1
|
Sánchez-Marín L, Jiménez-Castilla V, Flores-López M, Navarro JA, Gavito A, Blanco-Calvo E, Santín LJ, Pavón-Morón FJ, Rodríguez de Fonseca F, Serrano A. Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA 1 receptor-deficient mice. Neuropharmacology 2025; 268:110325. [PMID: 39864586 DOI: 10.1016/j.neuropharm.2025.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA1 receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA1 receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA1-null mice of both sexes. We hypothesized LPA1 receptor loss disrupts the interplay between LPA and the endocannabinoid 2-arachidonoylglycerol (2-AG) signaling, resulting in distinct behavioral and molecular alterations. maLPA1-null mice exhibited increased anxiety-like behaviors and altered stress-coping responses compared to wild-type counterparts, with more pronounced effects observed in females. Female mice also displayed higher corticosterone levels, though no genotype-related differences were observed. Plasma analyses revealed elevated LPA levels in maLPA1-null mice, suggesting a compensatory mechanism, and reduced 2-AG levels, indicating impaired ECS signaling. Gene expression profiling in the amygdala and medial prefrontal cortex showed significant alterations in the gene expression of key components of LPA and 2-AG signaling pathways, as well as neuropeptide systems such as corticotropin-releasing hormone (CRH) and neuropeptide Y (NPY). Glutamatergic signaling components also exhibited sex-specific variations. These findings suggest that LPA1 receptor deficiency impacts behavioral response and disrupts sex-specific neurotransmitter signaling, emphasizing the importance of LPA-ECS crosstalk in emotional regulation. This study provides insights into the molecular mechanisms underlying stress-related disorders such as depression and anxiety, which may inform the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Violeta Jiménez-Castilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Juan A Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Ana Gavito
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Eduardo Blanco-Calvo
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Francisco J Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain; Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29001, Malaga, Spain.
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain.
| |
Collapse
|
2
|
Wymore EM, Wagner K, Gold C, Halmo LS. High Stakes: Exploring the Impact of Cannabis Use in Pregnancy and Lactation. Neoreviews 2025; 26:e247-e263. [PMID: 40164212 DOI: 10.1542/neo.26-4-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 04/02/2025]
Abstract
Cannabis is the most commonly used federally illicit substance during pregnancy in the United States, with an estimated prevalence of 3% to 30%. The American College of Obstetricians and Gynecologists and the American Academy of Pediatrics discourage cannabis use during pregnancy and breastfeeding due to safety concerns for the fetus and infant. Despite these recommendations, nearly half of active cannabis users continue use in pregnancy. In this review, we summarize cannabis pharmacology and metabolism with a focus on delta-9-tetrahydrocannabinol, the psychoactive component of the cannabis plant, highlighting its significance in quantifying exposure and the impact on outcomes studies. We also provide a concise review of current evidence on the effects of perinatal cannabis use and pregnancy, infant, and childhood outcomes, acknowledging the limitations of this evidence. Additionally, we provide targeted counseling recommendations for harm reduction strategies and lactation considerations for birthing parents who use cannabis.
Collapse
Affiliation(s)
- Erica M Wymore
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Katharine Wagner
- Section of Pediatric Hospital Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Christine Gold
- Section of Pediatric Hospital Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laurie Seidel Halmo
- Section of Pediatric Hospital Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Poison & Drug Safety, Denver Health and Hospital Authority, Denver, Colorado
| |
Collapse
|
3
|
Park JB, Escobar-Domingo MJ, Tobin M, Lee D, Mahmoud AA, Rahmani B, Adebagbo O, Fanning JE, Posso AN, Bloom JA, Cauley RP, Lee BT. Impact of Cannabis Use on Deep Inferior Epigastric Perforator Autologous Breast Reconstruction: analysis of 719 patients and 1148 flaps: Impact of Cannabis Use in DIEP Reconstruction. Ann Plast Surg 2025; 94:S188-S193. [PMID: 40167070 DOI: 10.1097/sap.0000000000004214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Given recent efforts to legalize and decriminalize recreational marijuana, its use has become increasingly common in the plastic surgery patient population. Although cannabis use has generally been considered lower risk than use of other recreational substances, recent studies have suggested it may be associated with an increased surgical complication rate. The aims of our study were to (1) characterize the extent of cannabis use and (2) determine the clinical effects of cannabis use in our cohort of patients undergoing autologous breast reconstruction using deep inferior epigastric perforator (DIEP) flaps. METHODS A retrospective study was conducted in adult patients who underwent autologous breast reconstruction using DIEP flaps between January 2015 and December 2023 by 5 plastic surgeons at our institution. Patients were divided into 2 groups of cannabis users and nonusers. Univariate and multivariable analyses were performed to assess outcomes between the groups. RESULTS A total of 87 cannabis users (12.1%) and 632 nonusers were included. A 5-fold increase in the proportion of cannabis users from 2015 to 2023 was found. Cannabis users were significantly younger (47.5 vs 51.7, P < 0.001) and had a significantly higher body mass index (30.5 vs 28.9, P = 0.012). Postoperatively, cannabis users had a significantly higher readmission rate (8.0% vs 3.2%, P = 0.035) and longer time to last abdominal drain removal (21 vs 17 days, P < 0.001). After controlling for confounders, multivariable logistic regression revealed cannabis use as a significant risk factor for postoperative general hematoma (OR: 3.078, confidence interval [95% CI]: 1.265-7.491, P = 0.013), breast hematoma (OR: 3.098, 95% CI: 1.197-8.020, P = 0.020), and readmission (OR: 2.865, 95% CI: 1.098-7.475, P = 0.031). CONCLUSION To our knowledge, this is the largest study examining the effects of cannabis use in patients receiving DIEP breast reconstruction. Our findings suggest that cannabis users undergoing DIEP breast reconstruction may require greater postoperative care and attention.
Collapse
Affiliation(s)
- John B Park
- From the Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Valeriano JDP, Andrade-Silva M, Pereira-Dutra F, Seito LN, Bozza PT, Rosas EC, Souza Costa MF, Henriques MG. Cannabinoid receptor type 2 agonist GP1a attenuates macrophage activation induced by M. bovis-BCG by inhibiting NF-κB signaling. J Leukoc Biol 2025; 117:qiae246. [PMID: 39538989 DOI: 10.1093/jleuko/qiae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide and a major public health problem. Immune evasion mechanisms and antibiotic resistance highlight the need to better understand this disease and explore alternative treatment approaches. Mycobacterial infection modulates the macrophage response and metabolism to persist and proliferate inside the cell. Cannabinoid receptor type 2 (CB2) is expressed mainly in leukocytes and modulates the course of inflammatory diseases. Therefore, our study aimed to evaluate the effects of the CB2-selective agonist GP1a on irradiated Mycobacterium bovis-BCG (iBCG)-induced J774A.1 macrophage activation. We observed increased expression of CB2 in macrophages after iBCG stimulation. The pretreatment with CB2-agonists, GP1a, JWH-133, and GW-833972A (10 µM), reduced iBCG-induced TNF-α and IL-6 release by these cells. Moreover, the CB2-antagonist AM630 (200 nM) treatment confirmed the activity of GP1a on CB2 by scale down its effect on cytokine production. GP1a pretreatment (10 µM) also inhibited the iBCG-induced production of inflammatory mediators as prostaglandin (PG)E2 and nitric oxide by macrophages. Additionally, GP1a pretreatment also reduced the transcription of proinflammatory genes (inos, il1b, and cox2) and genes related to lipid metabolism (dgat1, acat1, plin2, atgl, and cd36). Indeed, lipid droplet accumulation was reduced by GP1a treatment, which was partially blockade by AM630 pretreatment. Finally, GP1a pretreatment reduced the activation of the NF-κB signaling pathway. In conclusion, the activation of CB2 by GP1a modulated the macrophage response to iBCG by reducing inflammatory mediator levels and metabolic reprogramming.
Collapse
Affiliation(s)
- Jessica Do Prado Valeriano
- Immunobiology Department, Immunobiology of Inflammation Laboratory, IB, Universidade Federal Fluminense, R. Prof. Marcos Waldemar de Freitas Reis - São Domingos, Niterói - RJ 24210-201, Brazil
- Graduate Program in Biosciences-IBRAG IBRAG, Universidade do Estado do Rio de Janeiro, Blvd. 28 de Setembro, 87 - fundos - Vila Isabel, Rio de Janeiro - RJ 20551-030, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Filipe Pereira-Dutra
- Immunopharmacology Laboratory, IOC, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro - RJ 21040-900, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Patricia Torres Bozza
- Immunopharmacology Laboratory, IOC, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro - RJ 21040-900, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Maria Fernanda Souza Costa
- Immunobiology Department, Immunobiology of Inflammation Laboratory, IB, Universidade Federal Fluminense, R. Prof. Marcos Waldemar de Freitas Reis - São Domingos, Niterói - RJ 24210-201, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| |
Collapse
|
5
|
Hoch E, Volkow ND, Friemel CM, Lorenzetti V, Freeman TP, Hall W. Cannabis, cannabinoids and health: a review of evidence on risks and medical benefits. Eur Arch Psychiatry Clin Neurosci 2025; 275:281-292. [PMID: 39299947 PMCID: PMC11910417 DOI: 10.1007/s00406-024-01880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
The legalization of cannabis for medical and recreational purposes has progressed internationally. Cannabis and cannabinoids are advocated for a plethora of medical indications. An increasing number of medical and nonmedical users regularly consume large doses of delta-9-Tetrahydrocannabinol (THC), the main active component of cannabis. Aim: to summarize the evidence on (1) risks of recreational cannabis use and (2) effectiveness and safety of medicinal cannabis. Findings on recreational use: Cannabis is mostly used to experience its acute rewarding effects. Regular use of high THC products can produce addiction (cannabis use disorder or CUD). Acute consumption of high THC doses (including unintentionally) can cause time-limited mental, gastrointestinal, and cardiovascular problems and motor vehicle accidents. Chronic patterns of cannabis use have been associated with multiple adverse outcomes that are of particular concern among adolescents and young adults, such as, disrupted learning, impaired cognitive performance, reduced educational attainment and an increased risk of CUD, psychosis/schizophrenia, mood and anxiety disorders and suicidal behaviors. There is debate about the extent to which cannabis use is a cause of these adverse outcomes. Physical health risks (e.g., respiratory and cardiovascular, prematurity and restricted fetal growth, hyperemesis syndrome among others) have also been linked with repeated consumption of cannabis with a high THC content. Findings on medical cannabis use: Herbal cannabis, medicines from extracted or synthetized cannabinoids-often used as adjuvants to standard medicines-may produce small to modest benefits. This is primarily the case in treating chronic pain, muscle spasticity, chemotherapy-induced nausea and vomiting, and refractory epilepsy (in the case of cannabidiol, CBD). The evidence is inconclusive on their value in treating mental disorders and other medical conditions. Safety: Cannabis-based medicine is generally well tolerated. There is a risk of mild to moderate adverse effects and CUD.
Collapse
Affiliation(s)
- E Hoch
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany.
- IFT Institut für Therapieforschung, Centre for Mental Health and Addiction Research, Munich, Germany.
- Department Clinical Psychology and Psychotherapy, Charlotte Fresenius University, Munich, Germany.
| | - N D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - C M Friemel
- IFT Institut für Therapieforschung, Centre for Mental Health and Addiction Research, Munich, Germany
| | - V Lorenzetti
- Neuroscience of Addiction and Mental Health Program, School of Behavioural and Health Sciences, Faculty of Health Science, Australian Catholic University, Melbourne, Victoria, 3065, Australia
| | - T P Freeman
- Addiction and Mental Health Group, Department of Psychology, University of Bath, Bath, UK
| | - W Hall
- National Centre for Youth Substance Use Research, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Dragon J, Gołyszny M, Zieliński M, Popiołek-Barczyk K, Starowicz K, Obuchowicz E. Escitalopram reverses anxiety-like and despair behavior and affects endocannabinoid-related genes expression in the brain of adolescent male rats subjected to early life stress. Neuroscience 2025; 567:96-108. [PMID: 39761822 DOI: 10.1016/j.neuroscience.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
Due to the increasing prevalence of depressive and anxiety disorders in youth, a growing interest in the endocannabinoid system (ECS) as a potential alternative target point for treatment arised. This study aimed to investigate whether chronic administration of escitalopram reverses behavioral changes induced by maternal separation in male adolescent Wistar rats and explore the corresponding neurochemical changes in the ECS. The pups were separated from their dams for 360 min daily from postnatal day (PND) 2 until PND 15. Later, male rats were administered escitalopram (10 mg/kg i.p.) during their adolescent period (PND 35 - PND 55). Behavioral assessments were conducted in late adolescence (PND 54 - PND 57) in one group, and brain structures were dissected for biochemical analysis in the subsequent group of rats on PND 56. Expression of genes encoding: CB1 receptor, enzyme that catalyzes synthesis (NAPE-PLD) and degradation (FAAH) of anandamide (a full agonist of CB1 receptor) was evaluated using qRT-PCR. The corresponding protein levels were estimated via Western blot analysis. Our study revealed that maternal separation induced anxiety and despair-like behavior in adolescent rats. Escitalopram reversed anxiety-like behavior and attenuated signs of despair behavior. The escitalopram administration has been followed by a decrease in the studied genes expression in the amygdala, the hypothalamus, and the hippocampus, what might suggest that the endocannabinoid system is involved in the mechanism of its action in adolescents. However Western blot analysis did not indicate significant alterations in the protein levels, so more detailed studies are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Jonasz Dragon
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland.
| | - Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland.
| | - Katarzyna Popiołek-Barczyk
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland.
| |
Collapse
|
7
|
Hakami AY, Alshehri FS. Therapeutic potential of cannabinoids in neurological conditions: a systematic review of clinical trials. Front Pharmacol 2025; 16:1521792. [PMID: 39981181 PMCID: PMC11839665 DOI: 10.3389/fphar.2025.1521792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Overview Cannabinoids have gained increasing attention for their therapeutic potential in treating several neurological conditions, including neurodegenerative diseases, chronic pain, and epilepsy. This review aims to assess the current clinical trials investigating cannabinoids, primarily Tetrahydrocannabinol and Cannabidiol, for neurological disorders. This review will aim to highlight the efficacy, safety, and outcome measures used in these trials. Methods Clinical trials were identified using ClinicalTrials.gov, focusing on studies that examined the effects of cannabinoids in treating neurological conditions. All trials that fulfilled the following criteria were included: Phase 1-4, focused on cannabinoids as primary intervention, and measured relevant outcomes such as pain relief, cognitive function, or spasticity reduction. Data on conditions, interventions, primary and secondary outcomes, and trial phases were extracted and analysed. Results A total of 47 clinical trials were identified, including different neurological conditions. The most frequently studied conditions were Multiple Sclerosis, Fibromyalgia, and Parkinson's Disease. Most trials were in Phase 2, with the primary outcome measures focused on pain management, spasticity, and cognitive function. Secondary outcomes included safety and tolerability measures. Conclusion The review highlights the broad therapeutic potential of cannabinoids in neurology, with promising results in symptom management for conditions like Multiple Sclerosis and Fibromyalgia. However, the lack of standardized study protocols, dosing, and outcome measures presents challenges for broader clinical implementation. Systematic Review Registration clinicatrials.gov.
Collapse
Affiliation(s)
- Alqassem Y. Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Arnanz MA, Ferrer M, Grande MT, de Martín Esteban SR, Ruiz-Pérez G, Cravatt BF, Mostany R, Lobo VJSA, Romero J, Martínez-Relimpio AM. Fatty acid amide hydrolase gene inactivation induces hetero-cellular potentiation of microglial function in the 5xFAD mouse model of Alzheimer's disease. Glia 2025; 73:352-367. [PMID: 39474846 DOI: 10.1002/glia.24638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/22/2024]
Abstract
Neuroinflammation has recently emerged as a crucial factor in Alzheimer's disease (AD) etiopathogenesis. Microglial cells play an important function in the inflammatory response; specifically, the emergence of disease-associated microglia (DAM) has offered new insights into the conflicting perspectives on the detrimental or beneficial roles of microglia. We previously showed that modulating the endocannabinoid tone by fatty acid amide hydrolase (FAAH) inactivation renders beneficial effects in an amyloidosis context, paradoxically accompanied by an exacerbated neuroinflammatory response and the enrichment of DAM population. Here, we aim to elucidate the role of microglial cells in FAAH-lacking mice in the 5xFAD mouse model of AD by using RNA-sequencing analysis, molecular determinations, and morphological studies by using in vivo multiphoton microscopy. FAAH-lacking AD mice displayed upregulated inflammatory genes and exhibited a DAM genetic profile. Conversely, genes linked to AD were downregulated. Depleting microglia using PLX5622 revealed that plaque-associated microglia in FAAH-deficient AD mice had a more stable, ramified morphology and increased Aβ uptake, leading to reduced plaque growth compared to control mice. Importantly, FAAH expression was negligible in microglial cells, thus suggesting a role for FAAH in the cellular interplay in the central nervous system. Our findings show that Faah gene inactivation triggers a hetero-cellular enhancement of microglial function that was paradoxically paralleled by an exacerbated inflammatory response. Taken together, the present data highlight FAAH as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- María Andrea Arnanz
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - María Ferrer
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - María Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Cell Biology, The Scripps Research Institute, San Diego, California, USA
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, San Diego, California, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Víctor Javier Sánchez-Arévalo Lobo
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | |
Collapse
|
9
|
Yao K, Wang S, Xu Z, Fan Z, Chen Z, Jia P, Tu S, Liu Y, Lin X, Xu Y, Fang Y, Dou B, Guo Y. Mechanisms of comorbidity between Alzheimer's disease and pain. Alzheimers Dement 2025; 21:e14605. [PMID: 39998175 PMCID: PMC11852355 DOI: 10.1002/alz.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025]
Abstract
Clinical studies have revealed a significant correlation between pain and neurodegenerative diseases, particularly Alzheimer's disease (AD). However, due to cognitive and speech impairments, AD patients, especially those in moderate to severe stages, are often overlooked in pain management. The challenges in obtaining pain-related information from this population exacerbate the issue. Although recent clinical research has increasingly recognized the comorbidity of AD and pain, the pathological alterations and interactive mechanisms underlying this relationship remain inadequately explored. This review provides a comprehensive analysis of the clinical features and pathological mechanisms of AD with and without pain comorbidity. It examines underlying processes, including neuroinflammation, peripheral-central immune interactions, and neurotransmitter dynamics. Furthermore, it highlights current pain assessment and management strategies in AD patients. By offering a theoretical framework, this review aims to support the development of effective pain management approaches and serve as a reference for clinical interventions targeting AD-associated pain. HIGHLIGHTS: The comorbidity between AD and CP encompasses multiple interrelated biological pathways, such as neurodegeneration and inflammatory responses. The damage to neurons and synapses in AD patients influences the brain regions responsible for processing pain, thereby reducing the pain response. Neuroinflammation plays a vital role in the development of both AD and CP. Enhanced inflammatory responses have an impact on the CNS and promote sensitization. Common neurotransmitter alterations exist in the comorbidity of AD and CP, influencing cognition, emotion, and pain perception.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Peng Jia
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Shiwei Tu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Yuan Xu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Yuxing Fang
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Baomin Dou
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Yi Guo
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
- School of Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinP. R. China
| |
Collapse
|
10
|
Martínez-Rodríguez TY, Valdés-Miramontes EH, Muñoz-Valle JF, Reyes-Castillo Z. Genetic Evidence of Endocannabinoid System on Perceived Stress and Restricted Food Intake: The Role of Variants rs324420 in FAAH Gene and rs1049353 in CNR1 Gene. Cannabis Cannabinoid Res 2025; 10:e112-e120. [PMID: 38968406 DOI: 10.1089/can.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Abstract
Background: The endocannabinoid system (ECS) is active in brain regions involved in stress, food intake, and emotional regulation. The CB1 receptor and the fatty acid amide hydrolase (FAAH) enzyme regulate the ECS. Genetic variants in the FAAH gene (rs324420) and in the CNR1 gene (rs1049353) have been involved in both chronic stress and obesity. As a maladaptive strategy to evade the stress, three dysfunctional eating patterns may appear: cognitive restriction, disinhibition, and emotional eating. Aim: To evaluate the association of variants rs324420 in the FAAH gene and rs1049353 in the CNR1 gene with perceived stress, dysfunctional eating patterns, and anthropometric and body composition variables. Methods: This cross-sectional study included 189 participants from western Mexico. The Spanish version of the Three-Factor Eating Questionnaire and the Perceived Stress Scale were applied. Genotyping was performed with TaqMan® probes. Results: It was found that subjects with CA/AA genotypes in FAAH had a higher risk of presenting high scores in stress perception than CC genotype carriers (odds ratio [OR] 1.85, 95% confidence interval [CI] 1.007-3.339; p = 0.048); in addition, the CC genotype of this genetic variant was related to higher body weight and body fat, but no association was found with dysfunctional eating patterns. As for the CNR1 single-nucleotide polymorphism, this variant showed no significant association with stress perception scores, but subjects with GA/AA genotypes in CNR1 had a lower risk of presenting high scores of restriction in food intake compared with GG genotype carriers (OR 0.11, 95% CI 0.046-0.322; p < 0.001). Therefore, this study suggests a differential role of the ECS genes FAAH and CNR1 in perceived stress and dysfunctional eating patterns, respectively. Further studies in other populations are required.
Collapse
Affiliation(s)
- Tania Yadira Martínez-Rodríguez
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Zapotlán el Grande, México
| | - Elia H Valdés-Miramontes
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Zapotlán el Grande, México
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Zyanya Reyes-Castillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Zapotlán el Grande, México
- Laboratorio de Biomedicina y Biotecnología para la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Zapotlán el Grande, México
| |
Collapse
|
11
|
Aurilia C, Palmini G, Donati S, Falsetti I, Galli G, Margheriti L, Iantomasi T, Moro A, Brandi ML. The Presence of the Endocannabinoid System in an In Vitro Model of Gorham-Stout Disease and Its Possible Role in the Pathogenesis. Int J Mol Sci 2025; 26:1143. [PMID: 39940911 PMCID: PMC11818735 DOI: 10.3390/ijms26031143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Gorham-Stout syndrome (GSD), also known as disappearing bone disease, is an extremely rare bone disorder, characterized by a huge bone loss, which is followed by a lack of new matrix deposition and an excessive proliferation of both blood vessels and lymphatics. Unfortunately, the biological causes of GSD are still unknown. Recent studies that have tried to understand the etiopathogenesis of GSD have been principally focused on the vascular and osteoclastogenic aspects, not considering the possibility of a lack of osteoblast function. Nowadays, a diagnosis is still difficult, and is often made by exclusion of the presence of other pathologies, as well as on radiological evidence, and finally confirmed by histological examination. Treatment also remains a critical issue for clinicians today, who mostly try to control the progression of the disease. Over the last two decades, clear evidence has emerged that the endocannabinoid system plays an important role in bone metabolism, leading scientists to hypothesize that it could be involved in physiological and pathological bone processes. In this work, we analyzed the presence of the ES in a primary cell line of human mesenchymal stem cells derived from a GSD patient for the first time, to understand if and how this complex network may play a role in the pathogenesis of the syndrome. Our preliminary results demonstrated that the ES is also present in the pathological tissue. Moreover, the qRT-PCR analysis showed an altered expression of the different ES components (i.e., CNR1, CNR2, TRPV1, and GPR55). We observed an upregulation of CNR1 and TRPV1 expression, while the opposite trend was noticed for CNR2 and GPR55 expression. Thus, these results could lead us to speculate that possible deregulation of the ES may play an important role in the lack of bone regeneration in GSD patients. However, further studies will be necessary to confirm the role of the ES in the progression of GSD and understand whether the natural components of Cannabis Sativa could play a therapeutic role in the treatment of the disease.
Collapse
MESH Headings
- Humans
- Endocannabinoids/metabolism
- Osteolysis, Essential/metabolism
- Osteolysis, Essential/pathology
- Osteolysis, Essential/genetics
- Mesenchymal Stem Cells/metabolism
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptors, Cannabinoid/metabolism
- Receptors, Cannabinoid/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- TRPV Cation Channels/metabolism
- TRPV Cation Channels/genetics
- Osteoblasts/metabolism
Collapse
Affiliation(s)
- Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Gaia Palmini
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy;
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Lorenzo Margheriti
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Arcangelo Moro
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy;
| |
Collapse
|
12
|
Simonaro CM, Yasuda M, Schuchman EH. Endocannabinoid receptor 2 is a potential biomarker and therapeutic target for the lysosomal storage disorders. J Inherit Metab Dis 2025; 48:e12813. [PMID: 39569490 PMCID: PMC11670223 DOI: 10.1002/jimd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Herein, we studied the expression of endocannabinoid receptor 2 (CB2R), a known inflammation mediator, in several lysosomal storage disorder (LSD) animal models and evaluated it as a potential biomarker and therapeutic target for these diseases. CB2R was highly elevated in the plasma of Farber disease and mucopolysaccharidosis (MPS) type IIIA mice, followed by Fabry disease and MPS type I mice. Mice with acid sphingomyelinase-deficient Niemann-Pick disease (ASMD) and rats with MPS type VI exhibited little or no plasma CB2R elevation. High-level expression of CB2R was also observed in tissues of Farber and MPS IIIA mice. Treatment of MPS IIIIA patient cells with CB2R agonists led to a reduction of CB2R and monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor that is elevated in this LSD. Treatment of MPS IIIA mice with one of these agonists (JWH133) led to a reduction of plasma and tissue CB2R and MCP-1, a reduction of glial fibrillary acidic protein (GFAP) in the brain, and an improvement in hanging test performance. JWH133 treatment of Farber disease mice also led to a reduction of MCP-1 in tissues and plasma, and treatment of these mice by enzyme replacement therapy (ERT) led to a reduction of plasma CB2R, indicating its potential to monitor treatment response. Overall, these findings suggest that CB2R should be further examined as a potential therapeutic target for the LSDs and may also be a useful biomarker to monitor the impact of therapies.
Collapse
Affiliation(s)
- Calogera M. Simonaro
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Makiko Yasuda
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Edward H. Schuchman
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
13
|
Heo EH, Abrol R. Thermodynamic role of receptor phosphorylation barcode in cannabinoid receptor desensitization. Biochem Biophys Res Commun 2025; 743:151100. [PMID: 39693934 PMCID: PMC11706802 DOI: 10.1016/j.bbrc.2024.151100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
The endocannabinoid signaling system is comprised of CB1 and CB2 G protein-coupled receptors (GPCRs). CB2 receptor subtype is predominantly expressed in the immune cells and signals through its transducer proteins (Gi protein and β-arrestin-2). Arrestins are signaling proteins that bind to many GPCRs after receptor phosphorylation to terminate G protein signaling (desensitization) and to initiate specific G protein-independent arrestin-mediated signaling pathways via a "phosphorylation barcode", that captures sequence patterns of phosphorylated Ser/Thr residues in the receptor's intracellular domains and can lead to different signaling effects. The structural basis for how arrestins and G proteins compete with the receptor for biased signaling and how different barcodes lead to different signaling profiles is not well understood as there is a lack of phosphorylated receptor structures in complex with arrestins. In this work, structural models of β-arrestin-2 were built in complex with the phosphorylated and unphosphorylated forms of the CB2 receptor. The complex structures were relaxed in the lipid bilayer environment with molecular dynamics (MD) simulations and analyzed structurally and thermodynamically. The β-arrestin-2 complex with the phosphorylated receptor was more stable than the non-phosphorylated one, highlighting the thermodynamic role of the receptor phosphorylation. It was also more stable than any of the G protein complexes with CB2 suggesting that phosphorylation signals receptor desensitization (end of G protein signaling) and arrest of the receptor by arrestins. These models are beginning to provide the thermodynamic landscape of CB2 signaling, which can help bias signaling towards therapeutically beneficial pathways in drug discovery applications.
Collapse
Affiliation(s)
- Eun Ha Heo
- Department of Chemistry and Biochemistry, California State University Northridge, CA, 91330, USA
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, CA, 91330, USA.
| |
Collapse
|
14
|
Somogyi P, Horie S, Lukacs I, Hunter E, Sarkany B, Viney T, Livermore J, Plaha P, Stacey R, Ansorge O, El Mestikawy S, Zhao Q. Synaptic Targets and Cellular Sources of CB1 Cannabinoid Receptor and Vesicular Glutamate Transporter-3 Expressing Nerve Terminals in Relation to GABAergic Neurons in the Human Cerebral Cortex. Eur J Neurosci 2025; 61:e16652. [PMID: 39810425 PMCID: PMC11733414 DOI: 10.1111/ejn.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3. Of the CB1-immunopositive GABAergic terminals, 25% were vesicular-glutamate-transporter-3 (VGLUT3)-immunoreactive, suggesting GABAergic/glutamatergic co-transmission on dendritic shafts. In vitro recorded and labelled VGLUT3 or CB1-positive GABAergic interneurons expressed cholecystokinin, vasoactive-intestinal-polypeptide and calretinin, had diverse firing, axons and dendrites, and included rosehip, neurogliaform and basket cells, but not double bouquet or axo-axonic cells. CB1-positive interneurons innervated pyramidal cells and GABAergic interneurons. Glutamatergic synaptic terminals formed type-1 synapses and some were positive for CB1 receptor with a distribution that appeared different from that in GABAergic terminals. From the sampled VGLUT3-positive terminals, 60% formed type-1 synapses with dendritic spines (80%) or shafts (20%) and 52% were also positive for VGLUT1, suggesting intracortical origin. Some VGLUT3-positive terminals were immunopositive for vesicular-monoamine-transporter-2, suggesting 5-HT/glutamate co-transmission. Overall, the results show that CB1 regulates GABA release mainly to dendritic shafts of both pyramidal cells and interneurons and predict CB1-regulated co-release of GABA and glutamate from single cortical interneurons. We also demonstrate the co-existence of multiple vesicular glutamate transporters in a select population of terminals probably originating from cortical neurons and innervating dendritic spines in the human cerebral cortex.
Collapse
Affiliation(s)
- Peter Somogyi
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Sawa Horie
- Department of PharmacologyUniversity of OxfordOxfordUK
- Kawasaki Medical SchoolOkayamaJapan
- Department of Anatomy and NeurobiologyNational Defense Medical CollegeSaitamaJapan
| | - Istvan Lukacs
- Department of PharmacologyUniversity of OxfordOxfordUK
- Institute of Experimental MedicineBudapestHungary
| | - Emily Hunter
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - James Livermore
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniv. OxfordOxfordUK
| | - Salah El Mestikawy
- Douglas Research CentreMcGill University and the Montreal West Island IUHSSCMontréalCanada
| | - Qianru Zhao
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Chemical Biology, School of Pharmaceutical SciencesSouth‐Central Minzu UniversityWuhanChina
| |
Collapse
|
15
|
Zhang M, Wang T, Meng F, Jiang M, Wu S, Xu H. The endocannabinoid system in the brain undergoes long-lasting changes following neuropathic pain. iScience 2024; 27:111409. [PMID: 39717086 PMCID: PMC11664153 DOI: 10.1016/j.isci.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The endocannabinoid system (ECS), which is composed of endocannabinoids (eCBs), cannabinoid receptors (CBRs), and associated signaling molecules, has been identified within the brain. In neuropathic pain animal models and patients, long-lasting alterations in the ECS have been observed. These changes of neurons and glial cells in the ECS contribute to the modulation of neuropathic pain. Intervention strategies such as the activation of CBRs, the enhancement of hydrolytic enzyme function, and the inhibition of synthetizing enzymes typically alleviate neuropathic pain through CBR-dependent mechanisms. Additionally, emotions such as fear, anxiety, and depression are frequently experienced with neuropathic pain. Exogenous cannabinoids can mitigate these mood disorders via CBR signaling pathways. Therefore, the targeting of long-lasting ECS alterations represents a potential therapeutic approach for both neuropathic pain and emotional disorders. In this review, the long-lasting variations in neurons and glial cells in the ECS related to neuropathic pain and the accompanying emotional comorbidities are elucidated. Furthermore, the cellular and molecular mechanisms underlying synaptic plasticity and neural circuit activities in the brain are reviewed.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
- Department of Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Tao Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
- Department of Thoracic Surgery, Air Force Specialty Medical Center, Beijing 100142, China
| | - Fancheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Mengyang Jiang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
16
|
Bonanni R, Ratano P, Cariati I, Tancredi V, Cifelli P. Treatment Strategies for Painful Pelvic Floor Conditions: A Focus on the Potential Benefits of Cannabidiol. Biomolecules 2024; 14:1627. [PMID: 39766334 PMCID: PMC11727302 DOI: 10.3390/biom14121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
Painful conditions of the pelvic floor include a set of disorders of the pelvic region, discreetly prevalent in the female population, in which pain emerges as the predominant symptom. Such disorders have a significant impact on quality of life as they impair couple relationships and promote states of anxiety and irascibility in affected individuals. Although numerous treatment approaches have been proposed for the management of such disorders, there is a need to identify strategies to promote muscle relaxation, counter pelvic pain, and reduce inflammation. The endocannabinoid system (ECS) represents a complex system spread throughout the body and is involved in the regulation of numerous physiological processes representing a potential therapeutic target for mood and anxiety disorders as well as pain management. Cannabidiol (CBD), acting on the ECS, can promote relief from hyperalgesia and allodynia typical of disorders affecting the pelvic floor and promote muscle relaxation by restoring balance to this delicate anatomical region. However, its use is currently limited due to a lack of evidence supporting its efficacy and harmlessness, and the mechanism of action on the ECS remains partially unexplored to this day. This comprehensive review of the literature examines the impact of pain disorders affecting the pelvic floor and major treatment approaches and brings together the main evidence supporting CBD in the management of such disorders.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Patrizia Ratano
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
17
|
Whitaker LHR, Page C, Morgan C, Horne AW, Saunders PTK. Endometriosis: cannabidiol therapy for symptom relief. Trends Pharmacol Sci 2024; 45:1150-1161. [PMID: 39547915 DOI: 10.1016/j.tips.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Endometriosis is a common, chronic, incurable condition the hallmark of which is the presence of lesions (tissue resembling endometrium) in sites outside the womb, with symptoms including chronic debilitating pain and fatigue. However, current therapeutic options are limited. Recent advances in our understanding of the mechanisms that contribute to the development of lesions and pain experience in endometriosis as well as surveys of patients have increased interest in testing recently approved formulations containing cannabidiol (CBD) in this patient group. In this review, we summarise data from patient samples and animals models focussed on the pathophysiology of endometriosis, including pathways where CBD has activity. We consider the available formulations of CBD-containing products, their pharmacokinetics (PK), and their use in ongoing clinical trials in endometriosis and other pain conditions.
Collapse
Affiliation(s)
- Lucy H R Whitaker
- EXPPECT, Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Clive Page
- Institute of Pharmaceutical Science, King's College, London, SE1 9NH, UK
| | - Charles Morgan
- MRX Medical Ltd, C/o Ananda Developments plc, 42 Upper Berkeley Street, London, W1H 5QL, UK
| | - Andrew W Horne
- EXPPECT, Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Philippa T K Saunders
- EXPPECT, Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
18
|
Peterson IL, Liktor-Busa E, Karlage KL, Young SJ, Scholpa NE, Schnellmann RG, Largent-Milnes TM. Formoterol dynamically alters endocannabinoid tone in the periaqueductal gray inducing headache. J Headache Pain 2024; 25:200. [PMID: 39563240 PMCID: PMC11575070 DOI: 10.1186/s10194-024-01907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Headache is a pain disorder present in populations world-wide with a higher incidence in females. Specifically, the incidences of medication overuse headache (MOH) have increased worldwide. Comorbidities of MOH include photosensitivity, anxiety, "brain fog", and decreased physical activity. The FDA-approved long-lasting selective β2-adrenergic receptor agonist, formoterol, is currently approved for use in severe asthma and chronic obstructive pulmonary disease. Recently, interest in repurposing formoterol for use in other disorders including Alzheimer's disease, and neuropathic pain after spinal cord injury and traumatic brain injury has gained traction. Thus, revisiting known side-effects of formoterol, like headache and anxiety, could inform treatment paradigms. The endocannabinoid (eCB) system is implicated in the etiology of preclinical headache, with observed decreases in the circulating levels of endogenous cannabinoids, referred to as Clinical Endocannabinoid Deficiency. As cross-talk between the eCB system and adrenergic receptors has been reported, this study investigated the role of the eCB system and ability of formoterol to induce headache-like periorbital allodynic behavior. METHODS Female 8-week-old C57Bl/6J mice were treated daily with formoterol (0.3 mg/kg, i.p.) for up to 42-days, during which they were assessed for periorbital allodynia, open field/novel object recognition, and photosensitivity. At the end of the study, the periaqueductal grey (PAG), a brain region known to contribute to both headache induction and maintenance, was collected and subjected to LC-MS to quantify endocannabinoid levels. RESULTS Mice exhibited periorbital allodynia at nearly all time points tested and photosensitivity from 28-days onward. Levels of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), along with cannabinoid receptor 1 (CB1R) expression were altered by both age and upon treatment with formoterol. Administration of FAAH/MAGL inhibitors, to target the eCB system, and a non-selective cannabinoid receptor agonist, WIN 55,212 reversed the formoterol-induced periorbital allodynia. CONCLUSIONS These results suggest that formoterol is dysregulates eCB tone to drive headache-like periorbital allodynic behaviors. These results could help inform preventative treatment options for individuals receiving formoterol, as well as provide information on the interaction between the eCB and adrenergic system.
Collapse
Affiliation(s)
- Ingrid L Peterson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kelly L Karlage
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Sally J Young
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
19
|
Yeh YA, Hsu HC, Lin MC, Chen TS, Lin WC, Huang HM, Lin YW. Electroacupuncture Regulates Cannabinoid Receptor 1 Expression in a Mouse Fibromyalgia Model: Pharmacological and Chemogenetic Modulation. Life (Basel) 2024; 14:1499. [PMID: 39598297 PMCID: PMC11595423 DOI: 10.3390/life14111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Fibromyalgia is a chronic illness usually accompanied by long-lasting, general pain throughout the body, often accompanied by anxiety, depression, fatigue, and sleep disruption. Meanwhile, doctors and scientists have not entirely discovered detailed mechanisms; patients always have an exaggerated sensation to pervasive pain without satisfied medical service. Given the lack of knowledge on its underlying mechanism, current treatments aim to provide pain and/or symptom relief. The present study aimed to clarify the role of cannabinoid receptor 1 (CB1) signaling in a mouse fibromyalgia pain model. To develop the mouse fibromyalgia model, mice were subjected to intermittent cold stress (ICS). Our results indicated that mechanical (2.09 ± 0.09 g) and thermal hyperalgesia (4.77 ± 0.29 s), which were evaluated by von Frey and Hargraves' tests, were induced by ICS, suggesting successful modeling. The hurting replies were then provoked by electroacupuncture (EA) but not for sham EA mice. Further, in a Western blot analysis, we found significantly decreased CB1 protein levels in the thalamus, somatosensory cortex, and anterior cingulate cortex. In addition, the levels of pain-related protein kinases and transcription factor were increased. Treatment with EA reliably increased CB1 expression in various brain regions sequentially alleviated by nociceptive mediators. Furthermore, the administration of a CB1 agonist significantly attenuated fibromyalgia pain, reversed EA analgesia by the CB1 antagonist, and further reversed the chemogenetic inhibition of SSC. Our innovative findings evidence the role of CB1 signaling in the interaction of EA and fibromyalgia, suggesting its potential for clinical trials and as a treatment target.
Collapse
Affiliation(s)
- Yu-An Yeh
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
| | - Hsin-Cheng Hsu
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Traditional Chinese Medicine, China Medical University Hsinchu Hospital, China Medical University, Hsinchu 302056, Taiwan
| | - Ming-Chia Lin
- Department of Nuclear Medicine, E-DA Hospital, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Tzu-Shan Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Wei-Cheng Lin
- Graduate Institute of Sports and Health Management, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Hsiang-Ming Huang
- Department of Neurosurgery, China Medical University Hsinchu Hospital, China Medical University, Hsinchu 302056, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
20
|
Austin JM, Bailey R, Velazquez SG, Sainath H, Jackson C. Clinical effectiveness of medical marijuana in patients with amyotrophic lateral sclerosis. J Neurol Sci 2024; 466:123243. [PMID: 39307005 DOI: 10.1016/j.jns.2024.123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
Following legalization, Medical Marijuana (MM), has been used to treat the symptoms of Amyotrophic Lateral Sclerosis (ALS), yet data regarding Medical Marijuana's efficacy is lacking. Thus, we conducted a retrospective cohort study to assess Medical Marijuana's impact on ALS symptoms and progression. We reviewed the charts of all ALS patients treated in our clinic over a two-year period to collect data related to the primary outcome measures of symptoms of pain, poor appetite, anxiety, spasticity, insomnia, ALSFRS-R score, BMI, and MM use. Two groups were defined: a control group with target symptoms but no MM prescription, and a test group that filled a MM prescription, including a subgroup on MM for ≥3 visits. Outcomes were correlations between MM usage and symptom prevalence, and between MM usage and BMI and ALSFRS-R decline slope, analyzed using descriptive statistics and qualitative analysis via local regression. Data included 344 ALS patients. We found MM use correlated with alleviation of pain, poor appetite, and anxiety in the short term, but not with spasticity or insomnia. There was no correlation between MM use BMI maintenance. Notably, MM usage correlated with faster ALS progression, although patients using MM exhibited higher symptom burden and progressed faster than controls even pre-MM prescription. In conclusion, MM shows correlation with managing pain, poor appetite, and short-term anxiety in ALS, but is also correlated with faster disease progression based on ALSFRS-R scores. We suggest a multi-center, randomized controlled trial to evaluate both the clinical efficacy and safety of MM in the treatment of ALS.
Collapse
Affiliation(s)
- John Michael Austin
- MS4 at the University of Texas Health Science Center San Antonio (UTHSCSA), Department of Neurology, Long School of Medicine, 7703 Floyd Curl Dr, San Antonio, TX 78229, United States of America.
| | - Ryan Bailey
- MS4 at the University of Texas Health Science Center San Antonio (UTHSCSA), Department of Neurology, Long School of Medicine, 7703 Floyd Curl Dr, San Antonio, TX 78229, United States of America.
| | - Sandra Garcia Velazquez
- Department of Neurology at the University of Texas Health Science Center San Antonio, Department of Neurology, Long School of Medicine, 7703 Floyd Curl Dr, San Antonio, TX 7822, United States of America.
| | - Harinandan Sainath
- MS4 at the University of Texas Health Science Center San Antonio (UTHSCSA), Department of Neurology, Long School of Medicine, 7703 Floyd Curl Dr, San Antonio, TX 78229, United States of America.
| | - Carlayne Jackson
- Neurology at the University of Texas Health Science Center San Antonio (UTHSCSA), Department of Neurology, Long School of Medicine, 7703 Floyd Curl Dr, San Antonio, TX 7822, United States of America.
| |
Collapse
|
21
|
Xu L, Zhu A, Xu S, Zhao J, Song S, Zhu H, Huang Y. Hippocampal cannabinoid type 2 receptor alleviates chronic neuropathic pain-induced cognitive impairment via microglial DUSP6 pathway in rats. FASEB J 2024; 38:e70152. [PMID: 39498753 DOI: 10.1096/fj.202401481r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
Approximately 50% of patients with chronic neuropathic pain experience cognitive impairment, which negatively impacts their quality of life. The cannabinoid type 2 receptor (CB2R) may be involved in hippocampal cognitive processes. However, its role in chronic neuropathic pain-induced cognitive impairment remains elusive. Spared nerve injury (SNI) was used to induce chronic neuropathic pain in rats, while the novel-object recognition test and the Y-maze test were employed to assess cognitive function. Immunofluorescence, western blotting, and stereotaxic hippocampal microinjection were utilized to elucidate the potential mechanisms. We observed a reduction in mechanical pain threshold and cognitive impairment in SNI rats. This was accompanied by a tendency for hippocampal microglia to adopt pro-inflammatory functions. Notably, no changes were detected in CB2R expression. However, downregulation of the endogenous ligands AEA and 2-AG was evident. Hippocampal microinjection of a CB2R agonist mitigated cognitive impairment in SNI rats, which correlated with a tendency for microglia to adopt anti-inflammatory functions. Additionally, SNI-induced activation of the p-ERK/NFκB pathway in the hippocampus. Activation of CB2R reversed this process by upregulating DUSP6 expression in microglia. The effects elicited by CB2R activation could be inhibited through the downregulation of microglial DUSP6 via hippocampal adeno-associated virus (AAV) microinjection. Conversely, overexpression of hippocampal DUSP6 using AAV ameliorated the cognitive deficits observed in SNI rats, which remained unaffected by the administration of a CB2R antagonist. Our findings demonstrate that activation of hippocampal CB2R can mitigate chronic neuropathic pain-induced cognitive impairment through the modulation of the DUSP6/ERK/NFκB pathway.
Collapse
Affiliation(s)
- Lichi Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuxiang Xu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiale Zhao
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shujia Song
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - He Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Ryan JE, Fruchtman M, Sparr-Jaswa A, Knehans A, Worster B. Attention Deficit Hyperactivity Disorder, Cannabis Use, and the Endocannabinoid System: A Scoping Review. Dev Psychobiol 2024; 66:e22540. [PMID: 39267530 DOI: 10.1002/dev.22540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
There is emerging evidence that the endocannabinoid system (ECS) plays a significant role in the pathophysiology of many psychiatric disorders, including attention deficit hyperactivity disorder (ADHD). Increasing evidence suggests that a number of neurobiological correlates between endogenous cannabinoid function and cognitive dysfunction are seen in ADHD, making the ECS a possible target for therapeutic interventions. Cannabis use and cannabis use disorder are more prevalent in individuals with ADHD, compared to the general population, and there is growing popular perception that cannabis is therapeutic for ADHD. However, the relationship between cannabis use and ADHD symptomology is poorly understood. Further understanding of the role of the ECS in ADHD pathophysiology and the molecular alterations that may be a target for treatment is needed. To further the science on this emerging area of research, this scoping review describes the preclinical and clinical evidence seeking to understand the relationship between the ECS and ADHD.
Collapse
Affiliation(s)
- Jennie E Ryan
- College of Nursing, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mitchell Fruchtman
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrea Sparr-Jaswa
- College of Population Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Amy Knehans
- Harrell Health Sciences Library, Penn State University, University Park, Pennsylvania, USA
| | - Brooke Worster
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Aguzzi C, Zeppa L, Morelli MB, Marinelli O, Giangrossi M, Amantini C, Santoni G, Sazzad H, Nabissi M. Anticancer effect of minor phytocannabinoids in preclinical models of multiple myeloma. Biofactors 2024; 50:1208-1219. [PMID: 38760945 PMCID: PMC11627469 DOI: 10.1002/biof.2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Multiple myeloma (MM) is a blood cancer caused by uncontrolled growth of clonal plasmacells. Bone disease is responsible for the severe complications of MM and is caused by myeloma cells infiltrating the bone marrow and inducing osteoclast activation. To date, no treatment for MM is truly curative since patients relapse and become refractory to all drug classes. Cannabinoids are already used as palliative in cancer patients. Furthermore, their proper anticancer effect was demonstrated in many cancer models in vitro, in vivo, and in clinical trials. Anyway, few information was reported on the effect of cannabinoids on MM and no data has been provided on minor phytocannabinoids such as cannabigerol (CBG), cannabichromene (CBC), cannabinol (CBN), and cannabidivarin (CBDV). Scientific literature also reported cannabinoids beneficial effect against bone disease. Here, we examined the cytotoxic activity of CBG, CBC, CBN, and CBDV in vitro in MM cell lines, their effect in modulating MM cells invasion toward bone cells and the bone resorption. Subsequently, according to the in vitro results, we selected CBN for in vivo study in a MM xenograft mice model. Results showed that the phytocannabinoids inhibited MM cell growth and induced necrotic cell death. Moreover, the phytocannabinoids reduced the invasion of MM cells toward osteoblast cells and bone resorption in vitro. Lastly, CBN reduced in vivo tumor mass. Together, our results suggest that CBG, CBC, CBN, and CBDV can be promising anticancer agents for MM.
Collapse
Affiliation(s)
- Cristina Aguzzi
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | - Laura Zeppa
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | - Maria Beatrice Morelli
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | - Oliviero Marinelli
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | | | - Consuelo Amantini
- School of Bioscience and Veterinary MedicineUniversity of CamerinoCamerinoMCItaly
| | | | | | - Massimo Nabissi
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| |
Collapse
|
24
|
Yang H, Park M, Lee JH, Kim B, Moon CS, Bae S, Kim Y, Lee HJ, Park CY. New peripherally-restricted CB1 receptor antagonists, PMG-505-010 and -013 ameliorate obesity-associated NAFLD and fibrosis. Biomed Pharmacother 2024; 180:117501. [PMID: 39366030 DOI: 10.1016/j.biopha.2024.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The endocannabinoid system plays a crucial role in metabolic regulation, prompting the investigation of cannabinoid type 1 receptor (CB1R) antagonists for obesity and its complications like non-alcoholic fatty liver disease (NAFLD). Concerns over psychiatric side effects led to the development of peripheral CB1R antagonists that circumvent the blood-brain barrier (BBB). In this study, we synthesized PMG-505-010 and PMG-505-013 as peripherally restricted CB1 receptor antagonists by modifying rimonabant to minimize BBB penetration. Physicochemical analysis confirmed their reduced lipophilicity and increased polarity compared to rimonabant, indicating limited brain exposure. Molecular docking studies revealed similar binding modes to rimonabant at CB1R, characterized by robust hydrophobic interactions. Functionally, they acted as CB1R antagonists and inverse agonists, effectively reversing CP55,940-induced cAMP inhibition. In a murine model of obesity-related NAFLD, PMG-505-010 and -013 improved metabolic profiles, including fasting blood glucose levels and dyslipidemia. They also ameliorated hepatic injury, steatosis, and inflammation, evidenced by reduced liver enzymes, lipid peroxidation, hepatic lipid levels, and inflammatory cytokine levels. Notably, these compounds inhibited hepatic fibrosis by reducing extracellular matrix (ECM) deposition and altering fibrosis-related gene and protein expressions. In conclusion, PMG-505-010 and PMG-505-013 hold promise for treating obesity-related liver diseases, including NAFLD and fibrosis, through selective peripheral CB1R targeting, potentially avoiding CNS-related side effects seen with earlier CB1R antagonists.
Collapse
Affiliation(s)
- Hyekyung Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.
| | - Miey Park
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Ji Hye Lee
- PharminoGen Inc., Yongin 16827, Republic of Korea.
| | - Bokyoung Kim
- PharminoGen Inc., Yongin 16827, Republic of Korea.
| | - Chang Sang Moon
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Suyeal Bae
- PharminoGen Inc., Yongin 16827, Republic of Korea.
| | | | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| | - Cheol-Young Park
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.
| |
Collapse
|
25
|
Capolupo I, Miranda MR, Musella S, Di Sarno V, Manfra M, Ostacolo C, Bertamino A, Campiglia P, Ciaglia T. Exploring Endocannabinoid System: Unveiling New Roles in Modulating ER Stress. Antioxidants (Basel) 2024; 13:1284. [PMID: 39594426 PMCID: PMC11591047 DOI: 10.3390/antiox13111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is the organelle mainly involved in maintaining cellular homeostasis and driving correct protein folding. ER-dependent defects or dysfunctions are associated with the genesis/progression of several pathological conditions, including cancer, inflammation, and neurodegenerative disorders, that are directly or indirectly correlated to a wide set of events collectively named under the term "ER stress". Despite the recent increase in interest concerning ER activity, further research studies are needed to highlight all the mechanisms responsible for ER failure. In this field, recent discoveries paved the way for the comprehension of the strong interaction between ER stress development and the endocannabinoid system. The activity of the endocannabinoid system is mediated by the activation of cannabinoid receptors (CB), G protein-coupled receptors that induce a decrease in cAMP levels, with downstream anti-inflammatory effects. CB activation drives, in most cases, the recovery of ER homeostasis through the regulation of ER stress hallmarks PERK, ATF6, and IRE1. In this review, we focus on the CB role in modulating ER stress, with particular attention to the cellular processes leading to UPR activation and oxidative stress response extinguishment, and to the mechanisms underlying natural cannabinoids' modulation of this complex cellular machine.
Collapse
Affiliation(s)
- Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| |
Collapse
|
26
|
Jurga M, Jurga A, Jurga K, Kaźmierczak B, Kuśmierczyk K, Chabowski M. Cannabis-Based Phytocannabinoids: Overview, Mechanism of Action, Therapeutic Application, Production, and Affecting Environmental Factors. Int J Mol Sci 2024; 25:11258. [PMID: 39457041 PMCID: PMC11508795 DOI: 10.3390/ijms252011258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This review provides an overview of cannabis-based phytocannabinoids, focusing on their mechanisms of action, therapeutic applications, and production processes, along with the environmental factors that affect their quality and efficacy. Phytocannabinoids such as THC (∆9-tetrahydrocannabinol), CBD (cannabidiol), CBG (cannabigerol), CBN (cannabinol), and CBC (cannabichromene) exhibit significant therapeutic potential in treating various physical and mental health conditions, including chronic pain, epilepsy, neurodegenerative diseases, skin disorders, and anxiety. The cultivation of cannabis plays a crucial role in determining cannabinoid profiles, with indoor cultivation offering more control and consistency than outdoor methods. Environmental factors such as light, water, temperature, humidity, nutrient management, CO2, and the drying method used are key to optimizing cannabinoid content in inflorescences. This review outlines the need for broader data transfer between the health industry and technological production, especially in terms of what concentration and cannabinoid ratios are effective in treatment. Such data transfer would provide cultivators with information on what environmental parameters should be manipulated to obtain the required final product.
Collapse
Affiliation(s)
- Marta Jurga
- 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (M.J.); (K.J.)
| | - Anna Jurga
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.J.); (B.K.)
| | - Kacper Jurga
- 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (M.J.); (K.J.)
| | - Bartosz Kaźmierczak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.J.); (B.K.)
| | | | - Mariusz Chabowski
- 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (M.J.); (K.J.)
- Faculty of Medicine, Wroclaw University of Science and Technology, Hoene-Wrońskiego 13c, 58-376 Wroclaw, Poland
| |
Collapse
|
27
|
Ippolito M, Hayduk SA, Kinney W, Brenneman DE, Ward SJ. KLS-13019, a Novel Structural Analogue of Cannabidiol and GPR55 Receptor Antagonist, Prevents and Reverses Chemotherapy-Induced Peripheral Neuropathy in Rats. J Pharmacol Exp Ther 2024; 391:231-240. [PMID: 39134424 PMCID: PMC11493436 DOI: 10.1124/jpet.124.002190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Neuropathic pain is a form of chronic pain that develops because of damage to the nervous system. Treatment of neuropathic pain is often incompletely effective, and most available therapeutics have only moderate efficacy and present side effects that limit their use. Opioids are commonly prescribed for the management of neuropathic pain despite equivocal results in clinical studies and significant abuse potential. Thus, neuropathic pain represents an area of critical unmet medical need, and novel classes of therapeutics with improved efficacy and safety profiles are urgently needed. The cannabidiol structural analog and novel antagonist of GPR55, KLS-13019, was screened in rat models of neuropathic pain. Tactile sensitivity associated with chemotherapy exposure was induced in rats with once-daily 1-mg/kg paclitaxel injections for 4 days or 5 mg/kg oxaliplatin every third day for 1 week. Rats were then administered KLS-13019 or comparator drugs on day 7 in an acute dosing paradigm or days 7-10 in a chronic dosing paradigm, and mechanical or cold allodynia was assessed. Allodynia was reversed in a dose-dependent manner in the rats treated with KLS-13019, with the highest dose reverting the response to prepaclitaxel injection baseline levels with both intraperitoneal and oral administration after acute dosing. In the chronic dosing paradigm, four consecutive doses of KLS-13019 completely reversed allodynia for the duration of the phenotype in control animals. Additionally, coadministration of KLS-13019 with paclitaxel prevented the allodynic phenotype from developing. Together, these data suggest that KLS-13019 represents a potential new drug for the treatment of neuropathic pain. SIGNIFICANCE STATEMENT: Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating side effect of cancer treatment with no known cure. The GPR55 antagonist KLS-13019 represents a novel class of drug for this condition that is a potent, durable inhibitor of allodynia associated with CIPN in rats in both prevention and reversal-dosing paradigms. This novel therapeutic approach addresses a critical area of unmet medical need.
Collapse
Affiliation(s)
- Michael Ippolito
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| | - Sean A Hayduk
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| | - William Kinney
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| | - Douglas E Brenneman
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| | - Sara Jane Ward
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| |
Collapse
|
28
|
Meccariello R, Aseer KR, Kabir M, Santoro A. Editorial: Multifaceted cannabinoids: regulators of normal and pathological function in metabolic and endocrine organs, volume II. Front Endocrinol (Lausanne) 2024; 15:1503017. [PMID: 39493780 PMCID: PMC11528542 DOI: 10.3389/fendo.2024.1503017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Affiliation(s)
- Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, Naples, Italy
| | - Kanikkai Raja Aseer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Morvarid Kabir
- Cedars Sinai Medical Center, Department of Medicine, Los Angeles, CA, United States
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
29
|
Duczmal D, Bazan-Wozniak A, Niedzielska K, Pietrzak R. Cannabinoids-Multifunctional Compounds, Applications and Challenges-Mini Review. Molecules 2024; 29:4923. [PMID: 39459291 PMCID: PMC11510081 DOI: 10.3390/molecules29204923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients. Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous cannabinoids, along with the enzymes responsible for their synthesis and degradation. All of these compounds interact biologically with type 1 (CB1) and/or type 2 (CB2) cannabinoid receptors. A substantial body of evidence from in vitro and in vivo studies has demonstrated that cannabinoids and inhibitors of endocannabinoid degradation possess anti-inflammatory, antioxidant, antitumour and antifibrotic properties with beneficial effects. This review, which spans the period from 1940 to 2024, offers an overview of the potential therapeutic applications of natural and synthetic cannabinoids. The development of these substances is essential for the global market of do-it-yourself drugs to fully exploit the promising therapeutic properties of cannabinoids.
Collapse
Affiliation(s)
- Dominik Duczmal
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Polygen Sp. z o.o., Górnych Wałów 46/1, 44-100 Gliwice, Poland;
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
30
|
Sens A, Thomas D, Schäfer SMG, König A, Pinter A, Tegeder I, Geisslinger G, Gurke R. Endocannabinoid analysis in GlucoEXACT plasma: Method validation and sample handling recommendations. Talanta 2024; 278:126518. [PMID: 39018759 DOI: 10.1016/j.talanta.2024.126518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Endocannabinoids (ECs), such as anandamide and 2-arachidonyl glycerol (2-AG), contribute to the pathology of inflammatory, malignant, cardiovascular, metabolic and mental diseases. The reliability of quantitative analyses in biological fluids of ECs and endocannabinoid-like (EC-like) substances depends on pre-analytical conditions such as temperature and "time-to-centrifugation". Standardization of these parameters is critical for valid quantification and implementation in clinical research. In this study, we compared concentrations obtained with GlucoEXACT blood collection tubes versus K3EDTA tubes and employed the optimized procedure to assess ECs profiles in patients with inflammatory skin disease and healthy controls. A UHPLC-MS/MS method was validated for human plasma from GlucoEXACT blood collection tubes according to EMA and FDA guidelines, and pre-analytical conditions were systematically modified to assess analyte stability and optimize the procedures. The results showed significantly lower concentrations of ECs and EC-like substance concentrations with GlucoEXACT tubes compared with K3EDTA tubes, and GlucoEXACT extended the time window of stable concentrations. The strongest method-disagreement occurred for 1/2-AG suggesting that GlucoEXACT delayed ex vivo isomer rearrangement. Hence, GlucoExact tubes were superior in terms of stability and reliability. However, although absolute concentrations obtained with GlucoExact and K3EDTA differed, linear regression studies showed high agreement (except for 1/2-AG), and both methods showed similar EC profiles and similar disease-dependent pro-inflammatory patterns in dermatology patients. Hence, despite the obstacles in EC analyses, implementation of optimized pre-analytical blood collection and sample processing procedures provide reliable insight into peripheral ECs.
Collapse
Affiliation(s)
- A Sens
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - D Thomas
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - S M G Schäfer
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - A König
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology, and Allergology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - A Pinter
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology, and Allergology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - I Tegeder
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - G Geisslinger
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - R Gurke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Faiz MB, Naeem F, Irfan M, Aslam MA, Estevinho LM, Ateşşahin DA, Alshahrani AM, Calina D, Khan K, Sharifi-Rad J. Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges. Discov Oncol 2024; 15:490. [PMID: 39331301 PMCID: PMC11436528 DOI: 10.1007/s12672-024-01356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
For centuries, cannabinoids have been utilized for their medicinal properties, particularly in Asian and South-Asian countries. Cannabis plants, known for their psychoactive and non-psychoactive potential, were historically used for spiritual and remedial healing. However, as cannabis became predominantly a recreational drug, it faced prohibition. Recently, the therapeutic potential of cannabinoids has sparked renewed research interest, extending their use to various medical conditions, including cancer. This review aims to highlight current data on the involvement of cannabinoids in cancer signaling pathways, emphasizing their potential in cancer therapy and the need for further investigation into the underlying mechanisms. A comprehensive literature review was conducted using databases such as PubMed/MedLine, Google Scholar, Web of Science, Scopus, and Embase. The search focused on peer-reviewed articles, review articles, and clinical trials discussing the anticancer properties of cannabinoids. Inclusion criteria included studies in English on the mechanisms of action and clinical efficacy of cannabinoids in cancer. Cannabinoids, including Δ9-THC, CBD, and CBG, exhibit significant anticancer activities such as apoptosis induction, autophagy stimulation, cell cycle arrest, anti-proliferation, anti-angiogenesis, and metastasis inhibition. Clinical trials have demonstrated cannabinoids' efficacy in tumor regression and health improvement in palliative care. However, challenges such as variability in cannabinoid composition, psychoactive effects, regulatory barriers, and lack of standardized dosing remain. Cannabinoids show promising potential as anticancer agents through various mechanisms. Further large-scale, randomized controlled trials are essential to validate these findings and establish standardized therapeutic protocols. Future research should focus on elucidating detailed mechanisms, optimizing dosing, and exploring cannabinoids as primary chemotherapeutic agents.
Collapse
Affiliation(s)
- Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Faiza Naeem
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Adeel Aslam
- Department of Forensic Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Leticia M Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, Shaqra University, Dawadimi, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Javad Sharifi-Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
32
|
López-Tofiño Y, Hopkins MA, Bagues A, Boullon L, Abalo R, Llorente-Berzal Á. The Endocannabinoid System of the Nervous and Gastrointestinal Systems Changes after a Subnoxious Cisplatin Dose in Male Rats. Pharmaceuticals (Basel) 2024; 17:1256. [PMID: 39458898 PMCID: PMC11509924 DOI: 10.3390/ph17101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Cisplatin, a common chemotherapy agent, is well known to cause severe side effects in the gastrointestinal and nervous systems due to its toxic and pro-inflammatory effects. Although pharmacological manipulation of the endocannabinoid system (ECS) can alleviate these side effects, how chemotherapy affects the ECS components in these systems remains poorly understood. Our aim was to evaluate these changes. Methods: Male Wistar rats received cisplatin (5 mg/kg, i.p.) or saline on day 0 (D0). Immediately after, serial X-rays were taken for 24 h (D0). Body weight was recorded (D0, D1, D2 and D7) and behavioural tests were performed on D4. On D7, animals were euthanized, and gastrointestinal tissue, dorsal root ganglia (DRGs) and brain areas were collected. Expression of genes related to the ECS was assessed via Rt-PCR, while LC-MS/MS was used to analyse endocannabinoid and related N-acylethanolamine levels in tissue and plasma. Results: Animals treated with cisplatin showed a reduction in body weight. Cisplatin reduced gastric emptying during D0 and decreased MAGL gene expression in the antrum at D7. Despite cisplatin not causing mechanical or heat sensitivity, we observed ECS alterations in the prefrontal cortex (PFC) and DRGs similar to those seen in other chronic pain conditions, including an increased CB1 gene expression in L4/L5 DRGs and a decreased MAGL expression in PFC. Conclusions: A single dose of cisplatin (5 mg/kg, i.p.), subnoxious, but capable of inducing acute gastrointestinal effects, caused ECS changes in both gastrointestinal and nervous systems. Modulating the ECS could alleviate or potentially prevent chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Mary A. Hopkins
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
| | - Ana Bagues
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Laura Boullon
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Spanish National Research Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia, Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids, Spanish Pain Society, 28046 Madrid, Spain
| | - Álvaro Llorente-Berzal
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
- Department of Physiology, School of Medicine, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
33
|
Wu Y, Fang F, Fan X, Nie H. Associations of Cannabis Use, Metabolic Dysfunction-Associated Steatotic Liver Disease, and Liver Fibrosis in U.S. Adults. Cannabis Cannabinoid Res 2024. [PMID: 39286879 DOI: 10.1089/can.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Introduction: Following the introduction of metabolic dysfunction-associated steatotic liver disease (MASLD) as a replacement term for nonalcoholic fatty liver disease, the relationship between MASLD and cannabis use has yet to be established. With the global rise in cannabis consumption, understanding its impact on MASLD is critical for clinical guidance. Our study investigated the association between cannabis use, MASLD, and clinically significant fibrosis (CSF) among U.S. adults. Methods: Data were collected from the National Health and Nutrition Examination Survey for the period 2017 to 2018 to conduct a cross-sectional analysis. The diagnosis of hepatic steatosis and CSF was based on median values of the controlled attenuation parameter and liver stiffness measurement, with thresholds of 285 dB/m and 8.6 kPa, respectively. Information on cannabis use was obtained through self-report questionnaires. Multinomial logistic regression models and subgroup analyses were used to investigate the association between cannabis use and MASLD with CSF. Results: Our study assessed data from 2,756 U.S. adults (51.1% female; 32.2% white; mean age 39.41 ± 11.83 years), who had complete information on liver stiffness measurements through transient elastography alongside reported cannabis use. Results indicated that cannabis use overall was not associated with liver stiffness in patients with MASLD. However, among females, cannabis use was associated with MASLD accompanied by CSF, with an adjusted odds ratio (OR) of 0.47 (95% confidence interval [CI]: 0.24-0.91). Heavy cannabis use (9 to 30 times per month) was associated with MASLD accompanied by CSF among female participants, with an adjusted OR of 0.12 (95% CI: 0.02-0.88). Conclusion: In our study, cannabis use did not show a significant association with liver stiffness in patients diagnosed with MASLD. However, heavy cannabis consumption in women was associated with MASLD accompanied by CSF. These findings suggest that the effects of cannabis on liver health may differ based on gender and frequency of cannabis use, emphasizing the need for further research in this area.
Collapse
Affiliation(s)
- Yu Wu
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Fang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xingliang Fan
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongming Nie
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Tanaka K, Subramaniam S, Atluri S, Amoako AA, Mortlock S, Montgomery GW, McKinnon B. Endometrial Cell-Type Specific Regulation of the Endocannabinoids System and the Impact of Menstrual Cycle and Endometriosis. Cannabis Cannabinoid Res 2024. [PMID: 39286880 DOI: 10.1089/can.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Introduction: Anandamide (AEA) and 2-arachidonoylglycerol are endogenous agonists of the cannabinoid receptors and regulate and control many cellular functions. Their activities are governed by enzymes and proteins that regulate their synthesis, receptor binding, transport, and degradation, which are known as the endocannabinoid system (ECS). The aim of this study was to investigate the regulation of endocannabinoid activity in the endometrium by studying the RNA and protein expression of the ECS within endometrial cell types and during different menstrual cycle stages and the impact of endometriosis. Materials and Methods: The RNA expression of 70 ECS genes was assessed using RNA sequencing of isolated endometrial epithelial and stromal cells. Subsequent immunofluorescence-stained endometrial samples on ECS components of interest were objectively analyzed via an agnostic and automated image analysis pipeline to extract quantitative information. Differential gene and protein expression was investigated between the two cell types, menstrual cycle phases, and endometriosis cases and controls. Results: Sufficient RNA expression was detected for 45 genes, and 17 (38%) genes were significantly different between epithelial and stromal cells. FAAH RNA was significantly higher in epithelial cells compared with stromal cells. Protein expression analysis of the main synthesizing (NAPE-PLD) and catabolizing (FAAH and NAAA) enzymes of AEA revealed a significantly stronger epithelial expression compared to stromal cells. The RNA and protein expression of CB1 receptors was very low with no significant difference between epithelial and stromal cells. Eleven ECS genes were regulated across the menstrual cycle, and there was no gene with significant difference between endometriosis cases and controls in epithelial cells. Discussion: Differential expression of ECS genes supports a cell type-specific endocannabinoid activity in the endometrium. As endocannabinoids are short-lived signaling molecules, higher RNA and protein expression of FAAH in the epithelial cells suggests an active regulation of endocannabinoid activity in epithelial cells within the endometrium.
Collapse
Affiliation(s)
- Keisuke Tanaka
- Department of Obstetrics and Gynaecology, The Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | | | - Sharat Atluri
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Akwasi A Amoako
- Department of Obstetrics and Gynaecology, The Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Sally Mortlock
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Brett McKinnon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Department of Biomedical Research, University of Berne, Berne, Switzerland
| |
Collapse
|
35
|
Davies-Owen J, Christiansen P, Roberts CA. Associations Between Motivations for Cannabis Use and "the Munchies": Construct Validity of the Cannabinoid Eating Experience Questionnaire. Subst Use Misuse 2024; 60:20-27. [PMID: 39279236 DOI: 10.1080/10826084.2024.2403121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
BACKGROUND The Cannabis Eating Experience Questionnaire (CEEQ) was developed and validated with a two-factor structure for the assessment of cannabis effects on both the appetitive factors that initiate eating and the hedonic factors that maintain an eating episode. The relationship between the CEEQ and cannabis use motives has not yet been considered. The study aimed to confirm the two-factor structure of the CEEQ and explore associations with the five-factor Marijuana Motives Questionnaire (MMQ). METHOD Cannabis users (N = 546) completed the CEEQ alongside the MMQ in an online survey. RESULTS Confirmatory factor analysis (CFA) confirmed the two-factor structure of the CEEQ and the five-factor structure of the MMQ. Structural equation modeling (SEM) tested associations between each factor of the CEEQ and cannabis use motives. Cannabis use motives of "enhancement" and "conformity" were both positively associated with "hedonic" and "appetitive" subscales of the CEEQ, and "coping" was associated with increased "appetitive" scores. The "social" cannabis use motive was negatively associated with both "hedonic" and "appetitive" subscales on CEEQ, and "expansion" was negatively associated with the "appetitive" subscale. CONCLUSION We provide further support for the construct validity of the CEEQ that provides a useful assessment of cannabis effects on hedonic and appetitive aspects of eating and show for the first time that cannabis use motives influence eating experiences in distinct ways. Further understanding of the relationship between cannabis use motives and the effects of cannabis on appetite may prove a useful for informing therapeutic applications of cannabis stimulating appetite or promoting weight gain.
Collapse
Affiliation(s)
- Jennifer Davies-Owen
- Department of Psychological Sciences, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UKingdom
| | - Paul Christiansen
- Department of Psychological Sciences, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UKingdom
| | - Carl Alexander Roberts
- Department of Psychological Sciences, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UKingdom
| |
Collapse
|
36
|
Quintero JM, Diaz LE, Galve-Roperh I, Bustos RH, Leon MX, Beltran S, Dodd S. The endocannabinoid system as a therapeutic target in neuropathic pain: a review. Expert Opin Ther Targets 2024; 28:739-755. [PMID: 39317147 DOI: 10.1080/14728222.2024.2407824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION This review highlights the critical role of the endocannabinoid system (ECS) in regulating neuropathic pain and explores the therapeutic potential of cannabinoids. Understanding the mechanisms of the ECS, including its receptors, endogenous ligands, and enzymatic routes, can lead to innovative treatments for chronic pain, offering more effective therapies for neuropathic conditions. This review bridges the gap between preclinical studies and clinical applications by emphasizing ECS modulation for better pain management outcomes. AREAS COVERED A review mapped the existing literature on neuropathic pain and the effects of modulating the ECS using natural and synthetic cannabinoids. This analysis examined ECS components and their alterations in neuropathic pain, highlighting the peripheral, spinal, and supraspinal mechanisms. This review aimed to provide a thorough understanding of the therapeutic potential of cannabinoids in the management of neuropathic pain. EXPERT OPINION Advances in cannabinoid research have shown significant potential for the management of chronic neuropathic pain. The study emphasizes the need for high-quality clinical trials and collaborative efforts among researchers, clinicians, and regulatory bodies to ensure safe and effective integration of cannabinoids into pain management protocols. Understanding the mechanisms and optimizing cannabinoid formulations and delivery methods are crucial for enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Jose-Manuel Quintero
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía, Colombia
| | | | - Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology, School of Chemistry and Instituto de Investigación en Neuroquímica, Complutense University, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa-Helena Bustos
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
| | - Marta-Ximena Leon
- Grupo Dolor y Cuidados Paliativos, Universidad de La Sabana, Chía, Colombia
| | | | - Seetal Dodd
- Faculty of Medicine, Universidad de La Sabana, Chía, Colombia
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
37
|
Yu Q, Song C, Bi L, Zhao S, Lei Q, Yang N, Chen H, Wang Y, He Y, Deng H. Design, synthesis and biological evaluation of naphthyl amide derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. Bioorg Med Chem 2024; 111:117844. [PMID: 39106652 DOI: 10.1016/j.bmc.2024.117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024]
Abstract
Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years. Here, we designed and synthesized a series of naphthyl amide derivatives (12-39) as another type of reversible MAGL inhibitors, exemplified by ± 34, which displayed good MAGL inhibition with a pIC50 of 7.1, and the potency and selectivity against endogenous MAGL were further demonstrated by competitive ABPP. Moreover, the compound showed appreciable antiproliferative activities against several cancer cells, including H460, HT29, CT-26, Huh7 and HCCLM-3. The investigations culminated in the discovery of the naphthyl amide derivative ± 34, and it may represent as a new scaffold for MAGL inhibitor development, particularly for the reversible ones.
Collapse
Affiliation(s)
- Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyun Bi
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, China
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, China
| | - Na Yang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, China
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Roseti L, Borciani G, Amore E, Grigolo B. Cannabinoids in the Inflamed Synovium Can Be a Target for the Treatment of Rheumatic Diseases. Int J Mol Sci 2024; 25:9356. [PMID: 39273304 PMCID: PMC11394920 DOI: 10.3390/ijms25179356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The management of rheumatic diseases has noticeably changed in recent years with the development of targeted therapeutic agents, namely, biological disease-modifying antirheumatic drugs. Identifying essential signaling pathways and factors crucial for the development and progression of these diseases remains a significant challenge. Therapy could be used to delay the onset or reduce harm. The endocannabinoid system's presence within the synovium can be identified as a suggested target for therapeutic interventions due to its role in modulating pain, inflammation, and joint metabolism. This review brings together the most pertinent information concerning the actions of the endocannabinoid system present in inflamed synovial tissue and its interaction with phytocannabinoids and synthetic cannabinoids, which can be used from a therapeutic perspective to minimize the inflammatory and pain processes typical of osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Livia Roseti
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Emanuela Amore
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
39
|
Bartkowiak-Wieczorek J, Bienert A, Czora-Poczwardowska K, Kujawski R, Szulc M, Mikołajczak P, Wizner AM, Jamka M, Hołysz M, Wielgus K, Słomski R, Mądry E. Cannabis sativa L. Extract Alleviates Neuropathic Pain and Modulates CB1 and CB2 Receptor Expression in Rat. Biomolecules 2024; 14:1065. [PMID: 39334832 PMCID: PMC11430414 DOI: 10.3390/biom14091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Cannabis sativa L. (CSL) extract has pain-relieving potential due to its cannabinoid content, so the effects of two CSL extracts on alleviating neuropathic pain were investigated in vivo. Methods and groups: Male Wistar rats (n = 130) were divided into groups and received vincristine (0.1 mg/kg) and gabapentin (60 mg/kg) to induce and relieve neuropathic pain or CSL extracts (D and B). The mRNA and protein expression of the cannabinoid receptors type 1 and 2 (CB1R, CB2R) were evaluated in the cerebral cortex, hippocampus, and lymphocytes. Behavioural tests (Tail-Flick and von Frey) were performed on all animals. RESULTS VK-induced neuropathic pain was accompanied by decreased CB1R protein level and CB2R mRNA expression in the cortex. Gabapentin relieved pain and increased CB1R protein levels in the hippocampus compared to the vincristine group. Hippocampus CB1R protein expression increased with the administration of extract D (10 mg/kg, 40 mg/kg) and extract B (7.5 mg/kg, 10 mg/kg) compared to VK group. In the cerebral cortex CSL decreased CB1R protein expression (10 mg/kg, 20 mg/kg, 40 mg/kg of extract B) and mRNA level (5 mg/kg, 7.5 mg/kg of extract B; 20 mg/kg of extract D) compared to the VK-group.CB2R protein expression increased in the hippocampus after treatment with extract B (7.5 mg/kg) compared to the VK-group. In the cerebral cortex extract B (10 mg/kg, 20 mg/kg) increased CB2R protein expression compared to VK-group. CONCLUSION Alterations in cannabinoid receptor expression do not fully account for the observed behavioural changes in rats. Therefore, additional signalling pathways may contribute to the initiation and transmission of neuropathic pain. The Cannabis extracts tested demonstrated antinociceptive effects comparable to gabapentin, highlighting the antinociceptive properties of Cannabis extracts for human use.
Collapse
Affiliation(s)
| | - Agnieszka Bienert
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (A.B.); (A.-M.W.)
| | - Kamila Czora-Poczwardowska
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.C.-P.); (R.K.); (M.S.); (P.M.)
| | - Radosław Kujawski
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.C.-P.); (R.K.); (M.S.); (P.M.)
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.C.-P.); (R.K.); (M.S.); (P.M.)
| | - Przemysław Mikołajczak
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.C.-P.); (R.K.); (M.S.); (P.M.)
| | - Anna-Maria Wizner
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (A.B.); (A.-M.W.)
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (M.J.); (K.W.)
| | - Marcin Hołysz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Karolina Wielgus
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (M.J.); (K.W.)
| | - Ryszard Słomski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants National Research Institute, 60-630 Poznan, Poland;
| | - Edyta Mądry
- Physiology Department, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| |
Collapse
|
40
|
Maglaviceanu A, Peer M, Rockel J, Bonin RP, Fitzcharles MA, Ladha KS, Bhatia A, Leroux T, Kotra L, Kapoor M, Clarke H. The State of Synthetic Cannabinoid Medications for the Treatment of Pain. CNS Drugs 2024; 38:597-612. [PMID: 38951463 DOI: 10.1007/s40263-024-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/03/2024]
Abstract
Synthetic cannabinoids are compounds made in the laboratory to structurally and functionally mimic phytocannabinoids from the Cannabis sativa L. plant, including delta-9-tetrahydrocannabinol (THC). Synthetic cannabinoids (SCs) can signal via the classical endogenous cannabinoid system (ECS) and the greater endocannabidiome network, highlighting their signalling complexity and far-reaching effects. Dronabinol and nabilone, which mimic THC signalling, have been approved by the Food and Drug Administration (FDA) for treating nausea associated with cancer chemotherapy and/or acquired immunodeficiency syndrome (AIDS). However, there is ongoing interest in these two drugs as potential analgesics for a variety of other clinical conditions, including neuropathic pain, spasticity-related pain, and nociplastic pain syndromes including fibromyalgia, osteoarthritis, and postoperative pain, among others. In this review, we highlight the signalling mechanisms of FDA-approved synthetic cannabinoids, discuss key clinical trials that investigate their analgesic potential, and illustrate challenges faced when bringing synthetic cannabinoids to the clinic.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Jason Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Mary-Ann Fitzcharles
- Department of Rheumatology, McGill University, Montreal, Canada
- Alan Edwards Pain Management Unit, McGill University, Montreal, Canada
| | - Karim S Ladha
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Anuj Bhatia
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, Toronto Western Hospital-University Health Network, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Timothy Leroux
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Lakshmi Kotra
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Hance Clarke
- Krembil Research Institute, University Health Network, Toronto, Canada.
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada.
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada.
- Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada.
- Transitional Pain Service, Pain Research Unit, Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
41
|
Azarfarin M, Ghadiri T, Dadkhah M, Sahab-Negah S. The interaction between cannabinoids and long-term synaptic plasticity: A survey on memory formation and underlying mechanisms. Cell Biochem Funct 2024; 42:e4100. [PMID: 39090824 DOI: 10.1002/cbf.4100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), is an essential phenomenon in memory formation as well as maintenance along with many other cognitive functions, such as those needed for coping with external stimuli. Synaptic plasticity consists of gradual changes in the biochemistry and morphology of pre- and postsynaptic neurons, particularly in the hippocampus. Consuming marijuana as a primary source of exocannabinoids immediately impairs attention and working memory-related tasks. Evidence regarding the effects of cannabinoids on LTP and memory is contradictory. While cannabinoids can affect a variety of specific cannabinoid receptors (CBRs) and nonspecific receptors throughout the body and brain, they exert miscellaneous systemic and local cerebral effects. Given the increasing use of cannabis, mainly among the young population, plus its potential adverse long-term effects on learning and memory processes, it could be a future global health challenge. Indeed, the impact of cannabinoids on memory is multifactorial and depends on the dosage, timing, formula, and route of consumption, plus the background complex interaction of the endocannabinoids system with other cerebral networks. Herein, we review how exogenously administrated organic cannabinoids, CBRs agonists or antagonists, and endocannabinoids can affect LTP and synaptic plasticity through various receptors in interaction with other cerebral pathways and primary neurotransmitters.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Department of Neuroscience,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Dadkhah
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Sahab-Negah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Feng S, Pan Y, Lu P, Li N, Zhu W, Hao Z. From bench to bedside: the application of cannabidiol in glioma. J Transl Med 2024; 22:648. [PMID: 38987805 PMCID: PMC11238413 DOI: 10.1186/s12967-024-05477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Glioma is the most common malignant tumor in central nervous system, with significant health burdens to patients. Due to the intrinsic characteristics of glioma and the lack of breakthroughs in treatment modalities, the prognosis for most patients remains poor. This results in a heavy psychological and financial load worldwide. In recent years, cannabidiol (CBD) has garnered widespread attention and research due to its anti-tumoral, anti-inflammatory, and neuroprotective properties. This review comprehensively summarizes the preclinical and clinical research on the use of CBD in glioma therapy, as well as the current status of nanomedicine formulations of CBD, and discusses the potential and challenges of CBD in glioma therapy in the future.
Collapse
Affiliation(s)
- Shiying Feng
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China
- Central Clinical Medical School, Baotou Medical College, Baotou, 014040, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Pu Lu
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China
| | - Na Li
- Department of Gynecology, Baotou City Central Hospital, Baotou, 014040, China.
| | - Wei Zhu
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China.
| | - Zhiqiang Hao
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China
| |
Collapse
|
43
|
da Silva NM, Lopes ICS, Galué-Parra AJ, Ferreira IM, de Sena CBC, da Silva EO, Macchi BDM, de Oliveira FR, do Nascimento JLM. Fatty Acid Amides Suppress Proliferation via Cannabinoid Receptors and Promote the Apoptosis of C6 Glioma Cells in Association with Akt Signaling Pathway Inhibition. Pharmaceuticals (Basel) 2024; 17:873. [PMID: 39065724 PMCID: PMC11280372 DOI: 10.3390/ph17070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
A glioma is a type of tumor that acts on the Central Nervous System (CNS) in a highly aggressive manner. Gliomas can occasionally be inaccurately diagnosed and treatments have low efficacy, meaning that patients exhibit a survival of less than one year after diagnosis. Due to factors such as intratumoral cell variability, inefficient chemotherapy drugs, adaptive resistance development to drugs and tumor recurrence after resection, the search continues for new drugs that can inhibit glioma cell growth. As such, analogues of endocannabinoids, such as fatty acid amides (FAAs), represent interesting alternatives for inhibiting tumor growth, since FAAs can modulate several metabolic pathways linked to cancer and, thus, may hold potential for managing glioblastoma. The aim of this study was to investigate the in vitro effects of two fatty ethanolamides (FAA1 and FAA2), synthetized via direct amidation from andiroba oil (Carapa guianensis Aublet), on C6 glioma cells. FAA1 and FAA2 reduced C6 cell viability, proliferation and migratory potential in a dose-dependent manner and were not toxic to normal retina glial cells. Both FAAs caused apoptotic cell death through the loss of mitochondrial integrity (ΔΨm), probably by activating cannabinoid receptors, and inhibiting the PI3K/Akt pathway. In conclusion, FAAs derived from natural products may have the potential to treat glioma-type brain cancer.
Collapse
Affiliation(s)
- Nágila Monteiro da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (N.M.d.S.); (I.C.S.L.); (E.O.d.S.)
- Laboratorio de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Izabella Carla Silva Lopes
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (N.M.d.S.); (I.C.S.L.); (E.O.d.S.)
- Laboratorio de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Adan Jesus Galué-Parra
- Laboratório de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil; (A.J.G.-P.); (C.B.C.d.S.)
| | - Irlon Maciel Ferreira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Chubert Bernardo Castro de Sena
- Laboratório de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil; (A.J.G.-P.); (C.B.C.d.S.)
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
| | - Edilene Oliveira da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (N.M.d.S.); (I.C.S.L.); (E.O.d.S.)
- Laboratório de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil; (A.J.G.-P.); (C.B.C.d.S.)
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INCT-INBEB), Rio de Janeiro 21941-902, Brazil
| | - Barbarella de Matos Macchi
- Laboratorio de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Fábio Rodrigues de Oliveira
- Laboratório de Controle de Qualidade e Bromatologia, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
| | - José Luiz Martins do Nascimento
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (N.M.d.S.); (I.C.S.L.); (E.O.d.S.)
- Laboratorio de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| |
Collapse
|
44
|
Hen-Shoval D, Indig-Naimer T, Moshe L, Kogan NM, Zaidan H, Gaisler-Salomon I, Okun E, Mechoulam R, Shoval G, Zalsman G, Weller A. Unraveling the molecular basis of cannabidiolic acid methyl Ester's anti-depressive effects in a rat model of treatment-resistant depression. J Psychiatr Res 2024; 175:50-59. [PMID: 38704981 DOI: 10.1016/j.jpsychires.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Major depressive disorder (MDD) stands as a significant cause of disability globally. Cannabidiolic Acid-Methyl Ester (CBDA-ME) (EPM-301, HU-580), a derivative of Cannabidiol, demonstrates immediate antidepressant-like effects, yet it has undergone only minimal evaluation in psychopharmacology. Our goal was to investigate the behavioral and potential molecular mechanisms associated with the chronic oral administration of this compound in the Wistar Kyoto (WKY) genetic model of treatment-resistant depression. Male WKY rats were subjected to behavioral assessments before and after receiving chronic (14-day) oral doses of CBDA-ME (0.5 mg/kg), 15 mg/kg of imipramine or vehicle. At the end of the study, plasma corticosterone levels and mRNA expression of various genes in the medial Prefrontal Cortex and Hippocampus were measured. Behavioral outcomes from CBDA-ME treatment indicated an antidepressant-like effect similar to imipramine, as oral ingestion reduced immobility and increased swimming duration in the Forced Swim Test. Neither treatment influenced locomotion in the Open Field Test nor preference in the Saccharin Preference Test. The behavioral impact in WKY rats coincided with reduced corticosterone serum levels, upregulated mRNA expression of Cannabinoid receptor 1, Fatty Acid Amide Hydrolase, and Corticotropin-Releasing Hormone Receptor 1, alongside downregulation of the Serotonin Transporter in the hippocampus. Additionally, there was an upregulation of CB1 mRNA expression and downregulation of Brain-Derived Neurotrophic Factor in the mPFC. These findings contribute to our limited understanding of the antidepressant effects of CBDA-ME and shed light on its potential psychopharmacological mechanisms. This discovery opens up possibilities for utilizing cannabinoids in the treatment of major depressive disorder and related conditions.
Collapse
Affiliation(s)
- D Hen-Shoval
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| | - T Indig-Naimer
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - L Moshe
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - N M Kogan
- Institute of Personalized and Translational Medicine, Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - H Zaidan
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - I Gaisler-Salomon
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - E Okun
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder laboratory for Alzheimer disease research, Bar-Ilan University, Ramat Gan, Israel; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - R Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| | - G Shoval
- Geha Mental Health Center, Petah Tiqva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - G Zalsman
- Geha Mental Health Center, Petah Tiqva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY, United States
| | - A Weller
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
45
|
Stanescu AMA, Bejan GC, Balta MD, Andronic O, Toma C, Busnatu S. The Perspective of Cannabidiol in Psoriasis Therapy. PSORIASIS (AUCKLAND, N.Z.) 2024; 14:51-61. [PMID: 38911997 PMCID: PMC11193997 DOI: 10.2147/ptt.s469698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
Psoriasis is a chronic skin condition that can significantly impact the quality of life of those affected. As an autoimmune disease, it can lead to itchy, painful, and scaly patches on the skin. Although various treatments, including topical creams, phototherapy, and systemic medications, are currently available, they may not always offer effective relief and can have side effects. Researchers have thus been exploring the potential benefits of non-psychoactive compounds such as CBD, found in Cannabis sativa plants, for treating psoriasis. CBD treatment may reduce inflammation, oxidative stress, itching, abnormal proliferation of keratinocytes, and may increase hydration. This review aims to provide an overview of the existing literature on the potential uses of CBD for psoriasis treatment.
Collapse
Affiliation(s)
- Ana Maria Alexandra Stanescu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Academy of Romanian Scientists (AOSR), Bucharest, Romania
- Emil Palade” Center of Excellence for Young Researchers EP-CEYR The Academy of Romanian Scientists AOSR, Bucharest, Romania
| | | | - Mihaela Daniela Balta
- Department 5, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Octavian Andronic
- Department 10, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristian Toma
- Department 3, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Prof.Dr. Theodor Burghele” Clinical Hospital, Bucharest, Romania
| | - Stefan Busnatu
- Department 4, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Bagdasar Arseni Clin Emergency Hospital, Bucharest, Romania
| |
Collapse
|
46
|
Barker H, Ferraro MJ. Exploring the versatile roles of the endocannabinoid system and phytocannabinoids in modulating bacterial infections. Infect Immun 2024; 92:e0002024. [PMID: 38775488 PMCID: PMC11237442 DOI: 10.1128/iai.00020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.
Collapse
Affiliation(s)
- Hailey Barker
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Ferraro
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
47
|
Zhao H, Liu Y, Cai N, Liao X, Tang L, Wang Y. Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs. Drug Des Devel Ther 2024; 18:2143-2167. [PMID: 38882045 PMCID: PMC11179644 DOI: 10.2147/dddt.s462785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Na Cai
- Outpatient Department, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xiaolin Liao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Lin Tang
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
48
|
Manca A, Valz C, Chiara F, Mula J, Palermiti A, Billi M, Antonucci M, Nicolò AD, Luxardo N, Imperiale D, Vischia F, De Cori D, Cusato J, D'Avolio A. Cannabinoid levels description in a cohort of patients with chronic and neuropathic pain treated with Cannabis decoction: A possible role of TDM. Biomed Pharmacother 2024; 175:116686. [PMID: 38713939 DOI: 10.1016/j.biopha.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
The phytocomplex of Cannabis is made up of approximately 500 substances: terpeno-phenols metabolites, including Δ-9-tetrahydrocannabinol and cannabidiol, exhibit pharmacological activity. Medical Cannabis has several pharmacological potential applications, in particular in the management of chronic and neuropathic pain. In the literature, a few data are available concerning cannabis pharmacokinetics, efficacy and safety. Thus, aim of the present study was the evaluation of cannabinoid pharmacokinetics in a cohort of patients, with chronic and neuropathic pain, treated with inhaled medical cannabis and decoction, as a galenic preparation. In this study, 67 patients were enrolled. Dried flower tops with different THC and CBD concentrations were used: Bedrocan® medical cannabis with THC level standardized at 19% and with a CBD level below 1%, Bediol® medical cannabis with THC and CBD level standardized at similar concentration of 6.5% and 8%, respectively. Cannabis was administered as a decoction in 47 patients and inhaled in 11 patients. The blood withdrawn was obtained before the new dose administration at the steady state and metabolites plasma concentrations were measured with an UHPLC-MS/MS method. Statistically significant differences were found in cannabinoids plasma exposure between inhaled and oral administration of medical cannabis, between male and female and cigarette smokers. For the first time, differences in cannabinoid metabolites exposures between different galenic formulations were suggested in patients. Therapeutic drug monitoring could be useful to allow for dose adjustment, but further studies in larger cohorts of patients are required in order to confirm these data.
Collapse
Affiliation(s)
- Alessandra Manca
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Cristina Valz
- SC Terapia del dolore - ASL Città di Torino, Turin 10144, Italy
| | - Francesco Chiara
- University of Turin, Department of Clinical and Biological Sciences, Laboratory of Clinical Pharmacology San Luigi A.O.U., RegioneGonzole 10, Orbassano, Turin 10043, Italy
| | - Jacopo Mula
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Alice Palermiti
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Martina Billi
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Miriam Antonucci
- SCDU Infectious Diseases, Amedeo di Savoia Hospital, ASL Città di Torino, Turin 10149, Italy
| | - Amedeo De Nicolò
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Nicola Luxardo
- SC Terapia del dolore - ASL Città di Torino, Turin 10144, Italy
| | - Daniele Imperiale
- Neurology Unit, Maria Vittoria Hospital, ASL Città di Torino, Turin 10144, Italy
| | - Flavio Vischia
- Department of Mental Health - Psychiatric Unit West, Turin 10149, Italy
| | - David De Cori
- Department of Mental Health - Psychiatric Unit West, Turin 10149, Italy
| | - Jessica Cusato
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy.
| | - Antonio D'Avolio
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| |
Collapse
|
49
|
Kim HJ, Kim YH. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. Int J Mol Sci 2024; 25:5302. [PMID: 38791344 PMCID: PMC11121268 DOI: 10.3390/ijms25105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Acne vulgaris is a common dermatological condition that can present across different ages but predominantly affects adolescents and young adults. Characterized by various lesion types, the pathogenesis of acne is complex, involving genetic, hormonal, microbial, and inflammatory factors. This review comprehensively addresses current and emerging acne management strategies, emphasizing both topical and systemic treatments, procedural therapies, and dietary modifications. Key topical agents include retinoids, benzoyl peroxide, antibiotics, and other specialized compounds. Systemic options like antibiotics, hormonal therapies, and retinoids offer significant therapeutic benefits, particularly for moderate to severe cases. Procedural treatments such as laser devices, photodynamic therapy, chemical peels, and intralesional injections present viable alternatives for reducing acne symptoms and scarring. Emerging therapies focus on novel biologics, bacteriophages, probiotics, and peptides, providing promising future options. This review underscores the importance of personalized approaches to treatment due to the multifaceted nature of acne, highlighting the potential of innovative therapies for improving patient outcomes.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
50
|
Xie G, Qin Y, Wu N, Han X, Li J. Single-Nucleus Transcriptome Profiling from the Hippocampus of a PTSD Mouse Model and CBD-Treated Cohorts. Genes (Basel) 2024; 15:519. [PMID: 38674453 PMCID: PMC11050643 DOI: 10.3390/genes15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is the most common psychiatric disorder after a catastrophic event; however, the efficacious treatment options remain insufficient. Increasing evidence suggests that cannabidiol (CBD) exhibits optimal therapeutic effects for treating PTSD. To elucidate the cell-type-specific transcriptomic pathology of PTSD and the mechanisms of CBD against this disease, we conducted single-nucleus RNA sequencing (snRNA-seq) in the hippocampus of PTSD-modeled mice and CBD-treated cohorts. We constructed a mouse model by adding electric foot shocks following exposure to single prolonged stress (SPS+S) and tested the freezing time, anxiety-like behavior, and cognitive behavior. CBD was administrated before every behavioral test. The PTSD-modeled mice displayed behaviors resembling those of PTSD in all behavioral tests, and CBD treatment alleviated all of these PTSD-like behaviors (n = 8/group). Three mice with representative behavioral phenotypes were selected from each group for snRNA-seq 15 days after the SPS+S. We primarily focused on the excitatory neurons (ExNs) and inhibitory neurons (InNs), which accounted for 68.4% of the total cell annotations. A total of 88 differentially upregulated genes and 305 differentially downregulated genes were found in the PTSD mice, which were found to exhibit significant alterations in pathways and biological processes associated with fear response, synaptic communication, protein synthesis, oxidative phosphorylation, and oxidative stress response. A total of 63 overlapping genes in InNs were identified as key genes for CBD in the treatment of PTSD. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the anti-PTSD effect of CBD was related to the regulation of protein synthesis, oxidative phosphorylation, oxidative stress response, and fear response. Furthermore, gene set enrichment analysis (GSEA) revealed that CBD also enhanced retrograde endocannabinoid signaling in ExNs, which was found to be suppressed in the PTSD group. Our research may provide a potential explanation for the pathogenesis of PTSD and facilitate the discovery of novel therapeutic targets for drug development. Moreover, it may shed light on the therapeutic mechanisms of CBD.
Collapse
Affiliation(s)
| | | | | | - Xiao Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (G.X.); (Y.Q.); (N.W.); (J.L.)
| | | |
Collapse
|