1
|
Ristić N, Borković-Mitić S, Manojlović-Stojanoski M, Nestorović N, Filipović B, Šošić-Jurjević B, Trifunović S, Mitić B, Čukuranović-Kokoris J, Pavlović S. Is There a Relationship Between Prenatal Dexamethasone and Postnatal Fructose Overexposure and Testicular Development, Function, and Oxidative Stress Parameters in Rats? Int J Mol Sci 2024; 25:13112. [PMID: 39684822 DOI: 10.3390/ijms252313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Prenatal glucocorticoid overexposure alters the developmental program of fetal reproductive organs and results in numerous changes that can lead to various disorders later in life. Moderate fructose consumption during childhood and adolescence may impair the development and function of reproductive organs. The aim of this study was to investigate the effects of prenatal dexamethasone (Dx) exposure in combination with postnatal fructose overconsumption on testicular development and function in fetal and adult male rat offspring. Pregnant female rats were treated with a subcutaneous injection of Dx at a dose of 0.5 mg/kg/day on gestation days 16, 17, and 18, and the effects on fetal growth and testicular development were analyzed. Spontaneously born male offspring were fed 10% fructose in drinking water until the age of 3 months. Prenatal exposure to Dx led to a reduction in fetal weight and testicular volume. However, testicular development normalized by adulthood, with testosterone levels decreasing. After moderate fructose consumption, impaired redox homeostasis and structural changes in the testicles and decreased testosterone levels were observed, indicating reduced testicular function. The results suggest that the synergistic effect of prenatal Dx exposure and moderate postnatal fructose consumption leads to more deleterious changes in testicular tissue.
Collapse
Affiliation(s)
- Nataša Ristić
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Slavica Borković-Mitić
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Milica Manojlović-Stojanoski
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Nataša Nestorović
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Branko Filipović
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Svetlana Trifunović
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Bojan Mitić
- Institute of Zoology, University of Belgrade-Faculty of Biology, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Jovana Čukuranović-Kokoris
- Department of Anatomy, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000 Niš, Serbia
| | - Slađan Pavlović
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| |
Collapse
|
2
|
Richards-Steed R, Wan N, Bakian A, Medina RM, Brewer SC, Smith KR, VanDerslice JA. Observational methods for human studies of transgenerational effects. Epigenetics 2024; 19:2366065. [PMID: 38870389 PMCID: PMC11178273 DOI: 10.1080/15592294.2024.2366065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
There are substantial challenges in studying human transgenerational epigenetic outcomes resulting from environmental conditions. The task requires specialized methods and tools that incorporate specific knowledge of multigenerational relationship combinations of probands and their ancestors, phenotype data for individuals, environmental information of ancestors and their descendants, which can span historical to present datasets, and informative environmental data that chronologically aligns with ancestors and descendants over space and time. As a result, there are few epidemiologic studies of potential transgenerational effects in human populations, thus limiting the knowledge of ancestral environmental conditions and the potential impacts we face with modern human health outcomes. In an effort to overcome some of the challenges in studying human transgenerational effects, we present two transgenerational study designs: transgenerational space-time cluster detection and transgenerational case-control study design. Like other epidemiological methods, these methods determine whether there are statistical associations between phenotypic outcomes (e.g., adverse health outcomes) among probands and the shared environments and environmental factors facing their ancestors. When the ancestor is a paternal grandparent, a statistically significant association provides some evidence that a transgenerational inheritable factor may be involved. Such results may generate useful hypotheses that can be explored using epigenomic data to establish conclusive evidence of transgenerational heritable effects. Both methods are proband-centric: They are designed around the phenotype of interest in the proband generation for case selection and family pedigree creation. In the examples provided, we incorporate at least three generations of paternal lineage in both methods to observe a potential transgenerational effect.
Collapse
Affiliation(s)
| | - Neng Wan
- Geography, University of Utah Department of Geography, Salt Lake City, UT, USA
| | - Amanda Bakian
- Psychiatry, University of Utah Health, Salt Lake City, UT, USA
| | - Richard M. Medina
- Geography, University of Utah Department of Geography, Salt Lake City, UT, USA
| | - Simon C. Brewer
- Geography, University of Utah Department of Geography, Salt Lake City, UT, USA
| | - Ken R. Smith
- Child and Consumer Studies, University of Utah Health, Salt Lake City, UT, USA
| | | |
Collapse
|
3
|
Raimondo S, Chiusano ML, Gentile M, Gentile T, Cuomo F, Gentile R, Danza D, Siani L, Crescenzo C, Palmieri M, Iaccarino S, Iaccarino M, Fortunato A, Liguori F, Esposito A, Zullo C, Sosa L, Sosa L, Ferrara I, Piscopo M, Notari T, Lacatena R, Gentile A, Montano L. Comparative analysis of the bioaccumulation of bisphenol A in the blood serum and follicular fluid of women living in two areas with different environmental impacts. Front Endocrinol (Lausanne) 2024; 15:1392550. [PMID: 39439569 PMCID: PMC11495266 DOI: 10.3389/fendo.2024.1392550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bisphenol A (BPA) is a common contaminant widely used in many industrial sectors. Because of its wide use and dispersion, it can be accumulated in living human bodies through both oral assumption and nondietary routes. BPA exhibits hormone-like properties, falling under the class of endocrine disruptors; therefore, it can alter relevant physiological functions. In particular, in women, it can affect folliculogenesis and therefore reproduction, contributing not only to infertility, but also to endometriosis and premature puberty. Methods We conducted a multicenter study on 91 women undergoing a first in vitro fertilization (IVF) treatment in the Campania region (Southern Italy). We investigated the presence and concentration of BPA in serum and follicular fluids to assess the effects of airborne BPA contamination. The analysis was conducted on 32 women living in a low environmental impact (LEI) area, from the Sele Valley River and Cilento region, and 59 women living in a high environmental impact (HEI) area, the so-called "Land of Fires", a highly contaminated territory widely exposed to illegal waste practices. Results A higher average BPA content in both blood serum and follicular fluid was revealed in the HEI group when compared with the LEI group. In addition, we revealed higher average BPA content in blood serum than in folliclular fluid in the HEI area, with opposite average content in the two fluids in the LEI zone. In addition, our results also showed a lack of correlation between BPA content in follicular and serum fluids both in the overall population and in the HEI and LEI groups, with peculiar trends in different subsets of women. Conclusion From our results, we revealed a heterogeneity in the distribution of BPA content between serum and follicular fluid. Further studies are needed to unravel the bioaccumulation mechanisms of BPA in highly polluted and nonpolluted areas.
Collapse
Affiliation(s)
- Salvatore Raimondo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariacira Gentile
- Residential Program in laboratory Medicine, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Tommaso Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Felice Cuomo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Raffaella Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Domenico Danza
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | - Laura Siani
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | | | | | - Stefania Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | - Mirella Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | | | | | - Antonio Esposito
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | - Clelia Zullo
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | | | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notari
- Andrology Unit, Check-Up PolyDiagnostics and Research Laboratory, Salerno, Italy
| | - Raffaele Lacatena
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “St. Francis of Assisi Hospital”, Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
4
|
Lin MW, Chen JY, Ye YX, Chen WY, Chan HL, Chou HC. Genotoxicity and cytotoxicity in male reproductive cells caused by sediment pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173578. [PMID: 38810737 DOI: 10.1016/j.scitotenv.2024.173578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
In recent years, mounting evidence has highlighted a global decline in male semen quality, paralleling an increase in male infertility problems. Such developments in the male reproductive system are likely due to a range of environmental factors, which could negatively affect the outcomes of pregnancy, reproductive health, and the well-being of fetuses. Different environmental contaminants ultimately accumulate in riverbed sediments due to gravity, so these sediments are frequently considered hotspots for pollutants. Therefore, understanding the detrimental effects of river sediment pollution on human reproductive health is crucial. This study indicates male germ cells' high vulnerability to environmental contaminants. There is a strong positive correlation between the concentration of complex accumulated pollutants from human activities and the reproductive toxicity observed in human testicular embryonic cell lines NCCIT and NTERA-2. This toxicity is characterized by increased levels of reactive oxygen species, disruption of critical cellular functions, genotoxic impacts, and the induction of cell apoptosis. This research marks a significant step in providing in vitro evidence of the damaging effects of environmental pollutants on the human male germline.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Jai-Yu Chen
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Xuan Ye
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Yi Chen
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Grazia Mele V, Chioccarelli T, Diano N, Cappetta D, Ferraro B, Telesca M, Moggio M, Porreca V, De Angelis A, Berrino L, Fasano S, Cobellis G, Chianese R, Manfrevola F. Variation of sperm quality and circular RNA content in men exposed to environmental contamination with heavy metals in 'Land of Fires', Italy. Hum Reprod 2024; 39:1628-1644. [PMID: 38885964 PMCID: PMC11291948 DOI: 10.1093/humrep/deae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Indexed: 06/20/2024] Open
Abstract
STUDY QUESTION Can illegal discharge of toxic waste into the environment induce a new condition of morpho-epigenetic pathozoospermia in normozoospermic young men? SUMMARY ANSWER Toxic environmental contaminants promote the onset of a new pathozoospermic condition in young normozoospermic men, consisting of morpho-functional defects and a sperm increase of low-quality circular RNA (circRNA) cargo, tightly linked to contaminant bioaccumulation in seminal plasma. WHAT IS KNOWN ALREADY Epidemiological findings have reported several reproductive anomalies depending on exposure to contaminants discharged into the environment, such as germ cell apoptosis, steroidogenesis defects, oxidative stress induction, blood-testis barrier dysfunctions, and poor sperm quality onset. In this scenario, a vast geographical area located in Campania, Italy, called the 'Land of Fires', has been associated with an excessive illegal discharge of toxic waste into the environment, negatively impacting human health, including male reproductive functions. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from healthy normozoospermic men divided into two experimental groups, consisting of men living in the 'Land of Fires' (LF; n = 80) or not (CTRL; n = 80), with age ranging from 25 to 40 years. The study was carried out following World Health Organization guidelines. PARTICIPANTS/MATERIALS, SETTING, METHODS Quality parameters of semen from CTRL- and LF-normozoospermic men were evaluated by computer-assisted semen analysis; high-quality spermatozoa from CTRL and LF groups (n = 80 for each experimental group) were obtained using a 80-40% discontinuous centrifugation gradient. Seminal plasma was collected following centrifugation and used for the dosage of chemical elements, dioxins and steroid hormones by liquid chromatography with tandem mass spectrometry. Sperm morpho-functional investigations (cellular morphology, acrosome maturation, IZUMO1 fertility marker analysis, plasma membrane lipid state, oxidative stress) were assessed on the purified high-quality spermatozoa fraction by immunochemistry/immunofluorescence and western blot analyses. Sperm circRNA cargo was evaluated by quantitative RT-PCR, and the physical interaction among circRNAs and fused in sarcoma (FUS) protein was detected using an RNA-binding protein immunoprecipitation assay. Protein immunoprecipitation experiments were carried out to demonstrate FUS/p-300 protein interaction in sperm cells. Lastly, in vitro lead (Pb) treatment of high-quality spermatozoa collected from normozoospermic controls was used to investigate a correlation between Pb accumulation and onset of the morpho-epigenetic pathozoospermic phenotype. MAIN RESULTS AND THE ROLE OF CHANCE Several morphological defects were identified in LF-spermatozoa, including: a significant increase (P < 0.05 versus CTRL) in the percentage of spermatozoa characterized by structural defects in sperm head and tail; and a high percentage (P < 0.01) of peanut agglutinin and IZUMO1 null signal cells. In agreement with these data, abnormal steroid hormone levels in LF seminal plasma suggest a premature acrosome reaction onset in LF-spermatozoa. The abnormal immunofluorescence signals of plasma membrane cholesterol complexes/lipid rafts organization (Filipin III and Flotillin-1) and of oxidative stress markers [3-nitrotyrosine and 3-nitrotyrosine and 4-hydroxy-2-nonenal] observed in LF-spermatozoa and associated with a sperm motility reduction (P < 0.01), demonstrated an affected membrane fluidity, potentially impacting sperm motility. Bioaccumulation of heavy metals and dioxins occurring in LF seminal plasma and a direct correlation between Pb and deregulated circRNAs related to high- and low-sperm quality was also revealed. In molecular terms, we demonstrated that Pb bioaccumulation promoted FUS hyperacetylation via physical interaction with p-300 and, in turn, its shuttling from sperm head to tail, significantly enhancing (P < 0.01 versus CTRL) the endogenous backsplicing of sperm low-quality circRNAs in LF-spermatozoa. LIMITATIONS, REASONS FOR CAUTION Participants were interviewed to better understand their area of origin, their eating habits as well as their lifestyles, however any information incorrectly communicated or voluntarily omitted that could potentially compromise experimental group determination cannot be excluded. A possible association between seminal Pb content and other heavy metals in modulating sperm quality should be explored further. Future investigations will be performed in order to identify potential synergistic or anti-synergistic effects of heavy metals on male reproduction. WIDER IMPLICATIONS OF THE FINDINGS Our study provides new findings regarding the effects of environmental contaminants on male reproduction, highlighting how a sperm phenotype classified as normozoospermic may potentially not match with a healthy morpho-functional and epigenetic one. Overall, our results improve the knowledge to allow a proper assessment of sperm quality through circRNAs as biomarkers to select spermatozoa with high morpho-epigenetic quality to use for ART. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by 'Convenzione Azienda Sanitaria Locale (ASL) Caserta, Regione Campania' (ASL CE Prot. N. 1217885/DIR. GE). The authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Bruno Ferraro
- UOSD of Reproductive Pathophysiology, Marcianise Hospital, Caserta, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Martina Moggio
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
6
|
Tortora F, Guerrera V, Lettieri G, Febbraio F, Piscopo M. Prediction of Pesticide Interactions with Proteins Involved in Human Reproduction by Using a Virtual Screening Approach: A Case Study of Famoxadone Binding CRBP-III and Izumo. Int J Mol Sci 2024; 25:5790. [PMID: 38891976 PMCID: PMC11171824 DOI: 10.3390/ijms25115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, the awareness that pesticides can have other effects apart from generic toxicity is growing. In particular, several pieces of evidence highlight their influence on human fertility. In this study, we investigated, by a virtual screening approach, the binding between pesticides and proteins present in human gametes or associated with reproduction, in order to identify new interactions that could affect human fertility. To this aim, we prepared ligand (pesticides) and receptor (proteins) 3D structure datasets from online structural databases (such as PubChem and RCSB), and performed a virtual screening analysis using Autodock Vina. In the comparison of the predicted interactions, we found that famoxadone was predicted to bind Cellular Retinol Binding Protein-III in the retinol-binding site with a better minimum energy value of -10.4 Kcal/mol and an RMSD of 3.77 with respect to retinol (-7.1 Kcal/mol). In addition to a similar network of interactions, famoxadone binding is more stabilized by additional hydrophobic patches including L20, V29, A33, F57, L117, and L118 amino acid residues and hydrogen bonds with Y19 and K40. These results support a possible competitive effect of famoxadone on retinol binding with impacts on the ability of developing the cardiac tissue, in accordance with the literature data on zebrafish embryos. Moreover, famoxadone binds, with a minimum energy value between -8.3 and -8.0 Kcal/mol, to the IZUMO Sperm-Egg Fusion Protein, interacting with a network of polar and hydrophobic amino acid residues in the cavity between the 4HB and Ig-like domains. This binding is more stabilized by a predicted hydrogen bond with the N185 residue of the protein. A hindrance in this position can probably affect the conformational change for JUNO binding, avoiding the gamete membrane fusion to form the zygote. This work opens new interesting perspectives of study on the effects of pesticides on fertility, extending the knowledge to other typologies of interaction which can affect different steps of the reproductive process.
Collapse
Affiliation(s)
- Fabiana Tortora
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy;
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Valentina Guerrera
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy (M.P.)
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy (M.P.)
| |
Collapse
|
7
|
Ma Y, Hu C, Cai G, Xia Q, Fan D, Cao Y, Pan F. Associations of exposure to ambient fine particulate matter constituents from different pollution sources with semen quality: Evidence from a prospective cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123200. [PMID: 38135136 DOI: 10.1016/j.envpol.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The association between ambient fine particulate matter (PM2.5) exposure and semen quality remains inconclusive, possibly due to variations in pollution sources and PM2.5 compositions. Studies investigating the constituents of PM2.5 have been hindered by small sample sizes, and research exploring the relationships between PM2.5 pollution sources and semen quality is lacking. To address this gap, we conducted a comprehensive study based on the Anhui prospective assisted reproduction cohort to evaluate the associations between semen quality and the constituents and pollution sources of PM2.5. This study included 9013 semen samples from 4417 males in the urban districts of Hefei. The median concentrations of PM2.5 constituents, including eight metals and four water-soluble ions (WSIs), were measured for seven days per month at two monitoring stations during the 0-90-day exposure window. A linear mixed-effects model, weighted quantile sum regression, and positive matrix factorisation were used to evaluate the associations of the constituents and pollution sources of PM2.5 with semen quality. The results showed that exposure to PM2.5-bound metals (antimony, arsenic, cadmium, lead, and thallium) and WSIs (sulphate and chloride) were negatively associated with semen quality parameters. Moreover, mixtures of PM2.5-bound metals and WSIs were negatively associated with semen quality. Additionally, PM2.5 derived from traffic emissions was negatively associated with semen quality. In summary, our study revealed that ambient PM2.5 and its constituents, especially metals, were negatively associated with semen quality. Antimony, lead, and thallium emerged as the primary contributors to toxicity, and PM2.5 from traffic emissions was associated with decreased semen quality. These findings have important public health implications for the management of PM2.5 pollution in the context of male reproductive health.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Qing Xia
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
Montano L, Giorgini E, Notarstefano V, Notari T, Ricciardi M, Piscopo M, Motta O. Raman Microspectroscopy evidence of microplastics in human semen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165922. [PMID: 37532047 DOI: 10.1016/j.scitotenv.2023.165922] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
The presence of microplastics (MPs) in human fluids and organs is a great concern, since, as highlighted by recent studies on animal models, they could cause alterations of several physiological functions, including reproduction. In this study, semen samples collected from men living in a polluted area of the Campania Region (Southern Italy), were analyzed to assess the presence of MPs. N. 16 pigmented microplastic fragments (ranging from 2 to 6 μm in size) with spheric or irregular shapes were found in six out of ten samples. All the detected MPs were characterized in terms of morphology (size, colour, and shape) and chemical composition by Raman Microspectroscopy. Chemical composition showed the presence of polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), polyvinylchloride (PVC), polycarbonate (PC), polyoxymethylene (POM) and acrylic, suggesting ingestion and/or inhalation as a route of exposure to environmental MPs. In this work, we propose for the first time a mechanism by which MPs pass into the semen most likely through the epididymis and seminal vesicles, which are the most susceptible to inflammation.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-Food Fertility Project), "S. Francesco di Assisi Hospital", 84020 Oliveto Citra, SA, Italy; PhD Program in Evolutionary Biology and Ecology, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica Delle Marche, 60121 Ancona, AN, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica Delle Marche, 60121 Ancona, AN, Italy.
| | - Tiziana Notari
- Check-Up PolyDiagnostics and Research Laboratory, Andrology Unit, Viale Andrea De Luca 5, 84131 Salerno, Italy
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy
| |
Collapse
|
9
|
Tachibana R, Takeuchi H, Yoshikawa-Terada K, Maezawa T, Nishioka M, Takayama E, Tanaka H, Tanaka K, Hyon SH, Gen Y, Kondo E, Ikeda T. Carboxylated Poly-L-lysine Potentially Reduces Human Sperm DNA Fragmentation after Freeze-Thawing, and Its Function Is Enhanced by Low-Dose Resveratrol. Cells 2023; 12:2585. [PMID: 37998320 PMCID: PMC10670029 DOI: 10.3390/cells12222585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Sperm DNA fragmentation (SDF) that occurs during the freezing-thawing of sperm may negatively impact the treatment outcomes of assisted reproductive technologies (ART). In a previous study, we developed a human sperm cryopreservation reagent containing carboxylated poly-L-lysine (CPLL) that reduced SDF after freeze-thawing compared with clinically popular cryopreservation reagents containing human serum albumin. However, it is unclear whether CPLL reduces SDF, as it differed from the constituents of the commercial cryopreservation reagents used for comparison. Therefore, here, we examined whether CPLL reduces the SDF of human sperm and evaluated reactive oxygen species (ROS) levels and lipid peroxidation (LPO), which are the causes of SDF; mitochondrial injury, ROS production; and impaired sperm motility. Furthermore, optimal antioxidants and their concentrations that could further enhance the reduction in SDF were determined for future clinical application in ART and underwent the same functional evaluations. CPLL can reduce SDF via inhibition of intracytoplasmic ROS and LPO. Furthermore, the addition of 0.1 mM resveratrol avoided the enhancement of SDF, which potentially affects mitochondrial and cytoplasmic ROS and LPO. This novel human sperm cryopreservation reagent containing CPLL and resveratrol has the potential to improve treatment outcomes in ART using frozen sperm.
Collapse
Affiliation(s)
- Ryota Tachibana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Hiroki Takeuchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Kento Yoshikawa-Terada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Tadashi Maezawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Mikiko Nishioka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Erina Takayama
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Hiroaki Tanaka
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Kayo Tanaka
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Suong-hyu Hyon
- BMG, Inc., 45 Minamimatsunoki-cho, Higashikujo, Minami-ku, Kyoto 601-8023, Japan; (S.-h.H.); (Y.G.)
| | - Yuki Gen
- BMG, Inc., 45 Minamimatsunoki-cho, Higashikujo, Minami-ku, Kyoto 601-8023, Japan; (S.-h.H.); (Y.G.)
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| |
Collapse
|
10
|
Li X, Zang N, Zhang N, Pang L, Lv L, Meng X, Lv X, Leng J. DNA damage resulting from human endocrine disrupting chemical exposure: Genotoxicity, detection and dietary phytochemical intervention. CHEMOSPHERE 2023; 338:139522. [PMID: 37478996 DOI: 10.1016/j.chemosphere.2023.139522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ningzi Zang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Lijian Pang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiansheng Meng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
11
|
Zhou SM, Li JZ, Chen HQ, Zeng Y, Yuan WB, Shi Y, Wang N, Fan J, Zhang Z, Xu Y, Cao J, Liu WB. FTO-Nrf2 axis regulates bisphenol F-induced leydig cell toxicity in an m6A-YTHDF2-dependent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121393. [PMID: 36878272 DOI: 10.1016/j.envpol.2023.121393] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Studies have shown that Bisphenol F (BPF) as an emerging bisphenol pollutant also has caused many hazards to the reproductive systems of humans and animals. However, its specific mechanism is still unclear. The mouse TM3 Leydig cell was used to explore the mechanism of BPF-induced reproductive toxicity in this study. The results showed BPF (0, 20, 40 and 80 μM) exposure for 72 h significantly increased cell apoptosis and decreased cell viability. Correspondingly, BPF increased the expression of P53 and BAX, and decreased the expression of BCL2. Moreover, BPF significantly increased the intracellular ROS level in TM3 cells, and significantly decreased oxidative stress-related molecule Nrf2. BPF decreased the expression of FTO and YTHDF2, and increased the total cellular m6A level. ChIP results showed that AhR transcriptionally regulated FTO. Differential expression of FTO revealed that FTO reduced the apoptosis rate of BPF-exposed TM3 cells and increased the expression of Nrf2, MeRIP confirmed that overexpression of FTO reduced the m6A of Nrf2 mRNA. After differential expression of YTHDF2, it was found that YTHDF2 enhanced the stability of Nrf2, and RIP assay showed that YTHDF2 was bound to Nrf2 mRNA. Nrf2 agonist enhanced the protective effect of FTO on TM3 cells exposure to BPF. Our study is the first to demonstrate that AhR transcriptionally regulated FTO, and then FTO regulated Nrf2 in a m6A-modified manner through YTHDF2, thereby affecting apoptosis in BPF-exposed TM3 cells to induce reproductive damage. It provides new insights into the importance of FTO-YTHDF2-Nrf2 signaling axis in BPF-induced reproductive toxicity and provided a new idea for the prevention of male reproductive injury.
Collapse
Affiliation(s)
- Shi-Meng Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yu Shi
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; College of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jun Fan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zhe Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
12
|
Dai XC, Zhang MQ, Chen G, Mei K, Liu YL, Huang H, Wu ZG. Will male semen quality improve with environmental quality? Asian J Androl 2023; 25:252-258. [PMID: 35848705 PMCID: PMC10069693 DOI: 10.4103/aja202239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wenzhou has improved its environmental quality because of comprehensive environmental remediation; nevertheless, the semen quality of infertile males remains unclear. This study determined whether better environmental quality improved semen quality in this region. We recorded semen quality data from 22 962 infertile males from January 2014 to November 2019 at the Center for Reproductive Health of The First Affiliated Hospital of Wenzhou Medical University (Wenzhou, China). Patients were predominantly 30-35 years old (33.1%) and workers (82.0%), with high school education or lower (77.6%); more than a half of the patients (52.6%) were Wenzhou household registration; and most patients (77.5%) had abnormal semen quality. Patients who were older than 40 years and workers, and those with Wenzhou household registration, had significantly worse semen quality (all P < 0.05). From 2014 to 2019, progressive sperm motility, total sperm motility, and semen volume showed increasing linear trends in all patients (P = 0.021, 0.030, and 0.005, respectively), yet normal sperm morphology showed a linearly decreasing trend (P = 0.046). Sensitivity analyses for subgroups yielded similar results. In conclusion, the improvement of environmental quality and better function of the accessory glands are associated with progressive sperm motility, total sperm motility, and semen volume. Normal sperm morphology is influenced by occupational exposures and personal lifestyle and does not improve with environmental quality.
Collapse
Affiliation(s)
- Xu-Chao Dai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng-Qi Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Gang Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Kun Mei
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yan-Long Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Huang
- Research Center for Healthy China, Wenzhou Medical University, Wenzhou 325035, China.,Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou 325035, China
| | - Zhi-Gang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,Reproductive Health Research Center, Health Assessment Center of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
13
|
Gómez-Torres MJ, Sáez-Espinosa P, Manzano-Santiago P, Robles-Gómez L, Huerta-Retamal N, Aizpurua J. Sperm Adhesion Molecule 1 (SPAM1) Distribution in Selected Human Sperm by Hyaluronic Acid Test. Biomedicines 2022; 10:biomedicines10102553. [PMID: 36289815 PMCID: PMC9599839 DOI: 10.3390/biomedicines10102553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
The failures of binding to the oocyte zona pellucida are commonly attributed to defects in the sperm recognition, adhesion, and fusion molecules. SPAM1 (sperm adhesion molecule 1) is a hyaluronidase implicated in the dispersion of the cumulus-oocyte matrix. Therefore, the aim of this study was to characterize the SPAM1 distribution in the different physiological conditions of human sperm. Specifically, we evaluated the location of the SPAM1 protein in human sperm before capacitation, at one and four hours of capacitation and after hyaluronic acid (HA) selection test by fluorescence microscopy. Sperm bound to HA were considered mature and those that crossed it immature. Our results detected three SPAM1 fluorescent patterns: label throughout the head (P1), equatorial segment with acrosomal faith label (P2), and postacrosomal label (P3). The data obtained after recovering the mature sperm by the HA selection significantly (p < 0.05) highlighted the P1 in both capacitation times, being 79.74 and 81.48% after one hour and four hours, respectively. Thus, the HA test identified that human sperm require the presence of SPAM1 throughout the sperm head (P1) to properly contact the cumulus-oocyte matrix. Overall, our results provide novel insights into the physiological basis of sperm capacitation and could contribute to the improvement of selection techniques.
Collapse
Affiliation(s)
- María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
- Cátedra Human Fertility, Universidad de Alicante, 03690 Alicante, Spain
- Correspondence: ; Tel.: +34-965-903-878
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
| | | | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
| | | | - Jon Aizpurua
- IVF Spain, Reproductive Medicine, 03540 Alicante, Spain
| |
Collapse
|
14
|
Nunzio AD, Giarra A, Toscanesi M, Amoresano A, Piscopo M, Ceretti E, Zani C, Lorenzetti S, Trifuoggi M, Montano L. Comparison between Macro and Trace Element Concentrations in Human Semen and Blood Serum in Highly Polluted Areas in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11635. [PMID: 36141930 PMCID: PMC9517217 DOI: 10.3390/ijerph191811635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/06/2023]
Abstract
Macro and trace elements are important regulators of biological processes, including those ones linked to reproduction. Among them, Ca, Cu, Fe, K, Mg, Mn, Na, Se, and Zn ensure normal spermatic functions. Hence, the aim of this study was to evaluate the concentrations of 26 macro and trace elements (Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Sb, Se, Sn, Sr, U, V, and Zn) in blood serum and also in semen of healthy young men, homogeneous for age, anthropometric characteristics, and lifestyle, living in three highly polluted areas in Italy. Furthermore, a comparison among three geographical areas was performed to highlight any difference in the investigated parameters and, overall, to speculate any correlations between chemical elements and semen quality. Statistically significant differences (p < 0.05) among the three areas were found for each investigated element, in both semen and serum samples, where inter-area differences were more evident in semen than in blood serum, suggesting human semen as an early environmental marker. Considering the homogeneity of three cohorts, these differences could be due more to environmental conditions in the recruiting areas, suggesting that variations in those involved in reproductive-associated pathways can have an impact on male fertility. Nevertheless, more research is needed to evaluate threshold values for sperm dysfunction and male infertility. Actually, the role of different dietary intake and environmental exposure underlying the observed differences in the recruiting areas is under further investigation for the same cohort.
Collapse
Affiliation(s)
- Aldo Di Nunzio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Elisabetta Ceretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Claudia Zani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), Italy “Oliveto Citra Hospital”, Oliveto Citra, 84020 Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
15
|
Perrone P, Lettieri G, Marinaro C, Longo V, Capone S, Forleo A, Pappalardo S, Montano L, Piscopo M. Molecular Alterations and Severe Abnormalities in Spermatozoa of Young Men Living in the "Valley of Sacco River" (Latium, Italy): A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711023. [PMID: 36078739 PMCID: PMC9518305 DOI: 10.3390/ijerph191711023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 05/27/2023]
Abstract
The Valley of Sacco River (VSR) (Latium, Italy) is an area with large-scale industrial chemical production that has led over time to significant contamination of soil and groundwater with various industrial pollutants, such as organic pesticides, dioxins, organic solvents, heavy metals, and particularly, volatile organic compounds (VOCs). In the present study, we investigated the potential impact of VOCs on the spermatozoa of healthy young males living in the VSR, given the prevalent presence of several VOCs in the semen of these individuals. To accomplish this, spermiograms were conducted followed by molecular analyses to assess the content of sperm nuclear basic proteins (SNBPs) in addition to the protamine-histone ratio and DNA binding of these proteins. We found drastic alterations in the spermatozoa of these young males living in the VSR. Alterations were seen in sperm morphology, sperm motility, sperm count, and protamine/histone ratios, and included significant reductions in SNBP-DNA binding capacity. Our results provide preliminary indications of a possible correlation between the observed alterations and the presence of specific VOCs.
Collapse
Affiliation(s)
- Pasquale Perrone
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Valentina Longo
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), 73100 Lecce, Italy
| | - Simonetta Capone
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), 73100 Lecce, Italy
| | - Angiola Forleo
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), 73100 Lecce, Italy
| | | | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project),
Oliveto Citra Hospital, 84020 Oliveto Citra, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| |
Collapse
|
16
|
Pathway Analysis of Genome Wide Association Studies (GWAS) Data Associated with Male Infertility. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Infertility is a common condition affecting approximately 10–20% of the reproductive age population. Idiopathic infertility cases are thought to have a genetic basis, but the underlying causes are largely unknown. However, the genetic basis underlying male infertility in humans is only partially understood. The Purpose of the study is to understand the current state of research on the genetics of male infertility and its association with significant biological mechanisms. Results: We performed an Identify Candidate Causal SNPs and Pathway (ICSN Pathway) analysis using a genome-wide association study (GWAS) dataset, and NCBI-PubMed search which included 632 SNPs in GWAS and 451 SNPs from the PubMed server, respectively. The ICSN Pathway analysis produced three hypothetical biological mechanisms associated with male infertility: (1) rs8084 and rs7192→HLA-DRA→inflammatory pathways and cell adhesion; rs7550231 and rs2234167→TNFRSF14→TNF Receptor Superfamily Member 14→T lymphocyte proliferation and activation; rs1105879 and rs2070959→UGT1A6→UDP glucuronosyltransferase family 1 member A6→Metabolism of Xenobiotics, androgen, estrogen, retinol, and carbohydrates. Conclusions: We believe that our results may be helpful to study the genetic mechanisms of male infertility. Pathway-based methods have been applied to male infertility GWAS datasets to investigate the biological mechanisms and reported some novel male infertility risk pathways. This pathway analysis using GWAS dataset suggests that the biological process related to inflammation and metabolism might contribute to male infertility susceptibility. Our analysis suggests that genetic contribution to male infertility operates through multiple genes affecting common inflammatory diseases interacting in functional pathways.
Collapse
|
17
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
18
|
Longo V, Forleo A, Radogna AV, Siciliano P, Notari T, Pappalardo S, Piscopo M, Montano L, Capone S. A novel human biomonitoring study by semiconductor gas sensors in Exposomics: investigation of health risk in contaminated sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119119. [PMID: 35341815 DOI: 10.1016/j.envpol.2022.119119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 05/04/2023]
Abstract
Two areas in central-southern Italy Land of Fires in Campania and Valley of Sacco river in Lazio are known to be contaminated sites, the first due to illegal fly-tipping and toxic fires, and the second due to an intensive industrial exploitation done by no-scruple companies and crooked public administration offices with dramatic consequences for environment and resident people. The work is intended to contribute to Human BioMonitoring (HBM) studies conducted in these areas on healthy young male population by a semiconductor gas sensor array trained by SPME-GC/MS. Human semen, blood and urine were investigated. The fingerprinting of the Volatile Organic Compounds (VOCs) by a gas sensors system allowed to discriminate the different contamination of the two areas and was able to predict the chemical concentration of several VOCs identified by GC/MS.
Collapse
Affiliation(s)
- Valentina Longo
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy
| | - Angiola Forleo
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy
| | - Antonio Vincenzo Radogna
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy; Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Pietro Siciliano
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy
| | - Tiziana Notari
- Reproductive Medicine Unit of Check Up Polydiagnostic Center, Salerno, Italy
| | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), Italy "Oliveto Citra Hospital", Salerno, Italy; PhD Program in Evolutionary Biology and Ecology, Un. of Rome Tor Vergata, Rome, Italy
| | - Simonetta Capone
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy.
| |
Collapse
|
19
|
Saleh SR, Manaa A, Sheta E, Ghareeb DA, Abd-Elmonem NM. The Synergetic Effect of Egyptian Portulaca oleracea L. (Purslane) and Cichorium intybus L. (Chicory) Extracts against Glucocorticoid-Induced Testicular Toxicity in Rats through Attenuation of Oxidative Reactions and Autophagy. Antioxidants (Basel) 2022; 11:antiox11071272. [PMID: 35883763 PMCID: PMC9311541 DOI: 10.3390/antiox11071272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Long-term glucocorticoids can alter sperm motility, vitality, or morphology, disrupting male reproductive function. This study scrutinized the synergistic benefits of two Egyptian plants against dexamethasone (Dexa)-induced testicular and autophagy dysfunction in male rats. Phytochemical ingredients and the combination index were estimated for Purslane ethanolic extract (PEE) and Chicory water extract (CWE). Four control groups received saline and 100 mg/kg of each PEE, CWE, and PEE/CWE, daily for 8 weeks. Dexa (1 mg/kg daily for 6 weeks) induced infertility where PEE, CWE, and PEE/CWE were given. Seminal analysis, male hormones, glycemic and oxidative stress markers, endoplasmic reticulum (ER) stress markers (Sigma 1R and GRP78), and autophagy regulators (Phospho-mTOR, LC3I/II, PI3KC3, and Beclin-1, P62, ATG5, and ATG7) were measured. The in vitro study illustrated the synergistic (CI < 1) antioxidant capacity of the PEE/CWE combination. Dexa exerts testicular damage by inducing oxidative reactions, a marked reduction in serum testosterone, TSH and LH levels, insulin resistance, ER stress, and autophagy. In contrast, the PEE and CWE extracts improve fertility hormones, sperm motility, and testicular histological alterations through attenuating oxidative stress and autophagy, with a synergistic effect upon combination. In conclusion, the administration of PEE/CWE has promised ameliorative impacts on male infertility and can delay disease progression.
Collapse
Affiliation(s)
- Samar R. Saleh
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
- Correspondence: or ; Tel.: +20-122-573-2849; Fax: +2-(03)-391-1794
| | - Ashraf Manaa
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Doaa A. Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| | - Nihad M. Abd-Elmonem
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| |
Collapse
|
20
|
Asadi E, Najafi A, Benson JD. Exogenous Melatonin Ameliorates the Negative Effect of Osmotic Stress in Human and Bovine Ovarian Stromal Cells. Antioxidants (Basel) 2022; 11:antiox11061054. [PMID: 35739950 PMCID: PMC9219940 DOI: 10.3390/antiox11061054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian tissue cryopreservation transplantation (OTCT) is the most flexible option to preserve fertility in women and children with cancer. However, OTCT is associated with follicle loss and an accompanying short lifespan of the grafts. Cryopreservation-induced damage could be due to cryoprotective agent (CPA) toxicity and osmotic shock. Therefore, one way to avoid this damage is to maintain the cell volume within osmotic tolerance limits (OTLs). Here, we aimed to determine, for the first time, the OTLs of ovarian stromal cells (OSCs) and their relationship with reactive oxygen species (ROS) and mitochondrial respiratory chain activity (MRCA) of OSCs. We evaluated the effect of an optimal dose of melatonin on OTLs, viability, MRCA, ROS and total antioxidant capacity (TAC) of both human and bovine OSCs in plated and suspended cells. The OTLs of OSCs were between 200 and 375 mOsm/kg in bovine and between 150 and 500 mOsm/kg in human. Melatonin expands OTLs of OSCs. Furthermore, melatonin significantly reduced ROS and improved TAC, MRCA and viability. Due to the narrow osmotic window of OSCs, it is important to optimize the current protocols of OTCT to maintain enough alive stromal cells, which are necessary for follicle development and graft longevity. The addition of melatonin is a promising strategy for improved cryopreservation media.
Collapse
|
21
|
Moriello C, Costabile M, Spinelli M, Amoresano A, Palumbo G, Febbraio F, Piscopo M. Altered Expression of Protamine-like and Their DNA Binding Induced by Cr(VI): A Possible Risk to Spermatogenesis? Biomolecules 2022; 12:biom12050700. [PMID: 35625627 PMCID: PMC9138527 DOI: 10.3390/biom12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Chromium (VI) is the most dangerous oxidation state among the stable forms of chromium. In this work, we evaluated the effect of exposing Mytilus galloprovincialis for 24 h to 1, 10, and 100 nM chromium (VI) on the properties of Protamine-like (PLs) and their gene levels in the gonads. Specifically, we analyzed, by AU-PAGE and SDS-PAGE, PLs extracted from unexposed and exposed mussels. In addition, via EMSA, we evaluated the ability of PLs to bind DNA and also verified their potential to protect DNA from oxidative damage. Finally, we assessed possible alterations in gonadal expression of mt10, hsp70, and genes encoding for PLs-II/PL-IV and PL-III. We found that for all experimental approaches the most relevant alterations occurred after exposure to 1 nM Cr(VI). In particular, a comigration of PL-II with PL-III was observed by SDS-PAGE; and a reduced ability of PLs to bind and protect DNA from oxidative damage was recorded. This dose of chromium (VI) exposure was also the one that produced the greatest alterations in the expression of both mt10 and PL-II/PL-IV encoding genes. All of these changes suggest that this dose of chromium (VI) exposure could affect the reproductive health of Mytilus galloprovincialis.
Collapse
Affiliation(s)
- Claudia Moriello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.M.); (M.C.)
| | - Martina Costabile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.M.); (M.C.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (M.S.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (M.S.); (A.A.)
| | - Giancarlo Palumbo
- Commodity Science Laboratory, Department of Economics, Management and Institutions, University of Naples Federico II, 80126 Naples, Italy;
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.M.); (M.C.)
- Correspondence:
| |
Collapse
|
22
|
Xiong F, Zhou B, Wu NX, Deng LJ, Xie JY, Li XJ, Chen YJ, Wang YX, Zeng Q, Yang P. The Association of Certain Seminal Phthalate Metabolites on Spermatozoa Apoptosis: An Exploratory Mediation Analysis via Sperm Protamine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118969. [PMID: 35157934 DOI: 10.1016/j.envpol.2022.118969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Earlier studies have suggested that exposure to phthalates (PAEs) may induce spermatozoa apoptosis. Sperm protamine as a molecular biomarker during spermatozoa apoptotic processes may mediate the association between PAE exposure and spermatozoa apoptosis. This study aimed to explore whether sperm protamine mediates the association of PAE exposure with spermatozoa apoptosis. We determined sperm protamine levels, 8 PAE metabolite concentrations in seminal plasma, and 3 spermatozoa apoptosis parameters among 111 men from an infertility clinic. The associations of PAEs as individual chemicals and mixtures with sperm protamine were determined. The mediating roles of protamine in the associations between PAEs and spermatozoa apoptosis parameters were examined by mediation analysis. After adjusting for confounders, we observed positive correlations between seminal plasma concentrations of mono(2-ethylhexyl) phthalate (MEHP) and sperm protamine-1 and protamine ratio. Estimates comparing highest vs. lowest quartiles of MEHP concentration were 4.65% (95% CI: 1.47%, 7.82%) for protamine-1 and 25.86% (95% CI: 3.05%, 53.73%) for protamine ratio. The quantile g-computation models showed that the adjusted protamine-1 per quartile increase in PAE mixture was 9.42% (95% CI: 1.00, 20.92) with MEHP being the major contributor. Although the joint association between PAE mixture and protamine ratio was negligible, MEHP was still identified as the main contributor. Furthermore, we found that protamine-2 and protamine ratio levels in the highest quartiles exhibited a decrease of 43.45% (95% CI: 60.54%, -19.75%) and an increase of 122.55% (95% CI: 60.00%, 209.57%) in Annexin V+/PI- spermatozoa relative to the lowest quartiles, respectively. Mediation analysis revealed that protamine ratio significantly mediated 55.6% of the association between MEHP and Annexin V+/PI- spermatozoa elevation (5.13%; 95% CI: 0.04%, 10.52%). Our findings provided evidence that human exposure to PAEs was associated with increased protamine levels which may mediate the process of spermatozoa apoptosis.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Nan-Xin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Lang-Jing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jin-Ying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Xiao-Jie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| |
Collapse
|
23
|
Verderame M, Chianese T, Rosati L, Scudiero R. Molecular and Histological Effects of Glyphosate on Testicular Tissue of the Lizard Podarcis siculus. Int J Mol Sci 2022; 23:4850. [PMID: 35563240 PMCID: PMC9100619 DOI: 10.3390/ijms23094850] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The expansion of agriculture produces a steady increase in habitat fragmentation and degradation due to the increased use of pesticides and herbicides. Habitat loss and alteration associated with crop production play an important role in reptile decline, among which lizards are particularly endangered. In this study, we evaluated testicular structure, steroidogenesis, and estrogen receptor expression/localization after three weeks of oral exposure to glyphosate at 0.05 and 0.5 μg/kg body weight every other day in the field lizard Podarcis siculus. Our results show that glyphosate affected testicular morphology, reduced spermatogenesis, altered gap junctions and changed the localization of estrogen receptors in germ cells, increasing their expression; the effects were mostly dose-dependent. The result also demonstrates that glyphosate, at least at these concentrations, did not influence steroidogenesis. Overall, the data indicate that this herbicide can disturb the morphophysiology of the male lizard's reproductive system, with obviously detrimental effects on their reproductive fitness. The effects of glyphosate must be considered biologically relevant and could endanger the reproductive capacity not only of lizards but also of other vertebrates, including humans; a more controlled and less intensive use of glyphosate in areas devoted to crop production would therefore be advisable.
Collapse
Affiliation(s)
- Mariailaria Verderame
- Department of Human, Philosophic and Education Sciences (DISUFF), University of Salerno, 84084 Fisciano, Italy;
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT), 80055 Portici, Italy
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
| |
Collapse
|
24
|
Di Fabrizio C, Giorgione V, Khalil A, Murdoch CE. Antioxidants in Pregnancy: Do We Really Need More Trials? Antioxidants (Basel) 2022; 11:812. [PMID: 35624676 PMCID: PMC9137466 DOI: 10.3390/antiox11050812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Human pregnancy can be affected by numerous pathologies, from those which are mild and reversible to others which are life-threatening. Among these, gestational diabetes mellitus and hypertensive disorders of pregnancy with subsequent consequences stand out. Health problems experienced by women during pregnancy and postpartum are associated with significant costs to health systems worldwide and contribute largely to maternal mortality and morbidity. Major risk factors for mothers include obesity, advanced maternal age, cardiovascular dysfunction, and endothelial damage; in these scenarios, oxidative stress plays a major role. Markers of oxidative stress can be measured in patients with preeclampsia, foetal growth restriction, and gestational diabetes mellitus, even before their clinical onset. In consequence, antioxidant supplements have been proposed as a possible therapy; however, results derived from large scale randomised clinical trials have been disappointing as no positive effects were demonstrated. This review focuses on the latest evidence on oxidative stress in pregnancy complications, their early diagnosis, and possible therapies to prevent or treat these pathologies.
Collapse
Affiliation(s)
- Carolina Di Fabrizio
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Veronica Giorgione
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
| | - Asma Khalil
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Colin E. Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
25
|
Agarwal A, Maldonado Rosas I, Anagnostopoulou C, Cannarella R, Boitrelle F, Munoz LV, Finelli R, Durairajanayagam D, Henkel R, Saleh R. Oxidative Stress and Assisted Reproduction: A Comprehensive Review of Its Pathophysiological Role and Strategies for Optimizing Embryo Culture Environment. Antioxidants (Basel) 2022; 11:antiox11030477. [PMID: 35326126 PMCID: PMC8944628 DOI: 10.3390/antiox11030477] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) due to an imbalance between reactive oxygen species (ROS) and antioxidants has been established as an important factor that can negatively affect the outcomes of assisted reproductive techniques (ARTs). Excess ROS exert their pathological effects through damage to cellular lipids, organelles, and DNA, alteration of enzymatic function, and apoptosis. ROS can be produced intracellularly, from immature sperm, oocytes, and embryos. Additionally, several external factors may induce high ROS production in the ART setup, including atmospheric oxygen, CO2 incubators, consumables, visible light, temperature, humidity, volatile organic compounds, and culture media additives. Pathological amounts of ROS can also be generated during the cryopreservation-thawing process of gametes or embryos. Generally, these factors can act at any stage during ART, from gamete preparation to embryo development, till the blastocyst stage. In this review, we discuss the in vitro conditions and environmental factors responsible for the induction of OS in an ART setting. In addition, we describe the effects of OS on gametes and embryos. Furthermore, we highlight strategies to ameliorate the impact of OS during the whole human embryo culture period, from gametes to blastocyst stage.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (R.F.); (R.H.)
- Correspondence:
| | | | | | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, 78300 Poissy, France;
- Department BREED, UVSQ, INRAE, Paris Saclay University, 78350 Jouy-en-Josas, France
| | - Lina Villar Munoz
- Citmer Reproductive Medicine, IVF LAB, Mexico City 11520, Mexico; (I.M.R.); (L.V.M.)
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (R.F.); (R.H.)
| | - Damayanthi Durairajanayagam
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia;
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (R.F.); (R.H.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa
- LogixX Pharma, Theale RG7 4AB, UK
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt;
- Ajyal IVF Center, Ajyal Hospital, Sohag 82524, Egypt
| |
Collapse
|
26
|
Andrological Aspects of Exercise: Moderate Swimming Protects against Isoproterenol Induced Testis and Semen Abnormalities in Rats. Antioxidants (Basel) 2022; 11:antiox11030436. [PMID: 35326087 PMCID: PMC8944432 DOI: 10.3390/antiox11030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
The development and progression of male infertility are closely linked to a sedentary lifestyle; however, its underlying mechanisms are not fully elucidated. Our aim was to assess the protective effects of moderate swimming exercise on the male reproductive system in isoproterenol-treated rats. Male Wistar rats were divided into five groups as follows: (1) non-interventional controls (CTRL), (2) isoproterenol-treated (ISO), (3) pre-treatment swimming training + ISO (PRE + ISO), (4) ISO + post-treatment swimming training (ISO+POST), (5) pre-treatment swimming training + ISO + post-treatment swimming training (PRE + ISO + POST) groups. Testicular oxidative stress was induced by ISO injection (1.0 mg/kg). Rats in the pre- or post-training groups were trained five days a week. At the end of the experimental period, serum testosterone levels, sperms’ hyaluronan binding, and total glutathione (GSH) content, as well as myeloperoxidase activity (MPO), TNF alpha and IL6 concentrations in the testis and semen, were measured. Serum testosterone levels, sperms’ hyaluronan binding, and GSH content were found to be significantly reduced, while MPO, TNF alpha and IL6 concentrations in the testis and semen were elevated after the ISO treatment compared to the CTRL group. Moderate-intensity swimming exercise effectively alleviated the negative effects of high oxidative stress. Our findings provide the first evidence that moderate-intensity swimming exercise confers sustained protection from isoproterenol-induced adverse effects on testicular inflammation.
Collapse
|
27
|
Tseng H, Liu YL, Lu BJ, Chen CH. Immature Testicular Tissue Engineered from Weaned Mice to Adults for Prepubertal Fertility Preservation—An In Vivo Translational Study. Int J Mol Sci 2022; 23:ijms23042042. [PMID: 35216156 PMCID: PMC8880126 DOI: 10.3390/ijms23042042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Male pediatric survivors of cancers and bone marrow transplantation often require adjuvant chemoradiation therapy that may be gonadotoxic. The optimal methods to preserve fertility in these prepubertal males are still under investigation. This manuscript presents an in vivo experiment which involved transplantation of immature testicular tissues (ITT) from transgenic donor, to wild-type recipient mice. Donors and recipients were age-mismatched (from 20-week-old donors to 3-week-old recipients, and vice versa) and the transplantation sites involved the abdomen, skin of the head, back muscle, and scrotum. The application of poly-l-lactic acid (PLLA) scaffold was also evaluated in age-matched donors and recipients (both 3-weeks-old). To quantitively evaluate the process of spermatogenesis after ITT transplantation and scaffold application, bioluminescence imaging (BLI) was employed. Our result showed that ITT from 3-week-old mice had the best potential for spermatogenesis, and the optimal transplantation site was in the scrotum. Spermatogenesis was observed in recipient mice up to 51 days after transplantation, and up to the 85th day if scaffold was used. The peak of spermatogenesis occurred between the 42nd and 55th days in the scaffold group. This animal model may serve as a framework for further studies in prepubertal male fertility preservation.
Collapse
Affiliation(s)
- How Tseng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Liang Liu
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan;
| | - Buo-Jia Lu
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Chi-Huang Chen
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
28
|
Wang L, Bu T, Wu X, Gao S, Li X, De Jesus AB, Wong CKC, Chen H, Chung NPY, Sun F, Cheng CY. Cell-Cell Interaction-Mediated Signaling in the Testis Induces Reproductive Dysfunction—Lesson from the Toxicant/Pharmaceutical Models. Cells 2022; 11:cells11040591. [PMID: 35203242 PMCID: PMC8869896 DOI: 10.3390/cells11040591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging evidence has shown that cell-cell interactions between testicular cells, in particular at the Sertoli cell-cell and Sertoli-germ cell interface, are crucial to support spermatogenesis. The unique ultrastructures that support cell-cell interactions in the testis are the basal ES (ectoplasmic specialization) and the apical ES. The basal ES is found between adjacent Sertoli cells near the basement membrane that also constitute the blood-testis barrier (BTB). The apical ES is restrictively expressed at the Sertoli-spermatid contact site in the apical (adluminal) compartment of the seminiferous epithelium. These ultrastructures are present in both rodent and human testes, but the majority of studies found in the literature were done in rodent testes. As such, our discussion herein, unless otherwise specified, is focused on studies in testes of adult rats. Studies have shown that the testicular cell-cell interactions crucial to support spermatogenesis are mediated through distinctive signaling proteins and pathways, most notably involving FAK, Akt1/2 and Cdc42 GTPase. Thus, manipulation of some of these signaling proteins, such as FAK, through the use of phosphomimetic mutants for overexpression in Sertoli cell epithelium in vitro or in the testis in vivo, making FAK either constitutively active or inactive, we can modify the outcome of spermatogenesis. For instance, using the toxicant-induced Sertoli cell or testis injury in rats as study models, we can either block or rescue toxicant-induced infertility through overexpression of p-FAK-Y397 or p-FAK-Y407 (and their mutants), including the use of specific activator(s) of the involved signaling proteins against pAkt1/2. These findings thus illustrate that a potential therapeutic approach can be developed to manage toxicant-induced male reproductive dysfunction. In this review, we critically evaluate these recent findings, highlighting the direction for future investigations by bringing the laboratory-based research through a translation path to clinical investigations.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xinyao Li
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | | | - Chris K. C. Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China;
| | - Hao Chen
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Nancy P. Y. Chung
- Department of Genetic Medicine, Cornell Medical College, New York, NY 10065, USA;
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Correspondence: (F.S.); (C.Y.C.)
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
- Correspondence: (F.S.); (C.Y.C.)
| |
Collapse
|
29
|
Montano L, Maugeri A, Volpe MG, Micali S, Mirone V, Mantovani A, Navarra M, Piscopo M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int J Mol Sci 2022; 23:ijms23031568. [PMID: 35163492 PMCID: PMC8836239 DOI: 10.3390/ijms23031568] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The role of environmental factors in influencing health status is well documented. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, dioxins, pesticides, ultrafine particles, produced by human activities put a strain on the body’s entire defense system. Therefore, together with public health measures, evidence-based individual resilience measures are necessary to mitigate cancer risk under environmental stress and to prevent reproductive dysfunction and non-communicable diseases; this is especially relevant for workers occupationally exposed to pollutants and/or populations residing in highly polluted areas. The Mediterranean diet is characterized by a high intake of fruits and vegetables rich in flavonoids, that can promote the elimination of pollutants in tissues and fluids and/or mitigate their effects through different mechanisms. In this review, we collected evidence from pre-clinical and clinical studies showing that the impairment of male fertility and gonadal development, as well as cancers of reproductive system, due to the exposure of organic and inorganic pollutants, may be counteracted by flavonoids.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL), 84124 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maria Grazia Volpe
- Institute of Food Sciences, National Research Council, CNR, 83100 Avellino, Italy;
| | - Salvatore Micali
- Urology Department, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Vincenzo Mirone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80126 Naples, Italy;
| | - Alberto Mantovani
- Department of Food, Safety, Nutrition and Veterinary public health, Italian National Health Institute, 00161 Roma, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence:
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|
30
|
Gallo A. Reprotoxic Impact of Environment, Diet, and Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1303. [PMID: 35162326 PMCID: PMC8834893 DOI: 10.3390/ijerph19031303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023]
Abstract
Reproductive health is progressively declining due to multiples endogenous and exogenous factors, such as environmental contaminants, diet and behavior. Accumulated evidences confirm that fertility and reproductive function have been adversely affected by exposure to chemical contaminants released in the environment. Today, the impact of diet and behavior on reproductive processes is also receiving special attention from the scientific community. Indeed, a close relationship between diet and fertility has been proven. Furthermore, a combination of unhealthy behavior, such as exposure to hazardous compounds and stress factors, poses living organisms at higher risk of reprotoxic effects. In particular, it has been described that poor life behaviors are associated with reduced male and female fertility due to decreased gamete quality and function. Most of the erroneous behaviors are, furthermore, a source of oxidative stress that, leading to epigenetic alterations, results in an impaired reproductive fitness. This review reports the detrimental impact of the most common environmental chemical stressors, diet, and behavior on reproductive functionality and success. Although clear evidences are still scarce, reassuring data are provided that a healthy diet and reverting unhealthy lifestyles may be of help to recover physiological reproductive conditions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
31
|
Dutta S, Sengupta P, Roychoudhury S, Chakravarthi S, Wang CW, Slama P. Antioxidant Paradox in Male Infertility: 'A Blind Eye' on Inflammation. Antioxidants (Basel) 2022; 11:167. [PMID: 35052671 PMCID: PMC8772926 DOI: 10.3390/antiox11010167] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of male infertility involves various interlinked endogenous pathways. About 50% of the cases of infertility in men are idiopathic, and oxidative stress (OS) reportedly serves as a central mechanism in impairing male fertility parameters. The endogenous antioxidant system operates to conserve the seminal redox homeostasis required for normal male reproduction. OS strikes when a generation of seminal reactive oxygen species (ROS) overwhelms endogenous antioxidant capacity. Thus, antioxidant treatment finds remarkable relevance in the case of idiopathic male infertility or subfertility. However, due to lack of proper detection of OS in male infertility, use of antioxidant(s) in some cases may be arbitrary or lead to overuse and induction of 'reductive stress'. Moreover, inflammation is closely linked to OS and may establish a vicious loop that is capable of disruption to male reproductive tissues. The result is exaggeration of cellular damage and disruption of male reproductive tissues. Therefore, limitations of antioxidant therapy in treating male infertility are the failure in the selection of specific treatments targeting inflammation and OS simultaneously, two of the core mechanisms of male infertility. The present review aims to elucidate the antioxidant paradox in male infertility treatment, from the viewpoints of both induction of reductive stress as well as overlooking the inflammatory consequences.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia; (S.D.); (S.C.); (C.W.W.)
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd, Selaiyur, Chennai 600073, India;
| | - Pallav Sengupta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd, Selaiyur, Chennai 600073, India;
- Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | | | - Srikumar Chakravarthi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia; (S.D.); (S.C.); (C.W.W.)
- Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Chee Woon Wang
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia; (S.D.); (S.C.); (C.W.W.)
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
32
|
Lettieri G, Carusone N, Notariale R, Prisco M, Ambrosino A, Perrella S, Manna C, Piscopo M. Morphological, Gene, and Hormonal Changes in Gonads and In-Creased Micrococcal Nuclease Accessibility of Sperm Chromatin Induced by Mercury. Biomolecules 2022; 12:87. [PMID: 35053235 PMCID: PMC8773939 DOI: 10.3390/biom12010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three stress genes: mt10, hsp70 and πgst. In this tissue we also evaluated the level of steroidogenic enzymes 3β-HSD and 17β-HSD and the expression of PL protein genes. Finally, we determined difference in sperm chromatin accessibility to micrococcal nuclease. We found alterations in gonadal morphology especially after exposure to 10 and 100 pM HgCl2 and hypo-expression of the three stress genes, particularly for hsp70. Furthermore, decreased labelling with both 3β-HSD and 17β-HSD antibodies was observed following exposure to 1 and 10 pM HgCl2 and complete absence at 100 pM HgCl2 exposure. Gonads of mussels exposed to all HgCl2 doses showed decreased expression of PL protein genes especially for PLIII. Finally, micrococcal nuclease digestions showed that all doses of HgCl2 exposure resulted in increased sperm chromatin accessibility to this enzyme, indicative of improper sperm chromatin structure. All of these changes provide preliminary data of the potential toxicity of mercury on the reproductive health of this mussel.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Nadia Carusone
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Alessia Ambrosino
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Shana Perrella
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| |
Collapse
|
33
|
Yang J, Ma S, Song Y, Li F, Zhou J. Rethinking of Environmental Health Risks: A Systematic Approach of Physical-Social Health Vulnerability Assessment on Heavy-Metal Exposure through Soil and Vegetables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413379. [PMID: 34948988 PMCID: PMC8702039 DOI: 10.3390/ijerph182413379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
In the field of environmental health risk assessment and management research, heavy metals in soil are a constant focus, largely because of mining and metallurgical activities, and other manufacturing or producing. However, systematic vulnerability, and combined research of social and physical vulnerability of the crowd, have received less attention in the research literature of environmental health risk assessment. For this reason, tentative design modelling for comprehensive environmental health vulnerability, which includes the index of physical and social vulnerability, was conducted here. On the basis of experimental data of heavy-metal pollution in soil and vegetables, and population and societal survey data in Daye, China, the physical, social, and comprehensive environmental health vulnerabilities of the area were analyzed, with each village as an evaluation unit. First, the polluted and reference areas were selected. Random sampling sites were distributed in the farmland of the villages in these two areas, with two sampling sites per village. Then, 204 vegetable samples were directly collected from the farmland from which the soil samples had been collected, composed of seven kinds of vegetables: cowpea, water spinach, amaranth, sweet potato leaves, tomato, eggplant, and pepper. Moreover, 400 questionnaires were given to the local residents in these corresponding villages, and 389 valid responses were obtained. The results indicated that (1) the average physical vulnerability values of the population in the polluted and reference areas were 3.99 and 1.00, respectively; (2) the village of Weiwang (WW) had the highest physical vulnerability of 8.55; (3) vegetable intake is exposure that should be paid more attention, as it contributes more than 90% to physical vulnerability among the exposure pathways; (4) arsenic and cadmium should be the priority pollutants, with average physical vulnerability value contributions of 63.9% and 17.0%, respectively; (5) according to the social vulnerability assessment, the village of Luoqiao (LQ) had the highest social vulnerability (0.77); (6) for comprehensive environmental health vulnerability, five villages near mining activities and two villages far from mine-affected area had high physical and social vulnerability, and are the urgent areas for environmental risk management. In order to promote environmental risk management, it is necessary to prioritize identifying vulnerable populations in the village-scale dimension as an innovative discovery.
Collapse
Affiliation(s)
- Jun Yang
- Research Center for Environment and Health, Zhongnan University of Economic and Law, Wuhan 430073, China; (J.Y.); (Y.S.); (F.L.)
| | - Silu Ma
- Wuhan Planning and Design Company, Wuhan 430014, China;
| | - Yongwei Song
- Research Center for Environment and Health, Zhongnan University of Economic and Law, Wuhan 430073, China; (J.Y.); (Y.S.); (F.L.)
| | - Fei Li
- Research Center for Environment and Health, Zhongnan University of Economic and Law, Wuhan 430073, China; (J.Y.); (Y.S.); (F.L.)
| | - Jingcheng Zhou
- Research Center for Environment and Health, Zhongnan University of Economic and Law, Wuhan 430073, China; (J.Y.); (Y.S.); (F.L.)
- Correspondence: ; Tel.: +86-027-8838-5413
| |
Collapse
|
34
|
Qin J, Li H, Yu W, Wei L, Wen B. Effect of cold exposure and capsaicin on the expression of histone acetylation and Toll-like receptors in 1,2-dimethylhydrazine-induced colon carcinogenesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60981-60992. [PMID: 34165751 DOI: 10.1007/s11356-021-14849-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have indicated that capsaicin-rich diet and cold weather have shown strong association with tumor incidence. Thus, we investigated the effects of capsaicin and cold exposure in 1,2-dimethylhydrazine (DMH)-induced colorectal cancer as well as the mechanisms underlying capsaicin and cold-induced CRC. Rats were randomly divided into four groups and received cold still water and capsaicin via intragastric gavage until the end of the experiment. The rat's body weight, thymus weight, and food intakes were assessed. Global levels of histone H3K9, H3K18, H3K27, and H4K16 acetylation and histone deacetylase (HDACs) in colon mucosa were assessed by western blot. Expression levels of Toll-like receptors 2 (TLR2) and Toll-like receptors 4 (TLR4) were measured by western blot and reverse-transcriptase quantitative polymerase chain reaction (qPCR). We found that cold and low-dose capsaicin increased tumor numbers and multiplicity, although there were no differences in tumor incidence. Additionally, rat exposure to cold water and capsaicin display further higher levels of histone H3 lysine 9 (H3K9AC), histone H3 lysine 18 (H3K18AC), histone H3 lysine 27 (H3K27AC), and HDACs compared with the DMH and normal rats. In contrast, a considerable decrease of histone H4 lysine 16 (H4K16AC) was detected in the colon mucosa. Cold and low-dose capsaicin exposure groups were also increased TLR2 and TLR4 protein levels and mRNA levels. These results suggest that chronic cold exposure and capsaicin at a low-dose intervention exacerbate ectopic expression of global histone acetylation and TLR level, which are crucial mechanisms responsible for the progression of colorectal cancer in rats.
Collapse
Affiliation(s)
- Jingchun Qin
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Huixuan Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weitao Yu
- The Second People's Hospital Lianyungang, Lianyungang, China
| | - Li Wei
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Bin Wen
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
35
|
Mitochondrial Uncoupling Proteins (UCPs) as Key Modulators of ROS Homeostasis: A Crosstalk between Diabesity and Male Infertility? Antioxidants (Basel) 2021; 10:antiox10111746. [PMID: 34829617 PMCID: PMC8614977 DOI: 10.3390/antiox10111746] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Uncoupling proteins (UCPs) are transmembrane proteins members of the mitochondrial anion transporter family present in the mitochondrial inner membrane. Currently, six homologs have been identified (UCP1-6) in mammals, with ubiquitous tissue distribution and multiple physiological functions. UCPs are regulators of key events for cellular bioenergetic metabolism, such as membrane potential, metabolic efficiency, and energy dissipation also functioning as pivotal modulators of ROS production and general cellular redox state. UCPs can act as proton channels, leading to proton re-entry the mitochondrial matrix from the intermembrane space and thus collapsing the proton gradient and decreasing the membrane potential. Each homolog exhibits its specific functions, from thermogenesis to regulation of ROS production. The expression and function of UCPs are intimately linked to diabesity, with their dysregulation/dysfunction not only associated to diabesity onset, but also by exacerbating oxidative stress-related damage. Male infertility is one of the most overlooked diabesity-related comorbidities, where high oxidative stress takes a major role. In this review, we discuss in detail the expression and function of the different UCP homologs. In addition, the role of UCPs as key regulators of ROS production and redox homeostasis, as well as their influence on the pathophysiology of diabesity and potential role on diabesity-induced male infertility is debated.
Collapse
|
36
|
Quantitative phosphoproteomics reveals GSK3A substrate network is involved in the cryodamage of sperm motility. Biosci Rep 2021; 41:229867. [PMID: 34596222 PMCID: PMC8521533 DOI: 10.1042/bsr20211326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
During sperm cryopreservation, the most significant phenotype of cryodamage is the decrease in sperm motility. Several proteomics studies have already been performed to search for key regulators at the protein level. However, sperm functions are known to be highly regulated by phosphorylation signaling. Here, we constructed a quantitative phosphoproteome to investigate the expression change of phosphorylated sites during sperm cryopreservation. A total of 3107 phosphorylated sites are identified and 848 of them are found to be significantly differentially expressed (DE). Bioinformatics analysis showed that the corresponding genes of these regulated sites are highly associated with sperm motility, providing a connection between the molecular basis and the phenotype of cryodamage. We then performed kinase enrichment analysis and successfully identified glycogen synthase kinase-3α (GSK3A) as the key kinase that may play an important role in the regulation of sperm motility. We further constructed a GSK3A centric network that could help us better understand the molecular mechanism of cryodamage in sperm motility. Finally, we also verified that GSK3A was abnormally activated during this process. The presented phosphoproteome and functional associations provide abundant research resources for us to learn the regulation of sperm functions, as well as to optimize the cryoprotectant for sperm cryopreservation.
Collapse
|
37
|
López-Botella A, Velasco I, Acién M, Sáez-Espinosa P, Todolí-Torró JL, Sánchez-Romero R, Gómez-Torres MJ. Impact of Heavy Metals on Human Male Fertility-An Overview. Antioxidants (Basel) 2021; 10:antiox10091473. [PMID: 34573104 PMCID: PMC8468047 DOI: 10.3390/antiox10091473] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Heavy metals are endocrine disruptors which interfere with processes mediated by endogenous hormones of the organism, negatively affecting endocrine functions. Some studies have correlated heavy metal exposure with male infertility. However, the number of studies conducted on humans are limited. Therefore, the aim of this study is to summarize the current knowledge on how heavy metals influence human male fertility. Hence, three distinct databases were consulted—PubMed, Scopus and Web of Science—using single keywords and combinations of them. The total number of identified articles was 636. Nevertheless, by using the inclusion and exclusion criteria, 144 articles were finally included in this work. Results display that the development of adequate instruments for heavy metal assessment may play an important function in human male fertility diagnosis and treatment. Furthermore, clinical trials could be useful to confirm the role of heavy metals in human male fertility diagnosis. Overall, further research is required to fully understand the molecular and cellular basis of the influence of environmental and occupational exposure to heavy metals on human male infertility and reproductive outcomes.
Collapse
Affiliation(s)
- Andrea López-Botella
- Service of Obstetrics and Gynecology, Unit of Human Reproduction, FISABIO—San Juan University Hospital, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain; (A.L.-B.); (I.V.); (M.A.)
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Irene Velasco
- Service of Obstetrics and Gynecology, Unit of Human Reproduction, FISABIO—San Juan University Hospital, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain; (A.L.-B.); (I.V.); (M.A.)
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Maribel Acién
- Service of Obstetrics and Gynecology, Unit of Human Reproduction, FISABIO—San Juan University Hospital, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain; (A.L.-B.); (I.V.); (M.A.)
- Gynecology Division, Faculty of Medicine, Miguel Hernández University, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain
| | - Paula Sáez-Espinosa
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - José-Luis Todolí-Torró
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.-L.T.-T.); (R.S.-R.)
| | - Raquel Sánchez-Romero
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.-L.T.-T.); (R.S.-R.)
| | - María José Gómez-Torres
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
- Correspondence:
| |
Collapse
|
38
|
Gaspari L, Paris F, Kalfa N, Soyer-Gobillard MO, Sultan C, Hamamah S. Experimental Evidence of 2,3,7,8-Tetrachlordibenzo-p-Dioxin (TCDD) Transgenerational Effects on Reproductive Health. Int J Mol Sci 2021; 22:ijms22169091. [PMID: 34445797 PMCID: PMC8396488 DOI: 10.3390/ijms22169091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that endocrine disruptors (EDs) can promote the transgenerational inheritance of disease susceptibility. Among the many existing EDs, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) affects reproductive health, including in humans, following direct occupational exposure or environmental disasters, for instance the Agent Orange sprayed during the Vietnam War. Conversely, few studies have focused on TCDD multigenerational and transgenerational effects on human reproductive health, despite the high amount of evidence in animal models of such effects on male and female reproductive health that mimic human reproductive system disorders. Importantly, these studies show that paternal ancestral TCDD exposure substantially contributes to pregnancy outcome and fetal health, although pregnancy outcome is considered tightly related to the woman’s health. In this work, we conducted a systematic review of the literature and a knowledge synthesis in order (i) to describe the findings obtained in rodent models concerning TCDD transgenerational effects on reproductive health and (ii) to discuss the epigenetic molecular alterations that might be involved in this process. As ancestral toxicant exposure cannot be changed in humans, identifying the crucial reproductive functions that are negatively affected by such exposure may help clinicians to preserve male and female fertility and to avoid adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
| | - Nicolas Kalfa
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- Département de Chirurgie Viscérale et Urologique Pédiatrique, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France
- Institut Debrest de Santé Publique IDESP, UMR INSERM, University of Montpellier, 34090 Montpellier, France
| | - Marie-Odile Soyer-Gobillard
- CNRS, Sorbonne University, 75006 Paris, France;
- Association Hhorages-France, 95270 Asnières-sur-Oise, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
| | - Samir Hamamah
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
- Département de Biologie de la Reproduction, Biologie de la Reproduction/DPI et CECOS, CHU Montpellier, University of Montpellier, 34090 Montpellier, France
- Correspondence: ; Fax: +33-4-67-33-62-90
| |
Collapse
|
39
|
Could Kallikrein-Related Serine Peptidase 3 Be an Early Biomarker of Environmental Exposure in Young Women? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168833. [PMID: 34444582 PMCID: PMC8392638 DOI: 10.3390/ijerph18168833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Bisphenols and phthalates affect androgen receptor-mediated signaling that directly regulates Kallikrein-Related serine Peptidase 3 (KLK3) secretion, indicating that environmental factors may play a role in KLK3 secretion. With the aim of obtaining preliminary data on whether KLK3 could serve as an early marker of environmental pollution effects, in 61 and 58 healthy women living in a high environmental impact (HEI) and low environmental impact (LEI) area, respectively, serum KLK3 levels at different phases of menstrual cycle were measured. KLK3 values resulted in always being higher in the HEI group with respect to the LEI group. These differences were particularly relevant in the ovulatory phase (cycle day 12°–13°) of the menstrual cycle. The differences in KLK3 values during the three phases of the menstrual cycle were significant in the LEI group differently from the HEI group. In addition, higher progesterone levels were observed in the LEI group with respect to the HEI group in the luteal phase, indicating an opposite trend of KLK3 and progesterone in this phase of the menstrual cycle. Although changes in KLK3 could also depend on other factors, these preliminary data could be an early indication of an expanding study of the role of biomarkers in assessing early environmental effects for female reproductive health.
Collapse
|
40
|
Sang Y, Liu J, Li X, Zhou G, Zhang Y, Gao L, Zhao Y, Zhou X. The effect of SiNPs on DNA methylation of genome in mouse spermatocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43684-43697. [PMID: 33840017 DOI: 10.1007/s11356-021-13459-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Silica nanoparticles (SiNPs), which are the main inorganic components of atmospheric particulate matter, have been proved to have certain male reproductive toxicity in previous studies. Spermatogenesis involves complex epigenetic regulation, but it is still unclear if SiNPs exposure will interfere with the DNA methylation patterns in mouse spermatocytes. The present study was designed to investigate the effects of SiNPs on DNA methylation in the mouse spermatocyte GC-2spd(ts). GC-2 cells were treated with 0 and 20 μg/mL SiNPs for 24 h. MeDIP-seq assay was then performed to analyze the differentially methylated genes related to spermatogenesis. The results showed that SiNPs induced extensive methylation changes in the genome of GC-2 cells, and 24a total of 428 hyper-methylated genes and 398 hypo-methylated genes were identified. Gene Ontology and pathway analysis showed that differential DNA methylation induced by SiNPs was probably involved with abnormal transcription and translation, mitochondrial damage, and cell apoptosis. Results from qRT-PCR verification showed that the expression of spermatogenesis-related genes Akap1, Crem, Spz1, and Tex11 were dysregulated by SiNPs exposure, which was consistent with the MeDIP-seq assay. In general, this study suggested that SiNPs caused genome-wide DNA methylation changes in GC-2 cells, providing valuable reference for the future epigenetic studies in SiNPs-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanzhi Zhao
- Yanjing Medical College, Capital Medical University, Beijing, 100069, China.
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
41
|
Paternal Finasteride Treatment Can Influence the Testicular Transcriptome Profile of Male Offspring-Preliminary Study. Curr Issues Mol Biol 2021; 43:868-886. [PMID: 34449557 PMCID: PMC8929076 DOI: 10.3390/cimb43020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Hormone-dependent events that occur throughout spermatogenesis during postnatal testis maturation are significant for adult male fertility. Any disturbances in the T/DHT ratio in male progeny born from females fertilized by finasteride-treated male rats (F0:Fin) can result in the impairment of testicular physiology. The goal of this work was to profile the testicular transcriptome in the male filial generation (F1:Fin) from paternal F0:Fin rats. (2) Methods: The subject material for the study were testis from immature and mature male rats born from females fertilized by finasteride-treated rats. Testicular tissues from the offspring were used in microarray analyses. (3) Results: The top 10 genes having the highest and lowest fold change values were mainly those that encoded odoriferous (Olfr: 31, 331, 365, 633, 774, 814, 890, 935, 1109, 1112, 1173, 1251, 1259, 1253, 1383) and vomeronasal (Vmn1r: 50, 103, 210, 211; Vmn2r: 3, 23, 99) receptors and RIKEN cDNA 5430402E10, also known as odorant-binding protein. (4) Conclusions: Finasteride treatment of male adult rats may cause changes in the testicular transcriptome of their male offspring, leading to a defective function of spermatozoa in response to odorant-like signals, which are recently more and more often noticed as significant players in male fertility.
Collapse
|
42
|
Montano L, Donato F, Bianco PM, Lettieri G, Guglielmino A, Motta O, Bonapace IM, Piscopo M. Semen quality as a potential susceptibility indicator to SARS-CoV-2 insults in polluted areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37031-37040. [PMID: 34053043 PMCID: PMC8164491 DOI: 10.1007/s11356-021-14579-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/21/2021] [Indexed: 05/11/2023]
Abstract
The epidemic of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted worldwide with its infectious spread and mortality rate. Thousands of articles have been published to tackle this crisis and many of these have indicated that high air pollution levels may be a contributing factor to high outbreak rates of COVID-19. Atmospheric pollutants, indeed, producing oxidative stress, inflammation, immuno-unbalance, and systemic coagulation, may be a possible significant co-factor of further damage, rendering the body prone to infections by a variety of pathogens, including viruses. Spermatozoa are extremely responsive to prooxidative effects produced by environmental pollutants and may serve as a powerful alert that signals the extent that environmental pressure, in a specific area, is doing damage to humans. In order to improve our current knowledge on this topic, this review article summarizes the relevant current observations emphasizing the weight that environmental pollution has on the sensitivity of a given population to several diseases and how semen quality, may be a potential indicator of sensitivity for virus insults (including SARS-CoV-2) in high polluted areas, and help to predict the risk for harmful effects of the SARS-CoV-2 epidemic. In addition, this review focused on the potential routes of virus transmission that may represent a population health risk and also identified the areas of critical importance that require urgent research to assess and manage the COVID-19 outbreak.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit, EcoFoodFertility Project, Coordination Unit, Local Health Authority (ASL) Salerno, Oliveto Citra, Via M. Clemente, 84020 Oliveto Citra, SA Italy
| | - Francesco Donato
- Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Unit of Hygiene, Epidemiology, and Public Health, University of Brescia, Brescia, Italy
| | - Pietro Massimiliano Bianco
- ISPRA, Italian Institute for Environmental Protection and Research, Via Vitaliano Brancati 60, 00144 Rome, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy
| | | | - Oriana Motta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria (VA), Varese, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy
| |
Collapse
|
43
|
Montano L, Donato F, Bianco PM, Lettieri G, Guglielmino A, Motta O, Bonapace IM, Piscopo M. Air Pollution and COVID-19: A Possible Dangerous Synergy for Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136846. [PMID: 34202243 PMCID: PMC8297116 DOI: 10.3390/ijerph18136846] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Several studies indicate that semen quality has strongly declined in the last decades worldwide. Air pollution represents a significant co-factor with the COVID-19 impact and has negative effects on the male reproductive system, through pro-oxidant, inflammatory and immune-dysregulating mechanisms. It has recently been reported that chronic exposure to PM2.5 causes overexpression of the alveolar ACE2 receptor, the entry route of SARS-CoV-2 into the organism shared by the lungs and testis where expression is highest in the body. In the testis, the ACE2/Ang-(1-7)/MasR pathway plays an important role in the regulation of spermatogenesis and an indirect mechanism of testicular damage could be due to the blockade of the ACE2 receptor by SARS-CoV-2. This prevents the conversion of specific angiotensins, and their excess causes inflammation with the overproduction of cytokines. PM2.5-induced overexpression of the alveolar ACE2 receptor, in turn, could increase local viral load in patients exposed to pollutants, producing ACE2 receptor depletion and compromising host defenses. By presenting an overall view of epidemiological data and molecular mechanisms, this manuscript aims to interpret the possible synergistic effects of both air pollution and COVID-19 on male reproductive function, warning that the spread of SARS-CoV-2 in the fertile years may represent a significant threat to global reproductive health. All of this should be of great concern, especially for men of the age of maximum reproductive capacity, and an important topic of debate for policy makers. Altered environmental conditions, together with the direct and indirect short- and long-term effects of viral infection could cause a worsening of semen quality with important consequences for male fertility, especially in those areas with higher environmental impact.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), “Oliveto Citra Hospital”, 84020 Oliveto Citra, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (L.M.); (I.M.B.); (M.P.); Tel.: +39-0331-339452 (I.M.B.); +39-0816-79081 (M.P.)
| | - Francesco Donato
- Unit of Hygiene, Epidemiology, and Public Health, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, University of Brescia, 21100 Brescia, Italy;
| | - Pietro Massimiliano Bianco
- ISPRA, Italian Institute for Environmental Protection and Research, Via Vitaliano Brancati 60, 00144 Roma, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| | | | - Oriana Motta
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy;
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence: (L.M.); (I.M.B.); (M.P.); Tel.: +39-0331-339452 (I.M.B.); +39-0816-79081 (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
- Correspondence: (L.M.); (I.M.B.); (M.P.); Tel.: +39-0331-339452 (I.M.B.); +39-0816-79081 (M.P.)
| |
Collapse
|
44
|
Suárez-Usbeck A, Mitjana O, Tejedor MT, Bonastre C, Sistac J, Ubiergo A, Falceto MV. Single Fixed-Time Post-Cervical Insemination in Gilts with Buserelin. Animals (Basel) 2021; 11:1567. [PMID: 34072000 PMCID: PMC8226837 DOI: 10.3390/ani11061567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Current protocols for gilts recommend the deposit of multiple semen doses in the cervix each 12-24 h after estrus detection. Our objectives were: (1) to determine the effect of buserelin and a single fixed-time artificial insemination using the new post-cervical artificial insemination technique (FTAI-PCAI) on reproductive and productive performance in gilts, and (2) to compare this protocol with conventional estrus detection and double PCAI without hormonal induction. In the control group (C; n = 240), gilts were inseminated twice (8 and 12 h from estrus onset). Gilts in the treatment group (T; n = 226) received buserelin (10 μg, intramuscular) 120 h after altrenogest treatment (18 d) and one single PCAI 30-33 h after buserelin administration. The groups did not differ in reproductive and production performance (p > 0.05). The T group showed greater piglet birth weight and shorter estrus duration (p < 0.001). Delivery batch length differed significantly depending on the season (p < 0.05); the shortest length corresponded to autumn. Both groups only differed significantly in spring (p = 0.018), with a shorter length in the T group. This new FTAI-PCAI protocol with buserelin is recommended in gilts, helping with optimization of genetic diffusion, boars, and semen doses.
Collapse
Affiliation(s)
- Andrés Suárez-Usbeck
- Department of Animal Pathology, Agroalimentary Institute of Aragon-IA2, University of Zaragoza-CITA, C/Miguel Servet 177, 50013 Zaragoza, Spain; (A.S.-U.); (O.M.); (C.B.); (M.V.F.)
| | - Olga Mitjana
- Department of Animal Pathology, Agroalimentary Institute of Aragon-IA2, University of Zaragoza-CITA, C/Miguel Servet 177, 50013 Zaragoza, Spain; (A.S.-U.); (O.M.); (C.B.); (M.V.F.)
| | - María Teresa Tejedor
- Department of Anatomy, Embryology and Animal Genetics, Genetic s Area, Faculty of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain
- CIBER CV (University of Zaragoza—IIS), Faculty of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Cristina Bonastre
- Department of Animal Pathology, Agroalimentary Institute of Aragon-IA2, University of Zaragoza-CITA, C/Miguel Servet 177, 50013 Zaragoza, Spain; (A.S.-U.); (O.M.); (C.B.); (M.V.F.)
| | - Jorge Sistac
- Granja Fabardo (Mazana Grupo Empresarial), 22480 Capella, Huesca, Spain;
| | | | - María Victoria Falceto
- Department of Animal Pathology, Agroalimentary Institute of Aragon-IA2, University of Zaragoza-CITA, C/Miguel Servet 177, 50013 Zaragoza, Spain; (A.S.-U.); (O.M.); (C.B.); (M.V.F.)
| |
Collapse
|
45
|
Assessment of Heavy Metals in Agricultural Land: A Literature Review Based on Bibliometric Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su13084559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A great amount of negative influence on human existence and environmental protection has been brought on by heavy metal pollution in agriculture soil. Thus, major awareness has been diverted to the evaluation of heavy metals (EHM) in agricultural land, which is used to improve the environment and ensure people’s health. Based on 3759 publications collected from the Web of Science Core CollectionTM (WoS), this paper’s aim is to illustrate a comprehensive bibliometric run-through and visualization of the subject of EHM. Contingent on influential authors, top institutions, keywords are discussed in detail. Afterwards, the ruling publications and focal assemblage of EHM and leading publications are analyzed to discover the main research topics, according to citation analysis and reference co-citation analysis. The main motive of the paper is to assist research workers interested in the area of EHM determine the ongoing potential research opportunities and hotspots.
Collapse
|
46
|
Lettieri G, Notariale R, Ambrosino A, Di Bonito A, Giarra A, Trifuoggi M, Manna C, Piscopo M. Spermatozoa Transcriptional Response and Alterations in PL Proteins Properties after Exposure of Mytilus galloprovincialis to Mercury. Int J Mol Sci 2021; 22:ijms22041618. [PMID: 33562685 PMCID: PMC7915165 DOI: 10.3390/ijms22041618] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Mercury (Hg) is an environmental pollutant that impacts human and ecosystem health. In our previous works, we reported alterations in the properties of Mytilus galloprovincialis protamine-like (PL) proteins after 24 h of exposure to subtoxic doses of toxic metals such as copper and cadmium. The present work aims to assess the effects of 24 h of exposure to 1, 10, and 100 pM HgCl2 on spermatozoa and PL proteins of Mytilus galloprovincialis. Inductively coupled plasma–mass spectrometry indicated accumulation of this metal in the gonads of exposed mussels. Further, RT-qPCR analyses showed altered expression levels of spermatozoa mt10 and hsp70 genes. In Mytilus galloprovincialis, PL proteins represent the major basic component of sperm chromatin. These proteins, following exposure of mussels to HgCl2, appeared, by SDS-PAGE, partly as aggregates and showed a decreased DNA-binding capacity that rendered them unable to prevent DNA damage, in the presence of CuCl2 and H2O2. These results demonstrate that even these doses of HgCl2 exposure could affect the properties of PL proteins and result in adverse effects on the reproductive system of this organism. These analyses could be useful in developing rapid and efficient chromatin-based genotoxicity assays for pollution biomonitoring programs.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (A.A.); (A.D.B.)
| | - Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Alessia Ambrosino
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (A.A.); (A.D.B.)
| | - Alfredo Di Bonito
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (A.A.); (A.D.B.)
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (A.G.); (M.T.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (A.G.); (M.T.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (A.A.); (A.D.B.)
- Correspondence:
| |
Collapse
|
47
|
Chen CW, Huang LY, Liao CF, Chang KP, Chu YW. GasPhos: Protein Phosphorylation Site Prediction Using a New Feature Selection Approach with a GA-Aided Ant Colony System. Int J Mol Sci 2020; 21:E7891. [PMID: 33114312 PMCID: PMC7660635 DOI: 10.3390/ijms21217891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Protein phosphorylation is one of the most important post-translational modifications, and many biological processes are related to phosphorylation, such as DNA repair, transcriptional regulation and signal transduction and, therefore, abnormal regulation of phosphorylation usually causes diseases. If we can accurately predict human phosphorylation sites, this could help to solve human diseases. Therefore, we developed a kinase-specific phosphorylation prediction system, GasPhos, and proposed a new feature selection approach, called Gas, based on the ant colony system and a genetic algorithm and used performance evaluation strategies focused on different kinases to choose the best learning model. Gas uses the mean decrease Gini index (MDGI) as a heuristic value for path selection and adopts binary transformation strategies and new state transition rules. GasPhos can predict phosphorylation sites for six kinases and showed better performance than other phosphorylation prediction tools. The disease-related phosphorylated proteins that were predicted with GasPhos are also discussed. Finally, Gas can be applied to other issues that require feature selection, which could help to improve prediction performance. GasPhos is available at http://predictor.nchu.edu.tw/GasPhos.
Collapse
Affiliation(s)
- Chi-Wei Chen
- Department of Computer Science and Engineering, National Chung-Hsing University, Taichung City 402, Taiwan;
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung City 402, Taiwan; (L.-Y.H.); (C.-F.L.)
| | - Lan-Ying Huang
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung City 402, Taiwan; (L.-Y.H.); (C.-F.L.)
| | - Chia-Feng Liao
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung City 402, Taiwan; (L.-Y.H.); (C.-F.L.)
| | - Kai-Po Chang
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan
- Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Yen-Wei Chu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung City 402, Taiwan; (L.-Y.H.); (C.-F.L.)
- Institute of Molecular Biology, National Chung Hsing University, Taichung City 402, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan
- Program in Translational Medicine, National Chung Hsing University, Taichung City 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|