choice of assay procedure nor the surgical history of the patient (RYGB).
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology, Bispebjerg University Hospital, Bispebjerg, Denmark
| | - Nicole J Jensen
- Department of Endocrinology, Bispebjerg University Hospital, Bispebjerg, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Bispebjerg University Hospital, Bispebjerg, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Carsten Dirksen
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | | | | | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Wewer Albrechtsen NJ. The glucose-mobilizing effect of glucagon at fasting is mediated by cyclic AMP. Am J Physiol Endocrinol Metab 2021; 321:E571-E574. [PMID: 34369821 DOI: 10.1152/ajpendo.00172.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet & Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Wewer Albrechtsen NJ. Reply to Rodgers: The hepatic glucose-mobilizing effect of glucagon is not mediated by cyclic AMP most of the time. Am J Physiol Endocrinol Metab 2021; 321:E579. [PMID: 34486402 DOI: 10.1152/ajpendo.00304.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Kosuda M, Watanabe K, Koike M, Morikawa A, Saito H, Kohno G, Ishihara H. Glucagon responses to glucose challenge in patients with idiopathic postprandial syndrome. J NIPPON MED SCH 2021; 89:102-107. [PMID: 34526455 DOI: 10.1272/jnms.jnms.2022_89-205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Postprandial syndrome is characterized by hunger, weakness and anxiety neurosis occurring after meals. Although abnormal glucagon response has been suggested, inaccuracies of the conventional glucagon measurement method have prevented from precise analysis. Recently, a more reliable dual-antibody sandwich enzyme-linked immunosorbent assay for glucagon has been developed. METHODS We conducted a 75 g oral glucose tolerance test (OGTT) extending to 4 hours in 14 patients with idiopathic postprandial syndrome. In addition to blood glucose and insulin, we have measured glucagon concentrations using the novel method and analyzed retrospectively. RESULTS Median (lower quartile, upper quartile) of age and BMI were 40 years old (30, 49) and 24.9 (23.1, 26.2), respectively. The OGTT revealed that one patient had a diabetic pattern, and two were glucose intolerant. Fasting insulin was 7.6 μU/mL (6.8, 8.8) and reached 73.7 (54.3, 82.6) at 30 min. Insulin remained elevated until 180 min. The fasting glucagon was 21.1 pg/mL (16.1, 33.8), falling at 60 min to a nadir of 6.9 (3.5, 10.3), one-third of the baseline, then remaining suppressed until 180 min. Furthermore, we have found that two types of glucagon dynamics: one is lower fasting glucagon with further suppression and the other is normal or higher fasting glucagon with subsequent big drop. CONCLUSIONS These data suggest that glucagon suppression is stronger in patients with idiopathic postprandial syndrome than in normal subjects previously reported. The present data will contribute to further understanding and future research of this syndrome.
Collapse
Affiliation(s)
- Minami Kosuda
- Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine
| | - Kentaro Watanabe
- Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine
| | - Masao Koike
- Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine
| | - Ai Morikawa
- Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine
| | - Hitoki Saito
- Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine
| | - Genta Kohno
- Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine
| |
Collapse
|
26
|
Nakayasu ES, Gritsenko M, Piehowski PD, Gao Y, Orton DJ, Schepmoes AA, Fillmore TL, Frohnert BI, Rewers M, Krischer JP, Ansong C, Suchy-Dicey AM, Evans-Molina C, Qian WJ, Webb-Robertson BJM, Metz TO. Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat Protoc 2021; 16:3737-3760. [PMID: 34244696 PMCID: PMC8830262 DOI: 10.1038/s41596-021-00566-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Mass-spectrometry-based proteomic analysis is a powerful approach for discovering new disease biomarkers. However, certain critical steps of study design such as cohort selection, evaluation of statistical power, sample blinding and randomization, and sample/data quality control are often neglected or underappreciated during experimental design and execution. This tutorial discusses important steps for designing and implementing a liquid-chromatography-mass-spectrometry-based biomarker discovery study. We describe the rationale, considerations and possible failures in each step of such studies, including experimental design, sample collection and processing, and data collection. We also provide guidance for major steps of data processing and final statistical analysis for meaningful biological interpretations along with highlights of several successful biomarker studies. The provided guidelines from study design to implementation to data interpretation serve as a reference for improving rigor and reproducibility of biomarker development studies.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Marina Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brigitte I Frohnert
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Jeffrey P Krischer
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Astrid M Suchy-Dicey
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
27
|
Roy A, Kamalanathan S, Sahoo J, Kar SS, Naik D, Narayanan N, Merugu C, Patel D. Comparison of islet cell function, insulin sensitivity, and incretin axis between Asian-Indians with either impaired fasting glucose or impaired glucose tolerance, and normal healthy controls. Diabetes Res Clin Pract 2021; 176:108846. [PMID: 33951481 DOI: 10.1016/j.diabres.2021.108846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 01/06/2023]
Abstract
AIMS The objective of this study was to compare the islet cell function, insulin sensitivity, and incretin axis between Asian-Indian subjects with either impaired fasting glucose (IFG), or impaired glucose tolerance (IGT), and normal glucose tolerance (NGT). MATERIALS AND METHODS Prediabetes subjects underwent a mixed meal tolerance test(MMTT) after overnight fasting. Samples for glucose, insulin, glucagon, and glucagon-like peptide-1 (GLP-1) were collected at 0, 30, 60, and 120 min. Insulin secretion sensitivity index -2 (ISSI-2) for beta-cell function and Matsuda index for insulin sensitivity were assessed. Alpha cell function was assessed by measuring the area under the curve (AUC) 0-120 glucagon/AUC0-120 glucose. RESULTS A total of sixty subjects were recruited with 20 in each group. The beta-cell function represented by ISSI-2 was impaired in prediabetes subjects as compared to NGT group (IFG: 2.09 ± 0.44 vs. NGT: 3.04 ± 0.80, P < 0.0001, and IGT: 2.33 ± 0.59 vs. NGT: 3.04 ± 0.80, P = 0.002). Similarly, AUC0-120 glucagon/AUC0-120 glucose was also lower in prediabetes group as compared to healthy controls (IFG: 0.41(0.54) vs. NGT: 1.07(0.39), P = 0.003 and IGT: 0.57(0.38) vs. NGT: 1.07(0.39), P = 0.001). CONCLUSION Asian-Indian prediabetes subjects have reduced beta-cell function with lesser glucagon secretion during MMTT as compared to normal healthy controls.
Collapse
Affiliation(s)
- Ayan Roy
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India; Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India.
| | - Sitanshu Sekhar Kar
- Department of Preventive and Social Medicine, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chandhana Merugu
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Deepika Patel
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
28
|
Laugesen C, Schmidt S, Holst JJ, Nørgaard K, Ranjan AG. The effect of preceding glucose decline rate on low-dose glucagon efficacy in individuals with type 1 diabetes: A randomized crossover trial. Diabetes Obes Metab 2021; 23:1057-1062. [PMID: 33336888 DOI: 10.1111/dom.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
Identifying determinants of low-dose glucagon efficacy is important to optimise its utilization for prevention and treatment of hypoglycaemia in individuals with type 1 diabetes. The study objective was to investigate whether the preceding glucose decline rate affects glucose response to low-dose glucagon administration. Ten adults with insulin pump-treated type 1 diabetes were included in this randomized, single-blind, two-way crossover study. Using a hyperinsulinaemic clamp technique, plasma glucose levels were reduced with either a rapid or slow decline rate while maintaining fixed insulin levels. When the plasma glucose level reached 3.9 mmoL/L, insulin and glucose infusions were discontinued and 150 μg subcutaneous glucagon was administered, followed by 120 minutes of plasma glucose monitoring. The positive incremental area under the glucose curve after administration of low-dose glucagon did not differ between the rapid-decline and slow-decline visits (mean ± SEM: 220 ± 49 vs. 174 ± 31 mmoL/L x min; P = 0.21). Similarly, no differences in total area under the glucose curve, peak plasma glucose, incremental peak plasma glucose, time-to-peak plasma glucose or end plasma glucose were observed. Thus, preceding glucose decline rate did not significantly affect the glucose response to low-dose glucagon.
Collapse
Affiliation(s)
| | - Signe Schmidt
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Nørgaard
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Ajenthen G Ranjan
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Danish Diabetes Academy, Odense, Denmark
| |
Collapse
|
29
|
Sun EW, Martin AM, de Fontgalland D, Sposato L, Rabbitt P, Hollington P, Wattchow DA, Colella AD, Chataway T, Wewer Albrechtsen NJ, Spencer NJ, Young RL, Keating DJ. Evidence for Glucagon Secretion and Function Within the Human Gut. Endocrinology 2021; 162:6127286. [PMID: 33534908 DOI: 10.1210/endocr/bqab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 11/19/2022]
Abstract
Glucagon is secreted by pancreatic α cells in response to hypoglycemia and increases hepatic glucose output through hepatic glucagon receptors (GCGRs). There is evidence supporting the notion of extrapancreatic glucagon but its source and physiological functions remain elusive. Intestinal tissue samples were obtained from patients undergoing surgical resection of cancer. Mass spectrometry analysis was used to detect glucagon from mucosal lysate. Static incubations of mucosal tissue were performed to assess glucagon secretory response. Glucagon concentration was quantitated using a highly specific sandwich enzyme-linked immunosorbent assay. A cholesterol uptake assay and an isolated murine colonic motility assay were used to assess the physiological functions of intestinal GCGRs. Fully processed glucagon was detected by mass spectrometry in human intestinal mucosal lysate. High glucose evoked significant glucagon secretion from human ileal tissue independent of sodium glucose cotransporter and KATP channels, contrasting glucose-induced glucagon-like peptide 1 (GLP-1) secretion. The GLP-1 receptor agonist Exendin-4 attenuated glucose-induced glucagon secretion from the human ileum. GCGR blockade significantly increased cholesterol uptake in human ileal crypt culture and markedly slowed ex vivo colonic motility. Our findings describe the human gut as a potential source of extrapancreatic glucagon and demonstrate a novel enteric glucagon/GCGR circuit with important physiological functions beyond glycemic regulation.
Collapse
Affiliation(s)
- Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Luigi Sposato
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Alexander D Colella
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Tim Chataway
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Richard L Young
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, SA, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
30
|
Hindsø M, Svane MS, Hedbäck N, Holst JJ, Madsbad S, Bojsen-Møller KN. The role of GLP-1 in postprandial glucose metabolism after bariatric surgery: a narrative review of human GLP-1 receptor antagonist studies. Surg Obes Relat Dis 2021; 17:1383-1391. [PMID: 33771461 DOI: 10.1016/j.soard.2021.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
The Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) bariatric procedures lead to remission or improvement of type 2 diabetes. A weight loss-independent augmentation of postprandial insulin secretion contributes to the improvement in glycemic control after RYGB and is associated with a ∼10-fold increase in plasma concentrations of the incretin hormone glucagon-like peptide-1 (GLP-1). However, the physiologic importance of the markedly increased postprandial GLP-1 secretion after RYGB has been much debated. The effect of GLP-1 receptor blockade after RYGB has been investigated in 12 studies. The studies indicate a shift toward a more prominent role for GLP-1 in postprandial β-cell function after RYGB. The effect of GLP-1 receptor antagonism on glucose tolerance after RYGB is more complex and is associated with important methodological challenges. The postprandial GLP-1 response is less enhanced after SG compared with RYGB. However, the effect of GLP-1 receptor blockade after SG has been examined in 1 study only and needs further investigation.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen and Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | |
Collapse
|
31
|
Modrzynska J, Klein CF, Iversen K, Bundgaard H, Hartmann B, Mose M, Rittig N, Møller N, Holst JJ, Wewer Albrechtsen NJ. Plasma levels of glucagon but not GLP-1 are elevated in response to inflammation in humans. Endocr Connect 2021; 10:205-213. [PMID: 33480865 PMCID: PMC7983524 DOI: 10.1530/ec-20-0590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Glucagon and glucagon-like peptide-1 (GLP-1) originate from the common precursor, proglucagon, and their plasma concentrations have been reported to be increased during inflammatory conditions. Increased blood glucose levels are frequently observed in septic patients, and therefore we hypothesized that glucagon, but not GLP-1, is increased in individuals with inflammation. DESIGN Prospective longitudinal cohort study. MATERIALS AND METHODS We measured glucagon and GLP-1 in plasma sampled consecutively in three cohorts consisting of patients with infective endocarditis (n = 16), urosepsis (n = 28) and post-operative inflammation following percutaneous aortic valve implantation or thoracic endovascular aortic repair (n = 5). Correlations between C-reactive protein (CRP), a marker of systemic inflammation, and glucagon and GLP-1 concentrations were investigated. Additionally, glucagon and GLP-1 concentrations were measured after a bolus infusion of lipopolysaccharide (LPS, 1 ng/kg) in nine healthy young males. RESULTS Glucagon and CRP were positively and significantly correlated (r = 0.27; P = 0.0003), whereas no significant association between GLP-1 and CRP was found (r = 0.08, P = 0.30). LPS infusion resulted in acute systemic inflammation reflected by increased temperature, pulse, tumor necrosis factor-α (TNFα), interleukin-6 (IL-6) and concomitantly increased concentrations of glucagon (P < 0.05) but not GLP-1. CONCLUSIONS Systemic inflammation caused by bacterial infections or developed as a non-infected condition is associated with increased plasma concentration of glucagon, but not GLP-1. Hyperglucagonemia may contribute to the impaired glucose control in patients with systemic inflammatory diseases.
Collapse
Affiliation(s)
- Justyna Modrzynska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kasper Iversen
- Department of Clinical Medicine, Herlev Gentofte Hospital, Herlev, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maike Mose
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Nikolaj Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to N J Wewer Albrechtsen:
| |
Collapse
|
32
|
Jonsson A, Stinson SE, Torekov SS, Clausen TD, Færch K, Kelstrup L, Grarup N, Mathiesen ER, Damm P, Witte DR, Jørgensen ME, Pedersen O, Holst JJ, Hansen T. Genome-wide association study of circulating levels of glucagon during an oral glucose tolerance test. BMC Med Genomics 2021; 14:3. [PMID: 33407418 PMCID: PMC7788944 DOI: 10.1186/s12920-020-00841-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In order to explore the pathophysiology underlying type 2 diabetes we examined the impact of gene variants associated with type 2 diabetes on circulating levels of glucagon during an oral glucose tolerance test (OGTT). Furthermore, we performed a genome-wide association study (GWAS) aiming to identify novel genomic loci affecting plasma glucagon levels. METHODS Plasma levels of glucagon were examined in samples obtained at three time points during an OGTT; 0, 30 and 120 min, in two separate cohorts with a total of up to 1899 individuals. Cross-sectional analyses were performed separately in the two cohorts and the results were combined in a meta-analysis. RESULTS A known type 2 diabetes variant in EYA2 was significantly associated with higher plasma glucagon level at 30 min during the OGTT (Beta 0.145, SE 0.038, P = 1.2 × 10-4) corresponding to a 7.4% increase in plasma glucagon level per effect allele. In the GWAS, we identified a marker in the MARCH1 locus, which was genome-wide significantly associated with reduced suppression of glucagon during the first 30 min of the OGTT (Beta - 0.210, SE 0.037, P = 1.9 × 10-8), equivalent to 8.2% less suppression per effect allele. Nine additional independent markers, not previously associated with type 2 diabetes, showed suggestive associations with reduced glucagon suppression during the first 30 min of the OGTT (P < 1.0 × 10-5). CONCLUSIONS A type 2 diabetes risk variant in the EYA2 locus was associated with higher plasma glucagon levels at 30 min. Ten additional variants were suggestively associated with reduced glucagon suppression without conferring increased type 2 diabetes risk.
Collapse
Affiliation(s)
- Anna Jonsson
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Sara E Stinson
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Signe S Torekov
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine D Clausen
- Department of Gynecology and Obstetrics, Nordsjaellands Hospital, University of Copenhagen, 3400, Hilleroed, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | - Louise Kelstrup
- Department of Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Elisabeth R Mathiesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Center for Pregnant Women with Diabetes, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Danish Diabetes Academy, Odense, Denmark
| | - Peter Damm
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel R Witte
- The Danish Diabetes Academy, Odense, Denmark
- Institute of Public Health, University of Aarhus, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jens Juul Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| |
Collapse
|
33
|
Hædersdal S, Lund A, Nielsen-Hannerup E, Maagensen H, van Hall G, Holst JJ, Knop FK, Vilsbøll T. The Role of Glucagon in the Acute Therapeutic Effects of SGLT2 Inhibition. Diabetes 2020; 69:2619-2629. [PMID: 33004472 PMCID: PMC7679772 DOI: 10.2337/db20-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) effectively lower plasma glucose (PG) concentration in patients with type 2 diabetes, but studies have suggested that circulating glucagon concentrations and endogenous glucose production (EGP) are increased by SGLT2i, possibly compromising their glucose-lowering ability. To tease out whether and how glucagon may influence the glucose-lowering effect of SGLT2 inhibition, we subjected 12 patients with type 2 diabetes to a randomized, placebo-controlled, double-blinded, crossover, double-dummy study comprising, on 4 separate days, a liquid mixed-meal test preceded by single-dose administration of either 1) placebo, 2) the SGLT2i empagliflozin (25 mg), 3) the glucagon receptor antagonist LY2409021 (300 mg), or 4) the combination empagliflozin + LY2409021. Empagliflozin and LY2409021 individually lowered fasting PG compared with placebo, and the combination further decreased fasting PG. Previous findings of increased glucagon concentrations and EGP during acute administration of SGLT2i were not replicated in this study. Empagliflozin reduced postprandial PG through increased urinary glucose excretion. LY2409021 reduced EGP significantly but gave rise to a paradoxical increase in postprandial PG excursion, which was annulled by empagliflozin during their combination (empagliflozin + LY2409021). In conclusion, our findings do not support that an SGLT2i-induced glucagonotropic effect is of importance for the glucose-lowering property of SGLT2 inhibition.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | - Henrik Maagensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Juel CTB, Lund A, Andersen MM, Hansen CP, Storkholm JH, Rehfeld JF, van Hall G, Hartmann B, Wewer Albrechtsen NJ, Holst JJ, Vilsbøll T, Knop FK. The GLP-1 receptor agonist lixisenatide reduces postprandial glucose in patients with diabetes secondary to total pancreatectomy: a randomised, placebo-controlled, double-blinded crossover trial. Diabetologia 2020; 63:1285-1298. [PMID: 32394228 DOI: 10.1007/s00125-020-05158-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Treatment of diabetes secondary to total pancreatectomy remains a challenge and insulin constitutes the only glucose-lowering treatment for these patients. We hypothesised that the glucagon-like peptide 1 (GLP-1) receptor agonist lixisenatide would improve postprandial glucose tolerance in totally pancreatectomised patients. METHODS In a double-blinded, randomised, crossover study, 12 totally pancreatectomised individuals (age: 65.0 ± 9.5 mean±SD years; BMI: 22.9 ± 3.9 kg/m2) and 12 healthy control individuals (age 66.1 ± 7.6 years; BMI: 24.0 ± 2.9 kg/m2) underwent two 3 h liquid mixed-meal tests (with paracetamol for assessment of gastric emptying) after single-dose injection of 20 μg of lixisenatide or placebo. Basal insulin was given the night before each experimental day; no insulin was given during study days. RESULTS Compared with placebo, lixisenatide reduced postprandial plasma glucose excursions in the pancreatectomy group (baseline-subtracted AUC [bsAUC] [mean±SEM]: 548 ± 125 vs 1447 ± 95 mmol/l × min, p < 0.001) and in the control group (-126 ± 12 vs 222 ± 51 mmol/l × min, p < 0.001). In the pancreatectomy group a mean peak glucose concentration of 23.3 ± 1.0 mmol/l was reached at time point 134 ± 11 min with placebo, compared with a mean peak glucose concentration of 18 ± 1.4 mmol/l (p = 0.008) at time point 148 ± 13 min (p = 0.375) with lixisenatide. In the control group a mean peak concentration of 8.2 ± 0.4 mmol/l was reached at time point 70 ± 13 min with placebo, compared with a mean peak concentration of 5.5 ± 0.1 mmol/l (p < 0.001) at time point 8 ± 25 min (p = 0.054) with lixisenatide. Lixisenatide also reduced gastric emptying and postprandial glucagon responses in the pancreatectomy group (66 ± 84 vs 1190 ± 311 pmol/l × min, p = 0.008) and in the control group (141 ± 100 vs 190 ± 100 pmol/l × min, p = 0.034). In the pancreatectomy group, C-peptide was undetectable in plasma. In the control group, postprandial plasma C-peptide responses were reduced with lixisenatide (18 ± 17 vs 189 ± 31 nmol/l × min, p < 0.001). CONCLUSIONS/INTERPRETATION The GLP-1 receptor agonist lixisenatide reduces postprandial plasma glucose excursions in totally pancreatectomised patients. The mode of action seems to involve deceleration of gastric emptying and reduced postprandial responses of gut-derived glucagon. TRIAL REGISTRATION ClinicalTrials.gov NCT02640118. FUNDING This study was funded by an unrestricted investigator-initiated study grant from Sanofi. Support was also received from from the Novo Nordisk Foundation Center for Basic Metabolic Research, the A.P. Møller Foundation for the Advancement of Medical Science and the Faculty of Health and Medical Sciences, University of Copenhagen.
Collapse
Affiliation(s)
- Caroline T B Juel
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Maria M Andersen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Carsten P Hansen
- Department of Surgery and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan H Storkholm
- Department of Surgery and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
35
|
Tomaro-Duchesneau C, LeValley SL, Roeth D, Sun L, Horrigan FT, Kalkum M, Hyser JM, Britton RA. Discovery of a bacterial peptide as a modulator of GLP-1 and metabolic disease. Sci Rep 2020; 10:4922. [PMID: 32188864 PMCID: PMC7080827 DOI: 10.1038/s41598-020-61112-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Early work in rodents highlighted the gut microbiota’s importance in metabolic disease, including Type II Diabetes Mellitus (T2DM) and obesity. Glucagon-like peptide-1 (GLP-1), an incretin secreted by L-cells lining the gastrointestinal epithelium, has important functions: promoting insulin secretion, insulin sensitivity, and β-cell mass, while inhibiting gastric emptying and appetite. We set out to identify microbial strains with GLP-1 stimulatory activity as potential metabolic disease therapeutics. Over 1500 human-derived strains were isolated from healthy individuals and screened for GLP-1 modulation by incubating bacterial cell-free supernatants with NCI H716 L-cells. Approximately 45 strains capable of increasing GLP-1 were discovered. All GLP-1 positive strains were identified as Staphylococcus epidermidis by 16S rRNA sequencing. Mass spectrometry analysis identified a 3 kDa peptide, Hld (delta-toxin), present in GLP-1 positive supernatants but absent in GLP-1 neutral supernatants. Studies in NCI-H716 cells and human jejunal enteroids engineered to make more enteroendocrine cells demonstrated that Hld alone is sufficient to enhance GLP-1 secretion. When administered in high-fat-fed mice, Hld-producing S. epidermidis significantly reduced markers associated with obesity and T2DM. Further characterization of Hld suggests GLP-1 stimulatory action of Hld occurs via calcium signaling. The presented results identify a novel host-microbe interaction which may ultimately lead to the development of a microbial peptide-based therapeutic for metabolic disease.
Collapse
Affiliation(s)
- Catherine Tomaro-Duchesneau
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stephanie L LeValley
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel Roeth
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Liang Sun
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank T Horrigan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.
| |
Collapse
|
36
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
37
|
Revisiting the Pharmacological Value of Glucagon: An Editorial for the Special Issue "The Biology and Pharmacology of Glucagon". Int J Mol Sci 2020; 21:ijms21020383. [PMID: 31936192 PMCID: PMC7013494 DOI: 10.3390/ijms21020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
|