1
|
Yu W, Zhou X, Meng J, Xu H, Zhou X. WRKY Transcription Factors Modulate the Flavonoid Pathway of Rhododendron chrysanthum Pall. Under UV-B Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:133. [PMID: 39795393 PMCID: PMC11723172 DOI: 10.3390/plants14010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
The depletion of the ozone layer has resulted in elevated ultraviolet-B (UV-B) radiation levels, posing a significant risk to terrestrial plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum), adapted to high-altitude and high-irradiation environments, has developed unique adaptive mechanisms. This study exposed R. chrysanthum to UV-B radiation for two days, with an 8 h daily treatment, utilizing metabolomic and transcriptomic analyses to explore the role of WRKY transcription factors in the plant's UV-B stress response and their regulation of flavonoid synthesis. UV-B stress resulted in a significant decrease in rETR and Ik and a significant increase in 1-qP. These chlorophyll fluorescence parameters indicate that UV-B stress impaired photosynthesis in R. chrysanthum. Faced with the detrimental impact of UV-B radiation, R. chrysanthum is capable of mitigating its effects by modulating its flavonoid biosynthetic pathways to adapt positively to the stress. This study revealed changes in the expression of 113 flavonoid-related metabolites and 42 associated genes, with WRKY transcription factors showing significant correlation with these alterations. WRKY transcription factors can influence the expression of key enzyme genes in the flavonoid metabolic pathway, thereby affecting metabolite production. A theoretical reference for investigating plant stress physiology is provided in this work, which also offers insights into the stress responses of alpine plants under adverse conditions.
Collapse
Affiliation(s)
| | | | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
2
|
Yu H, Zhu L, Chen Y, Deng P, Liu B, Chen X, Yuan F. Effects of seasonal climates and MIPS1 mutations on soybean germination through multi-omics analysis. BMC PLANT BIOLOGY 2024; 24:1231. [PMID: 39710639 DOI: 10.1186/s12870-024-05957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
This study delves into the combined effects of seasonal climate variations and MIPS1 gene mutations on the germination rates of soybean cultivars TW-1 and TW75. Through comprehensive metabolomic and transcriptomic analyses, we identified key KEGG pathways significantly affected by these factors, including starch and sucrose metabolism, lipid metabolism, and amino acid biosynthesis. These pathways were notably disrupted during the spring, leading to an imbalance in metabolic reserves critical for seedling development. Additionally, MIPS1 gene mutations further altered these pathways, exacerbating the metabolic disturbances. Our results underscore the intricate network of environmental and genetic interactions influencing soybean seed vigor and underscore the importance of understanding these pathways to enhance agricultural resilience and seed quality in fluctuating climates.
Collapse
Affiliation(s)
- Huakun Yu
- Biobreeding Institute, Xianghu Laboratory, Hangzhou, 311231, China
| | - Longming Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuhao Chen
- Biobreeding Institute, Xianghu Laboratory, Hangzhou, 311231, China
| | - Ping Deng
- Biobreeding Institute, Xianghu Laboratory, Hangzhou, 311231, China
| | - Bei Liu
- Biobreeding Institute, Xianghu Laboratory, Hangzhou, 311231, China
| | - Xiaochao Chen
- Biobreeding Institute, Xianghu Laboratory, Hangzhou, 311231, China
| | - Fengjie Yuan
- Biobreeding Institute, Xianghu Laboratory, Hangzhou, 311231, China.
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
3
|
Zhou W, Li X, Li D, Jiang X, Yang Y, You J, Liu H, Cheng H, Wang H, Zhang M. Comparative transcriptome analysis provides novel insights into the seed germination of Panax japonicus, an endangered species in China. BMC PLANT BIOLOGY 2024; 24:1167. [PMID: 39639201 PMCID: PMC11619102 DOI: 10.1186/s12870-024-05904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Panax japonicus, an endangered species in China, is usually used as a traditional medicine with functions of hemostasis, pain relief, and detoxify. However, the seeds of P. japonicus are hard to germinate in natural conditions, and the molecular events and systematic changes occurring in seed germination are still largely unknown. In this study, we compared the seeds in different germination stages in terms of morphological features, antioxidant enzyme activities, and transcriptomics. The results indicated that sand storage at 25℃ for 120 d effectively released the seed dormancy of P. japonicus and promoted the seed germination. Moreover, sand storage treatment increased the antioxidant capacity of P. japonicus seeds through increasing the activities of SOD, POD, and CAT. The RNA-seq identified 28,908 differentially expressed genes (DEGs) between different germination stages, of which 1697 DEGs significantly changed throughout the whole germination process. Functional annotations showed that the seed germination of P. japonicus was mainly regulated by the DEGs related to pathways of ROS-scavenging metabolism, plant hormonal signal transduction, starch and sucrose metabolism, energy supply (glycolysis, pyruvate metabolism, and oxidative phosphorylation), and phenylpropanoid biosynthesis, as well as the transcription factors such as bHLHs, MYBs, WRKYs, and bZIPs. This study provides a foundation for unveiling molecular mechanisms underlying the seed germination and is beneficial for accelerating the development of P. japonicus industry.
Collapse
Affiliation(s)
- Wuxian Zhou
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Xiaoling Li
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
- Gongshui River Wetland Park Management Bureau of Xuan'en County, Enshi, 445000, China
| | - Darong Li
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Xiaogang Jiang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Yuying Yang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Jinwen You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Haihua Liu
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Heng Cheng
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Hua Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.
| | - Meide Zhang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.
| |
Collapse
|
4
|
Fu N, Wang L, Sun Q, Wang Q, Zhang Y, Han X, Yang Q, Ma W, Tong Z, Zhang J. Genome-wide identification of the bHLH transcription factor family and the regulatory roles of PbbHLH74 in response to drought stress in Phoebe bournei. Int J Biol Macromol 2024; 283:137760. [PMID: 39557253 DOI: 10.1016/j.ijbiomac.2024.137760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Phoebe species constitute a large portion of subtropical forestry, which are key players in biomass resources. However, abiotic stresses such as drought stress severely limit the growth and development of P. bournei, and even lead to its death. It has been shown that basic helix-loop-helix (bHLH) as the second largest transcription factor family plays essential roles in response to multiple stresses in plants. However, little information of bHLH family is available in P. bournei. In this study, 130 PbbHLHs were identified and classified into 24 subfamilies. Then, the bHLH domain, conserved motifs and gene structures, evolutionary patterns and protein structural features were probed. The expression levels of 17 PbbHLHs were differentially induced by PEG and ABA by RT-qPCR analysis, indicating that they may be involved in drought stress response. Characterization of the drought candidate gene PbbHLH74 showed that it was transcriptionally active and localized in the nucleus. Heterologous transformation of PbbHLH74 into yeast improved cellular tolerance to drought stress. Meanwhile, overexpression of PbbHLH74 in Arabidopsis showed higher seed germination, plant biomass and expression levels of stress-related genes under drought conditions. Through the hairy root technique, overexpression of PbbHLH74 in P. bournei improved drought tolerance by enhancing root development and expression levels of genes involved in ABA-dependent and ROS scavenging pathways. Moreover, PbbHLH74 might positively regulate the expression of PbPOD by Y1H and dual-luciferase reporter assays. Overall, these results elucidated the structure and evolution of the PbbHLH family, in which PbbHLH74 could be applied to molecular assisted breeding for drought tolerance in P. bournei.
Collapse
Affiliation(s)
- Ningning Fu
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Li Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qiguang Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, PR China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China.
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China.
| |
Collapse
|
5
|
Ali A, Khan NM, Jiang Y, Zhou G, Wan Y. Comprehensive Genome-Wide Identification and Expression Profiling of bHLH Transcription Factors in Areca catechu Under Abiotic Stress. Int J Mol Sci 2024; 25:12936. [PMID: 39684646 DOI: 10.3390/ijms252312936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor (TF) family, the second-largest among eukaryotes, is known for its evolutionary and functional diversity across plant species. However, bHLH genes have not yet been characterized in Areca catechu. In this study, we identified 76 AcbHLH genes, which exhibit a variety of physicochemical properties. Phylogenetic analysis revealed evolutionary relationships between Arabidopsis thaliana bHLH genes (AtbHLH) and their counterparts in A. catechu (AcbHLH). These analyses also highlighted conserved amino acid motifs (S, R, K, P, L, A, G, and D), conserved domains, and evolutionary changes, such as insertions, deletions, and exon gains or losses. Promoter analysis of AcbHLH genes revealed 76 cis-elements related to growth, phytohormones, light, and stress. Gene duplication analysis revealed four tandem duplications and twenty-three segmental duplications, while AcbHLH63 in the Areca genome exhibited significant synteny with bHLH genes from A. thaliana, Vitis vinifera, Solanum lycopersicum, Brachypodium distachyon, Oryza sativa, and Zea mays. Furthermore, relative expression analysis showed that under drought stress (DS), AcbHLH22, AcbHLH39, AcbHLH45, and AcbHLH58 showed distinct upregulation in leaves at specific time points, while all nine AcbHLH genes were upregulated in roots. Under salt stress (SS), AcbHLH22, AcbHLH39, AcbHLH45, and AcbHLH58 were upregulated in leaves, and AcbHLH22, AcbHLH34, and AcbHLH39 exhibited differential expression in roots at various time points. This study provides valuable insights into the bHLH superfamily in A. catechu, offering a solid foundation for further investigation into its role in responding to abiotic stresses.
Collapse
Affiliation(s)
- Akhtar Ali
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Noor Muhammad Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yiqi Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Guangzhen Zhou
- The Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Yinglang Wan
- The Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
6
|
Guo Z, Liu H, Zheng S, Qi K, Xie Z, Wang X, Hong Y, Cui Y, Liu X, Gu C, Zhang SL. The transcription factor PbbHLH164 is destabilized by PbRAD23C/D.1 and mediates ethylene biosynthesis during pear fruit ripening. J Adv Res 2024; 66:119-131. [PMID: 38190939 PMCID: PMC11674782 DOI: 10.1016/j.jare.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The phytohormone ethylene plays an important role in climacteric fruit ripening. However, the knowledge on molecular regulation of ethylene biosynthesis remains limited in pear fruit. Herein, a new basic helix-loop-helix transcription factor, PbbHLH164, was identified based on the transcriptome analysis of different developing and ripening fruits of two pear cultivars 'Sucui No. 1' and 'Cuiguan'. PbbHLH164 was more highly expressed in ripening fruit than in developing fruit and positively correlated with ethylene production in both cultivars. PbbHLH164 could directly bind to the promoter of 1-aminocyclopropane-1-carboxylate synthase, PbACS1b, to enhance the expression, leading to the increase of ethylene production and the acceleration of fruit ripening. Interestingly, PbbHLH164 physically interacted with an ubiquitin-like/ubiquitin-associated protein PbRAD23C/D.1, and the interaction of PbbHLH164 with PbRAD23C/D.1 attenuated the function of PbbHLH164 in enhancing the activity of the PbACS1b promoter. Notably, PbRAD23C/D.1 was involved in the degradation of PbbHLH164, and this degradation was inhibited by an ubiquitin proteasome inhibitor MG132. Different from PbbHLH164, PbRAD23C/D.1 was more highly expressed in developing fruit than in ripening fruit of both cultivars. These results suggest that the increase of ethylene production during pear fruit ripening results from the up-regulated expression of PbbHLH164 and the down-regulated expression of PbRAD23C/D.1. This information provided new insights into the molecular regulation of ethylene biosynthesis during fruit ripening.
Collapse
Affiliation(s)
- ZhiHua Guo
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Liu
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - SiQi Zheng
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - KaiJie Qi
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - ZhiHua Xie
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - XuePing Wang
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - YeMei Hong
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - YanBo Cui
- Nanjing Ningcui Biological Seed Company Limited, Nanjing, Jiangsu, China
| | - Xiaoxiang Liu
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shao-Ling Zhang
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Hao Y, Su J, Cui Y, Wu K. Ectopic expression of HvbHLH132 from hulless barley reduces cold tolerance in transgenic Arabidopsis thaliana. PLANT CELL REPORTS 2024; 43:297. [PMID: 39585367 DOI: 10.1007/s00299-024-03382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
KEY MESSAGE Overexpression of HvbHLH132 from hulless barley impairs in chilling and freezing tolerance at the seedlings stage in Arabidopsis thaliana The basic helix-loop-helix (bHLH) transcription factors (TF) are ubiquitously existed in eukaryote and play crucial roles in numerous biological processes. However, the characterization of their members and functions in hulless barley remains limited. Here, we conducted a genome-wide identification of the HvbHLH gene family and assessed the role of HvbHLH132 in cold stress tolerance. We identified 141 HvbHLH genes, which were categorized into twelve subfamilies. Subcellular localization predictions indicated that the majority of HvbHLH proteins were localized in the nucleus. cis-Acting element analysis revealed that the promoter regions of the HvbHLH family contain diverse elements associated with various biological processes. Expression profiling of the 141 HvbHLH genes in two extreme varieties revealed that HvbHLH132 was significantly induced and exhibited substantial differential expression under cold stress. Analyses of subcellular localization and transactivation activity confirmed that HvbHLH132 specifically localized in the nucleus and contributed to transcriptional activation. Furthermore, overexpression of HvbHLH132 in Arabidopsis resulted in impaired chilling and freezing tolerance at the seedling stage, leading to biochemical changes unfavorable for freezing stress. Additionally, the expression of some cold-responsive genes (COR) genes was significantly less induced compared to wild type under freezing stress. This study provides comprehensive insight into the HvbHLH gene family and reveals a critical role of HvbHLH132 in regulating cold tolerance in plants.
Collapse
Affiliation(s)
- Yilei Hao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
- Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, Qinghai, China
| | - Jing Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| | - Yongmei Cui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China.
- Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, Qinghai, China.
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| |
Collapse
|
8
|
Lin Y, Liu G, Liu P, Chen Q, Guo X, Lu X, Cai Z, Sun L, Liu J, Chen K, Liu G, Tian J, Liang C. Border-like cell formation mediated by SgPG1 confers aluminum resistance in Stylosanthes guianensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1605-1624. [PMID: 39453443 DOI: 10.1111/tpj.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Stylosanthes is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined Stylosanthes guianensis genotypes, but not the Stylosanthes viscose genotype TF0140. In genotypic comparisons under Al conditions, the S. guianensis genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a polygalacturonase (SgPG1). The expression pattern of SgPG1 was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing SgPG1 changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and Stylosanthes hairy roots. Furthermore, combining protein-DNA binding assays in vitro and in vivo, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of SgPG1. Our study demonstrates that S. guianensis Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.
Collapse
Affiliation(s)
- Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xueqiong Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Zefei Cai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Lili Sun
- Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Jiping Liu
- Robert Holley Center, US Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, New York, 14853, USA
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
9
|
Ma D, Guo Y, Ali I, Lin J, Xu Y, Yang M. Accumulation characteristics of plant flavonoids and effects of cultivation measures on their biosynthesis: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108960. [PMID: 39079230 DOI: 10.1016/j.plaphy.2024.108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 09/15/2024]
Abstract
Flavonoids, a kind of secondary metabolites with both edible, medicinal and antioxidant purposes, could be widely used in food, drug processing, forest products, chemical industry and many other fields. Flavonoid production in plant organs were influenced by numerous internal and external factors at various stages, leading to differential gene expression and transcription factors activity. This study reviews the characteristics of major flavonoids categories, their distribution and accumulation in different plant parts and analyzing their molecular mechanisms. The results showed that: (1) Flavonoids exhibited wide distribution in all parts of the plants, with higher concentrations found in shoots system compared to roots sytem, across most species (predominantly accumulated in leaves and flowers). Plant sex, specific growth and development stages are both impacting indicators; (2) Cultivation methods and abiotic stress could affect plants flavonoid biosynthesis, while inappropriate physical treatments and cultivation methods induced stress in plants, prompting the activation of antioxidant mechanisms for flavonoid synthesis as a defence strategy via indirect pathways; (3) Various key genes and transcription factors collaboratively influenced key enzymes activities and regulate flavonoid biosynthesis, forming a complex regulatory network among these genes and transcription factors; (4) Further studies are required to elucidate whether flavonoid synthesis under various cultivation measures follows direct or indirect pathways. Furthermore, exploring methods for flavonoid biosynthesis and accumulation in specific organs or tissues, as well as identifying plant tissues and microorganisms with high efficiency in flavonoid biosynthesis, is essential for achieving targeted cultivation of plants and quantitative flavonoid production.
Collapse
Affiliation(s)
- Daocheng Ma
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yanmei Guo
- Guangxi State-Owned Qipo Forest Farm, Nanning, Guangxi, 530225, China
| | - Izhar Ali
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jireng Lin
- Guangxi State-Owned Qipo Forest Farm, Nanning, Guangxi, 530225, China
| | - Yuanyuan Xu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| | - Mei Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
10
|
Liu JN, Yan L, Chai Z, Liang Q, Dong Y, Wang C, Li X, Li C, Mu Y, Gong A, Yang J, Li J, Yang KQ, Wu D, Fang H. Pan-genome analyses of 11 Fraxinus species provide insights into salt adaptation in ash trees. PLANT COMMUNICATIONS 2024:101137. [PMID: 39308021 DOI: 10.1016/j.xplc.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 11/10/2024]
Abstract
Ash trees (Fraxinus) exhibit rich genetic diversity and wide adaptation to various ecological environments, and several species are highly salt tolerant. Dissecting the genomic basis of salt adaptation in Fraxinus is vital for its resistance breeding. Here, we present 11 high-quality chromosome-level genome assemblies for Fraxinus species, which reveal two unequal subgenome compositions and two recent whole-genome triplication events in their evolutionary history. A Fraxinus pan-genome was constructed on the basis of structural variations and revealed that presence-absence variations (PAVs) of transmembrane transport genes have likely contributed to salt adaptation in Fraxinus. Through whole-genome resequencing of an F1 population from an interspecies cross of F. velutina 'Lula 3' (salt tolerant) with F. pennsylvanica 'Lula 5' (salt sensitive), we mapped salt-tolerance PAV-based quantitative trait loci (QTLs) and pinpointed two PAV-QTLs and candidate genes associated with Fraxinus salt tolerance. Mechanistically, FvbHLH85 enhances salt tolerance by mediating reactive oxygen species and Na+/K+ homeostasis, whereas FvSWEET5 enhances salt tolerance by mediating osmotic homeostasis. Collectively, these findings provide valuable genomic resources for Fraxinus salt-resistance breeding and the research community.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Chunyu Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Yutian Mu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Andi Gong
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jinfeng Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jiaxiao Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan 250014, China.
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
11
|
Zheng L, Tang L, Li J. Genome-wide identification of the GATA gene family in melon ( Cucumis melo) and analysis of their expression characteristics under biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1462924. [PMID: 39345983 PMCID: PMC11427367 DOI: 10.3389/fpls.2024.1462924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
GATA transcription factors are an important class of transcription factors in plants, known for their roles in tissue development, signal transduction, and responses to biotic and abiotic stresses. To date, there have been no reports on the GATA gene family in melon (Cucumis melo). In this study, 24 CmGATA genes were identified from the melon genome. These family members exhibit significant differences in protein length, molecular weight, and theoretical isoelectric point and are primarily located in the nucleus. Based on the classification of Arabidopsis thaliana GATA members, the phylogenetic tree divided them into four groups: group I, group II, group III, and group IV, containing 10, 8, 4, and 2 genes, respectively. Notably, CmGATA genes within the same group have highly conserved protein motifs and similar exon-intron structures. The CmGATA family members are unevenly distributed across 10 chromosomes, with six pairs of segmentally duplicated genes and one pair of tandemly duplicated genes, suggesting that gene duplication may be the primary factor in the expansion of the CmGATA family. Melon shares 21, 4, 38, and 34 pairs of homologous genes with A. thaliana, Oryza sativa, Cucumis sativus, and Citrullus lanatus, respectively. The promoter regions are enriched with various cis-acting elements related to growth and development (eight types), hormone regulation (nine types), and stress responses (six types). Expression patterns indicate that different CmGATA family members are significantly expressed in seeds, roots, stems, leaves, tendrils, mesocarp, and epicarp, exhibiting distinct tissue-specific expression characteristics. Quantitative fluorescence analysis revealed that five genes, CmGATA3, CmGATA7, CmGATA16, CmGATA22, and CmGATA24, may be highly active under 48-h drought stress, while CmGATA1 and CmGATA22 may enhance melon resistance to heavy metal lead stress. Additionally, CmGATA22 and CmGATA24 are suggested to regulate melon resistance to Fusarium wilt infection. CmGATA22 appears to comprehensively regulate melon responses to both biotic and abiotic stresses. Lastly, potential protein interaction networks were predicted for the CmGATA family members, identifying CmGATA8 as a potential hub gene and predicting 2,230 target genes with enriched GO functions. This study preliminarily explores the expression characteristics of CmGATA genes under drought stress, heavy metal lead stress, and Fusarium wilt infection, providing a theoretical foundation for molecular mechanisms in melon improvement and stress resistance.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Biology, Luoyang Normal University, Luoyang, Henan, China
| | - Lin Tang
- Department of Biology, Luoyang Normal University, Luoyang, Henan, China
| | - Jinbo Li
- Department of Biology, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
12
|
García-Vázquez JL, Quijada-Rivera M, Hernández-Oñate MÁ, Tiznado-Hernández ME, Lazo-Javalera MF, Martínez-Téllez MÁ, Astorga-Cienfuegos KR, Rivera-Domínguez M. Effect of Vitis vinifera zygotic embryo cryopreservation and post-cryopreservation on the gene expression of DNA demethylases. Cryobiology 2024; 116:104947. [PMID: 39084504 DOI: 10.1016/j.cryobiol.2024.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Grapevine (Vitis vinifera L.) crops are continuously exposed to biotic and abiotic stresses, which can cause genetic and epigenetic alterations. To determine the possible effects of grapevine cryopreservation on the regulation of DNA demethylase genes, this work studied the expression of DNA demethylase genes in cryopreserved and post-cryopreserved grapevine tissues. V. vinifera DNA demethylases were characterized by in silico analysis, and gene expression quantification was conducted by RT‒qPCR. Three DNA demethylase sequences were found: VIT_13s0074g00450 (VvDMT), VIT_08s0007g03920 (VvROS1), and VIT_06s0061g01270 (VvDML3). Phylogenetic analysis revealed that the sequences from V. vinifera and A. thaliana had a common ancestry. In the promoters of responsive elements to transcription factors such as AP-2, Myb, bZIP, TBP, and GATA, the conserved domains RRM DME and Perm CXXC were detected. These responsive elements play roles in the response to abiotic stress and the regulation of cell growth. These data helped us characterize the V. vinifera DNA demethylase genes. Gene expression analysis indicated that plant vitrification solution 2 (PVS2) treatment does not alter the expression of DNA demethylase genes. The expression levels of VvDMT and VvROS1 increased in response to cryopreservation by vitrification. Furthermore, in post-cryopreservation, VvROS1 was highly induced, and VvDML3 was repressed in all the treatment groups. Gene expression differences between different treatments and tissues may play roles in controlling methylation patterns during gene regulation in tissues stressed by cryopreservation procedures and in the post-cryopreservation period during plant growth and development.
Collapse
Affiliation(s)
- Juan Luis García-Vázquez
- Food Science Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | - Mariana Quijada-Rivera
- Food Science Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | - Miguel Ángel Hernández-Oñate
- Vegetal Food Origin Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | | | | | - Miguel Ángel Martínez-Téllez
- Vegetal Food Origin Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | | | - Marisela Rivera-Domínguez
- Food Science Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico.
| |
Collapse
|
13
|
Zi Y, Zhang M, Yang X, Zhao K, Yin T, Wen K, Li X, Liu X, Zhang H. Identification of the sweet orange (Citrus sinensis) bHLH gene family and the role of CsbHLH55 and CsbHLH87 in regulating salt stress. THE PLANT GENOME 2024; 17:e20502. [PMID: 39215542 DOI: 10.1002/tpg2.20502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Salt stress is one of the primary environmental stresses limiting plant growth and production and adversely affecting the growth, development, yield, and fruit quality of Citrus sinensis. bHLH (basic helix-loop-helix) genes are involved in many bioregulatory processes in plants, including growth and development, phytohormone signaling, defense responses, and biosynthesis of specific metabolites. In this study, by bioinformatics methods, 120 CsbHLHgenes were identified, and phylogenetic analysis classified them into 18 subfamilies that were unevenly distributed on nine chromosomes. The cis-acting elements of the CsbHLH genes were mainly hormone-related cis-acting elements. Seventeen CsbHLH genes exhibited significant differences in expression under salt stress. Six CsbHLH genes with significant differences in expression were randomly selected for quantitative real-time polymerase chain reaction (qRT-PCR) validation. The qRT-PCR results showed a strong correlation with the transcriptome data. Phytohormones such as jasmonic acid (JA) are essential for biotic and abiotic stress responses in plants, and CsbHLH55 and CsbHLH87 are considered candidate target genes for sweet orange MYC2 transcription factors involved in the JA signaling pathway. These genes are the main downstream effectors in the JA signaling pathway and can be activated to participate in the JA signaling pathway. Activation of the JA signaling pathway inhibits the production of reactive oxygen species and improves the salt tolerance of sweet orange plants. The CsbHLH55 and CsbHLH87 genes could be candidate genes for breeding new transgenic salt-resistant varieties of sweet orange.
Collapse
Affiliation(s)
- Yinqiang Zi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Mengjie Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xiuyao Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ke Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ke Wen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xulin Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
14
|
Dai Z, Zhao K, Zheng D, Guo S, Zou H, Wu Z, Zhang C. Heterologous expression of the maize transcription factor ZmbHLH36 enhances abiotic stress tolerance in Arabidopsis. ABIOTECH 2024; 5:339-350. [PMID: 39279862 PMCID: PMC11399482 DOI: 10.1007/s42994-024-00159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/04/2024] [Indexed: 09/18/2024]
Abstract
Basic helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotes, and in plants, they regulate many biological processes, such as cell differentiation, development, metabolism, and stress responses. Few studies have focused on the roles of bHLH transcription factors in regulating growth, development, and stress responses in maize (Zea mays), even though such information would greatly benefit maize breeding programs. In this study, we cloned the maize transcription factor gene ZmbHLH36 (Gene ID: 100193615, GRMZM2G008691). ZmbHLH36 possesses conserved domains characteristic of the bHLH family. RT-qPCR analysis revealed that ZmbHLH36 was expressed at the highest level in maize roots and exhibited different expression patterns under various abiotic stress conditions. Transgenic Arabidopsis (Arabidopsis thaliana) plants heterologously expressing ZmbHLH36 had significantly longer roots than the corresponding non-transgenic plants under 0.1 and 0.15 mol L-1 NaCl treatment as well as 0.2 mol L-1 mannitol treatment. Phenotypic analysis of soil-grown plants under stress showed that transgenic Arabidopsis plants harboring ZmbHLH36 exhibited significantly enhanced drought tolerance and salt tolerance compared to the corresponding non-transgenic plants. Malondialdehyde contents were lower and peroxidase activity was higher in ZmbHLH36-expressing Arabidopsis plants than in the corresponding non-transgenic plants. ZmbHLH36 localized to the nucleus when expressed in maize protoplasts. This study provides a systematic analysis of the effects of ZmbHLH36 on root growth, development, and stress responses in transgenic Arabidopsis, laying a foundation for further analysis of its roles and molecular mechanisms in maize. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00159-3.
Collapse
Affiliation(s)
- Zhenggang Dai
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing, 100097 China
| | - Keyong Zhao
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing, 100097 China
| | - Dengyu Zheng
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing, 100097 China
| | - Siyu Guo
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing, 100097 China
| | - Huawen Zou
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Zhongyi Wu
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing, 100097 China
| | - Chun Zhang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing, 100097 China
| |
Collapse
|
15
|
Cui M, An F, Chen S, Qin X. Expression Pattern and Functional Analysis of MebHLH149 Gene in Response to Cassava Bacterial Blight. PLANTS (BASEL, SWITZERLAND) 2024; 13:2422. [PMID: 39273906 PMCID: PMC11397265 DOI: 10.3390/plants13172422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
The significant reduction in cassava (Manihot esculenta Crantz) yields attributed to cassava bacterial blight (CBB) constitutes an urgent matter demanding prompt attention. The current study centered on the MebHLH149 transcription factor, which is acknowledged to be reactive to CBB and exhibits augmented expression levels, as indicated by laboratory transcriptome data. Our exploration, encompassing Xanthomonas phaseoli pv. manihotis strain CHN01 (Xpm CHN01) and hormone stress, disclosed that the MebHLH149 gene interacts with the pathogen at the early stage of infection. Furthermore, the MebHLH149 gene has been discovered to be responsive to the plant hormones abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA), intimating a potential role in the signaling pathways mediated by these hormones. An analysis of the protein's subcellular localization suggested that MebHLH149 is predominantly located within the nucleus. Through virus-induced gene silencing (VIGS) in cassava, we discovered that MebHLH149-silenced plants manifested higher disease susceptibility, less ROS accumulation, and significantly larger leaf spot areas compared to control plants. The proteins MePRE5 and MePRE6, which are predicted to interact with MebHLH149, demonstrated complementary downregulation and upregulation patterns in response to silencing and overexpression of the MebHLH149 gene. This implies a potential interaction between MebHLH149 and these proteins. Both MePRE5 and MePRE6 genes are involved in the initial immune response to CBB. Notably, MebHLH149 was identified as a protein that physically interacts with MePRE5 and MePRE6. Based on these findings, it is hypothesized that the MebHLH149 gene likely functions as a positive regulator in the defense mechanisms of cassava against CBB.
Collapse
Affiliation(s)
- Min Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xindao Qin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
16
|
Gao Z, Tu Y, Liao C, Guo P, Tian Y, Zhou Y, Xie Q, Chen G, Hu Z. Overexpression of SlALC Increases Drought and Salt Tolerance and Affects Fruit Dehiscence in Tomatoes. Int J Mol Sci 2024; 25:9433. [PMID: 39273380 PMCID: PMC11395450 DOI: 10.3390/ijms25179433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The bHLH transcription factors are important plant regulators against abiotic stress and involved in plant growth and development. In this study, SlALC, a gene coding for a prototypical DNA-binding protein in the bHLH family, was isolated, and SlALC-overexpression tomato (SlALC-OE) plants were generated by Agrobacterium-mediated genetic transformation. SlALC transgenic lines manifested higher osmotic stress tolerance than the wild-type plants, estimated by higher relative water content and lower water loss rate, higher chlorophyll, reducing sugar, starch, proline, soluble protein contents, antioxidant enzyme activities, and lower MDA and reactive oxygen species contents in the leaves. In SlALC-OE lines, there were more significant alterations in the expression of genes associated with stress. Furthermore, SlALC-OE fruits were more vulnerable to dehiscence, with higher water content, reduced lignin content, SOD/POD/PAL enzyme activity, and lower phenolic compound concentrations, all of which corresponded to decreased expression of lignin biosynthetic genes. Moreover, the dual luciferase reporter test revealed that SlTAGL1 inhibits SlALC expression. This study revealed that SlALC may play a role in controlling plant tolerance to drought and salt stress, as well as fruit lignification, which influences fruit dehiscence. The findings of this study have established a foundation for tomato tolerance breeding and fruit quality improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.G.); (Y.T.); (C.L.); (P.G.); (Y.T.); (Y.Z.); (Q.X.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.G.); (Y.T.); (C.L.); (P.G.); (Y.T.); (Y.Z.); (Q.X.)
| |
Collapse
|
17
|
Singh S, Viswanath A, Chakraborty A, Narayanan N, Malipatil R, Jacob J, Mittal S, Satyavathi TC, Thirunavukkarasu N. Identification of key genes and molecular pathways regulating heat stress tolerance in pearl millet to sustain productivity in challenging ecologies. FRONTIERS IN PLANT SCIENCE 2024; 15:1443681. [PMID: 39239194 PMCID: PMC11374647 DOI: 10.3389/fpls.2024.1443681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Pearl millet is a nutri-cereal that is mostly grown in harsh environments, making it an ideal crop to study heat tolerance mechanisms at the molecular level. Despite having a better-inbuilt tolerance to high temperatures than other crops, heat stress negatively affects the crop, posing a threat to productivity gain. Hence, to understand the heat-responsive genes, the leaf and root samples of two contrasting pearl millet inbreds, EGTB 1034 (heat tolerant) and EGTB 1091 (heat sensitive), were subjected to heat-treated conditions and generated genome-wide transcriptomes. We discovered 13,464 differentially expressed genes (DEGs), of which 6932 were down-regulated and 6532 up-regulated in leaf and root tissues. The pairwise analysis of the tissue-based transcriptome data of the two genotypes demonstrated distinctive genotype and tissue-specific expression of genes. The root exhibited a higher number of DEGs compared to the leaf, emphasizing different adaptive strategies of pearl millet. A large number of genes encoding ROS scavenging enzymes, WRKY, NAC, enzymes involved in nutrient uptake, protein kinases, photosynthetic enzymes, and heat shock proteins (HSPs) and several transcription factors (TFs) involved in cross-talking of temperature stress responsive mechanisms were activated in the stress conditions. Ribosomal proteins emerged as pivotal hub genes, highly interactive with key genes expressed and involved in heat stress response. The synthesis of secondary metabolites and metabolic pathways of pearl millet were significantly enriched under heat stress. Comparative synteny analysis of HSPs and TFs in the foxtail millet genome demonstrated greater collinearity with pearl millet compared to proso millet, rice, sorghum, and maize. In this study, 1906 unannotated DEGs were identified, providing insight into novel participants in the molecular response to heat stress. The identified genes hold promise for expediting varietal development for heat tolerance in pearl millet and similar crops, fostering resilience and enhancing grain yield in heat-prone environments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Animikha Chakraborty
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Neha Narayanan
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Jinu Jacob
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Tara C Satyavathi
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| |
Collapse
|
18
|
Zinta R, Tiwari JK, Buckseth T, Goutam U, Singh RK, Thakur AK, Singh S, Kumar V, Kumar M. Phenotypic and transcriptomics characterization uncovers genes underlying tuber yield traits and gene expression marker development in potato under aeroponics. PLANTA 2024; 260:74. [PMID: 39153022 DOI: 10.1007/s00425-024-04507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
MAIN CONCLUSION Transcriptome analysis in potato varieties revealed genes associated with tuber yield-related traits and developed gene expression markers. This study aimed to identify genes involved in high tuber yield and its component traits in test potato varieties (Kufri Frysona, Kufri Khyati, and Kufri Mohan) compared to control (Kufri Sutlej). The aeroponic evaluation showed significant differences in yield-related traits in the varieties. Total RNA sequencing was performed using tuber and leaf tissues on the Illumina platform. The high-quality reads (QV > 25) mapping with the reference potato genomes revealed statistically significant (P < 0.05) differentially expressed genes (DEGs) into two categories: up-regulated (> 2 Log2 fold change) and down-regulated (< -2 Log2 fold change). DEGs were characterized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Collectively, we identified genes participating in sugar metabolism, stress response, transcription factors, phytohormones, kinase proteins, and other genes greatly affecting tuber yield and its related traits. A few selected genes were UDP-glucose glucosyltransferase, glutathion S-transferase, GDSL esterase/lipase, transcription factors (MYB, WRKY, bHLH63, and BURP), phytohormones (auxin-induced protein X10A, and GA20 oxidase), kinase proteins (Kunitz-type tuber invertase inhibitor, BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1) and laccase. Based on the selected 17 peptide sequences representing 13 genes, a phylogeny tree and motifs were analyzed. Real time-quantitative polymerase chain reaction (RT-qPCR) analysis was used to validate the RNA-seq results. RT-qPCR based gene expression markers were developed for the genes such as 101 kDa heat shock protein, catechol oxidase B chloroplastic, cysteine protease inhibitor 1, Kunitz-type tuber invertase inhibitor, and laccase to identify high yielding potato genotypes. Thus, our study paved the path for potential genes associated with tuber yield traits in potato under aeroponics.
Collapse
Affiliation(s)
- Rasna Zinta
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jagesh Kumar Tiwari
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
- Indian Council of Agricultural Research- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India.
| | - Tanuja Buckseth
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Umesh Goutam
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar Singh
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ajay Kumar Thakur
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Shwetank Singh
- Indian Council of Agricultural Research- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Vinod Kumar
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
19
|
Liu C, Wen L, Cui Y, Ahammed GJ, Cheng Y. Metal transport proteins and transcription factor networks in plant responses to cadmium stress. PLANT CELL REPORTS 2024; 43:218. [PMID: 39153039 DOI: 10.1007/s00299-024-03303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops. Additionally, regulatory TF families, including WRKY, MYB, bHLH, and ERF, are highlighted for their roles in modulating gene expression to counteract Cd toxicity. This review consolidates the existing literature on plant-Cd interactions, providing insights into established mechanisms and identifying gaps for future research. Understanding these mechanisms is crucial for developing strategies to enhance plant tolerance, ensure food safety, and promote sustainable agriculture amidst increasing heavy-metal pollution.
Collapse
Affiliation(s)
- Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Lang Wen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Yijia Cui
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Yuan Cheng
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China.
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
20
|
Zhang X, Yang M, Liu Z, Yang F, Zhang L, Guo Y, Huo D. Genetic analysis of yield components in buckwheat using high-throughput sequencing analysis and wild resource populations. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1313-1328. [PMID: 39184561 PMCID: PMC11341512 DOI: 10.1007/s12298-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
Fagopyrum tataricum, an important medicinal and edible crop, possesses significant agricultural and economic value. However, the development of buckwheat varieties and yields has been hindered by the delayed breeding progress despite the abundant material resources in China. Current research indicates that quantitative trait loci (QTLs) play a crucial role in controlling plant seed type and yield. To address these limitations, this study constructed recombinant inbred lines (RILs) utilizing both cultivated species and wild buckwheat as raw materials. In total, 84,521 Single Nucleotide Polymorphism (SNP) markers were identified through Genotyping-by-Sequencing (GBS) technology, and high-resolution and high-density SNP genetic maps were developed, which had significant value for QTL mapping, gene cloning and comparative mapping of buckwheat. In this study, we successfully identified 5 QTLs related to thousand grain weight (TGW), 9 for grain length (GL), and 1 for grain width (GW) by combining seed type and TGW data from 202 RIL populations in four different environments, within which one co-located QTL for TGW were discovered on the first chromosome. Transcriptome analysis during different grain development stages revealed 59 significant expression differences between the two materials, which can serve as candidate genes for further investigation into the regulation of grain weight and yield enhancement. The mapped major loci controlling TGW, GL and GW will be valuable for gene cloning and reveal the mechanism underlying grain development and marker-assisted selection in Tartary buckwheat.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Miao Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031 China
| | - Fan Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Yajing Guo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| |
Collapse
|
21
|
Jara-Cornejo K, Zúñiga PE, Rivera-Mora C, Bustos E, Garrido-Bigotes A, Ruiz-Lara S, Figueroa CR. YABBY transcription factor family in the octoploid Fragaria × ananassa and five diploid Fragaria species. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:735-748. [PMID: 38924267 DOI: 10.1111/plb.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/02/2024] [Indexed: 06/28/2024]
Abstract
YABBY genes encode specific TFs of seed plants involved in development and formation of leaves, flowers, and fruit. In the present work, genome-wide and expression analyses of the YABBY gene family were performed in six species of the Fragaria genus: Fragaria × ananassa, F. daltoniana, F. nilgerrensis, F. pentaphylla, F. viridis, and F. vesca. The chromosomal location, synteny pattern, gene structure, and phylogenetic analyses were carried out. By combining RNA-seq data and RT-qPCR analysis we explored specific expression of YABBYs in F. × ananassa and F. vesca. We also analysed the promoter regions of FaYABBYs and performed MeJA application to F. × ananassa fruit to observe effects on gene expression. We identified and characterized 25 YABBY genes in F. × ananassa and six in each of the other five species, which belong to FIL/YAB3 (YABBY1), YAB2 (YABBY2), YAB5 (YABBY5), CRC, and INO clades previously described. Division of the YABBY1 clade into YABBY1.1 and YABBY1.2 subclades is reported. We observed differential expression according to tissue, where some FaYABBYs are expressed mainly in leaves and flowers and to a minor extent during fruit development of F. × ananassa. Specifically, the FaINO genes contain jasmonate-responsive cis-acting elements in their promoters which may be functional since FaINOs are upregulated in F. × ananassa fruit under MeJA treatment. This study suggests that YABBY TFs play an important role in the development- and environment-associated responses of the Fragaria genus.
Collapse
Affiliation(s)
- K Jara-Cornejo
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Doctoral Program in Sciences mention in Plant Biology and Biotechnology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Functional Genomics Laboratory, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - P E Zúñiga
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Doctoral Program in Sciences mention in Plant Biology and Biotechnology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - C Rivera-Mora
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Doctoral Program in Sciences mention in Plant Biology and Biotechnology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - E Bustos
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Doctoral Program in Sciences mention in Plant Biology and Biotechnology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - A Garrido-Bigotes
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - S Ruiz-Lara
- Functional Genomics Laboratory, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - C R Figueroa
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| |
Collapse
|
22
|
Wang Y, Chen L, Yao Y, Chen L, Cui Y, An L, Li X, Bai Y, Yao X, Wu K. Investigating the regulatory role of HvANT2 in anthocyanin biosynthesis through protein-motif interaction in Qingke. PeerJ 2024; 12:e17736. [PMID: 39006012 PMCID: PMC11246018 DOI: 10.7717/peerj.17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Background Currently, there are no reports on the HvbHLH gene family in the recent barley genome (Morex_V3). Furthermore, the structural genes related to anthocyanin synthesis that interact with HvANT2 have yet to be fully identified. Methods In this study, a bioinformatics approach was used to systematically analyze the HvbHLH gene family. The expression of this gene family was analyzed through RNA sequencing (RNA-seq), and the gene with the most significant expression level, HvANT2, was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in different tissues of two differently colored varieties. Finally, structural genes related to anthocyanin synthesis and their interactions with HvANT2 were verified using a yeast one-hybrid (Y1H) assay. Results The study identified 161 bHLH genes, designated as HvbHLH1 to HvbHLH161, from the most recent barley genome available. Evolutionary tree analysis categorized barley bHLH TFs into 21 subfamilies, demonstrating a pronounced similarity to rice and maize. Through RNA-Seq analysis of purple and white grain Qingke, we discovered a significant transcription factor (TF), HvANT2 (HvbHLH78), associated with anthocyanin biosynthesis. Subsequently, HvANT2 protein-motifs interaction assays revealed 41 interacting motifs, three of which were validated through Y1H experiments. These validated motifs were found in the promoter regions of key structural genes (CHI, F3'H, and GT) integral to the anthocyanin synthesis pathway. These findings provide substantial evidence for the pivotal role of HvANT2 TF in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Yan Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lin Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lupeng Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| |
Collapse
|
23
|
Sabouri H, Pezeshkian Z, Taliei F, Akbari M, Kazerani B. Detection of closely linked QTLs and candidate genes controlling germination indices in response to drought and salinity stresses in barley. Sci Rep 2024; 14:15656. [PMID: 38977885 PMCID: PMC11231201 DOI: 10.1038/s41598-024-66452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The aim of current study was to identify closely linked QTLs and candidate genes related to germination indices under control, salinity and drought conditions in barley. A total of nine (a major), 28 (eight major) and 34 (five major) closely linked QTLs were mapped on the seven chromosomes in response to control, drought and salinity conditions using genome-wide composite interval mapping, respectively. The major QTLs can be used in marker-assisted selection (MAS) projects to increase tolerance to drought and salinity stresses during the germination. Overall, 422 unique candidate genes were associated with most major QTLs. Moreover, gene ontology analysis showed that candidate genes mostly involved in biological process related to signal transduction and response to stimulus in the pathway of resistance to drought and salinity stresses. Also, the protein-protein interaction network was identified 10 genes. Furthermore, 10 genes were associated with receptor-like kinase family. In addition, 16 transcription factors were detected. Three transcription factors including B3, bHLH, and FAR1 had the most encoding genes. Totally, 60 microRNAs were traced to regulate the target genes. Finally, the key genes are a suitable and reliable source for future studies to improve resistance to abiotic stress during the germination of barley.
Collapse
Affiliation(s)
- Hossein Sabouri
- Department of Plant Production, College of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad, Iran.
| | - Zahra Pezeshkian
- Department of Animal Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
- BioGenTAC Inc., Technology Incubator of Agricultural Biotechnology Research Institute of Iran-North Branch (ABRII), Rasht, Iran
| | - Fakhtak Taliei
- Department of Plant Production, College of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad, Iran
| | - Mahjoubeh Akbari
- Department of Plant Production, College of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad, Iran
| | - Borzo Kazerani
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
24
|
Gan J, Qiu Y, Tao Y, Zhang L, Okita TW, Yan Y, Tian L. RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. FRONTIERS IN PLANT SCIENCE 2024; 15:1394223. [PMID: 38966147 PMCID: PMC11222332 DOI: 10.3389/fpls.2024.1394223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.
Collapse
Affiliation(s)
- Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yongqi Qiu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Zuo WT, Meng JH, Liu HC, Zhu HY, Lu MZ, Wang LQ. PagWOX11/12a from hybrid poplar enhances drought tolerance by modulating reactive oxygen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108662. [PMID: 38691876 DOI: 10.1016/j.plaphy.2024.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
WOX11/12 is a homeobox gene of WOX11 and WOX12 in Arabidopsis that plays important roles in crown root development and growth. It has been reported that WOX11/12 participates in adventitious root (AR) formation and different abiotic stress responses, but the downstream regulatory network of WOX11/12 in poplar remains to be further investigated. In this study, we found that PagWOX11/12a is strongly induced by PEG-simulated drought stress. PagWOX11/12a-overexpressing poplar plantlets showed lower oxidative damage levels, greater antioxidant enzyme activities and reactive oxygen species (ROS) scavenging capacity than non-transgenic poplar plants, whereas PagWOX11/12a dominant repression weakened root biomass accumulation and drought tolerance in poplar. RNA-seq analysis revealed that several differentially expressed genes (DEGs) regulated by PagWOX11/12a are involved in redox metabolism and drought stress response. We used RT-qPCR and yeast one-hybrid (Y1H) assays to validate the downstream target genes of PagWOX11/12a. These results provide new insights into the biological function and molecular regulatory mechanism of WOX11/12 in the abiotic resistance processes of poplar.
Collapse
Affiliation(s)
- Wen-Teng Zuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jia-Hui Meng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hong-Chao Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hang-Yong Zhu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, 510520, China
| | - Meng-Zhu Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Liu-Qiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
26
|
Monterisi S, Zhang L, Garcia-Perez P, Alzate Zuluaga MY, Ciriello M, El-Nakhel C, Buffagni V, Cardarelli M, Colla G, Rouphael Y, Cesco S, Lucini L, Pii Y. Integrated multi-omic approach reveals the effect of a Graminaceae-derived biostimulant and its lighter fraction on salt-stressed lettuce plants. Sci Rep 2024; 14:10710. [PMID: 38729985 PMCID: PMC11087557 DOI: 10.1038/s41598-024-61576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Plant biostimulants are widely applied in agriculture for their ability to improve plant fitness. In the present work, the impact of Graminaceae-derived protein hydrolysate (P) and its lighter molecular fraction F3 (< 1 kDa) on lettuce plants, subjected to either no salt or high salt conditions, was investigated through the combination of metabolomics and transcriptomics. The results showed that both treatments significantly modulated the transcriptome and metabolome of plants under salinity stress, highlighting an induction of the hormonal response. Nevertheless, P and F3 also displayed several peculiarities. F3 specifically modulated the response to ethylene and MAPK signaling pathway, whereas P treatment induced a down-accumulation of secondary metabolites, albeit genes controlling the biosynthesis of osmoprotectants and antioxidants were up-regulated. Moreover, according with the auxin response modulation, P promoted cell wall biogenesis and plasticity in salt-stressed plants. Notably, our data also outlined an epigenetic control of gene expression induced by P treatment. Contrarily, experimental data are just partially in agreement when not stressed plants, treated with P or F3, were considered. Indeed, the reduced accumulation of secondary metabolites and the analyses of hormone pathways modulation would suggest a preferential allocation of resources towards growth, that is not coherent with the down-regulation of the photosynthetic machinery, the CO2 assimilation rate and leaves biomass. In conclusion, our data demonstrate that, although they might activate different mechanisms, both the P and F3 can result in similar benefits, as far as the accumulation of protective osmolytes and the enhanced tolerance to oxidative stress are concerned. Notably, the F3 fraction exhibits slightly greater growth promotion effects under high salt conditions. Most importantly, this research further corroborates that biostimulants' mode of action is dependent on plants' physiological status and their composition, underscoring the importance of investigating the bioactivity of the different molecular components to design tailored applications for the agricultural practice.
Collapse
Affiliation(s)
- Sonia Monterisi
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, 39100, Bolzano, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, 39100, Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, 39100, Bolzano, Italy.
| |
Collapse
|
27
|
Muthan B, Wang J, Welti R, Kosma DK, Yu L, Deo B, Khatiwada S, Vulavala VKR, Childs KL, Xu C, Durrett TP, Sanjaya SA. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133951. [PMID: 38492385 DOI: 10.1016/j.jhazmat.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Unlike terrestrial angiosperm plants, the freshwater aquatic angiosperm duckweed (Spirodela polyrhiza) grows directly in water and has distinct responses to heavy-metal stress. Plantlets accumulate metabolites, including lipids and carbohydrates, under heavy-metal stress, but how they balance metabolite levels is unclear, and the gene networks that mediate heavy-metal stress responses remain unknown. Here, we show that heavy-metal stress induced by flue gas desulfurization (FGD) wastewater reduces chlorophyll contents, inhibits growth, reduces membrane lipid biosynthesis, and stimulates membrane lipid degradation in S. polyrhiza, leading to triacylglycerol and carbohydrate accumulation. In FGD wastewater-treated plantlets, the degraded products of monogalactosyldiacylglycerol, primarily polyunsaturated fatty acids (18:3), were incorporated into triacylglycerols. Genes involved in early fatty acid biosynthesis, β-oxidation, and lipid degradation were upregulated while genes involved in cuticular wax biosynthesis were downregulated by treatment. The transcription factor gene WRINKLED3 (SpWRI3) was upregulated in FGD wastewater-treated plantlets, and its ectopic expression increased tolerance to FGD wastewater in transgenic Arabidopsis (Arabidopsis thaliana). Transgenic Arabidopsis plants showed enhanced glutathione and lower malondialdehyde contents under stress, suggesting that SpWRI3 functions in S. polyrhiza tolerance of FGD wastewater-induced heavy-metal stress. These results provide a basis for improving heavy metal-stress tolerance in plants for industrial applications.
Collapse
Affiliation(s)
- Bagyalakshmi Muthan
- Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bikash Deo
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Subhiksha Khatiwada
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sanju A Sanjaya
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
28
|
Zinta R, Tiwari JK, Buckseth T, Goutam U, Singh RK, Kumar V, Thakur AK. Transcriptome profiling and characterization of genes associated with tuberization under high temperature in aeroponics in potato cv. Kufri Anand. Genes Genomics 2024; 46:409-421. [PMID: 38381322 DOI: 10.1007/s13258-024-01503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND High temperature stress is an important abiotic factor, which affects tuberization and ultimately causes heavy yield reduction in potato. OBJECTIVES Identification and characterization of genes associated with tuberization under high temperature stress is essential for future management through biotechnology. METHODOLOGY Two contrasting potato varieties Kufri Anand (profuse tuber-bearing) versus Kufri Frysona (very less/scanty tuber-bearing, control) were cultivated in aeroponics under high temperature stress, and transcriptomes were analyzed. RESULTS Potato cv. Kufri Anand was found superior over control (Kufri Frysona) for tuber yield and its component traits along with root morphology under aeroponics. Transcriptomes of tuber and leaf tissues were analyzed. Statistically significant (p < 0.05) differentially expressed genes (DEGs) were categorised into up-regulated (> 2 log2 fold change, FC) and down-regulated (< -2 log2 FC) genes. DEGs were annotated by gene ontology and KEGG pathways. A few selected up-regulated genes of both tissues were identified, and phylogeny tree and motif analysis were analysed based on 36 peptide sequences representing 15 selected DEGs in this study. Further, gene expression markers were developed and validated by real time qPCR analysis for the identification of high temperature tolerant genotypes. CONCLUSION A few key genes associated in tuberization under high temperature conditions were heat shock proteins (e.g. 18.5 kDa class I heat shock protein), sugar metabolism (e.g. glucosyltransferase), transcription factor (e.g. WRKY), and phytohormones (e.g. auxin-induced beta-glucosidase). Our study provides an overview of key genes involved in tuberization under high temperature stress in potato cv. Kufri Anand under aeroponics.
Collapse
Affiliation(s)
- Rasna Zinta
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jagesh Kumar Tiwari
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
- ICAR-Indian Institute of Vegetable Research Institute, Varanasi, Uttar Pradesh, India.
| | - Tanuja Buckseth
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Umesh Goutam
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar Singh
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vinod Kumar
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ajay Kumar Thakur
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
29
|
Guo F, Meng X, Hong H, Liu S, Yu J, Huang C, Dong T, Geng H, Li Z, Zhu M. Systematic identification and expression analysis of bHLH gene family reveal their relevance to abiotic stress response and anthocyanin biosynthesis in sweetpotato. BMC PLANT BIOLOGY 2024; 24:156. [PMID: 38424529 PMCID: PMC10905920 DOI: 10.1186/s12870-024-04788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND bHLH transcription factors play significant roles in regulating plant growth and development, stress response, and anthocyanin biosynthesis. Sweetpotato is a pivotal food and industry crop, but little information is available on sweetpotato bHLH genes. RESULTS Herein, 227 putative IbbHLH genes were defined on sweetpotato chromosomes, and fragment duplications were identified as the dominant driving force for IbbHLH expansion. These IbbHLHs were divided into 26 subfamilies through phylogenetic analysis, as supported by further analysis of exon-intron structure and conserved motif composition. The syntenic analysis between IbbHLHs and their orthologs from other plants depicted evolutionary relationships of IbbHLHs. Based on the transcriptome data under salt stress, the expression of 12 IbbHLHs was screened for validation by qRT-PCR, and differential and significant transcriptions under abiotic stress were detected. Moreover, IbbHLH123 and IbbHLH215, which were remarkably upregulated by stress treatments, had obvious transactivation activity in yeasts. Protein interaction detections and yeast two-hybrid assays suggested an intricate interaction correlation between IbbHLHs. Besides, transcriptome screening revealed that multiple IbbHLHs may be closely related to anthocyanin biosynthesis based on the phenotype (purple vs. white tissues), which was confirmed by subsequent qRT-PCR analysis. CONCLUSIONS These results shed light on the promising functions of sweetpotato IbbHLHs in abiotic stress response and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Haiting Hong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Jing Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Can Huang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Huixue Geng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
30
|
Zhang Y, Guo Z, Chen X, Li X, Shi Y, Xu L, Yu C, Jing B, Li W, Xu A, Shi X, Li K, Huang Z. Identification candidate genes for salt resistance through quantitative trait loci-sequencing in Brassica napus L. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154187. [PMID: 38422630 DOI: 10.1016/j.jplph.2024.154187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops worldwide. However, its yield is greatly limited by salt stress, one of the primary abiotic stresses. Identification of salt-tolerance genes and breeding salt-tolerant varieties is an effective approach to address this issue. Unfortunately, little is known about the salt-tolerance quantitative trait locus (QTL) and the identification of salt tolerance genes in rapeseed. In this study, high-throughput quantitative trait locus sequencing (QTL-seq) was applied to identifying salt-tolerant major QTLs based on two DNA pools from an F2:3 population of a cross between rapeseed line 2205 (salt tolerant) and 1423 (salt sensitive). A total of twelve major QTLs related to the salt tolerance rating (STR) were detected on chromosomes A03, A08, C02, C03, C04, C06, C07 and C09. To further enhance our understanding, we integrated QTL-seq data with transcriptome analysis of the two parental rapeseed plants subjected to salt stress, through which ten candidate genes for salt tolerance were identified within the major QTLs by gene differential expression, variation and annotated functions analysis. The marker SNP820 linked to salt tolerance was successfully validated and would be useful as a diagnostic marker in marker-assisted breeding. These findings provide valuable insights for future breeding programs aimed at developing rapeseed cultivars resistant to salt stresses.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiting Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Xu
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Chengyu Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
31
|
Zhai X, Wang X, Yang X, Huang Q, Wu D, Wang Y, Kang H, Sha L, Fan X, Zhou Y, Zhang H. Genome-wide identification of bHLH transcription factors and expression analysis under drought stress in Pseudoroegneria libanotica at germination. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:467-481. [PMID: 38633269 PMCID: PMC11018577 DOI: 10.1007/s12298-024-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/24/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in Pseudoroegneria species has not been studied yet. Pseudoroegneria (Nevski) Á. Löve is a perennial genus of the Triticeae. Pseudoroegneria species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in Pseudoroegneria libanotica, which could be classified into 15 groups. Collinearity analysis indicates that 122 PlbHLH genes share homology with wbHLH genes in wheat, and it has lower homology with AtbHLH genes in Arabidopsis. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated PlbHLH genes were screened. Among them, PlbHLH6, PlbHLH55 and PlbHLH64 as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of PlbHLHs in Pse. libanotica, and discovered new drought-tolerance candidate genes to enhance the genetic background of Triticeae crops. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01433-w.
Collapse
Affiliation(s)
- Xingguan Zhai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xia Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xunzhe Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qingxiang Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
32
|
Sonsungsan P, Suratanee A, Buaboocha T, Chadchawan S, Plaimas K. Identification of Salt-Sensitive and Salt-Tolerant Genes through Weighted Gene Co-Expression Networks across Multiple Datasets: A Centralization and Differential Correlation Analysis. Genes (Basel) 2024; 15:316. [PMID: 38540375 PMCID: PMC10970189 DOI: 10.3390/genes15030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 06/14/2024] Open
Abstract
Salt stress is a significant challenge that severely hampers rice growth, resulting in decreased yield and productivity. Over the years, researchers have identified biomarkers associated with salt stress to enhance rice tolerance. However, the understanding of the mechanism underlying salt tolerance in rice remains incomplete due to the involvement of multiple genes. Given the vast amount of genomics and transcriptomics data available today, it is crucial to integrate diverse datasets to identify key genes that play essential roles during salt stress in rice. In this study, we propose an integration of multiple datasets to identify potential key transcription factors. This involves utilizing network analysis based on weighted co-expression networks, focusing on gene-centric measurement and differential co-expression relationships among genes. Consequently, our analysis reveals 86 genes located in markers from previous meta-QTL analysis. Moreover, six transcription factors, namely LOC_Os03g45410 (OsTBP2), LOC_Os07g42400 (OsGATA23), LOC_Os01g13030 (OsIAA3), LOC_Os05g34050 (OsbZIP39), LOC_Os09g29930 (OsBIM1), and LOC_Os10g10990 (transcription initiation factor IIF), exhibited significantly altered co-expression relationships between salt-sensitive and salt-tolerant rice networks. These identified genes hold potential as crucial references for further investigation into the functions of salt stress response in rice plants and could be utilized in the development of salt-resistant rice cultivars. Overall, our findings shed light on the complex genetic regulation underlying salt tolerance in rice and contribute to the broader understanding of rice's response to salt stress.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology (CEEPP), Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
33
|
Gambhir P, Raghuvanshi U, Kumar R, Sharma AK. Transcriptional regulation of tomato fruit ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:289-303. [PMID: 38623160 PMCID: PMC11016043 DOI: 10.1007/s12298-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
34
|
Zhao X, Wang Q, Yan C, Sun Q, Wang J, Li C, Yuan C, Mou Y, Shan S. The bHLH transcription factor AhbHLH121 improves salt tolerance in peanut. Int J Biol Macromol 2024; 256:128492. [PMID: 38035960 DOI: 10.1016/j.ijbiomac.2023.128492] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Plants have developed a number of protective mechanisms to respond to salt and other stresses. Previous studies have shown that the basic helix-loop-helix (bHLH) transcription factor AhbHLH121 plays a crucial role in the response to abiotic stresses in peanut, but the mechanisms and functions related to AhbHLH121 remain unclear. In the current research, AhbHLH121 was induced by salt treatment. Overexpression of AhbHLH121 improved salt resistance, whereas silencing AhbHLH121 resulted in the inverse correlation. Our results also demonstrated that overexpression of AhbHLH121 results in greater activity of antioxidant enzymes under stress condition by promoting the expression of the genes for peroxidase, catalase and superoxide dismutase (AhPOD, AhCAT and AhSOD), indicating enhanced scavenging of reactive oxygen species. Further analysis including Yeast one-hybrid (Y1H) assays and electrophoretic mobility shift assays (EMSAs), suggested that AhbHLH121 can bind directly to the G/E-box regions of the AhPOD, AhCAT and AhSOD promoters, thereby promoting their expression and leading to improved antioxidant enzyme activity. Our research improves the understanding of the mechanisms that allow this peanut bHLH transcription factor to improve abiotic tolerance, and provides valuable gene resources for breeding programs to promote salt stress resistance.
Collapse
Affiliation(s)
- Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao 266100, China.
| | - Qi Wang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao 266100, China.
| |
Collapse
|
35
|
Zahra N, Uzair M, Zaid IU, Attia KA, Inam S, Fiaz S, Abdallah RM, Naeem MK, Farooq U, Rehman N, Ali GM, Xu J, Li Z, Khan MR. The comparative transcriptome analysis of two green super rice genotypes with varying tolerance to salt stress. Mol Biol Rep 2023; 51:22. [PMID: 38110786 DOI: 10.1007/s11033-023-08998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Salinity is one of the main abiotic factors that restrict plant growth, physiology, and crop productivity is salt stress. About 33% of the total irrigated land suffers from severe salinity because of intensive underground water extraction and irrigation with brackish water. Thus, it is important to understand the genetic mechanism and identify the novel genes involved in salt tolerance for the development of climate-resilient rice cultivars. METHODS AND RESULTS In this study, two rice genotypes with varying tolerance to salt stress were used to investigate the differential expressed genes and molecular pathways to adapt under saline soil by comparative RNA sequencing at 42 days of the seedling stage. Salt-susceptible (S3) and -tolerant (S13) genotypes revealed 3982 and 3463 differentially expressed genes in S3 and S13 genotypes. The up-regulated genes in both genotypes were substantially enriched in different metabolic processes and binding activities. Biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and plant signal transduction mechanisms were highly enriched. Salt-susceptible and -tolerant genotypes shared the same salt adaptability mechanism with no significant quantitative differences at the transcriptome level. Moreover, bHLH, ERF, NAC, WRKY, and MYB transcription factors were substantially up-regulated under salt stress. 391 out of 1806 identified novel genes involved in signal transduction mechanisms. Expression profiling of six novel genes further validated the findings from RNA-seq data. CONCLUSION These findings suggest that the differentially expressed genes and molecular mechanisms involved in salt stress adaptation are conserved in both salt-susceptible and salt-tolerant rice genotypes. Further molecular characterization of novel genes will help to understand the genetic mechanism underlying salt tolerance in rice.
Collapse
Affiliation(s)
- Nageen Zahra
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Imdad Ullah Zaid
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, Pakistan.
| | - Rizk M Abdallah
- Department of Rice, Field Crops Research Institute, ARC, Sakha, Kafrelshiekh, 33717, Egypt
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Umer Farooq
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | | | - Jianlong Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan.
| |
Collapse
|
36
|
Du T, Zhou Y, Qin Z, Li A, Wang Q, Li Z, Hou F, Zhang L. Genome-wide identification of the C2H2 zinc finger gene family and expression analysis under salt stress in sweetpotato. FRONTIERS IN PLANT SCIENCE 2023; 14:1301848. [PMID: 38152142 PMCID: PMC10752007 DOI: 10.3389/fpls.2023.1301848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Introduction The higher plant transcription factor C2H2 zinc finger protein (C2H2-ZFP) is essential for plant growth, development, and stress response. There are limited studies on C2H2-ZFP genes in sweetpotato, despite a substantial number of C2H2-ZFP genes having been systematically found in plants. Methods In this work, 178 C2H2-ZFP genes were found in sweetpotato, distributed randomly on 15 chromosomes, and given new names according to where they were located. These members of the zinc finger gene family are separated into six branches, as shown by the phylogenetic tree. 24 tandem repeats of IbZFP genes and 46 fragment repeats were identified, and a homology study revealed that IbZFP genes linked more regions with wild relative species of sweetpotato as well as rhizome plants like potato and cassava. And we analyzed the expression patterns of IbZFP genes during the early development of sweetpotato storage roots (SRs) and salt stress using transcriptome data, and identified 44 IbZFP genes that exhibited differences in expression levels during the early expansion of sweetpotato SRs in different varieties, and 92 IbZFP genes that exhibited differences in expression levels under salt stress in salt tolerant and salt sensitive sweetpotato varieties. Additionally, we cloned six IbZFP genes in sweetpotato and analyzed their expression patterns in different tissues, their expression patterns under abiotic stress and hormone treatment, and subcellular localization. Results and discussion The results showed that the IbZFP genes had tissue specificity in sweetpotato and were induced to varying degrees by drought and salt stress. ABA and GA3 treatments also affected the expression of the IbZFP genes. We selected IbZFP105, which showed significant differences in expression levels under salt stress and ABA treatment, to be heterologously expressed in Arabidopsis thaliana. We found that IbZFP105 OE lines exhibited higher tolerance to salt stress and ABA stress. This indicates that IbZFP105 can enhance the salt tolerance of plants. These results systematically identified the evolution and expression patterns of members of the C2H2-ZFP gene family in sweetpotato, providing a theoretical basis for studying the role of IbZFP genes in the development of sweetpotato SRs and in resistance to stress.
Collapse
Affiliation(s)
- Taifeng Du
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zongyun Li
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Liming Zhang
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| |
Collapse
|
37
|
Chen S, Liu H, Yangzong Z, Gardea-Torresdey JL, White JC, Zhao L. Seed Priming with Reactive Oxygen Species-Generating Nanoparticles Enhanced Maize Tolerance to Multiple Abiotic Stresses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19932-19941. [PMID: 37975618 DOI: 10.1021/acs.est.3c07339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Climate change-induced extreme weather events (heat, cold, drought, and flooding) will severely affect crop production. Increasing the resilience of crops to fluctuating environmental conditions is critically important. Here, we report that nanomaterials (NMs) with reactive oxygen species (ROS)-generating properties can be used as seed priming agents to simultaneously enhance the tolerance of maize seeds and seedlings to diverse and even multiple stresses. Maize seeds primed with 40 mg/L silver nanoparticles (AgNPs) exhibited accelerated seed germination and an increased germination rate, greater seedling vigor, and better seedling growth under drought (10% and 20% PEG), saline (50 and 100 mM NaCl), and cold (15 °C) stress conditions, indicating enhanced resilience to diverse stresses. Importantly, maize resistance to simultaneous multiple stresses (drought and cold, drought and salt, and salt and cold) was markedly enhanced. Under drought conditions, seed priming significantly boosted root hair density and length (17.3-82.7%), which enabled greater tolerance to water deficiency. RNA-seq analysis reveals that AgNPs seed priming induced a transcriptomic shift in maize seeds. Plant hormone signal transduction and MAPK signaling pathways were activated upon seed priming. Importantly, low-cost and environmentally friendly ROS-generating Fe-based NMs (Fe2O3 and Fe3O4 NPs) were also demonstrated to enhance the resistance of seeds and seedlings to drought, salt, and cold stresses. These findings demonstrate that a simple seed priming strategy can be used to significantly enhance the climate resilience of crops through modulated ROS homeostasis and that this approach could be a powerful nanoenabled tool for addressing worsening food insecurity.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haolin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhaxi Yangzong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jorge L Gardea-Torresdey
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Huang X, Zhang W, Liao Y, Ye J, Xu F. Contemporary understanding of transcription factor regulation of terpenoid biosynthesis in plants. PLANTA 2023; 259:2. [PMID: 37971670 DOI: 10.1007/s00425-023-04268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
KEY MESSAGE This review summarized how TFs function independently or in response to environmental factors to regulate terpenoid biosynthesis via fine-tuning the expression of rate-limiting enzymes. Terpenoids are derived from various species and sources. They are essential for interacting with the environment and defense mechanisms, such as antimicrobial, antifungal, antiviral, and antiparasitic properties. Almost all terpenoids have high medicinal value and economic performance. Recently, the control of enzyme genes on terpenoid biosynthesis has received a great deal of attention, but transcriptional factors regulatory network on terpenoid biosynthesis and accumulation has yet to get a thorough review. Transcription factors function as activators or suppressors independently or in response to environmental stimuli, fine-tuning terpenoid accumulation through regulating rate-limiting enzyme expression. This study investigates the advancements in transcription factors related to terpenoid biosynthesis and systematically summarizes previous works on the specific mechanisms of transcription factors that regulate terpenoid biosynthesis via hormone signal-transcription regulatory networks in plants. This will help us to better comprehend the regulatory network of terpenoid biosynthesis and build the groundwork for terpenoid development and effective utilization.
Collapse
Affiliation(s)
- Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
39
|
Tan Z, Lu D, Yu Y, Li L, Dong W, Xu L, Yang Q, Wan X, Liang H. Genome-Wide Identification and Characterization of the bHLH Gene Family and Its Response to Abiotic Stresses in Carthamus tinctorius. PLANTS (BASEL, SWITZERLAND) 2023; 12:3764. [PMID: 37960120 PMCID: PMC10648185 DOI: 10.3390/plants12213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not been investigated. In this study, we performed a genome-wide identification and analysis of bHLH transcription factors in C. tinctorius. A total of 120 CtbHLH genes were identified, distributed across all 12 chromosomes, and classified into 24 subfamilies based on their phylogenetic relationships. Moreover, the 120 CtbHLH genes were subjected to comprehensive analyses, including protein sequence alignment, evolutionary assessment, motif prediction, and the analysis of promoter cis-acting elements. The promoter region analysis revealed that CtbHLH genes encompass cis-acting elements and were associated with various aspects of plant growth and development, responses to phytohormones, as well as responses to both abiotic and biotic stresses. Expression profiles, sourced from transcriptome databases, indicated distinct expression patterns among these CtbHLH genes, which appeared to be either tissue-specific or specific to certain cultivars. To further explore their functionality, we determined the expression levels of fifteen CtbHLH genes known to harbor motifs related to abiotic and hormone responses. This investigation encompassed treatments with ABA, salt, drought, and MeJA. The results demonstrated substantial variations in the expression patterns of CtbHLH genes in response to these abiotic and hormonal treatments. In summary, our study establishes a solid foundation for future inquiries into the roles and regulatory mechanisms of the CtbHLH gene family.
Collapse
Affiliation(s)
- Zhengwei Tan
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dandan Lu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wei Dong
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lanjie Xu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qing Yang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, China;
| | - Huizhen Liang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
40
|
Liu Y, Li T, Zhu H, Zhou Y, Shen Q, Liu D. Cysteine facilitates the lignocellulolytic response of Trichoderma guizhouense NJAU4742 by indirectly up-regulating membrane sugar transporters. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:159. [PMID: 37891614 PMCID: PMC10612256 DOI: 10.1186/s13068-023-02418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Filamentous fungi possess a rich CAZymes system, which is widely studied and applied in the bio-conversion of plant biomass to alcohol chemicals. Carbon source acquisition is the fundamental driver for CAZymes-producing sustainability and secondary metabolism, therefore, a deeper insight into the regulatory network of sugar transport in filamentous fungi has become urgent. RESULTS This study reports an important linkage of sulfur assimilation to lignocellulose response of filamentous fungus. Inorganic sulfur addition facilitated biodegradation of rice straw by Trichoderma guizhouense NJAU4742. Cysteine and glutathione were revealed as major intracellular metabolites responsive to sulfur addition by metabolomics, cysteine content was increased in this process and glutathione increased correspondingly. Two membrane sugar transporter genes, Tgmst1 and Tgmst2, were identified as the critical response genes significantly up-regulated when intracellular cysteine increased. Tgmst1 and Tgmst2 were both positively regulated by the glucose regulation-related protein (GRP), up-regulation of both Tgmst1 and Tggrp can cause a significant increase in intracellular glucose. The transcriptional regulatory function of GRP mainly relied on GSH-induced glutathionylation, and the transcription activating efficiency was positively related to the glutathionylation level, furthermore, DTT-induced deglutathionylation resulted in the down-regulation of downstream genes. CONCLUSIONS Inorganic sulfur addition induces a rise in intracellular Cys content, and the conversion of cysteine to glutathione caused the increase of glutathionylation level of GRP, which in turn up-regulated Tgmst1 and Tgmst2. Subsequently, the sugar transport efficiency of single cells was improved, which facilitated the maintenance of vigorous CAZymes metabolism and the straw-to-biomass conversion.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tuo Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Han Zhu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yihao Zhou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
41
|
Zhang Q, Teng R, Yuan Z, Sheng S, Xiao Y, Deng H, Tang W, Wang F. Integrative transcriptomic analysis deciphering the role of rice bHLH transcription factor Os04g0301500 in mediating responses to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1266242. [PMID: 37828923 PMCID: PMC10565216 DOI: 10.3389/fpls.2023.1266242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Understanding the signaling pathways activated in response to these combined stresses and their crosstalk is crucial to breeding crop varieties with dual or multiple tolerances. However, most studies to date have predominantly focused on individual stress factors, leaving a significant gap in understanding plant responses to combined biotic and abiotic stresses. The bHLH family plays a multifaceted regulatory role in plant response to both abiotic and biotic stresses. In order to comprehensively identify and analyze the bHLH gene family in rice, we identified putative OsbHLHs by multi-step homolog search, and phylogenic analysis, molecular weights, isoelectric points, conserved domain screening were processed using MEGAX version 10.2.6. Following, integrative transcriptome analysis using 6 RNA-seq data including Xoo infection, heat, and cold stress was processed. The results showed that 106 OsbHLHs were identified and clustered into 17 clades. Os04g0301500 and Os04g0489600 are potential negative regulators of Xoo resistance in rice. In addition, Os04g0301500 was involved in non-freezing temperatures (around 4°C) but not to 10°C cold stresses, suggesting a complex interplay with temperature signaling pathways. The study concludes that Os04g0301500 may play a crucial role in integrating biotic and abiotic stress responses in rice, potentially serving as a key regulator of plant resilience under changing environmental conditions, which could be important for further multiple stresses enhancement and molecular breeding through genetic engineering in rice.
Collapse
Affiliation(s)
- Qiuping Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Rong Teng
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Ziyi Yuan
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Song Sheng
- Yuelushan Laboratory, Changsha, China
- College of Forest, Central South University of Forestry and Technology, Changsha, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Hybrid Rice Centre, Hunan Academy of Agricultural Science, Changsha, China
| | - Wenbang Tang
- Yuelushan Laboratory, Changsha, China
- Hunan Hybrid Rice Centre, Hunan Academy of Agricultural Science, Changsha, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
42
|
Niu X, Lai Z, Wang L, Ma R, Ren Y, Wang X, Cheng C, Wang T, Chen F, Xu Y. Co-Expression of JcNAC1- and JcZFP8-Improved Agronomic Traits of Tobacco and Enhanced Drought Resistance through NbbHLH1 and NbbHLH2. PLANTS (BASEL, SWITZERLAND) 2023; 12:3029. [PMID: 37687275 PMCID: PMC10490288 DOI: 10.3390/plants12173029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Previous studies have identified numerous transcription factors involved in drought response, each of which play different roles in plants. The objective of the present study was to evaluate the effectiveness of two transcription factors on drought response in Jatropha curcas L., JcNAC1 and JcZFP8. The overexpression of these transcription factors in tobacco (Nicotiana benthamiana L.) improved drought resistance, but JcZFP8 delayed germination and JcNAC1 reduced biomass and yield. By constitutively co-expressing these two genes in tobacco, drought resistance was improved, and the negative effects of each of them were overcome. The transgenic plants with double-gene co-expression showed stronger drought tolerance with 1.76-fold greater accumulation of proline and lower H2O2 and malondialdehyde (MDA) content to 43 and 65% of wildtype (WT) levels, respectively. The expression levels of NbbHLH1 and NbbHLH2 genes upregulated linearly with the increased drought tolerance of double genes co-expression plants. In drought conditions, the leaf water contents of bhlh1, bhlh2, and bhlh1bhlh2 deletion mutants obtained by CRISPR-CAS9 knockout technique were maintained at 99%, 97%, and 97% of WT. The bhlh1bhlh2 was found with lower germination rate but with higher reactive oxygen levels (1.64-fold H2O2 and 1.41-fold MDA levels). Thus, the co-expression of two transcription factors with different functions overcame the adverse traits brought by a single gene and enhanced the shared drought-tolerant traits, which can provide guidance on theory and selection of gene combinations for the application of multi-gene co-expression in agriculture in the future.
Collapse
Affiliation(s)
- Xianfei Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhiping Lai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Linghui Wang
- College of Life Science and Food Engineering, Yibin University, Yibin 644000, China
| | - Rui Ma
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yingying Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xueying Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Cheng Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ting Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ying Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
43
|
Tang Y, Li J, Song Q, Cheng Q, Tan Q, Zhou Q, Nong Z, Lv P. Transcriptome and WGCNA reveal hub genes in sugarcane tiller seedlings in response to drought stress. Sci Rep 2023; 13:12823. [PMID: 37550374 PMCID: PMC10406934 DOI: 10.1038/s41598-023-40006-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Drought stress can severely affect sugarcane growth and yield. The objective of this research was to identify candidate genes in sugarcane tillering seedlings in response to drought stress. We performed a comparative phenotypic, physiological and transcriptomic analysis of tiller seedlings of drought-stressed and well-watered "Guire 2" sugarcane, in a time-course experiment (5 days, 9 days and 15 days). Physiological examination reviewed that SOD, proline, soluble sugars, and soluble proteins accumulated in large amounts in tiller seedlings under different intensities of drought stress, while MDA levels remained at a stable level, indicating that the accumulation of osmoregulatory substances and the enhancement of antioxidant enzyme activities helped to limit further damage caused by drought stress. RNA-seq and weighted gene co-expression network analysis (WGCNA) were performed to identify genes and modules associated with sugarcane tillering seedlings in response to drought stress. Drought stress induced huge down-regulated in gene expression profiles, most of down-regulated genes were mainly associated with photosynthesis, sugar metabolism and fatty acid synthesis. We obtained four gene co-expression modules significantly associated with the physiological changes under drought stress (three modules positively correlated, one module negatively correlated), and found that LSG1-2, ERF1-2, SHKA, TIL, HSP18.1, HSP24.1, HSP16.1 and HSFA6A may play essential regulatory roles as hub genes in increasing SOD, Pro, soluble sugar or soluble protein contents. In addition, one module was found mostly involved in tiller stem diameter, among which members of the BHLH148 were important nodes. These results provide new insights into the mechanisms by which sugarcane tillering seedlings respond to drought stress.
Collapse
Affiliation(s)
- Yuwei Tang
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Jiahui Li
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China.
| | - Qiqi Song
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Qin Cheng
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Qinliang Tan
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Quanguang Zhou
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Zemei Nong
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Ping Lv
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| |
Collapse
|
44
|
Dwivedi AK, Singh V, Anwar K, Pareek A, Jain M. Integrated transcriptome, proteome and metabolome analyses revealed secondary metabolites and auxiliary carbohydrate metabolism augmenting drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107849. [PMID: 37393858 DOI: 10.1016/j.plaphy.2023.107849] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
Drought is one of the major consequences of climate change and a serious threat to rice production. Drought stress activates interactions among genes, proteins and metabolites at the molecular level. A comparative multi-omics analysis of drought-tolerant and drought-sensitive rice cultivars can decipher the molecular mechanisms involved in drought tolerance/response. Here, we characterized the global-level transcriptome, proteome, and metabolome profiles, and performed integrated analyses thereof in a drought-sensitive (IR64) and a drought-tolerant (Nagina 22) rice cultivar under control and drought-stress conditions. The transcriptional dynamics and its integration with proteome analysis revealed the role of transporters in regulation of drought stress. The proteome response illustrated the contribution of translational machinery to drought tolerance in N22. The metabolite profiling revealed that aromatic amino acids and soluble sugars contribute majorly to drought tolerance in rice. The integrated transcriptome, proteome and metabolome analysis performed using statistical and knowledge-based methods revealed the preference for auxiliary carbohydrate metabolism through glycolysis and pentose phosphate pathway contributed to drought tolerance in N22. In addition, L-phenylalanine and the genes/proteins responsible for its biosynthesis were also found to contribute to drought tolerance in N22. In conclusion, our study provided mechanistic insights into the drought response/adaptation mechanism and is expected to facilitate engineering of drought tolerance in rice.
Collapse
Affiliation(s)
- Anuj Kumar Dwivedi
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vikram Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Khalid Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
45
|
Smet D, Opdebeeck H, Vandepoele K. Predicting transcriptional responses to heat and drought stress from genomic features using a machine learning approach in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1212073. [PMID: 37528982 PMCID: PMC10390317 DOI: 10.3389/fpls.2023.1212073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 08/03/2023]
Abstract
Plants have evolved various mechanisms to adapt to adverse environmental stresses, such as the modulation of gene expression. Expression of stress-responsive genes is controlled by specific regulators, including transcription factors (TFs), that bind to sequence-specific binding sites, representing key components of cis-regulatory elements and regulatory networks. Our understanding of the underlying regulatory code remains, however, incomplete. Recent studies have shown that, by training machine learning (ML) algorithms on genomic sequence features, it is possible to predict which genes will transcriptionally respond to a specific stress. By identifying the most important features for gene expression prediction, these trained ML models allow, in theory, to further elucidate the regulatory code underlying the transcriptional response to abiotic stress. Here, we trained random forest ML models to predict gene expression in rice (Oryza sativa) in response to heat or drought stress. Apart from thoroughly assessing model performance and robustness across various input training data, the importance of promoter and gene body sequence features to train ML models was evaluated. The use of enriched promoter oligomers, complementing known TF binding sites, allowed us to gain novel insights in DNA motifs contributing to the stress regulatory code. By comparing genomic feature importance scores for drought and heat stress over time, general and stress-specific genomic features contributing to the performance of the learned models and their temporal variation were identified. This study provides a solid foundation to build and interpret ML models accurately predicting transcriptional responses and enables novel insights in biological sequence features that are important for abiotic stress responses.
Collapse
Affiliation(s)
- Dajo Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Helder Opdebeeck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Adak S, Agarwal T, Das P, Ray S, Lahiri Majumder A. Characterization of myo-inositol oxygenase from rice ( OsMIOX): influence of salinity stress in different indica rice cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:927-945. [PMID: 37649879 PMCID: PMC10462604 DOI: 10.1007/s12298-023-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Myo-inositol oxygenase (MIOX), the only catabolic enzyme of the inositol pathway, catalyzes conversion of myo-inositol to D-GlcA (glucuronic acid). The present study encompasses bioinformatic analysis of MIOX gene across phylogenetically related plant lineages and representative animal groups. Comparative motif analysis of the MIOX gene(s) across various plant groups suggested existence of abiotic- stress related cis-acting elements such as, DRE, MYB, MYC, STRE, MeJa among others. A detailed analysis revealed a single isoform of MIOX gene, located in chromosome 6 of indica rice (Oryza sativa) with an open reading frame of 938 bp coding for 308 amino acids producing a protein of ~ 35 kD. Secondary structure prediction of the protein gave the predicted number of 144 alpha helices and 154 random coils. The three-dimensional structure suggested it to be a monomeric protein with a single domain. Bacterial overexpression of the protein, purification and enzyme assay showed optimal catalytic activity at pH 7.5-8 at an optimal temperature of 37 °C with Michaelis constant of 40.92 mM. The range of Km was determined as 22.74-28.7 mM and the range of Vmax was calculated as 3.51-3.6 µM/min, respectively. Four salt-tolerant and salt-sensitive rice cultivars displayed differential gene expression of OsMIOX at different time points in different tissues under salinity and drought stress as observed from qRT-PCR data, microarray results and protein expression profile in immunoblot analysis. Gel volumetric analysis confirmed a very high expression of MIOX in roots and leaves on 7th day following germination. Microarray data showed high expression of MIOX at all developmental stages including seedling growth and reproduction. These data suggest that OsMIOX might have a role to play in rice abiotic stress responses mediated through the myo-inositol oxidation pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01340-6.
Collapse
Affiliation(s)
- Sanghamitra Adak
- Division of Plant Biology, Bose Institute, Kolkata, 700054 India
| | - Tanushree Agarwal
- Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| | - Priyanka Das
- Division of Plant Biology, Bose Institute, Kolkata, 700054 India
| | - Sudipta Ray
- Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, Kolkata, 700054 India
- Present Address: Department of Microbiology and Biotechnology, Sister Nivedita University, DG 1/2, Action Area I, New Town, Kolkata, 700156 India
| |
Collapse
|
47
|
Zhang XM, Duan SG, Xia Y, Li JT, Liu LX, Tang M, Tang J, Sun W, Yi Y. Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant, Rhododendron delavayi, to Waterlogging Stress and Post-Waterlogging Recovery. Int J Mol Sci 2023; 24:10509. [PMID: 37445685 DOI: 10.3390/ijms241310509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Climate change has resulted in frequent heavy and prolonged rainfall events that exacerbate waterlogging stress, leading to the death of certain alpine Rhododendron trees. To shed light on the physiological and molecular mechanisms behind waterlogging stress in woody Rhododendron trees, we conducted a study of Rhododendron delavayi, a well-known alpine flower species. Specifically, we investigated the physiological and molecular changes that occurred in leaves of R. delavayi subjected to 30 days of waterlogging stress (WS30d), as well as subsequent post-waterlogging recovery period of 10 days (WS30d-R10d). Our findings reveal that waterlogging stress causes a significant reduction in CO2 assimilation rate, stomatal conductance, transpiration rate, and maximum photochemical efficiency of PSII (Fv/Fm) in the WS30d leaves, by 91.2%, 95.3%, 93.3%, and 8.4%, respectively, when compared to the control leaves. Furthermore, the chlorophyll a and total chlorophyll content in the WS30d leaves decreased by 13.5% and 16.6%, respectively. Both WS30d and WS30d-R10d leaves exhibited excessive H2O2 accumulation, with a corresponding decrease in lignin content in the WS30d-R10d leaves. At the molecular level, purine metabolism, glutathione metabolism, photosynthesis, and photosynthesis-antenna protein pathways were found to be primarily involved in WS30d leaves, whereas phenylpropanoid biosynthesis, fatty acid metabolism, fatty acid biosynthesis, fatty acid elongation, and cutin, suberin, and wax biosynthesis pathways were significantly enriched in WS30d-R10d leaves. Additionally, both WS30d and WS30d-R10d leaves displayed a build-up of sugars. Overall, our integrated transcriptomic, physiological, and metabolomic analysis demonstrated that R. delavayi is susceptible to waterlogging stress, which causes irreversible detrimental effects on both its physiological and molecular aspects, hence compromising the tree's ability to fully recover, even under normal growth conditions.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Sheng-Guang Duan
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Ying Xia
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Jie-Ting Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| | - Lun-Xian Liu
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Ming Tang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| | - Jing Tang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
48
|
Paul M, Tanskanen J, Jääskeläinen M, Chang W, Dalal A, Moshelion M, Schulman AH. Drought and recovery in barley: key gene networks and retrotransposon response. FRONTIERS IN PLANT SCIENCE 2023; 14:1193284. [PMID: 37377802 PMCID: PMC10291200 DOI: 10.3389/fpls.2023.1193284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023]
Abstract
Introduction During drought, plants close their stomata at a critical soil water content (SWC), together with making diverse physiological, developmental, and biochemical responses. Methods Using precision-phenotyping lysimeters, we imposed pre-flowering drought on four barley varieties (Arvo, Golden Promise, Hankkija 673, and Morex) and followed their physiological responses. For Golden Promise, we carried out RNA-seq on leaf transcripts before and during drought and during recovery, also examining retrotransposon BARE1expression. Transcriptional data were subjected to network analysis. Results The varieties differed by their critical SWC (ϴcrit), Hankkija 673 responding at the highest and Golden Promise at the lowest. Pathways connected to drought and salinity response were strongly upregulated during drought; pathways connected to growth and development were strongly downregulated. During recovery, growth and development pathways were upregulated; altogether, 117 networked genes involved in ubiquitin-mediated autophagy were downregulated. Discussion The differential response to SWC suggests adaptation to distinct rainfall patterns. We identified several strongly differentially expressed genes not earlier associated with drought response in barley. BARE1 transcription is strongly transcriptionally upregulated by drought and downregulated during recovery unequally between the investigated cultivars. The downregulation of networked autophagy genes suggests a role for autophagy in drought response; its importance to resilience should be further investigated.
Collapse
Affiliation(s)
- Maitry Paul
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Jaakko Tanskanen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Marko Jääskeläinen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Wei Chang
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Ahan Dalal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alan H. Schulman
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| |
Collapse
|
49
|
Quan X, Meng C, Zhang N, Liang X, Li J, Li H, He W. Genome-Wide Analysis of Barley bHLH Transcription Factors and the Functional Characterization of HvbHLH56 in Low Nitrogen Tolerance in Arabidopsis. Int J Mol Sci 2023; 24:ijms24119740. [PMID: 37298691 DOI: 10.3390/ijms24119740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Improvement of low nitrogen (LN) tolerance or nitrogen use efficiency (NUE) in crops is imperative for environment-friendly agriculture development. The basic helix-loop-helix (bHLH) transcription factors are involved in multiple abiotic stresses and are suitable as candidate genes for improving LN tolerance. Few studies were performed on the characterization of the HvbHLH gene family and their function in response to LN stress in barley. In this study, 103 HvbHLH genes were identified through genome-wide analysis. HvbHLH proteins were classified into 20 subfamilies based on phylogenetic analysis in barley, which was supported by conserved motifs and gene structure analysis. The stress-related cis-element analysis in the promoters showed that HvbHLHs are probably involved in multiple stress responses. By phylogenetic analysis of HvbHLHs and bHLHs in other plants, some HvbHLHs were predicted to play roles in response to nutrition deficiency stress. Furthermore, at least 16 HvbHLHs were differentially expressed in two barley genotypes differing in LN tolerance under LN stress. Finally, overexpression of HvbHLH56 enhanced LN stress tolerance in transgenic Arabidopsis, suggesting it is an important regulator in LN stress response. The differentially expressed HvbHLHs identified herein may be valuable for the breeding of barley cultivars with LN tolerance.
Collapse
Affiliation(s)
- Xiaoyan Quan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chen Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xiaoli Liang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
50
|
Ma H, Zou F, Li D, Wan Y, Zhang Y, Zhao Z, Wang X, Gao H. Transcription Factor MdbHLH093 Enhances Powdery Mildew Resistance by Promoting Salicylic Acid Signaling and Hydrogen Peroxide Accumulation. Int J Mol Sci 2023; 24:ijms24119390. [PMID: 37298341 DOI: 10.3390/ijms24119390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Powdery mildew is an apple disease caused by the obligate trophic fungus Podosphaera leucotricha. Basic helix-loop-helix (bHLH) transcription factors play important roles in plant development and stress responses, and they have been widely studied in model plants such as Arabidopsis thaliana. However, their role in the stress response of perennial fruit trees remains unclear. Here, we investigated the role of MdbHLH093 in the powdery mildew of apples. The expression of MdbHLH093 was significantly induced during the infection of apples with powdery mildew, and the allogenic overexpression of MdbHLH093 in A. thaliana enhanced the resistance to powdery mildew by increasing the accumulation of hydrogen peroxide (H2O2) and activating the salicylic acid (SA) signaling pathway. The transient overexpression of MdbHLH093 in apple leaves increased the resistance to powdery mildew. Conversely, when MdbHLH093 expression was silenced, the sensitivity of apple leaves to powdery mildew was increased. The physical interaction between MdbHLH093 and MdMYB116 was demonstrated by yeast two-hybrid, bi-molecular fluorescence complementation, and split luciferase experiments. Collectively, these results indicate that MdbHLH093 interacts with MdMYB116 to improve apple resistance to powdery mildew by increasing the accumulation of H2O2 and activating the SA signaling pathway, as well as by providing a new candidate gene for resistance molecular breeding.
Collapse
Affiliation(s)
- Hai Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Fuyan Zou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Dongmei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Ye Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yiping Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|